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Abstract
Stochastic optimization has found wide applications in minimizing objective functions in machine
learning, which motivates a lot of theoretical studies to understand its practical success. Most of
existing studies focus on the convergence of optimization errors, while the generalization analysis
of stochastic optimization is much lagging behind. This is especially the case for nonconvex and
nonsmooth problems often encountered in practice. In this paper, we initialize a systematic stabil-
ity and generalization analysis of stochastic optimization on nonconvex and nonsmooth problems.
We introduce novel algorithmic stability measures and establish their quantitative connection on
the gap between population gradients and empirical gradients, which is then further extended to
study the gap between the Moreau envelope of the empirical risk and that of the population risk.
To our knowledge, these quantitative connection between stability and generalization in terms of
either gradients or Moreau envelopes have not been studied in the literature. We introduce a class
of sampling-determined algorithms, for which we develop bounds for three stability measures. Fi-
nally, we apply these results to derive error bounds for stochastic gradient descent and its adaptive
variant, where we show how to achieve an implicit regularization by tuning the step sizes and the
number of iterations.

1. Introduction
Stochastic optimization has become the workhorse behind many successful applications of machine
learning (ML) (Zhang, 2004; Bottou et al., 2018). The basic idea is to introduce randomness into
the design of optimization algorithms to speed up the learning process by using the sum structure of
objective functions in ML. A representative algorithm is the stochastic gradient descent (SGD). As
an iterative algorithm, SGD first randomly selects a single example from a training dataset to build
a stochastic gradient, and then moves along the negative direction of this stochastic gradient to get
the next iterate. Due to its cheap computation cost and simplicity, SGD is especially interesting to
solve large-scale and complex learning problems. In the last decade, SGD has been improved in
various directions from the viewpoint of Nesterov acceleration (Nesterov, 1983), variance reduc-
tion (Johnson and Zhang, 2013; Schmidt et al., 2017; Defazio et al., 2014; Fang et al., 2018) and
adaptive learning rates (Duchi et al., 2010; Kingma and Ba, 2015; Zhou et al., 2018).

Motivated by the increasing popularity, researchers have studied the theoretical behavior of
stochastic optimization. Depending on the property of objective functions, one can measure the
progress of optimization in terms of different performance metrics. For strongly convex problems,
one can use the distance between the output model and the best model as the performance measure
since there is only a unique minimizer (Bottou et al., 2018; Zhang and Zhou, 2019). For con-
vex problems, one can develop convergence rates in terms of functional suboptimality gap since
there may exist several models with the same global function value (Zhang, 2004). For non-
convex and smooth problems, one can measure the performance through the magnitude of gra-
dients since an algorithm is only guaranteed to find a local minimum (Ghadimi and Lan, 2013).
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The performance metric becomes more tricky for nonconvex and nonsmooth problems (Davis
and Drusvyatskiy, 2019, 2021). For an objective function ψ, neither the functional suboptimal-
ity gap ψ(wt) − inf ψ(w), nor the stationarity measure, dist(0, ∂ψ(wt)), necessarily decay to
zero along the optimization process (Davis and Drusvyatskiy, 2019). Here wt denotes an it-
erate of the algorithm, ∂ψ(wt) denotes the subdifferential and dist denotes the Euclidean dis-
tance function. Recently, Davis and Drusvyatskiy (2019) proposed to use the Moreau envelope
ψλ(w) = infv

{
ψ(v) + 1

2λ∥v −w∥22
}

as a useful potential function to study stochastic optimiza-
tion for weakly convex problems 1. An intuitive understanding is that a small gradient ∥∇ψλ(wt)∥2
implies that wt is near some point that is nearly stationary for the problem minw ψ(w), which
motivates the use of the performance measure ∥∇ψλ(wt)∥2 for weakly convex problems. Weakly
convex problems form an importance class of nonconvex and nonsmooth problems, with instanti-
ations in various application domains such as phase retrieval, robust principal component analysis,
covariance matrix estimation and sparse dictionary learning (Davis and Drusvyatskiy, 2019).

Most of existing studies focus on the convergence behavior of stochastic optimization algo-
rithms from the perspective of optimization, i.e., how the trained model would behave on training
examples. However, in ML we are more interested in the prediction behavior from the perspective
of learning (Mohri et al., 2012), i.e., how these models would behave on testing examples, which is
much less studied for stochastic optimization. The gap between training and testing is a central topic
in statistical learning theory (SLT). There are two major approaches to study the generalization gap:
a uniform convergence approach based on the complexity analysis of hypothesis spaces (Bartlett
and Mendelson, 2002) and an algorithmic stability approach based on the sensitivity analysis of
algorithms (Bousquet and Elisseeff, 2002) (for simplicity we always mean algorithmic stability
when mentioning stability). Uniform convergence analysis applies to nonconvex problems, which,
however, often leads to a square-root dependency on the dimensionality and therefore unfavorable
for high-dimensional learning problems (Feldman and Vondrak, 2019). Stability analysis can yield
dimension-free bounds, which, however, often requires strong assumptions on loss functions such
as convexity or smoothness. For example, most of the algorithmic stability analysis of stochastic
optimization requires a convexity and a smoothness assumption (Hardt et al., 2016; Kuzborskij and
Lampert, 2018). The smoothness assumption is removed in the recent study (Lei and Ying, 2020;
Bassily et al., 2020). In particular, the paper (Bassily et al., 2020) develops matching lower bounds
for convex and nonsmooth problems. For nonconvex problems, one typically requires a Polyak-
Łojasiewicz (PL) condition to get nontrivial error bounds of SGD (Charles and Papailiopoulos,
2018). In the general nonconvex case, the stability analysis of SGD requires very small step sizes
to get meaningful stability bounds (Hardt et al., 2016; Kuzborskij and Lampert, 2018), for which
one cannot get meaningful optimization error bounds within reasonable computations. The strong
assumption restricts the application domain of stability analysis for nonconvex and nonsmooth prob-
lems, which are often encountered in practice. To our knowledge, there is no stability analysis of
stochastic optimization for problems that are simultaneously nonconvex and nonsmooth without
restrictive assumptions such as the PL condition.

In this paper, we initialize the stability and generalization analysis of stochastic optimization for
weakly convex problems, where the objective functions are nonconvex and nonsmooth. As a warm
up, we first consider convex and nonsmooth problems, then nonconvex and smooth problems, and
finally move onto weakly convex problems. As indicated before, we require to use different metrics

1. A function is weakly convex if eigenvalues of Hessian matrices are lower bounded by a negative value.
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to measure the generalization performance, which also asks for different stability measures as well
as a different connection between stability and generalization. Our contributions are as follows.
Comparisons between our results and existing results are given in Table 1 and Table 2.

(a) We introduce a stability measure called uniform stability in gradients, and establish its quanti-
tative relationship to the generalization measured by gradients for smooth problems. In particular,
we show that the gap between population and empirical gradients can be bounded by our stability
measure plus O(1/

√
n), where n is the sample size.

(b) We consider a specific class of nonconvex and nonsmooth problems called weakly convex prob-
lems, for which we measure the performance of trained models by Moreau envelopes. We develop,
to our best knowledge, the first connection between argument stability and the generalization gap
measured by Moreau envelopes.

(c) We introduce the concept of sampling-determined algorithms, for which we establish stability
bounds in terms of either function values, gradients or arguments.

(d) We apply our results to SGD and its adaptive variant. For nonconvex and smooth problems, we
develop stability-based risk bounds without the PL condition. We also develop the first risk bounds
in terms of Moreau envelops for weakly convex problems.

2. Related Work
In this section, we review the related work on generalization analysis. We will focus on two ap-
proach: the algorithmic stability approach and the uniform convergence approach.
Algorithmic Stability. We first review the related work on algorithmic stability. Algorithmic sta-
bility is a fundamental concept in SLT to measure the sensitivity of an algorithm up to a perturbation
of the training dataset, which is closely related to learnability (Shalev-Shwartz et al., 2010; Rakhlin
et al., 2005). There are various algorithmic stability concepts. Some stability concepts measure
the sensitivity in terms of function values, e.g., uniform stability (Bousquet and Elisseeff, 2002),
hypothesis stability (Bousquet and Elisseeff, 2002; Elisseeff et al., 2005), Bayes stability (Li et al.,
2020) and on-average stability (Shalev-Shwartz et al., 2010; Kuzborskij and Lampert, 2018), while
others measure the sensitivity in terms of output models, e.g., argument stability (Liu et al., 2017)
and on-average argument stability (Lei and Ying, 2020). A most widely used stability concept is the
uniform stability (Bousquet and Elisseeff, 2002), which can imply almost optimal generalization
bounds with high probability (Feldman and Vondrak, 2019; Bousquet et al., 2020; Klochkov and
Zhivotovskiy, 2021). The celebrated connection between stability and generalization motivates the
discussion of stability for many specific algorithms, including regularization algorithms (Bousquet
and Elisseeff, 2002; Attia and Koren, 2022), stochastic optimization algorithms (Hardt et al., 2016;
Chen et al., 2018; Kuzborskij and Lampert, 2018; Charles and Papailiopoulos, 2018; Mou et al.,
2018), iterative hard thresholding (Yuan and Li, 2021), structured prediction (London et al., 2016),
meta learning (Maurer, 2005) and transfer learning (Kuzborskij and Lampert, 2018). In particular,
the influential work gives the first stability analysis of SGD applied to convex and smooth prob-
lems (Hardt et al., 2016). The smoothness assumption is removed in the recent study (Lei and Ying,
2020; Bassily et al., 2020), and a tight lower bound on the stability of SGD was developed (Bassily
et al., 2020). Stability analysis can be also used to study the convergence of optimization error for
multi-epoch SGD (Koren et al.).
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Uniform Convergence. Machine learning models may achieve good performance on the training
dataset but bad generalization behavior, which motivates the generalization analysis by the uniform
convergence approach to study the difference between training and testing over the whole hypothe-
sis space. Initially, the uniform convergence was mainly studied in terms of function values (Bartlett
and Mendelson, 2002), which, however, is not appropriate to stochastic optimization with noncon-
vex loss functions. The underlying reason is that an algorithm can only guarantee to find a local
minimizer (one cannot get convergence rate of training errors to the that of the best model). Then,
the uniform convergence of function values (Lei et al., 2021) fail to show the convergence of testing
errors to that of the best model. Instead, one has to turn to other performance measures such as
the gradients of risks for smooth problems (Ghadimi and Lan, 2013) and the gradients of Moreau
envelope for weakly convex problems (Davis and Drusvyatskiy, 2019). In particular, Ghadimi and
Lan (2013) gave the first nonasymptotical convergence rate of the gradient norm. Motivated by this
observation, the uniform convergence for gradients have been recently studied (Mei et al., 2018;
Foster et al., 2018; Lei and Tang, 2021; Davis and Drusvyatskiy, 2021). The work (Mei et al., 2018)
initialized the discussion on the uniform convergence of gradients by characterizing the complexity
of function spaces with covering numbers, which was extended to the uniform convergence in terms
of Rademacher complexities (Foster et al., 2018). These discussions are devoted to control the uni-
form deviation between gradients of empirical and population risks under a smoothness condition.
For nonsmooth problems, the gradients are not well defined since the functions may not be differ-
entiable. This problem was recently addressed by considering the gradients of Moreau envelope of
empirical/population risks (Davis and Drusvyatskiy, 2021), which are appropriate stationary mea-
sures for weakly convex problems. Specifically, the uniform deviation of gradients for the Moreau
envelope between empirical and population risks was studied based on covering numbers (Davis
and Drusvyatskiy, 2021).

Other than the above two approaches, there are also interesting discussions on generalization
analysis by using tools in integral operators (Smale and Zhou, 2007; Guo et al., 2017; Mücke et al.,
2019; Pillaud-Vivien et al., 2018) and information theory (Russo and Zou, 2016; Xu and Raginsky,
2017; Neu et al., 2021; Neu and Lugosi, 2022).

