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Abstract—Stochastic gradient descent (SGD) has become the method of choice for training highly complex and nonconvex models
since it can not only recover good solutions to minimize training errors but also generalize well. Computational and statistical properties
are separately studied to understand the behavior of SGD in the literature. However, there is a lacking study to jointly consider the
computational and statistical properties in a nonconvex learning setting. In this paper, we develop novel learning rates of SGD for
nonconvex learning by presenting high-probability bounds for both computational and statistical errors. We show that the complexity of
SGD iterates grows in a controllable manner with respect to the iteration number, which sheds insights on how an implicit regularization
can be achieved by tuning the number of passes to balance the computational and statistical errors. As a byproduct, we also slightly
refine the existing studies on the uniform convergence of gradients by showing its connection to Rademacher chaos complexities.
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1 INTRODUCTION

S TOCHASTIC algorithms such as stochastic gradient de-
scent (SGD) have become one of the workhorses be-

hind many machine learning tasks [1–3]. As an iterative
algorithm, SGD iteratively moves models along the reverse
direction of an unbiased gradient estimate built on one
or several training examples. Despite its simplicity, SGD
has found great success in training highly complex and
nonconvex models by the ability to identify good solutions
to minimize training errors [3–6]. Surprisingly, the models
trained in this way also generalize well to testing examples
even in the case with significantly more parameters than
training examples [7, 8], which can not be explained well
by the traditional generalization analysis based only on the
complexity of models [9, 10]. This is especially the case for
nonconvex learning problems: while there are multiple local
minima for empirical risks, SGD is prone to identify one
with good generalization ability. With the recent extensive
studies, it is gradually realized that the generalization per-
formance of models depends not only on the complexity
of models but also on the optimization algorithms used to
train models [7]. In this spirit, there is a growing interest on
the theoretical work to understand the success of SGD by
considering either its computational or statistical properties.
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Roughly speaking, the computational property is related
to how the learning algorithm minimizes an empirical risk,
while the statistical property is related to the gap between
the empirical and population risks on the trained model. It
is the interaction of these two factors that determines the
learning performance of the trained model [5]. Therefore, it
is necessary to take both factors into account for a full under-
standing on the behavior of the algorithm, which, however,
is lacking in the nonconvex setting. Existing theoretical
results on SGD in a nonconvex setting are mainly studied
for computational errors [11–14]. However, our primary
interests in machine learning is the generalization behavior
of the trained model on testing examples, which may differ
largely from the empirical behavior on training examples
due to the possible noises in the data. Motivated by this
observation, the generalization gap between empirical and
population risks is studied by analyzing the sensitivity of
SGD to a small perturbation of the training set, in the frame-
work of algorithmic stability [15–17]. However, the step
sizes there need to be very small to enjoy a good stability
in the nonconvex setting, which requires an exponential
number of iterations for a moderate decay of computational
errors. In this way, the resulting learning rates are not
quite satisfactory. Very recently, the generalization gap of
nonconvex learning is studied via the uniform convergence
for the gradients of empirical risks to their population
counterparts [18–20]. However, these discussions ignore the
interaction between the corresponding training algorithm
and the training examples to produce the trained model.

In this paper, we study the learning performance of
SGD for nonconvex learning problems from a joint per-
spective of computational and statistical properties. For the
computational properties, we provide a high-probability
bound on the decay rate for the gradient of empirical risks
(Lemma 4). For the statistical properties, we show that the
complexity of models grows in a controllable manner along
the optimization process by presenting a high-probability
bound on the norm of SGD iterates (Lemma 9). This joint
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perspective sheds intuitive insights on how the computa-
tional and statistical errors should be balanced by choosing
an optimal iteration number to achieve a good learning rate.
As compared to the existing stability-based approach requir-
ing a fast-decaying step-size sequence, our statistical errors
are controlled for a general polynomially-decaying step-size
sequence for which the computational errors would decay
significantly faster. We consider both general nonconvex
and gradient-dominated objective functions, for each of
which our analysis can achieve, to our best knowledge,
the first learning rates that can match the associated ones
in the convex setting. As a byproduct, we also derive
slightly better uniform convergence rates between gradients
of empirical risks and the corresponding population risks by
employing the tool of Rademacher chaos complexities [21].

The paper is structured as follows. We formulate the
problem in Section 2, and study uniform convergence of
gradients in Section 3. We present learning rates in Section 4,
and discuss related work in Section 5. We report experimen-
tal results in Section 6, and conclude the paper in Section 7.
All the proofs can be found in the Supplementary Material.

2 PROBLEM FORMULATION

Let ρ be a probability measure defined over a compact
sample space Z = X×Y ⊂ Rd×R, where d ∈ N is the input
dimension. We aim to learn a prediction rule from the input
space X to the output space Y in a hypothesis space indexed
byW ⊆ Rd. The error of a model at a single example z can
be quantified by a loss function f : W × Z 7→ R+, from
which we can define the population risk (generalization
error) by F : W 7→ R+ to measure the performance of a
model on testing examples. That is, F (w) = Ez

[
f(w; z)

]
,

where Ez denotes the expectation with respect to (w.r.t.) the
random variable z drawn from ρ. The population risk is not
accessible since the probability measure ρ is unknown. In
practice, we often draw a training dataset S = {z1, . . . , zn}
independently from ρ and construct an empirical approxi-
mation of F by FS(w) = 1

n

∑n
i=1 f(w; zi). The empirical

risk FS takes a finite-sum structure, for which an efficient
method to use this structure is SGD. Let w1 = 0 and {ηt}t∈N
be a sequence of positive step sizes. At the t-th iteration, we
first draw an index jt from the uniform distribution over
{1, . . . , n}, and update the model by

wt+1 = wt − ηt∇f(wt; zjt), (1)

where ∇f(wt; zjt) denotes the gradient of f w.r.t. the first
argument. It should be noted that the randomness of the
iterate wt comes from two sources: one from the sampling of
training examples according to ρ and one from the sampling
of the indices {jt}t according to the uniform distribution
over {1, . . . , n}. In this paper, we are interested in the gener-
alization behavior of {wt}measured by the gradient of pop-
ulation risks ∇F (wt). We introduce some notations in this
paper. Denote b = supz∈Z f(0; z), b̃ = supz∈Z ‖∇f(0, z)‖2
and κ = supx∈X ‖x‖2, where ‖ · ‖2 is the Euclidean norm.
For any R > 0, define BR = {w ∈ Rd : ‖w‖2 ≤ R}. Let e
be the base of the natural logarithm.

2.1 Assumptions
We need some assumptions. We say a differentiable function
g :W 7→ R is L-smooth for a constant L > 0 if∥∥∇g(w)−∇g(w̃)

∥∥
2
≤ L‖w − w̃‖2, ∀w, w̃ ∈ W.

For L-smooth g, we have two useful properties [22]

g(w) ≤ g(w̃) +
〈
w − w̃,∇g(w̃)

〉
+ 2−1L‖w − w̃‖22, (2)

(2L)−1‖∇g(w)‖22 ≤ g(w)− inf
w
g(w). (3)

Our first assumption is a standard and widely used
assumption on the smoothness of loss functions [11–13, 23].

Assumption 1. We assume that for any z, the function w 7→
f(w; z) is L-smooth.

In our next assumption, we suppose that a weighted
norm of gradient is bounded.

Assumption 2. We assume the existence of G > 0 such that
√
ηt‖∇f(wt; z)‖2 ≤ G, ∀t ∈ N, z ∈ Z.

In the literature, a bounded gradient assumption as
‖∇f(wt; z)‖2 ≤ G (i.e., the Lipschitz continuity of f ) is of-
ten imposed to study statistical properties of SGD [15–17, 24]
as well as the computational properties [11, 25]. As com-
pared to this bounded gradient assumption, Assumption 2
is much milder since the step sizes should diminish to zero
for the convergence of the algorithm. Indeed, typical choices
of step sizes are ηt = O(1/

√
t) and ηt = O(1/t) (depending

on whether the objective functions satisfy additional con-
ditions such as gradient-dominance condition) [13, 26], in
which case, the gradients can respectively grow with the
rate O(t

1
4 ) and O(t

1
2 ) without violating Assumption 2.

Our third assumption is on the boundedness of variances
of stochastic gradients, which is widely adopted in the
literature to study either computational errors [13, 14] or
stability of SGD [16, 27] in the nonconvex setting.