3. Problem Setup
Let ρ be a probability measure defined on a sample space Z := X × Y , from which a dataset
S = {z1, . . . , zn} are independently drawn. Based on S, we wish to build a model h : X 7→ Y for
prediction. We consider a parametric learning setting where the model is determined by a parameter
w in a parameter space W ⊂ Rd. The performance of a model w on an example z can be quantified
by a loss function f : W ×Z 7→ R+. The training and testing behavior of w then can be measured
by the empirical risk FS(w) := 1

n

∑n
i=1 f(w; zi) and the population risk F (w) := EZ [f(w;Z)],

where EZ denotes the expectation w.r.t. Z. Let w∗ = argminw∈W F (w) be the model with the
minimal population risk in W . Let A be a randomized learning algorithm and A(S) be the output
model when applying A to the dataset S. In this paper, we are interested in the quality of A(S)
in prediction under different performance measures. We require necessary definitions on Lipschitz
continuity, smoothness and convexity. Let ∥ · ∥2 denote the Euclidean norm and ∇g(w) denote a
subgradient of g at w. If g is differentiable then ∇g(w) becomes the gradient of g at w.

Definition 1 Let g : W 7→ R. Let L, ρ,G > 0.

(a) We say g is L-smooth if
∥∥∇g(w)−∇g(w′)

∥∥
2
≤ L∥w −w′∥2, ∀w,w′ ∈ W.
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(b) We say g is convex if g(w) ≥ g(w′) + ⟨w−w′,∇g(w′)⟩,∀w,w′ ∈ W. We say g is ρ-weakly-
convex if w 7→ g(w) + ρ

2∥w∥22 is convex, and ρ-strongly convex if w 7→ g(w)− ρ
2∥w∥22 is convex.

(c) We say g is G-Lipschitz if |g(w)− g(w′)| ≤ G∥w −w′∥2,∀w,w′ ∈ W.

Weakly convex functions are widespread in applications with a common source being the com-
posite function class: g(w) := h(c(w)), where h : Rm 7→ R is convex and G-Lipschitz and
c : Rd 7→ Rm has β-Lipschitz continuous Jacobians (Davis and Drusvyatskiy, 2019). Concrete
examples include robust phase retrieval, covariance matrix estimation, sparse dictionary learning,
robust PCA and conditional value-at-risk. We will use error decomposition to study the generaliza-
tion behavior of learning models. Depending on the property of learning tasks, we will introduce
different error decompositions.

For convex learning problems, a learning algorithm can be guaranteed to produce a model
with a small empirical error. Therefore, we quantify the behavior of a model by the associated
population risk. A standard approach to studying the population risk is to decompose it into two
error terms (Bousquet and Bottou, 2008)

ES,A
[
F (A(S))

]
− F (w∗) = ES,A

[
F (A(S))− FS(A(S))

]
+ES,A

[
FS(A(S))− FS(w

∗)
]
, (3.1)

where we have used ES,A[FS(w∗)] = F (w∗) since w∗ is independent of A and S. We refer to the
term F (A(S))−FS(A(S)) in (3.1) as the generalization error since it is related to the generalization
from the training behavior to testing behavior. The second term FS(A(S)) − FS(w

∗) is called the
optimization error since it quantifies how well the algorithm minimizes the empirical risk. We will
apply stability analysis to study the generalization error, and tools in optimization theory to study
the optimization error.

For nonconvex and smooth learning problems, a learning algorithm can only be guaranteed to
produce an approximate stationary point, i.e., a point w with a small ∥∇FS(w)∥2. In this case, the
population risk is not a reasonable quality measure since there may be many local minimizers with
different risks. As an alternative, we use the population gradient norm as the performance measure.
We use the following error decomposition

ES,A
[
∥∇F (w)∥2

]
≤ ES,A

[
∥∇F (w)−∇FS(w)∥2

]
+ ES,A

[
∥∇FS(w)∥2

]
. (3.2)

We call the first term ∥∇F (w) − ∇FS(w)∥2 the generalization error for smooth problems, and
∥∇FS(w)∥2 the optimization error (empirical gradient norm). We will introduce a stability concept
as well as its connection to generalization to study the generalization error for nonconvex problems.
The optimization error is well studied in the literature (Ghadimi and Lan, 2013).

For weakly convex learning problems, we cannot measure the quality of a model by gradi-
ents since the function may not be differentiable. An elegant performance measure is in terms of
the Moreau envelope. Intuitively, Moreau envelope of f is a smoothed approximation of f . An
illustration of the Moreau envelope was given in Fig. 1 of Davis and Drusvyatskiy (2019).

Definition 2 (Moreau envelope) For any λ > 0 and ψ : W 7→ R, we define the Moreau envelope
(with parameter λ) ψλ : W 7→ R by

ψλ(w) = min
v∈Rd

{
ψ(v) + 1/(2λ)∥w − v∥22

}
and the proximal operator Proxλψ : Rd 7→ Rd by

Proxλψ(w) = arg min
v∈Rd

{
ψ(v) + 1/(2λ)∥w − v∥22

}
.
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Standard results show that as long as ψ is ρ-weakly-convex and λ < 1/ρ, the envelope ψλ is
strongly smooth with the gradient given by ∇ψλ(w) = λ−1

(
w − Proxλψ(w)

)
, where ∇ψλ(w)

denotes ∇(ψλ)(w). For smooth ψ, the norm of ∇ψλ(w) is proportional to the magnitude of the
true gradient ∇ψ. For nonsmooth ψ, it was shown that ∥∇ψλ(w)∥2 has an intuitive interpretation
in terms of near-stationarity of the target problem minw ψ(w) (Davis and Drusvyatskiy, 2019).
Therefore, we use ∥∇F1/(2ρ)(w)∥2 to quantify the generalization behavior of w for ρ-weakly-
convex F (F1/(2ρ) means the Moreau envelope of F with the parameter 1/(2ρ)). We need the
following error decomposition in this case

ES,A
[
∥∇F1/(2ρ)(w)∥2

]
≤ ES,A

[
∥∇F1/(2ρ)(w)−∇FS,1/(2ρ)(w)∥2

]
+ ES,A

[
∥∇FS,1/(2ρ)(w)∥2

]
,

(3.3)
where we denote FS,1/(2ρ) := (FS)1/(2ρ). We call the first term ∥∇F1/(2ρ)(w)−∇FS,1/(2ρ)(w)∥2
the generalization error for weakly-convex (possibly nonsmooth) problems, and ∥∇FS,1/(2ρ)(w)∥2
the optimization error. We will introduce a novel connection between argument stability and gener-
alization to study the generalization error for weakly-convex problems. The optimization error on
∥∇FS,1/(2ρ)(w)∥2 is well studied in the literature (Davis and Drusvyatskiy, 2019).

We summarize our results and give comparisons with existing results in Table 1 and Table 2. We
consider two classes of problems: smooth & nonconvex problems, and weakly convex & nonsmooth
problems. Table 1 considers the generalization gap, while Table 2 considers the error bounds for
SGD.

Problems Reference Bounds

smooth & nonconvex
Mei et al (2018) O(

√
d(log n)/n)

Thm. 6 (our work) O(ϵ+ n−
1
2 )

weakly convex &
nonsmooth

Davis and Drusvyatskiy (2021) O(
√
d/n)

Thm. 8 (our work) O(
√
ϵ+ n−

1
2 )

Table 1: Generalization bounds. For smooth and nonconvex problems, the generalization bounds
are derived for ∥∇F (A(S)) − ∇FS(A(S))∥2. For weakly convex and nonsmooth prob-
lems, the generalization bounds are derived for

∥∥∇FS,1/(2ρ)(A(S))−∇F1/(2ρ)(A(S))
∥∥
2
.

The existing generalization bounds are based on uniform convergence approach, and ad-
mit a square-root dependency on the dimension. Our generalization bounds depend on the
stability parameter ϵ.

4. Stability and Generalization

4.1. Connecting Stability and Generalization

Algorithmic stability measures the insensitiveness on an algorithm under a perturbation of a training
dataset by a single example. The uniform stability and uniform argument stability were discussed
in the literature (Bousquet and Elisseeff, 2002). To tackle the performance measure in terms of
gradient norms for nonconvex learning problems, we introduce a uniform stability in gradients. We
say S, S′ are neighboring datasets if they differ by at most a single example.
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Problems Reference Bounds

smooth & nonconvex
Ghadimi and Lan (2013) ∥∇FS(wr))∥ = O(T− 1

4 )

Prop. 21 (our work) ∥∇F (wr)∥2 = O(n−
1
6 )

weakly convex &
nonsmooth

Davis and Drusvyatskiy (2019) ∥∇FS,1/(2ρ)(wr)∥2 = O(T− 1
4 )

Prop. 25 (our work) ∥∇F1/(2ρ)(wr)∥2 = O(n−
1
6 )

Table 2: Error bounds for SGD. The existing analysis considers the performance of SGD on the
empirical risk FS , while our results consider the performance of SGD on the population
risk F . Here T is the number of iterations and wr is a randomly selected SGD iterate.

Definition 3 (Uniform Stability) LetA be a randomized algorithm. We sayA is ϵ-uniformly-stable
in function values if for all neighboring datasets S, S′, we have

sup
z

EA
[
f(A(S); z)− f(A(S′); z)

]
≤ ϵ. (4.1)

We say A is ϵ-uniformly-argument-stable if for all neighboring datasets S, S′, we have

EA
[
∥A(S)−A(S′)∥2

]
≤ ϵ. (4.2)

We say A is ϵ-uniformly-stable in gradients if for all neighboring datasets S, S′, we have

sup
z

EA
[
∥∇f(A(S); z)−∇f(A(S′); z)∥22

]
≤ ϵ2. (4.3)

Remark 4 The motivation of introducing the gradient-based stability is to use it to study the gen-
eralization performance for nonconvex problems. For nonconvex problems, an optimization algo-
rithm generally only finds a local minimizer, and therefore one cannot use the function value to
measure the convergence (the local minimizer the algorithm finds may be far away from the global
minimizer and therefore the convergence in function values do not make much sense). In this
case, one often studies the convergence of ∇FS in the optimization community (Ghadimi and Lan,
2013). To use this convergence to study the behavior of A(S) in prediction, we need to address
∥∇F (A(S)) −∇FS(A(S))∥2, which, as we will see, can be achieved by stability in gradients. In
summary, the stability on gradients allows us to incorporate the existing optimization error bounds
to study the prediction performance as measured by ∥∇F (A(S))∥2.

The connection between uniform stability in function values and generalization is given in the
following lemma (Shalev-Shwartz et al., 2010; Hardt et al., 2016).

Lemma 5 (Generalization via Stability in Function Values) Let A be ϵ-uniformly stable in func-
tion values. Then

∣∣ES,A[FS(A(S))− F (A(S))
]∣∣ ≤ ϵ.

Our first result is a connection between generalization and stability in gradients. This result
cannot be derived by using the standard arguments in the literature (Shalev-Shwartz et al., 2010;
Hardt et al., 2016) since one can not exchange the summation operator and norm. We will give
more explanations in the proof, which is given in Section A.1.
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Theorem 6 (Generalization via Stability in Gradients) LetA be ϵ-uniformly-stable in gradients.
Assume for any z, the function f(w; z) is differentiable. Then

ES,A
[
∥∇F (A(S))−∇FS(A(S))∥2

]
≤ 4ϵ+

√
n−1ES

[
VZ(∇f(A(S);Z))

]
, (4.4)

where VZ(∇f(A(S);Z)) = EZ
[
∥∇f(A(S);Z)−EZ [∇f(A(S);Z)]∥22

]
is the variance of ∇f(A(S);Z)

as a function of the random variable Z.

Remark 7 Note the left-hand side of Eq. (4.4) can be addressed by the uniform convergence of gra-
dients supw∈W ∥∇F (w)−∇FS(w)∥2, which was established in terms of covering numbers (Mei
et al., 2018) and Rademacher complexities (Foster et al., 2018). These bounds generally involve a
square-root dependency on the dimension of W . As a comparison, Theorem 6 considers the conver-
gence of empirical gradients to population gradients at the output modelA(S). Therefore, it implies
dimension-free bounds which would be effective for high-dimensional learning problems.

Our second result is a connection between the uniform argument-stability and generalization
measured by the Moreau envelope for weakly convex problems. Theorem 8 shows that the differ-
ence between empirical and population gradients of the Moreau envelope at A(S) can be bounded
by the uniform argument stability of A. With this result, we can transfer the existing bound on
∥∇FS,1/(2ρ)∥2 to ∥∇F1/(2ρ)∥2 on the performance of models for prediction. The proof of Theorem
8 is totally different from that of Theorem 6. The proof is given in Section A.2.

Theorem 8 (Generalization via Uniform Argument Stability) Let A be ϵ-argument stable. As-
sume for any z, the function f(w; z) is G-Lipschitz continuous. Assume for any S, the function FS
is ρ-weakly-convex and F is ρ-weakly-convex. Then

E
[∥∥∇FS,1/(2ρ)(A(S))−∇F1/(2ρ)(A(S))

∥∥
2

]
≤ 4G√

n
+
√
32Gϵρ. (4.5)

Remark 9 For ρ-weakly convex f , the uniform convergence supw∈W ∥∇FS,1/(2ρ)(w)−∇F1/(2ρ)(w)∥2
was studied in terms of the covering number of W (Davis and Drusvyatskiy, 2021), which generally
involves a square-root dependency on the dimensionality. For example, if W is a ball in Rd, then
the following result was established (Davis and Drusvyatskiy, 2021)

sup
w∈W

∥∇FS,1/(2ρ)(w)−∇F1/(2ρ)(w)∥2 = O
(
G
√
d/n

)
. (4.6)

The underlying reason to consider a uniform convergence is noting the dependency of A(S) in Eq.
(4.5) on S. We address this dependency by giving a bound in terms of the argument stability of A.
Theorem 8 yields dimension-free bounds since it only considers the convergence of ∇FS,1/(2ρ) to
∇F1/(2ρ) at the particular output model A(S).

Finally, we give a high-probability bound on the generalization gap measured by the Moreau
envelope. The proof is given in Section A.2.

Theorem 10 (High-probability Bound via Uniform Argument Stability) LetA be ϵ-argument sta-
ble almost surely, i.e., ∥A(S) − A(S′)∥2 ≤ ϵ for any neighboring S, S′. Assume for any z, the
function f(w; z) is G-Lipschitz continuous and f(A(S); z) = O(1) almost surely. Assume for any
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S, the function FS is ρ-weakly-convex and F is ρ-weakly-convex. For any δ ∈ (0, 1), the following
inequality holds with probability at least 1− δ

∥∥∇FS,1/(2ρ)(A(S))−∇F1/(2ρ)(A(S))
∥∥
2
=O

((
Gn−

1
2+
√
Gϵρ

)√
log(n) log(1/δ)+

(
n−1ρ2 log(1/δ)

) 1
4

)
.

4.2. Stability Bounds
We now consider a class of randomized algorithms called sampling-determined algorithms for our
stability analysis. We say a randomized algorithm A is symmetric if its output is independent on the
order of the elements in the training set.

Definition 11 (Sampling-determined Algorithm) Let A be a randomized algorithm which ran-
domly chooses an index sequence I(A) = {it} to build stochastic gradients. We say a symmetric
algorithm A is sampling-determined if the output model is determined by {zj : j ∈ I(A)}. To be
precise, A(S) is independent of zj if j ̸∈ I .

An important property of sampling-determined algorithms is that these algorithms will produce
the same model when applied to two neighboring datasets if the differing example is not selected
in the algorithm. For example, if two neighboring datasets differ by the first example and the index
1 is not selected by the algorithm, then the algorithm would produce the same model when applied
to these two neighboring datasets. This property is critical for us to study the stability. The class
of sampling-determined algorithms include several famous randomized algorithms. Below, we give
some representative algorithms. The first algorithm is the SGD, which is a most simple and most
popular stochastic optimization algorithm. Let ΠW(w) denote the projection of w onto W . Note
W can be Rd and in this case there is no projection.

Definition 12 (Stochastic Gradient Descent) Let w1 = 0 ∈ Rd be an initial point and {ηt}t be a
sequence of positive step sizes. SGD updates models by wt+1 = ΠW

(
wt − ηt∇f(wt; zit)

)
, where

∇f(wt, zit) denotes a subgradient of f w.r.t. the first argument and it is independently drawn from
the uniform distribution over [n] := {1, 2, . . . , n}.

The second algorithm is an adaptive variant of SGD, which introduces a sequence {b2t } to store
the accumulated gradient norm square (Duchi et al., 2010; Li and Orabona, 2019; Ward et al., 2020).
We then set the step size as the reciprocal of bt multiplied by a parameter η (Ward et al., 2020). This
algorithm has a nice advantage of being able to adapt the level of stochastic noise of the problem,
and can achieve robust convergence without the need to fine-tune stepsize schedule.

Definition 13 (AdaGrad-Norm) Let w1 = 0 ∈ Rd, b0 > 0 and η > 0. At each iteration, we first
draw it from the uniform distribution over [n] and update {bt}, {wt} by

b2t = b2t−1 + ∥∇f(wt; zit)∥22, wt+1 = ΠW

(
wt −

η

bt
∇f(wt; zit)

)
. (4.7)

Remark 14 Let A be either SGD or AdaGrad-Norm with T iterations. Note A(S) does not depend
on zj if j ∈ [n] is not selected in the implementation ofA. Therefore, both SGD and AdaGrad-Norm
are sampling-determined algorithms and I(A) = {i1, . . . , iT }. It is also clear from the definition
that Adam is a sampling-determined algorithm.
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Remark 15 There are also some randomized algorithms that are not sampling-determined. A no-
table example is the stochastic variance reduction gradient (SVRG) (Johnson and Zhang, 2013).
Note that SVRG is implemented in epochs, for each of which we need to compute the full gradient
at a reference point. Therefore, SVRG will produce different models when applied to neighboring
datasets even if the differing example is not selected to compute a stochastic gradient. One can also
check that other variance reduction algorithms are not sampling-determined, including stochastic
average gradient (Schmidt et al., 2017) and SAGA (Defazio et al., 2014).

The following theorem to be proved in Section C (supplementary material) establishes the uni-
form stability bounds for sampling-determined algorithms. It shows that the uniform stability of
a sampling-determined algorithm A can be bounded by the probability of an index not selected in
I(A). We consider stability in function values (Part (a)), stability in gradients (Part (b)) and stability
in arguments (Part (c)). The proof is motivated by the arguments in Hardt et al. (2016).

Theorem 16 Let A be a sampling-determined algorithm and S, S′ be neighboring datasets.

(a) If supz EA[f(A(S); z)|n ∈ I(A)] ≤ B for any S, then

sup
z

EA
[
f(A(S); z)− f(A(S′); z)

]
≤ 2B · Pr{n ∈ I(A)}.

(b) If supz EA[∥∇f(A(S); z)∥22|n ∈ I(A)] ≤ G2 for any S, then

sup
z

EA
[
∥∇f(A(S); z)−∇f(A(S′); z)∥22

]
≤ 4G2 · Pr{n ∈ I(A)}.

(c) If EA[∥A(S)∥2|n ∈ I(A)] ≤ R for any S, then EA
[
∥A(S)−A(S′)∥2

]
≤ 2R·Pr{n ∈ I(A)}.

We derive Corollary 17 by computing Pr{n ∈ I(A)}. The proof is given in Section C.

Corollary 17 LetA be SGD or AdaGrad-Norm with T iterations and S, S′ be neighboring datasets.

(a) If supz EA[f(A(S); z)|n ∈ I(A)] ≤ B, ∀S, then supz EA
[
f(A(S); z)−f(A(S′); z)

]
≤ 2BT

n .

(b) If supz EA[∥∇f(A(S); z)∥22|n ∈ I(A)] ≤ G2 for any S, then supz EA
[
∥∇f(A(S); z) −

∇f(A(S′); z)∥22
]
≤ 4G2T

n .

(c) If EA[∥A(S)∥2|n ∈ I(A)] ≤ R for any S, then EA
[
∥A(S)−A(S′)∥2

]
≤ 2RT

n .

Remark 18 Since we consider symmetric algorithms, the condition n ∈ I(A) can be replaced by
i ∈ I(A) for any i ∈ [n]. Both Theorem 16 and Corollary 17 require boundedness assumptions on
either function values, gradients and arguments, which hold immediately if we impose a projection
operator on A(S). Note we do not require a projection for each iterate. A projection for the final
output A(S) suffices for our analysis.

10



STABILITY AND GENERALIZATION OF STOCHASTIC OPTIMIZATION

5. Applications to Stochastic Gradient Descent
We now apply our stability results to SGD. We denote B ≍ B̃ if there exist constants c1, c2 > 0
such that c1B̃ < B ≤ c2B̃. Recall n is the sample size and T is the iteration number. We will
consider different problem settings: convex and smooth cases, nonconvex and smooth cases, and
weakly convex cases. All the proofs in this subsection can be found in Section D. We will give
applications to adaptive gradient descent in Section E, and differentially private SGD in Section F.
Convex and Nonsmooth Problems. In Proposition 19, we show SGD applied to convex and nons-
mooth problems can imply the excess population risk bounds O(n−

1
3 ) with O(n

2
3 ) iterations. The

algorithm is computationally efficient in the sense that SGD with T ≍ n
2
3 iterations can at most

imply optimization error bounds O(1/
√
T ) = O(n−

1
3 ). Therefore, our analysis implies excess

risk bounds of the same order of optimization error bounds with the same computation complexity.
There is no additional cost by going from optimization to generalization if we run O(n

2
3 ) iterations.

This proposition is not a main result since our focus is on nonconvex case. We present it just as a
byproduct. Recall w∗ is a minimizer of the population risk F and we assume ∥w∗∥2 is finite.

Proposition 19 (Convex and Nonsmooth Case) Let {wt}t be the sequence produced by SGD and
E[∥∇f(wt; zit)∥22] ≤ G2 for all t ∈ [T ]. Let A output w̄T = 1

T

∑T
t=1wt. If FS is convex, ηt = η

and supz EA[f(A(S); z)|n ∈ I(A)] ≤ B, then

ES,A[F (w̄T )]− F (w∗) = O
(Tη2G2 + ∥w∗∥22

Tη

)
+O

(
BT/n

)
. (5.1)

If η≍n−
1
3 ∥w∗∥2/G, T ≍n

2
3G∥w∗∥2/B we have E[F (w̄T )]−F (w∗)=O(

(
G∥w∗∥2 +B

)
n−

1
3 ).

Remark 20 We compare Proposition 19 with existing results. The following excess risk bounds of
SGD without smoothness assumptions were established (Lei and Ying, 2020; Bassily et al., 2020)

ES,A[F (w̄T )]− F (w∗) = O
(
G2

√
Tη + TηG2/n+ ∥w∗∥22/(Tη)

)
. (5.2)

By setting T ≍ n2 and η ≍ T− 3
4 ∥w∗∥2/G, the above bound implies the excess risk bounds

ES,A[F (w̄T )] − F (w∗) = O(G∥w∗∥2n−
1
2 ). As a comparison, our analysis implies the bounds

O((G∥w∗∥2 + B)n−
1
3 ). However, the bound (5.2) requires O(n2) iterations to achieve this op-

timal risk bounds, which is computationally expensive. As a comparison, our analysis requires
O(n

2
3G∥w∗∥2/B) iterations to achieve the bound O((G∥w∗∥2 + B)n−

1
3 ). To achieve the bound

O(G∥w∗∥2n−
1
3 ), the existing analysis (Lei and Ying, 2020; Bassily et al., 2020) requires to run

SGD withO(n
4
3 ) iterations. Indeed, the right-hand-side of (5.2) is at least of the order ofO

(
G2

√
Tη+

∥w∗∥22/(Tη)
)
≥ O(G∥w∗∥2T− 1

4 ). Setting T− 1
4 = n−

1
3 gives the complexity requirement T =

n
4
3 , which is larger than the iteration complexity n

2
3G∥w∗∥2/B in Proposition 19. Note we re-

quire an assumption supz EA[f(A(S); z)|n ∈ I(A)] ≤ B in Proposition 19, which is not re-
quired in Lei and Ying (2020); Bassily et al. (2020). The discussion in Bassily et al. (2020) re-
quires a Lipschitz assumption and imply high-probability bounds, while we require the assumption
E[∥∇f(wt; zit)∥22] ≤ G2 and derive bounds in expectation. Furthermore, a tight lower bound on
the stability is developed in Bassily et al. (2020).

Excess risk bounds of the order O(G∥w∗∥2n−
1
3 log n) were also established for SGD based on

the uniform convergence approach (Lin et al., 2016). Their discussions consider kernel methods and

11
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would imply dimension-dependent bounds if applied to general nonlinear models. As a comparison,
our stability analysis always yields dimension-free bounds.

Nonconvex and Smooth Problems. We now consider the performance of SGD for nonconvex
and smooth problems. In the remainder, we always let r be randomly selected from the uniform
distribution over [T ]. We show SGD with O(n

2
3 ) iterations achieves the population gradient bound

ES,A,r
[
∥∇F (wr)∥2

]
= O(n−

1
6 ). Again, this result shows considering generalization does not

bring additional computation cost since SGD with T ≍ n
2
3 iterations is only guaranteed to achieve

empirical gradient bounds ES,A,r
[
∥∇FS(wr)∥2

]
= O(n−

1
6 ) (Ghadimi and Lan, 2013). That is,

with n
2
3 iterations, our population gradient bounds match the existing empirical gradient bounds.