Assumption 3. We assume the existence of σ > 0 such that

Ejt
[∥∥∇f(wt; zjt)−∇FS(wt)

∥∥2
2

]
≤ σ2, ∀t ∈ N,

where Ejt denotes the expectation w.r.t. jt.

2.2 Structure of loss functions
Other than the general smooth loss functions, we also con-
sider in particular a class of loss functions of the structure

f(w; z) = φ(〈w, x〉, y), (4)

where φ : R2 7→ R+. Functions of this structure can be found
in generalized linear models and robust regression.
1. For generalized linear models in binary classification,

we would like to learn a model of the form Pr{Y =
1|X = x} = `(〈w∗, x〉) with w∗ ∈ Rd being a parameter
vector and ` : R 7→ [0, 1] being a link function [18].
A commonly used loss is the non-linear squared loss
f(w; z) =

(
y − `(〈w, x〉)

)2
which can be written as the

form of (4) with φ(a, b) = (`(a) − b)2. Standard choices
of ` include the logistic link function `(s) = (1 + e−s)−1

and the probit link function `(s) = Φ(s) with Φ being the
Gaussian cumulative distribution function.
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2. For robust regression, we pick a potentially nonconvex
function ` : R 7→ R+ and assume a linear model y =
〈w∗, x〉 + ξ, where the noise term ξ is i.i.d. with mean
zero [18, 20]. The loss function is then f(w; z) = `(y −
〈w, x〉), which takes a form of (4) with φ(a, b) = `(b− a).
For loss functions of the structure (4), we will develop

dimensionality-independent learning rates which would be
appealing for the high-dimensional learning setting.

3 UNIFORM CONVERGENCE OF GRADIENTS

We are interested in the population gradients∇F instead of
empirical gradients ∇FS . The gap between these two terms
can be studied via the uniform convergence on the gradient
of empirical risks to the population counterparts [18–20, 28].
In this section, we continue this direction by presenting a
new connection between the uniform convergence of gradi-
ents and the Rademacher chaos complexities of order two,
which is an extension of Rademacher complexities to U-
processes [21, 29]. As we will see, this connection allows us
to improve the existing uniform convergence by removing
a logarithmic factor. It should be noted that the uniform
convergence of gradients is not our main contribution.

Definition 1. LetF : Z×Z 7→ R be a function class and S =
{zi}ni=1 ⊂ Z . Let {εi}ni=1 be independent Rademacher vari-
ables with Pr{εi = 1} = Pr{εi = −1} = 1/2. The empirical
Rademacher chaos complexity of order two for F w.r.t. S is
defined as US(F) = 1

nEε
[

supf∈F
∑

1≤i<j≤n εiεjf(xi, xj)
]
.

Theorem 1. Let δ ∈ (0, 1), R > 0 and S = {z1, . . . , zn} be
examples drawn independently from ρ. Suppose Assumption 1
holds. Then with probability at least 1− δ we have

sup
w∈BR

∥∥∇F (w)−∇FS(w)
∥∥
2
≤

LR+ b̃√
n

(
2 +

√
2 log(1/δ)

)
+ 2

√
2US(FR)

n
,

where FR =
{

(z, z̃) 7→ 〈∇f(w; z),∇f(w; z̃)〉 : w ∈ BR
}

.

As a corollary, we can derive the following bound by
controlling the Rademacher chaos complexities in Theo-
rem 1. The proofs of Theorem 1 and Corollary 2 are given in
Section II.1 and Section II.2 (Supplementary Material).

Corollary 2. Under Assumptions of Theorem 1, the following
inequality holds with probability 1− δ

sup
w∈BR

∥∥∇F (w)−∇FS(w)
∥∥
2
≤ (LR+ b̃)n−

1
2×(

2 + 2
√

48e
√

2
(

log 2 + d log(3e)
)

+
√

2 log(1/δ)
)
.

Remark 1. Based on covering numbers, it was shown [18]

sup
w∈BR

∥∥∇F (w)−∇FS(w)
∥∥
2

= O
(√d log(n) log(1/δ)

n

)
.