Proposition 21 (Nonconvex and Smooth Case) Let {wt}t be produced by SGD with ηt = η and
E[∥∇f(wt; zit)∥22] ≤ G2 for all t ∈ [T ]. If A(S) = wr, FS is L-smooth and

sup
z

EA[∥∇f(A(S); z)∥22|n ∈ I(A)] ≤ G2,

then

ES,A,r
[
∥∇F (wr)∥2

]
= O

(G√T√
n

+
G
√
Tη + 1√
Tη

)
.

If T ≍ n
2
3 /G

2
3 , η ≍ 1/(G

√
T ), we get E

[
∥∇F (wr)∥2

]
= O(G

2
3n−

1
6 ).

Remark 22 We compare our bounds with existing results. For nonconvex, smooth and Lipschitz
loss functions, the uniform stability bound of order O(n−1T

Lc
Lc+1 ) was established for SGD with

ηt ≤ c/t (Hardt et al., 2016). While this analysis gives nontrivial bounds on the generalization gap,
the proposed step size is small to enjoy a good decay of optimization errors. Indeed, with this step
size one can only derive optimization error bounds ES,A,r

[
∥∇FS(wr)∥2

]
= O(1/ log T ). One can-

not trade-off the generalization bounds O(n−1T
Lc

Lc+1 ) and optimization error bounds O(1/ log T )
for a non-vacuous population gradient bound. Indeed, to get a non-vacuous bound, one requires
T = O(n

Lc+1
Lc ). However, in this case the optimization error bounds become O(1/ log n), which

are very slow. As a comparison, our discussion suggests a step size ηt ≍ n−
1
3 for a significantly

better population risk bound O(n−
1
6 ). We should mention that the discussion in Hardt et al. (2016)

considers the stability in function values, while we consider stability in gradients. High probability
bounds on a weighted average of ∥∇F (wt)∥22 were developed in Lei and Tang (2021). Their dis-
cussions use a uniform convergence approach and therefore admits a square-root dependency on the
dimensionality. As a comparison, Proposition 21 yields dimension-free bounds.

We can improve population gradient bounds under a strong growth condition (SGC), which
connects the rates at which the stochastic gradients shrink to the full gradient (Vaswani et al., 2019).

Definition 23 We say SGC holds if 1
n

∑n
i=1[∥∇f(w; zi)∥22] ≤ ρ∥∇FS(w)∥22.

Proposition 24 shows that the learning performance improves under the SGC condition.

12



STABILITY AND GENERALIZATION OF STOCHASTIC OPTIMIZATION

Proposition 24 (Nonconvex, Smooth and SGC Case) Assume for all z, the function w 7→ f(w; z)
is L-smooth and SGC holds. Let {wt}t be produced by SGD with ηt = 1/(ρL) and suppose
ES,A[∥∇f(wt; zit)∥22] ≤ G2 for all t ∈ [T ]. If A(S) = wr, T ≍

√
Lρn/G and

sup
z

EA[∥∇f(A(S); z)∥22|n ∈ I(A)] ≤ G2,

then ES,A
[
∥∇F (wr)∥2

]
= O((LρG2/n)

1
4 ).

Weakly Convex Problems. Finally, we consider weakly convex problems. Note we impose a
bounded subgradient assumption E[∥∇f(wt; zit)∥22] ≤ G2 as in Davis and Drusvyatskiy (2019). In
the appendix G, we will relax this assumption as E[∥∇f(wt; zit)∥22] ≤ B1E[f(wt; zit)] + B2 for
some B1, B2 > 0 and derive the corresponding convergence rates of SGD. To our knowledge, this
convergence analysis under the relaxed condition is new for SGD with weakly convex problems.

Proposition 25 (Weakly-convex Case) Let {wt}t be given by SGD with ηt = η and A(S) = wr.
Assume ES,A[∥∇f(wt; zit)∥22] ≤ G2,EA[∥A(S)∥2|n ∈ I(A)] ≤ R. If FS is ρ-weakly convex, then

ES,A,r
[
∥∇F1/(2ρ)(wr)∥2

]
= O

(
G
√
ρη +

√
GRρT/n+ 1/

√
Tη

)
.

If T ≍ n
2
3 /(R

2
3 ρ

1
3 ) and η ≍ 1/(G

√
ρT ), we get E

[
∥∇F1/(2ρ)(wr)∥2

]
= O(

√
Gρ

1
3R

1
6 /n

1
6 ).

Remark 26 For weakly convex problems, the convergence rate

E
[
∥∇FS,1/(2ρ)(wr)∥2

]
= O(G

1
2 ρ

1
4T− 1

4 )

was established for SGD with T iterations (Davis and Drusvyatskiy, 2019). This result is impressive
since neither the Moreau envelope nor the proximal map of FS explicitly appear in the implementa-
tion of SGD. This result shows the behavior of SGD on training examples, which we extend to the
generalization behavior of SGD on testing examples. Note our analysis requires to set T ≍ n

2
3 and

therefore can only imply the bound of the order O((Gρ)
1
3n−

1
6 ). It would be interesting to further

improve the risk bound here.
Population risk bounds of gradient descent were recently studied for weakly convex prob-

lems (Richards and Rabbat, 2021; Richards and Kuzborskij, 2021). Their discussions require the
weak convexity parameter to be sufficiently small for meaningful generalization. As a comparison,
our discussion does not require this assumption. Furthermore, their discussions consider smooth
problems with Lipshictz continuous Hessians and focus on gradient descent (Richards and Rabbat,
2021), while our discussions apply to SGD with nonsmooth problems.

6. Conclusions
We provide a systematic study on the stability and generalization analysis of stochastic optimization
for problems that can be either nonconvex or nonsmooth. We consider three stability measures: the
stability by function values, the stability by gradients and the stability by arguments, which are used
to study convex and nonsmooth problems, nonconvex and smooth problems, and weakly convex
problems, respectively. We develop connection between stability and generalization gap measured
by gradients for either the population risks or the Moreau envelopes. We then develop bounds for
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these stability measures for a class of sampling-determined algorithms. As a combination of these
stability bounds and the connection between stability and generalization, we develop error bounds
for SGD and AdaGrad-Norm, with the performance measured by either functional suboptimality,
stationarity by gradients or stationarity by Moreau envelopes. It is interesting to investigate whether
our error bounds can be further improved. It is also very interesting to develop lower bounds for
learning with weakly convex problems.
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Tongliang Liu, Gábor Lugosi, Gergely Neu, and Dacheng Tao. Algorithmic stability and hypothesis
complexity. In International Conference on Machine Learning, pages 2159–2167, 2017.

Ben London, Bert Huang, and Lise Getoor. Stability and generalization in structured prediction.
The Journal of Machine Learning Research, 17(1):7808–7859, 2016.

Andreas Maurer. Algorithmic stability and meta-learning. Journal of Machine Learning Research,
6(Jun):967–994, 2005.

Song Mei, Yu Bai, and Andrea Montanari. The landscape of empirical risk for nonconvex losses.
The Annals of Statistics, 46(6A):2747–2774, 2018.
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Appendix A. Proofs on Stability and Generalization

A.1. Proof of Theorem 6

In this section, we prove the connection between generalization and uniform stability measured by
gradients. For brevity, we use E[·] to denote ES,A[·]. Before proving Theorem 6, we first present the
proof of Lemma 5. This result is known in the literature (Shalev-Shwartz et al., 2010; Hardt et al.,
2016; Kuzborskij and Lampert, 2018). We give the proof for completeness and for showing that
these arguments cannot be used to prove Theorem 6.
Proof of Lemma 5 Let S′ = {z′1, . . . , z′n} be drawn independently from ρ. For any i ∈ [n], define
S(i) = {z1, . . . , zi−1, z

′
i, zi+1, . . . , zn}. According to the symmetry between zi and z′i we have

E[FS(A(S))− F (A(S))] = E
[
FS(A(S))−

1

n

n∑
i=1

F (A(S(i)))
]

=
1

n

n∑
i=1

E
[
f(A(S); zi)− f(A(S(i)); zi)

]
,

where the last identity holds since A(S(i)) is independent of zi. It then follows that

∣∣E[FS(A(S))− F (A(S))]
∣∣ ≤ 1

n

n∑
i=1

E
[
|f(A(S); zi)− f(A(S(i)); zi)|

]
≤ ϵ.

The proof is completed.

An essential argument in proving Lemma 5 is to use the identity

ES,A[F (A(S))] =
1

n

n∑
i=1

ES,A[f(A(S(i)); zi)].

However, if we consider gradients of population risks we can only get

ES,A
[
∥∇F (A(S))∥2

]
=

1

n

n∑
i=1

ES,A
[
∥Ezi [∇f(A(S(i)); zi)]∥2

]
,

where the summation is outside of ∥ · ∥2. As a comparison, if we consider gradients of empirical
risks we get ∥∇FS(A(S))∥2 =

∥∥ 1
n

∑n
i=1∇f(A(S); zi)

∥∥
2
, where the summation is inside the norm.

Since we cannot exchange the norm and the summation, we cannot use the argument in the proof of
Lemma 5 to prove Theorem 6.
Intuition. We use an error decomposition in Bousquet et al. (2020) to handle this. Our intuitive
idea is to show that

∥∥∇F (A(S))−∇FS(A(S))
∥∥
2
≤ 2ϵ+

1

n

∥∥ n∑
i=1

ξi
∥∥
2
,
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where ξi is a sequence of mean-zero variables satisfying E[⟨ξi, ξj⟩] ≤ 4ϵ2 for any i ̸= j. Then one
can show that

1

n2
E[
∥∥ n∑
i=1

ξi
∥∥2
2
] ≤ 1

n2

n∑
i=1

E[∥ξi∥22] + 4ϵ2 = O(1/n+ ϵ2).

Proof of Theorem 6 Let S, S′ and S(i) be defined as in the proof of Lemma 5. We have the
following error decomposition

n
(
∇F (A(S))−∇FS(A(S))

)
=

n∑
i=1

EZ,z′i
[
∇f(A(S);Z)−∇f(A(S(i));Z)

]
+

n∑
i=1

Ez′i
[
EZ [∇f(A(S(i));Z)]−∇f(A(S(i)); zi)

]
+

n∑
i=1

Ez′i
[
∇f(A(S(i)); zi)−∇f(A(S); zi)

]
,

where we have used EZ [∇f(A(S);Z)] = ∇F (A(S)). It then follows that

n
∥∥∇F (A(S))−∇FS(A(S))

∥∥
2
≤

n∑
i=1

EZ,z′i
[
∥∇f(A(S);Z)−∇f(A(S(i));Z)∥2

]
+
∥∥∥ n∑
i=1

ξi(S)
∥∥∥
2
+

n∑
i=1

Ez′i
[∥∥∥∇f(A(S(i)); zi)−∇f(A(S); zi)

∥∥∥
2

]
,

where we introduce ξi as a function of S as follows

ξi(S) = Ez′i
[
EZ [∇f(A(S(i));Z)]−∇f(A(S(i)); zi)

]
, ∀i ∈ [n].

Note S and S(i) differ by a single example. By the assumption on stability, we further get

nE
[∥∥∇F (A(S))−∇FS(A(S))

∥∥
2

]
≤ 2nϵ+ E

[∥∥ n∑
i=1

ξi(S)
∥∥
2

]
. (A.1)

Due to the symmetry between Z and zi, one can see that

Ezi [ξi(S)] = 0, ∀i ∈ [n]. (A.2)

Introduce S′′ = {z′′1 , . . . , z′′n} which are drawn independently from ρ. For each i, j ∈ [n] with
i ̸= j, introduce

Sj = {z1, . . . , zj−1, z
′′
j , zj+1, . . . , zn},

S
(i)
j = {z1, . . . , zi−1, z

′
i, zi+1, . . . , zj−1, z

′′
j , zj+1, . . . , zn}.

That is, Sj is formed by replacing the j-th element of S with z′′j , while S(i)
j is formed by replacing

the j-th element of S(i) with z′′j . If i ̸= j, then

E
[
⟨ξi(Sj), ξj(S)⟩

]
= EEzj

[
⟨ξi(Sj), ξj(S)⟩

]
= E

[
⟨ξi(Sj),Ezj [ξj(S)]⟩

]
= 0,
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where the second identity holds since ξi(Sj) is independent of zj and the last identity follows from
Ezj

[
ξj(S)] = 0 due to (A.2). In a similar way, one can show the following inequalities for i ̸= j

E
[
⟨ξi(S), ξj(Si)⟩

]
= EEzi

[
⟨ξi(S), ξj(Si)⟩

]
= E

[
⟨ξj(Si),Ezi [ξi(S)]⟩

]
= 0

and

E
[
⟨ξi(Sj), ξj(Si)⟩

]
= EEzi

[
⟨ξi(Sj), ξj(Si)⟩

]
= E

[
⟨ξj(Si),Ezi [ξi(Sj)]⟩

]
= 0.

As a combination of the above identities we have (i ̸= j)

E
[
⟨ξi(S), ξj(S)⟩

]
= E

[〈
ξi(S)− ξi(Sj), ξj(S)− ξj(Si)

〉]
≤ E

[∥∥ξi(S)− ξi(Sj)
∥∥
2

∥∥ξj(S)− ξj(Si)
∥∥
2

]
≤ 1

2
E
[∥∥ξi(S)− ξi(Sj)

∥∥2
2

]
+

1

2
E
[∥∥ξj(S)− ξj(Si)

∥∥2
2

]
, (A.3)

where we have used ab ≤ 1
2(a

2 + b2). According to the definition of ξi(S) and ξi(Sj) we know the
following identity for i ̸= j

E
[∥∥ξi(S)− ξi(Sj)

∥∥2
2

]
= E

[∥∥∥Ez′iEZ[∇f(A(S(i));Z)−∇f(A(S(i)
j );Z)

]
+ Ez′i

[
∇f(A(S(i)

j ); zi)−∇f(A(S(i)); zi)
]∥∥∥2

2

]
.

It then follows from the elementary inequality (a + b)2 ≤ 2(a2 + b2) and the Jensen’s inequality
that

E
[∥∥ξi(S)− ξi(Sj)

∥∥2
2

]
≤ 2E

[∥∥∥∇f(A(S(i));Z)−∇f(A(S(i)
j );Z)

∥∥∥2
2

]
+ 2E

[∥∥∥∇f(A(S(i)
j ); zi)−∇f(A(S(i)); zi)

∥∥∥2
2

]
.

Since S(i) and S(i)
j differ by one example, it follows from the definition of stability that

E
[∥∥ξi(S)− ξi(Sj)

∥∥2
2

]
≤ 4ϵ2, ∀i ̸= j.

In a similar way, one can show that

E
[∥∥ξj(S)− ξj(Si)

∥∥2
2

]
≤ 4ϵ2, ∀i ̸= j.

We can plug the above two inequalities back into (A.3) and derive the following inequality if i ̸= j

E
[
⟨ξi(S), ξj(S)⟩

]
≤ 4ϵ2.

Furthermore, according to the definition of ξi(S) and Jensen inequality we know

E
[
∥ξi(S)∥22

]
= E

[∥∥∥Ez′i[EZ [∇f(A(S(i));Z)]−∇f(A(S(i)); zi)
]∥∥∥2

2

]
≤ E

[∥∥∥EZ [∇f(A(S(i));Z)]−∇f(A(S(i)); zi)
∥∥∥2
2

]
= E

[∥∥∥EZ [∇f(A(S);Z)]−∇f(A(S); z′i)
∥∥∥2
2

]
= ES

[
VZ(∇f(A(S);Z))

]
,
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where we have used the symmetry between zi and z′i (z′i has the same distribution of Z). It then
follows that

E
[∥∥ n∑

i=1

ξi(S)
∥∥2
2

]
= E

[ n∑
i=1

∥ξi(S)∥22
]
+

∑
i,j∈[n]:i ̸=j

E[⟨ξi(S), ξj(S)⟩]

≤ nES
[
VZ(∇f(A(S);Z))

]
+ 4n(n− 1)ϵ2.

We can plug the above inequality back into (A.1) and get

nE
[∥∥∇F (A(S))−∇FS(A(S))

∥∥
2

]
≤ 2nϵ+

√
nES

[
VZ(∇f(A(S);Z))

]
+ 2nϵ.

The proof is completed.

A.2. Proofs of Theorem 8 and Theorem 10

In this section, we provide the proof of Theorem 8 and Theorem 10.
Intuition. Before giving the detailed proof, we first sketch the intuition. For any S, define

wS = arg min
v∈Rd

{
FS(v) + ρ∥v −A(S)∥22

}
, (A.4)

w̃S = arg min
v∈Rd

{
F (v) + ρ∥v −A(S)∥22

}
. (A.5)

According to the definition of FS,1/(2ρ) and F1/(2ρ), we know

∇FS,1/(2ρ)(A(S)) = 2ρ
(
A(S)−wS

)
,

∇F1/(2ρ)(A(S)) = 2ρ
(
A(S)− w̃S

)
.

Then we know
∇FS,1/(2ρ)(A(S))−∇F1/(2ρ)(A(S)) = 2ρ(w̃S −wS). (A.6)

It remains to control ∥w̃S −wS∥2. According to the definition of wS , we know

FS(wS) + ρ∥wS −A(S)∥22 ≤ FS(w̃S) + ρ∥w̃S −A(S)∥22. (A.7)

Let A be ϵ-uniformly argument stable. We then show that the algorithm defined in Eq. (A.4) is
O(ϵ + 1/(nρ))-uniformly stable, and the algorithm defined in Eq. (A.5) is O(ϵ)-uniformly stable.
It then follows from the connection between generalization and stability that

E[F (wS)− FS(wS)] = O(ϵ+ 1/(nρ)),

E[FS(w̃S)− F (w̃S)] = O(ϵ).

We then can replace FS in Eq. (A.7) by F to get(
E[F (wS) + ρ∥wS −A(S)∥22]

)
−
(
E[F (w̃S) + ρ∥w̃S −A(S)∥22]

)
= O(ϵ+ 1/(nρ)).
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Furthermore, the weak-convexity and the optimality of w̃S show that the left-hand side of the above
inequality is larger than ρ

2E[∥wS − w̃S∥22]. We then get the desired bound E[∥wS − w̃S∥2] =

O(
√
ϵ/ρ+ 1/(

√
nρ)).

We now give the detailed proof. We first introduce two lemmas. Lemma A.1 shows the argument
stability of the algorithm S 7→ ProxFS/(2ρ)(A(S)) via the argument stability ofA. For any g : W 7→
R, let ∂g(w) denote the subdifferential of g at w.

Lemma A.1 Let A be an algorithm. Assume for any S, the function FS is ρ-weakly-convex. For
any S, let wS be defined in Eq. (A.4) and assume supz ∥∇f(wS ; z)∥2 ≤ G. Let S and S′ be
neighboring datasets. Then

∥wS −wS′∥2 ≤
2G

ρn
+ 2∥A(S)−A(S′)∥2.

Proof Without loss of generality, we assume S and S′ differ by the last element, i.e., S = {z1, . . . , zn}
and S = {z1, . . . , zn−1, z

′
n}. Since FS is ρ-weakly convex, we know

⟨wS −wS′ , ∂FS(wS)− ∂FS(wS′)⟩ ≥ −ρ∥wS −wS′∥22. (A.8)

According to the first-order optimality condition we know

−2ρ
(
wS −A(S)

)
∈ ∂FS(wS)

and

−2ρ
(
wS′ −A(S′)

)
∈ ∂FS′(wS′) = ∂FS(wS′) +

1

n
∂f(wS′ ; z′n)−

1

n
∂f(wS′ ; zn),

where we have used the addition property of subdifferential and the definition of FS , F ′
S . We can

plug the above two expressions into Eq (A.8) and get〈
wS −wS′ ,−2ρ(wS −A(S)) + 2ρ(wS′ −A(S′))+

1

n
∂f(wS′ ; z′n)−

1

n
∂f(wS′ ; zn)

〉
≥ −ρ∥wS −wS′∥22.

It then follows from the Lipschitz continuity that

ρ∥wS −wS′∥22 ≤
〈
wS −wS′ , 2ρ(A(S)−A(S′)) +

∂f(wS′ ; z′n)− ∂f(wS′ ; zn)

n

〉
≤ ∥wS−wS′∥2

∥∥∥2ρ(A(S)−A(S′))+
∂f(wS′ ; z′n)−∂f(wS′ ; zn)

n

∥∥∥
2

≤ ∥wS −wS′∥2
(
2ρ∥A(S)−A(S′)∥2 +

2G

n

)
.

The stated bound then follows. The proof is completed.

The following lemma connects the argument stability of the algorithm S 7→ ProxF/(2ρ)(A(S)) via
that of A.
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Lemma A.2 Let A be an algorithm and F be ρ-weakly-convex. For any S, let w̃S be defined in
Eq. (A.5). Let S and S′ be neighboring datasets. Then

∥w̃S − w̃S′∥2 ≤ 2∥A(S)−A(S′)∥2.

Proof By the weak convexity of F we know

⟨w̃S − w̃S′ , ∂F (w̃S)− ∂F (w̃S′)⟩ ≥ −ρ∥w̃S − w̃S′∥22.

According to the first-order optimality condition we know

−2ρ
(
w̃S −A(S)

)
∈ ∂F (w̃S),

−2ρ
(
w̃S′ −A(S′)

)
∈ ∂F (w̃S′).

As a combination of the above three inequalities, we get〈
w̃S − w̃S′ , 2ρ

(
w̃S′ −A(S′)

)
− 2ρ

(
w̃S −A(S)

)〉
≥ −ρ∥w̃S − w̃S′∥22.

It then follows from the Lipschitz continuity that

ρ∥w̃S − w̃S′∥22 ≤
〈
w̃S − w̃S′ , 2ρA(S)− 2ρA(S′)

〉
≤ 2ρ∥w̃S − w̃S′∥2∥A(S)−A(S′)∥2.

The stated inequality then follows directly.

Proof of Theorem 8 For any S, define wS and w̃S according to Eq. (A.4) and Eq. (A.5), respec-
tively. According to Lemma A.2 and the Lipschitz continuity assumption (A is ϵ-argument stable),
we know that the algorithm defined by (A.5) is 2Gϵ-uniformly stable in function values. It then
follows from Lemma 5 that

E
[
FS(w̃S)− F (w̃S)

]
≤ 2Gϵ. (A.9)

According to Lemma A.1, we know that the algorithm defined by (A.4) is (2G
2

nρ + 2Gϵ)-uniformly
stable. It then follows from Lemma 5 that

E[F (wS)− FS(wS)] ≤
2G2

nρ
+ 2Gϵ.

It then follows that

E[F (wS) + ρ∥wS −A(S)∥22]− E[FS(wS) + ρ∥wS −A(S)∥22]

= E[F (wS)− FS(wS)] ≤
2G2

nρ
+ 2Gϵ. (A.10)

Furthermore, according to the definition of wS we know

FS(wS) + ρ∥wS −A(S)∥22 ≤ FS(w̃S) + ρ∥w̃S −A(S)∥22

23



LEI

and therefore it follows from (A.9) that

E[FS(wS) + ρ∥wS −A(S)∥22] ≤ E[FS(w̃S) + ρ∥w̃S −A(S)∥22]
≤ E[F (w̃S) + ρ∥w̃S −A(S)∥22] + 2Gϵ.

We can combine (A.10) and the above inequality together, and derive

E[F (wS) + ρ∥wS −A(S)∥22]− E[F (w̃S) + ρ∥w̃S −A(S)∥22] ≤
2G2

nρ
+ 4Gϵ.

According to the ρ-strong convexity of v 7→ F (v) + ρ∥v − A(S)∥22 (this strong convexity follows
from the weak convexity of F ) and the definition of w̃S as a minimizer, we know

E[F (wS) + ρ∥wS −A(S)∥22]− E[F (w̃S) + ρ∥w̃S −A(S)∥22] ≥
ρ

2
E[∥wS − w̃S∥22].

We can combine the above two inequalities together and derive

ρ

2
E[∥wS − w̃S∥22] ≤

2G2

nρ
+ 4Gϵ.

It then follows that

E[∥wS − w̃S∥2] ≤
2G√
nρ

+
√
8Gϵ/ρ. (A.11)

It then follows from Eq. (A.6) that

E
[∥∥∇FS,1/(2ρ)(A(S))−∇F1/(2ρ)(A(S))

∥∥
2

]
= 2ρE

[∥∥wS − w̃S

∥∥
2

]
≤ 4G√

n
+
√
32Gϵρ.