As a comparison, our argument based on Rademacher chaos

complexities yields the bound O(
√

d+log(1/δ)
n ), which is

slightly tighter than the above one by removing the term
log(n). Furthermore, our bound involves d+ log(1/δ) while

the above bound involves d log(1/δ). Although the im-
provement by removing a logarithmic factor is marginal, the
obtained bound is generally the best one can get. These im-
provements are achieved by establishing a new connection
between uniform convergence of gradients and Rademacher
chaos complexities (Theorem 1), which might be interesting
on its own due to the important role of Rademacher-type
complexities in learning theory.

The uniform convergence rates in Corollary 2 involves
the dimensionality d. Dimensionality-free bounds are pos-
sible if we consider loss functions f of the structure (4).
Proposition 3 is a direct corollary of the chain rule for vector-
valued Rademacher complexities [20]. For completeness, we
provide a complete proof in Section II.3 (Supplementary
Material) based on Gaussian complexities.

Proposition 3. Let δ ∈ (0, 1), R > 0 and S = {z1, . . . , zn} be
examples drawn independently from ρ. Suppose f :W×Z 7→ R
takes the form (4) with φ being Lφ-smooth w.r.t. the first ar-
gument. Then with probability 1 − δ, supw∈BR

∥∥∇F (w) −
∇FS(w)

∥∥
2

is upper bounded by

2
√

2κ
(
2LφRκ+ b̃

)
√
n

+

√
2
(
Lφκ2R+ b̃

)2
log(1/δ)

n
.

4 LEARNING RATES

In this section, we present our main results on the behavior
of gradients for population risks of SGD iterates. We con-
sider general nonconvex objectives in Section 4.1, and then
move to a subclass of nonconvex objectives satisfying the
gradient-dominance condition in Section 4.2.

4.1 General nonconvex objective functions
Before providing learning rates, we first present a high-
probability bound on the gradients of empirical risks to be
proved in Section III.1 (Supplementary Material).

Lemma 4. Suppose Assumptions 1-3 hold. Let {wt}t be the
sequence produced by (1) with ηt ≤ 1/(2L). Then for any δ ∈
(0, 1), the following inequality holds with probability 1− δ

t∑
k=1

ηk‖∇FS(wk)‖22 ≤ Ct + C1 log(2/δ), (5)

where we introduce Ct = 4b+4L
(
σ2 +G2

)∑t
k=1 η

2
k and C1 =

8 max{G2, σ2/L}+ 32LG2.

Remark 2. Under Assumptions 1 and 3, it was shown for
SGD with ηt ≤ 1/(2L) that [13]

∑t
k=1 ηkE[‖∇FS(wk)‖22] =

O(
∑t
k=1 η

2
k + 1), from which and the Markov’s inequal-

ity it follows that Pr
{∑t

k=1 ηkE[‖∇FS(wk)‖22] ≥ δ
}
≤

δ−1O(
∑t
k=1 η

2
k + 1). As a comparison, we develop a high-

probability bound where the dependency on the confidence
parameter 1/δ is logarithmic instead of linear.

In the following theorem, we present our main result on
the decay rate of population gradients in general nonconvex
cases. As we will see in the proof given in Section III.3
(Supplementary Material), the term ‖∇F (wt)‖22 depends
on two terms: the computational error ‖∇FS(wt)‖22 and
the statistical error ‖∇F (wt) − ∇FS(wt)‖22. Generally, the
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computational error decreases as a function of the iteration
number, while the statistical error would increase along the
learning process (wt traverses over a ball with an increasing
radius as t increases, and therefore one has to apply Theo-
rem 1 with an increasing R). Therefore, one should trade-
off these two errors by selecting an appropriate iteration
number. We denote A � B if there exist universal constants
C̃1, C̃2 > 0 such that C̃1A ≤ B ≤ C̃2A.

Theorem 5. Suppose Assumptions 1-3 hold. Let {wt}t be
the sequence produced by (1) with ηt = η1t

−θ, θ ∈ (0, 1)
and η1 ≤ 1/(2L). Then for any δ ∈ (0, 1), we can choose
T � (nd−1)

1
2(1−θ) to derive with probability 1− δ

( T∑
t=1

ηt
)−1 T∑

t=1

ηt‖∇F (wt)‖22 =
O
(

(nd−1)
θ

2(θ−1) log3(1/δ)
)
, if θ < 1/2,

O
(
n−

1
2 d

1
2 log(T/δ) log3(1/δ)

)
, if θ = 1/2,

O
(
n−

1
2 d

1
2 log3(1/δ)

)
, if θ > 1/2.