The proof is completed.

Appendix B. Proof of Theorem 10

In this section, we prove the high probability bounds. To this aim, we first introduce a useful lemma.

Lemma B.1 (Bousquet et al. 2020) LetA be an ϵ-uniformly stable algorithm. Assume f(A(S); z) ≤
R almost surely. Then for any δ ∈ (0, 1) with probability at least 1− δ we have∣∣FS(A(S))− F (A(S))

∣∣=O(
ϵ log(n) log(1/δ)+R

√
n−1 log(1/δ)

)
.

Proof of Theorem 10 For any S, define wS and w̃S according to Eq. (A.4) and Eq. (A.5),
respectively. According to Lemma A.2 and the Lipschitz continuity assumption, we know that the
algorithm defined by (A.5) is 2Gϵ-uniformly stable in function values. The following inequality
then follows from Lemma B.1 with probability at least 1− δ/2

FS(w̃S)− F (w̃S) = O
(
ϵ log(n) log(1/δ) +

√
n−1 log(1/δ)

)
. (B.1)
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According to Lemma A.1, we know that the algorithm defined by (A.4) is
(
2G2

nρ + 2Gϵ
)
-uniformly

stable. The following inequality then follows from Lemma B.1 with probability at least 1− δ/2

F (wS)− FS(wS) = O
((
G2(nρ)−1 +Gϵ

)
log(n) log(1/δ) +

√
n−1 log(1/δ)

)
.

It then follows that(
F (wS) + ρ∥wS −A(S)∥22

)
−
(
FS(wS) + ρ∥wS −A(S)∥22

)
= O

((
G2(nρ)−1 +Gϵ

)
log(n) log(1/δ) +

√
n−1 log(1/δ)

)
. (B.2)

Furthermore, according to the definition of wS and (B.1) we know

FS(wS) + ρ∥wS −A(S)∥22 ≤ FS(w̃S) + ρ∥w̃S −A(S)∥22
≤ F (w̃S) + ρ∥w̃S −A(S)∥22 +O

(
ϵ log(n) log(1/δ) +

√
n−1 log(1/δ)

)
.

We can combine Eq. (B.2) and the above inequality together, and derive the following inequality
with probability at least 1− δ(

F (wS) + ρ∥wS −A(S)∥22
)
−
(
F (w̃S) + ρ∥w̃S −A(S)∥22

)
= O

((
G2(nρ)−1 +Gϵ

)
log(n) log(1/δ) +

√
n−1 log(1/δ)

)
.

According to the ρ-strong convexity of v 7→ F (v) + ρ∥v − A(S)∥22 and the definition of w̃S , we
know the following inequality(

F (wS) + ρ∥wS −A(S)∥22
)
−
(
F (w̃S) + ρ∥w̃S −A(S)∥22

)
≥ ρ

2
∥wS − w̃S∥22.

We can combine the above two inequalities together and derive the following inequality with prob-
ability at least 1− δ

ρ

2
∥wS − w̃S∥22 = O

((
G2(nρ)−1 +Gϵ

)
log(n) log(1/δ) +

√
n−1 log(1/δ)

)
,

from which we derive

∥wS − w̃S∥2 = O
((
Gn−

1
2 ρ−1 +

√
Gϵ/ρ

)√
log(n) log(1/δ) +

(
n−1ρ−2 log(1/δ)

) 1
4

)
.

The stated bound then follows from Eq. (A.6). The proof is completed.

Appendix C. Proofs on Uniform Stability Bounds

In this section, we present the proofs on the uniform stability bounds of sampling-determined algo-
rithms. Our proof follows the idea in Hardt et al. (2016).
Proof of Theorem 16 Let S = {z1, . . . , zn} and S′ = {z′1, . . . , z′n}. Without loss of generality, we
assume S and S′ differ only by the last example, i.e., zn ̸= z′n. Let I(A) = {i1, . . . , iT } be the set

25



LEI

of indices selected in the implementation of A. We first prove Part (a). According to the property
of conditional expectation, we know

EA
[
f(A(S); z)− f(A(S′); z)

]
= EA

[
f(A(S); z)− f(A(S′); z)|n ̸∈ I(A)

]
Pr{n ̸∈ I(A)}

+ EA
[
f(A(S); z)− f(A(S′); z)|n ∈ I(A)

]
Pr{n ∈ I(A)}.

Since A is a sampling-determined algorithm, A(S) is independent of zn under the condition n ̸∈
I(A). Therefore, under the condition n ̸∈ I(A) we have A(S) = A(S′). Therefore,

EA
[
f(A(S); z)− f(A(S′); z)

]
= EA

[
f(A(S); z)− f(A(S′); z)|n ∈ I(A)

]
Pr{n ∈ I(A)}

≤ 2BPr{n ∈ I(A)},

where we have used the assumption EA
[
f(A(S); z)|n ∈ I(A)

]
≤ B for any S.

We now turn to Part (b). It is clear

EA
[
∥∇f(A(S); z)−∇f(A(S′); z)∥22

]
= EA

[
∥∇f(A(S); z)−∇f(A(S′); z)∥22|n ̸∈ I(A)

]
Pr{n ̸∈ I(A)}

+ EA
[
∥∇f(A(S); z)−∇f(A(S′); z)∥22|n ∈ I(A)

]
Pr{n ∈ I(A)}.

It then follows that

EA
[
∥∇f(A(S); z)−∇f(A(S′); z)∥22

]
= EA

[
∥∇f(A(S); z)−∇f(A(S′); z)∥22|n ∈ I(A)

]
Pr{n ∈ I(A)}

≤ 4G2Pr{n ∈ I(A)},

where we have used the assumption EA[∥∇f(A(S); z)|n ∈ I(A)∥22] ≤ G2 for any S.
Finally, we consider Part (c). It is clear

EA
[
∥A(S)−A(S′)∥2

]
= EA

[
∥A(S)−A(S′)∥2|n ̸∈ I(A)

]
Pr{n ̸∈ I(A)}+ EA

[
∥A(S)−A(S′)∥2|n ∈ I(A)

]
Pr{n ∈ I(A)}

= EA
[
∥A(S)−A(S′)∥2|n ∈ I(A)

]
Pr{n ∈ I(A)} ≤ 2RPr{n ∈ I(A)},

where we have used the assumption EA[∥A(S)∥2|n ∈ I(A)] ≤ R for any S. The proof is com-
pleted.

Proof of Corollary 17 We consider only SGD (the arguments of AdaGrad-Norm are the same). It
is clear that

Pr{n ∈ I(A)} ≤
T∑
t=1

Pr{it = n} ≤ T

n
.

It is clear that the algorithm A is sampling-determined, and therefore one can apply Theorem 16 to
derive the stated bounds. The proof is completed.
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Appendix D. Proofs on Stochastic Gradient Descent

The following lemma establishes the optimization error bounds of SGD. Part (a) is a standard result
in optimization. Part (b) is due to Ghadimi and Lan (2013), Part (c) is due to Vaswani et al. (2019)
and Part (d) is due to Davis and Drusvyatskiy (2019).

Lemma D.1 (Optimization Error Bound for SGD) Let {wt}t be produced by SGD and

EA[∥∇f(wt; zit)∥22] ≤ G2, ∀t ∈ [T ].

(a) If FS is convex, then for all t ∈ N and w

EA
[
FS

(∑T
t=1 ηtwt∑T
t=1 ηt

)]
− FS(w) ≤

G2
∑T

t=1 η
2
t + ∥w∥22

2
∑T

t=1 ηt
.

(b) If for any z, the function w 7→ f(w; z) is L-smooth, then

T∑
t=1

ηtEA
[
∥∇FS(wt)∥22

]
≤ FS(w1) +

LG2

2

T∑
t=1

η2t .

(c) Assume for all z, the function w 7→ f(w; z) is L-smooth and SGC holds with the parameter
ρ. If ηt = 1/(ρL), then

T∑
t=1

EA
[
∥∇FS(wt)∥22

]
≤ 2ρLf(w1).

(d) If FS is ρ-weakly convex, then

T∑
t=1

ηtEA
[
∥∇FS,1/(2ρ)(wt)∥22

]
= O

(
1 +G2ρ

T∑
t=1

η2t

)
.

Proof of Proposition 19 According to Lemma D.1, Part (a), we have the following optimization
error bounds

EA[FS(w̄T )]− FS(w
∗) = O

(Tη2G2 + ∥w∗∥22
Tη

)
.

Furthermore, by Corollary 17, Part (a), we have the following stability bounds

sup
z

E
[
f(w̄T ; z)− f(w̄′

T ; z)
]
≤ 2BT

n
,

where {w′
t} is a sequence of iterates produced by SGD based on a neighboring dataset S′. This

together with Lemma 5 on the connection between uniform stability and generalization further
implies

E
[
F (w̄T )− FS(w̄T )

]
= O

(
BT/n

)
.

We can plug the above generalization error and optimization error bounds into (3.1), and derive
(5.1).
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If η ≍ ∥w∗∥2
Gn

1
3

and T ≍ n
2
3G∥w∗∥2

B , we have

G2η ≍ G∥w∗∥2
n

1
3

, Tη ≍ n
2
3G∥w∗∥2
B

∥w∗∥2
Gn

1
3

=
n

1
3 ∥w∗∥22
B

,

BT

n
≍ n

2
3G∥w∗∥2

n
=
G∥w∗∥2
n

1
3

.

The bound E[F (w̄T )] − F (w∗) = O((B + G∥w∗∥2)n−
1
3 ) follows directly from the choice of η

and T . The proof is completed.

Proof of Proposition 21 According to Lemma D.1, Part (b), we have the following optimization
error bounds

EA
[
∥∇FS(wr)∥22

]
= O

(Tη2G2 + 1

Tη

)
and therefore

EA
[
∥∇FS(wr)∥2

]
= O

(
G
√
η + 1/

√
Tη

)
. (D.1)

It is clear that A is sampling-determined and one can apply Corollary 17, Part (b) to show the
following uniform stability bounds

sup
z

E
[
∥∇f(wr; z)−∇f(w′

r; z)∥22
]
≤ 4G2T

n
,

where {w′
t} is a sequence of iterates produced by SGD based on a neighboring dataset S′. This

together with (3.2) and the connection between uniform stability and generalization established in
Theorem 6 gives

E
[
∥∇F (wr)∥2

]
≤ 8G

√
T/n+G/

√
n+ E

[
∥∇FS(wr)∥2

]
.

We can plug the optimization error bounds (D.2) into the above bound, and get

E
[
∥∇F (wr)∥2

]
= O

(G√T√
n

+
G
√
Tη + 1√
Tη

)
.

If we choose η ≍ 1/(G
√
T ), we get

E
[
∥∇F (wr)∥2

]
= O

(G√T√
n

+

√
G

T
1
4

)
.

We can choose T ≍ n
2
3 /G

2
3 to derive the stated bound E

[
∥∇F (wr)∥2

]
= O(G

2
3n−

1
6 ).

Proof of Proposition 24 Analogous to the proof of Proposition 21, we have

E
[
∥∇F (wr)∥2

]
≤ 8G

√
T/n+G/

√
n+ E

[
∥∇FS(wr)∥2

]
.

Furthermore, Lemma D.1, Part (c) implies

E
[
∥∇FS(wr)∥2

]
= O(

√
Lρ/

√
T ).
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We can combine the above two bounds together and get

E
[
∥∇F (wr)∥2

]
= O

(
G
√
T/n+

√
Lρ/

√
T
)
.

Therefore, we can choose T ≍
√
Lρn/G and get E

[
∥∇F (wr)∥2

]
= O((LρG2/n)

1
4 ). The proof is

completed.

Proof of Proposition 25 According to Lemma D.1, Part (d), we have the following optimization
error bounds

EA
[
∥∇FS,1/(2ρ)(wr)∥22

]
= O

(ρTG2η2 + 1

Tη

)
and therefore

EA
[
∥∇FS,1/(2ρ)(wr)∥2

]
= O

(
G
√
ρη + 1/

√
Tη

)
. (D.2)

We can apply Corollary 17, Part (c) to show the following argument stability bounds

EA
[
∥A(S)−A(S′)∥2

]
≤ 2RT

n
.

This together with (3.3) and the connection between argument stability and generalization estab-
lished in Theorem 8 gives

E
[∥∥∇F1/(2ρ)(A(S))

∥∥
2

]
≤ E

[∥∥∇FS,1/(2ρ)(A(S))∥∥2]+ 4G√
n
+
√
64GRTρn−1. (D.3)

We can plug the optimization error bounds (D.2) into the above bound, and get

E
[∥∥∇F1/(2ρ)(A(S))

∥∥
2

]
= O

(
G
√
ρη +

√
GRρT/n+ 1/

√
Tη +G/

√
n
)
.

If we choose η ≍ 1/(G
√
ρT ), we get

E
[
∥∇F (wr)∥2

]
= O

(√
G(ρ/T )

1
4 +

√
GRρT/n+G/

√
n
)
.

We can choose T ≍ n
2
3 /(R

2
3 ρ

1
3 ) to derive the stated bound E

[
∥∇F (wr)∥2

]
= O(

√
Gρ

1
3R

1
6n−

1
6 ).

The proof is completed.

Appendix E. AdaGrad-Norm
E.1. Generalization Bounds of AdaGrad-Norm

We now turn to the generalization analysis of AdaGrad-Norm. Proposition E.1 presents the risk
bounds in terms of function values for convex and nonsmooth problems, while Proposition E.2
presents the risk bounds in terms of gradients for nonconvex and smooth problems. Note that these
bounds match the corresponding results for SGD (w.r.t. n) in Section 5 up to a logarithmic factor.
All the proofs are given in Section E.2.

29



LEI

Proposition E.1 (Convex and Nonsmooth Case) Let {wt}t be produced by (4.7), E[∥∇f(wt; zit)∥22] ≤
G2 for all t ∈ [T ] and supw∈W ∥w∥2 ≤ R. Let A output w̄T = 1

T

∑T
t=1wt. If FS is convex we

have
ES,A[F (w̄T )]− F (w∗) = O

(
GRT/n

)
+O(G(R+ ∥w∗∥2)/

√
T ).

If T ≍ n
2
3 we have

ES,A[F (w̄T )]− F (w∗) = O(G(R+ ∥w∗∥2)n−
1
3 ).

Proposition E.2 (Nonconvex and Smooth Case) Let {wt}t be produced by (4.7) and E[∥∇f(wt; zit)∥22] ≤
G2 for all t ∈ [T ]. If A(S) = wr and FS is L-smooth, then

ES,A,r
[
∥∇F (wr)∥2

]
= O

(
G
√
T/n+GT− 1

4 log
1
2 T

)
.

If T ≍ n
2
3 , one gets

E
[
∥∇F (wr)∥2

]
= O(Gn−

1
6 log

1
2 n).

Remark E.3 Generalization behavior of adaptive gradient descent was recently studied by Zhou
et al. (2020). They considered minibatch adaptive algorithms with a sufficiently large batch size,
while the algorithms we consider here use only a single example to compute a stochastic gradient
and is therefore more computationally efficient. Their analysis is based on a connection between
generalization and differential privacy, and requires to add noise to achieve differential privacy. This
in turn leads to a dimension-dependent bound. As a comparison, we do not require to introduce
noise in algorithms and our bounds are dimension-free.

E.2. Proofs on AdaGrad-Norm

The following lemma establishes the convergence rates of AdaGrad-Norm. Part (a) is for convex
and nonsmooth problems, while Part (b) is for nonconvex and smooth problems. We give a simple
proof of Part (a), while the proof of Part (b) can be found in Ward et al. (2020).

Lemma E.4 (Optimization Error Bound for AdaGrad-Norm) Let {wt} be the sequence pro-
duced by AdaGrad-Norm.

(a) Let FS be convex. Assume ∥w∥2 ≤ R for all w ∈ W . Then the following bound holds for all
w ∈ W

EA
[
FS(w̄T )

]
− FS(w) = O(G(R+ ∥w∥2)/

√
T ).

(b) Assume FS is L-smooth, E
[
∥∇f(wt; zit)∥22

]
≤ G2 for all wt. Then

EA,r
[
∥∇FS(wr)∥2

]
= O

(
GT− 1

4 log
1
2 T

)
,

where r follows from the uniform distribution over [T ].

Proof Denote ηt = η/bt, then (4.7) can be written as wt+1 = ΠW(wt − ηt∇f(wt; zit)). It then
follows that

∥wt+1 −w∥22 ≤ ∥wt −w∥22 − 2ηt⟨wt −w,∇f(wt; zit)⟩+ η2t ∥∇f(wt; zit)∥22.
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Re-arranging the above inequality gives

⟨wt −w,∇f(wt; zit)⟩ ≤
1

2ηt

(
∥wt −w∥22 − ∥wt+1 −w∥22

)
+
ηt
2
∥∇f(wt; zit)∥22.

We take conditional expectation w.r.t. zit over both sides and get

⟨wt −w,∇FS(wt)⟩ ≤ Eit
[ 1

2ηt

(
∥wt −w∥22 − ∥wt+1 −w∥22

)]
+ Eit

[ηt
2
∥∇f(wt; zit)∥22

]
.

It then follows from the convexity of FS that

FS(wt)− FS(w) ≤ Eit
[ 1

2ηt

(
∥wt −w∥22 − ∥wt+1 −w∥22

)]
+ Eit

[ηt
2
∥∇f(wt; zit)∥22

]
.

We can take an expectation followed with a summation of the above inequality from t = 1 to t = T ,
and get

T∑
t=1

EA
[
FS(wt)− FS(w)

]
− EA

[ 1

2η1
∥w1 −w∥22

]
≤ 1

2

T∑
t=2

EA
[
∥wt −w∥22

( 1

ηt
− 1

ηt−1

)]
+

1

2

T∑
t=1

EA
[
ηt∥∇f(wt; zit)∥22

]
≤ (R2 + ∥w∥22)

T∑
t=2

EA
[ 1
ηt

− 1

ηt−1

]
+
η

2

T∑
t=1

EA
[

∥∇f(wt; zit)∥22√∑t
τ=1 ∥∇f(wτ ; ziτ )∥22

]

≤ (R2 + ∥w∥22)η−1EA
[( T∑

t=1

∥∇f(wτ ; zit)∥22
) 1

2
]
+ ηEA

[( T∑
t=1

∥∇f(wτ ; zit)∥22
) 1

2
]
,

where we have used the following inequality in the last step

T∑
t=1

at√∑t
j=1 aj

≤
T∑
t=1

∫ ∑t
j=1 aj∑t−1

j=1 aj

1√
x
dx =

∫ ∑T
j=1 aj

0

1√
x
dx = 2

√√√√ T∑
t=1

at.

It then follows from the convexity of FS that

EA
[
FS(w̄T )− FS(w)

]
= O

( 1

T
EA

[( T∑
t=1

∥∇f(wτ ; zit)∥22
) 1

2
](

(R2 + ∥w∥22)η−1 + η
))
.

The stated bound then follows.

Proof of Proposition E.1 Analogous to the proof of Proposition 19, we have the following gener-
alization error bound

E
[
F (w̄T )− FS(w̄T )

]
= O

(
GRT/n

)
.

Lemma E.4, Part (a), implies the following optimization error bound

EA
[
FS(w̄T )

]
− FS(w

∗) = O(G(R+ ∥w∗∥2)/
√
T ).
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We can plug the above two inequalities back into (3.1) and get

E
[
F (w̄T )

]
− F (w∗) = O

(
GRT/n

)
+O(G(R+ ∥w∗∥2)/

√
T ).

One can derive the stated bound by setting T ≍ n
2
3 . The proof is completed.

Proof of Proposition E.2 Analogous to the Proof of Proposition 21, we have the following gener-
alization error bound

E
[
∥∇F (wr)∥2

]
≤ 8G

√
T/n+G/

√
n+ E

[
∥∇FS(wr)∥2

]
.

Lemma E.4, Part (b), implies the following optimization error bound

EA,r
[
∥∇FS(wr)∥2

]
= O

(
GT− 1

4 log
1
2 T

)
.

We can combine the above two inequalities together and get

E
[
∥∇F (wr)∥2

]
= O

(
G
√
T/n+GT− 1

4 log
1
2 T

)
.

One can choose T ≍ n
2
3 to get the stated bound. The proof is completed.

Appendix F. Differentially Private SGD

F.1. Utility and Privacy Guarantee

In this section, we use our stability analysis to develop a differentially private SGD with generaliza-
tion guarantee for weakly-convex problems, which is useful to handle data with sensitive informa-
tion (Dwork, 2008). We first introduce the definition of differential privacy, which is a well-accepted
mathematical definition of privacy.

Definition F.1 (Differential Privacy) Let ϵ > 0 and δ ∈ (0, 1). A randomized mechanism A
provides (ϵ, δ)-differential privacy (DP) if for any two neighboring datasets S and S′ and any set
E in the range of A there holds

P(A(S) ∈ E) ≤ eϵP(A(S′) ∈ E) + δ.

Our basic idea to develop differentially private algorithms is to inject noise in the learning pro-
cess to mask the influence of any single datapoint. In particular, at the t-th iteration we randomly
sample a noise bt from a Gaussian distribution with a variance σ2Id and build a new stochastic gra-
dient as ∇f(wt; zit) + bt. Then we move along the negative direction of this stochastic gradient as
follows

wt+1 = ΠW
(
wt − ηt(∇f(wt; zit) + bt)

)
, (F.1)

where β is a parameter and

σ2 =
14G2T

βn2ϵ

( log(1/δ)
(1− β)ϵ

+ 1
)
. (F.2)

We refer to our algorithm as DP-SGD and summarize the implementation in Algorithm 1. Propo-
sition F.2 shows that Algorithm 1 achieves the (ϵ, δ)-privacy guarantee, while Proposition F.3 gets
the utility guarantee as measured by ∥∇F (wr)∥2. The proofs are given in Section F.2.
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Algorithm 1: Differentially Private SGD

Input: w1 = 0, learning rates {ηt}t, parameter β, ϵ, δ > 0 and dataset S = {z1, . . . , zn}
for t = 1, 2, . . . , T do

compute σ by Eq. (F.2)
draw it uniformly from [n] and bt ∼ N (0, σ2Id)
update wt+1 according to Eq. (F.1)

end
Output: wr where r ∼ unif[T ]

Proposition F.2 (Privacy guarantee) Let ϵ > 0 and δ ∈ (0, 1). Assume for any z, the function
w 7→ f(w; z) is G-Lipschitz. If

ϵ ≥ 14T

3n2
and

log(1/δ)

ϵ
≤

√
n

3
√
3
− 5

3
, (F.3)

then we can choose β = 7T
3n2ϵ

and Algorithm 1 satisfies (ϵ, δ)-DP.

Proposition F.3 (Utility guarantee) Let ϵ > 0 and δ ∈ (0, 1). Assume for any z, the function
w 7→ f(w; z) is G-Lipschitz and FS is ρ-weakly convex. Let {wt}t be produced by Algorithm
1 with ηt = η and A(S) = wr. Assume ES,A[∥∇f(wt; zit)∥22] ≤ G2 and EA[∥A(S)∥2|n ∈
I(A)] ≤ R. Let Eq. (F.3) hold and β = 7T

3n2ϵ
. If we choose η ≍ 1/((G +

√
dσ)

√
ρT ) and

T ≍ (1 + d
1
3G

2
3 log

2
3 (1/δ)ϵ−

2
3 )n

2
3 /(R

2
3 ρ

1
3 ), then

E
[
∥∇F1/(2ρ)(wr)∥2

]
= O(

√
GR

1
6 ρ

1
3 (1 + d

1
6G

1
3 log

1
3 (1/δ)ϵ−

1
3 )n−

1
6 ). (F.4)

F.2. Proofs on Differentially Private SGD

In this section, we prove privacy and utility guarantee for DP-SGD. To this aim, we first study the
Rényi differential privacy (Mironov, 2017), and then transform it to (ϵ, δ)-DP.

Definition F.4 For λ > 1, ρ > 0, a randomized mechanism A satisfies (λ, ρ)-Rényi differential
privacy (RDP) if for all neighboring datasets S and S′ we have

Dλ(A(S)∥A(S′)) :=
1

λ− 1
log

∫ ( PA(S)(w)

PA(S′)(w)

)λ
dPA(S′)(w) ≤ ρ,

where PA(S)(w) and PA(S′)(w) are the density of A(S) and A(S′), respectively.

We first introduce some necessary lemmas. The following lemma establishes the RDP of a Gaussian
mechanism together with subsampling (Liang et al., 2020).

Lemma F.5 (Liang et al. 2020) Consider a mechanism M : Zm 7→ Rd and let ∆ be its ℓ2-
sensitivity, i.e., ∆ = supS∼S′ ∥M(S)−M(S′)∥2. The Gaussian mechanism A = M+N (0, σ2Id)
applied to a subset of samples that are drawn uniformly without replacement with subsampling rate
p satisfies (λ, 3.5p2λ∆2/σ2)-RDP if

σ2 ≥ 0.67∆2 and λ− 1 ≤ 2σ2

3∆2
log

( 1

λp(1 + σ2/∆2)

)
.

33



LEI

The following lemma shows the RDP of an adaptive composition of several mechanisms.

Lemma F.6 (Mironov 2017) If A1, . . . ,Ak are randomized algorithms satisfying, respectively,
(α, ϵ1)-RDP,. . . ,(α, ϵk)-RDP, then their composition defined as (A1(S), . . . ,Ak(S)) is (α, ϵ1 +
. . . ,+ϵk)-RDP. Moreover, the ith algorithm can be chosen on the basis of the outputs of A1, . . . ,Ai−1.

The following lemma shows the connection between DP and RDP.

Lemma F.7 (Mironov 2017) If a randomized mechanism A satisfies (λ, ρ)-RDP, then A satisfies
(ρ+ log(1/δ)/(λ− 1), δ)-DP for all δ ∈ (0, 1).

We are now ready to prove the privacy and utility guarantee.
Proof of Proposition F.2 Consider the mechanism At = Mt + bt, where Mt(z) = ∇f(wt; z).
Since f is G-Lipschitz continuous, we know

sup
z,z′

∥∇f(wt; z)−∇f(wt; z
′)∥2 ≤ ∆ := 2G

and therefore the ℓ2 sensitivity of Mt is 2G. Note

σ2

∆2
=

14G2T

βn2ϵ

( log(1/δ)
(1− β)ϵ

+ 1
) 1

4G2
=

7T

2βn2ϵ

( log(1/δ)
(1− β)ϵ

+ 1
)
.

According to Lemma F.5, we know Mt satisfies
(
λ, λβϵ

T
(

log(1/δ)
(β−1)ϵ

+1
))-RDP if

7T

2βn2ϵ

( log(1/δ)
(1− β)ϵ

+ 1
)
≥ 0.67 (F.5)

and

λ− 1 ≤ 7T

3βn2ϵ

( log(1/δ)
(1− β)ϵ

+ 1
)
log

( n

λ
(
1 + 7T

2βn2ϵ

( log(1/δ)
(1−β)ϵ + 1

))).
Let λ = log(1/δ)

(1−β)ϵ + 1. Then the above inequality becomes

log(1/δ)

(1− β)ϵ
≤ 7T

3βn2ϵ

( log(1/δ)
(1− β)ϵ

+ 1
)
log

( n( log(1/δ)
(1−β)ϵ + 1

)(
1 + 7T

2βn2ϵ

( log(1/δ)
(1−β)ϵ + 1

))). (F.6)

We first suppose Eq. (F.5), (F.6) hold and prove the stated bound under these conditions. With our
definition of λ, we know Mt satisfies

( log(1/δ)
(1−β)ϵ + 1, βϵT

)
-RDP for any t ∈ [T ]. By the adaptive

composition (Lemma F.6), we know Algorithm 1 satisfies
( log(1/δ)

(1−β)ϵ + 1, βϵ
)
-RDP. It then follows

from Lemma F.7 that Algorithm 1 satisfies (ϵ, δ)-DP. We now show that Eq. (F.5) and Eq. (F.6)
hold. Since ϵ ≥ 14T/(3n2) we know β ≤ 1/2. It is clear

7T

3βn2ϵ
=

7T · 3n2ϵ
21Tn2ϵ

= 1 ≥ 0.67. (F.7)
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Therefore, Eq. (F.5) holds. Furthermore, the assumption log(1/δ)
ϵ ≤

√
n

3
√
3
−5

3 implies 1+3
2

(2 log(1/δ)
ϵ +

1
)
≤

√
n√
3

. It then follows that( log(1/δ)
(1− β)ϵ

+ 1
)(

1 +
7T

2βn2ϵ

( log(1/δ)
(1− β)ϵ

+ 1
))

≤
(2 log(1/δ)

ϵ
+ 1

)(
1 +

7T

2βn2ϵ

(2 log(1/δ)
ϵ

+ 1
))

=
(2 log(1/δ)

ϵ
+ 1

)(
1 +

3

2

(2 log(1/δ)
ϵ

+ 1
))

≤
(
1 +

3

2

(2 log(1/δ)
ϵ

+ 1
))2

≤ n

3
.

We can combine the above inequality and Eq. (F.7) to show Eq. (F.6). The proof is completed.

Proof of Proposition F.3 Analogous to Lemma D.1, Part (d), we have the following optimization
error bounds for Algorithm 1

EA
[
∥∇FS,1/(2ρ)(wr)∥22

]
= O

(ρT (G2 + σ2d)η2 + 1

Tη

)
and therefore

EA
[
∥∇FS,1/(2ρ)(wr)∥2

]
= O

(
(G+ σ

√
d)
√
ρη + 1/

√
Tη

)
.

Adding noise does not affect the stability analysis (Bassily et al., 2020), we then use Eq. (D.3) to
get

E
[∥∥∇F1/(2ρ)(wr)

∥∥
2

]
= O

(
(G+ σ

√
d)
√
ρη +

√
GRρT/n+ 1/

√
Tη +G/

√
n
)
.

For our choice of β, we have

σ2 =
14G2T · 3n2ϵ

7Tn2ϵ

( log(1/δ)
(1− β)ϵ

+ 1
)
≤ 6G2

(2 log(1/δ)
ϵ

+ 1
)
, (F.8)

where we have used β ≤ 1/2 established in the proof of Proposition F.2. If we choose η ≍
1/((G+

√
dσ)

√
ρT ) and use Eq. (F.8), we get

E
[
∥∇F1/(2ρ)(wr)∥2

]
= O

(√
G+

√
dσ(ρ/T )

1
4 +

√
GRρT/n+G/

√
n
)
.

We can choose T ≍ (1 + d
1
3G

2
3 log

2
3 (1/δ)ϵ−

2
3 )n

2
3 /(R

2
3 ρ

1
3 ) to get Eq. (F.4). The proof is com-

pleted.

Appendix G. Convergence Rates with Relaxed Bounded Gradient Assumptions

In this section, we study the convergence rates of SGD for solving weakly convex problems. The
existing convergence analysis requires a bounded subgradient assumption as Eit [∥∇f(wt; zit)∥22] ≤
G2 for some G > 0 (Davis and Drusvyatskiy, 2019). We aim to relax this assumption to a more
general assumption as

Eit [∥∇f(wt; zit)∥22] ≤ B1Eit [f(wt; zit)] +B2, (G.1)

where B1, B2 ≥ 0 are two constants. This assumption implies that the gradients can be bounded in
terms of function values, which has been considered in the literature (Zhang, 2004).

35



LEI

Theorem G.1 Let W = Rd and
∑T

t=1 η
2
t = O(1). Let {wt}t be produced by the algorithm A

defined by SGD and Eq. (G.1) holds for all t ∈ N. If FS is ρ-weakly convex, then

T∑
t=1

ηtEA[∥∇FS,1/2ρ(wt)∥22] = O
(
1 +

T∑
t=1

η2t

)
. (G.2)

Proof For any t ∈ N, denote ŵt = ProxFS ,1/(2ρ)(wt). According to the definition of Moreau
envelope and the definition of ŵt, we know

Eit [FS,1/2ρ(wt+1)] ≤ Eit
[
FS(ŵt) + ρ∥ŵt −wt+1∥22

]
= FS(ŵt) + ρEit

[
∥ŵt −wt + ηt∇f(wt; zit)∥22

]
= FS(ŵt) + ρ∥ŵt −wt∥22 + 2ρηtEit

[
⟨ŵt −wt,∇f(wt; zit)⟩

]
+ ρη2tEit [∥∇f(wt; zit)∥22]

≤ FS,1/(2ρ)(wt) + 2ρηt⟨ŵt −wt,∇FS(wt)⟩+ ρη2tEit
[
B1f(wt; zit) +B2

]
≤ FS,1/(2ρ)(wt) + 2ρηt

(
FS(ŵt)− FS(wt) +

ρ

2
∥wt − ŵt∥22

)
+ ρη2t

[
B1FS(wt) +B2

]
, (G.3)

where in the last second step we have used Eq. (G.1) and in the last inequality we have used the weak
convexity of FS . By the weak convexity of FS , we know the function w 7→ FS(w) + ρ∥w − v∥22
is ρ-strongly convex. This together with the definition of ŵt implies

FS(wt)− FS(ŵt)−
ρ

2
∥wt − ŵt∥22

=
(
FS(wt) + ρ∥wt −wt∥22

)
−
(
FS(ŵt) + ρ∥wt − ŵt∥22

)
+
ρ

2
∥wt − ŵt∥22

≥ ρ∥wt − ŵt∥22.

It then follows that

FS(wt)− FS(ŵt) ≥
3ρ

2
∥wt − ŵt∥22 ≥ 0. (G.4)

This together with the assumption ηt ≤ 1/B1 implies

B1η
2
tFS(wt) = B1η

2
t

(
FS(wt)− FS(ŵt)

)
+B1η

2
tFS(ŵt)

≤ ηt
(
FS(wt)− FS(ŵt)

)
+B1η

2
tFS(ŵt).

We can plug the above inequality back into Eq. (G.3) and derive

Eit [FS,1/2ρ(wt+1)]

≤ FS,1/(2ρ)(wt) + ρ2ηt∥wt − ŵt∥22 +
(
2ρηt − ρηt

)(
FS(ŵt)− FS(wt)

)
+ ρη2t

(
B1FS(ŵt) +B2

)
= FS,1/(2ρ)(wt) + ρ2ηt∥wt − ŵt∥22 + ρηt

(
FS(ŵt)− FS(wt)

)
+ ρη2t

(
B1FS(ŵt) +B2

)
≤ FS,1/(2ρ)(wt)−

ρ2ηt∥wt − ŵt∥22
2

+ ρη2t
(
B1FS,1/(2ρ)(wt) +B2

)
, (G.5)

where we have used Eq. (G.4) and the following inequality in the last step

FS,1/(2ρ)(wt) = inf
v

{
FS(v) + ρ∥v −wt∥22

}
= FS(ŵt) + ρ∥ŵt −wt∥22 ≥ FS(ŵt).
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It then follows from Eq. (G.5) that

EA
[
FS,1/2ρ(wt+1)

]
≤

(
1 + ρB1η

2
t

)
EA

[
FS,1/2ρ(wt)

]
+ ρη2tB2

and therefore (1 + a ≤ exp(a))

EA
[
FS,1/2ρ(wt+1)

]
≤

t∏
k=1

(
1 + ρB1η

2
k

)
FS,1/2ρ(w1) + ρB2

t∑
k=1

η2k

t∏
k̃=k+1

(
1 + ρB1η

2
k̃

)
≤

t∏
k=1

exp(ρB1η
2
k

)
FS,1/2ρ(w1) + ρB2

t∑
k=1

η2k

t∏
k̃=k+1

exp(ρB1η
2
k̃

)
= exp

(
ρB1

t∑
k=1

η2k

)
FS,1/2ρ(w1) + ρB2

t∑
k=1

η2k exp
(
ρB1

t∑
k̃=k+1

η2
k̃

)
.

Since
∑T

t=1 η
2
t = O(1), we further get

EA
[
FS,1/2ρ(wt)

]
= O(1), ∀t ∈ [T ]. (G.6)

We can plug the above inequality back into Eq. (G.5) and get

EA[FS,1/2ρ(wt+1)] = EA[FS,1/2ρ(wt)]−
ρ2ηtEA[∥wt − ŵt∥22]

2
+O(η2t ).

The above inequality can be reformulated as

ρ2ηtEA[∥wt − ŵt∥22]
2

= EA[FS,1/2ρ(wt)]− EA[FS,1/2ρ(wt+1)] +O(η2t ).

We can take a summation of the above inequality from t = 1 to t = T and get

ρ2

2

T∑
t=1

ηtEA[∥wt − ŵt∥22] = O
(
1 +

T∑
t=1

η2t

)
.

According to the definition of ŵt, we know ∇FS,1/2ρ(wt) = 2ρ(wt − ŵt). It then follows that

T∑
t=1

ηtEA[∥∇FS,1/2ρ(wt)∥22] = O
(
1 +

T∑
t=1

η2t

)
.

This gives the bound (G.2). The proof is completed.
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