(6)

Remark 3. According to Theorem 5, one can select an ap-
propriate early-stopping iteration number to achieve similar
learning rates for polynomially decaying step sizes with
θ ∈ (1/2, 1). However, the corresponding computational
cost measured by T � (nd−1)

1
2(1−θ) varies for different θ,

which achieves its minimum by taking θ close to 1/2.

Remark 4. We compare our results with the existing stabil-
ity bounds. For the specific step-size sequence ηt = O(1/t),
stability bounds O(Tα/n) with α ∈ (0, 1) were established
for SGD with T iterations in nonconvex learning (Theo-
rem 3.8 in [15]), from which one can derive E[F (wT ) −
FS(wT )] = O(Tα/n). As compared to our uniform con-
vergence approach, this stability approach has an appealing
property of implying dimensionality-independent learning
rates. However, the stability-based approach requires a fast-
decaying step sizes as ηt = O(1/t), for which the associated
computational errors would generally decay as

min
t=1,...,T

E[‖∇FS(wt)‖22]=O
((

1+
T∑
t=1

η2t
)
/

T∑
t=1

ηt
)

=O(log−1(T )),

where the first step is due to [13] and the second
step is due to the elementary inequalities

∑T
t=1 t

−2 =
O(1),

∑T
t=1 t

−1 � log T. To get a meaningful statistical
error bound, one requires T = o(n

1
α ), for which the asso-

ciated computational error bound decays as O(log−1(n)).
As a comparison, our statistical errors are developed for
the step sizes ηt = O(t−θ), θ ∈ (0, 1), for which the
associated computational errors decay significantly faster
as O

(
Tmax{θ−1,−θ}). The ability to balance the statistical

and computational errors with a general step-size sequence
allows us to develop learning rate of the order Õ((n−1d)

1
2 )

in the general nonconvex learning setting, where we use
the notation Õ to hide logarithmic factors. It is now clear
that each of these two approaches has its own advantages
over the other, depending on whether the dependency on
the dimensionality or the iteration number is more inter-
esting. In more details, the stability approach is preferable
in a high-dimensional learning setting with n = O(d),

while the uniform-convergence approach is better for low-
dimensional learning problems with d = o(n).

If the loss function takes a specific structure, we can im-
prove the learning rates in Theorem 5 by removing the de-
pendency on the dimensionality. Theorem 6 can be proved
similarly to Theorem 5 by using Proposition 3 instead of
Corollary 2, and we omit the proof for brevity.

Theorem 6. Let assumptions in Theorem 5 hold. If f : W ×
Z 7→ R takes the form (4) with φ being Lφ-smooth w.r.t. the first
argument, we can choose T � n

1
2(1−θ) to derive Eq. (6) with the

involved d removed.

Remark 5. We can argue the effectiveness of learning rates
in Theorem 6 as follows. If we assume φ is convex w.r.t.
the first argument, the best known generalization bound of
SGD is of the order F (w̄T )− F (w∗) = Õ(n−

1
2 ), where w̄T

is an average of the first T iterates with an appropriately
chosen T and w∗ = arg minw F (w) [15, 30, 31]. It then
follows from (3) that ‖∇F (w̄T )‖22 = Õ(n−

1
2 ) with high

probabilities. This matches our learning rates derived in the
nonconvex learning setting in Theorem 6.

4.2 Gradient-dominated objective functions

In this section, we show that a faster learning rate is pos-
sible if we impose a gradient-dominance condition on the
objective function. Roughly speaking, gradient-dominance
condition means that the suboptimality of function values
can be bounded by the squared magnitude of gradients.
It also means that every stationary point must be a global
optimum. The gradient-dominance condition is widely used
in the analysis of nonconvex learning algorithms, see, e.g.,
[11, 17, 20, 26, 32]. Many nonconvex objective functions sat-
isfy the gradient-dominance condition, including one hid-
den layer neural networks, ResNets with linear activations,
phase retrieval and matrix factorization [20, 32].

Assumption 4 (Gradient-dominance condition). We assume
for all S ⊂ Z , there exists an µS > 0 such that

FS(w)− FS(wS) ≤ (4µS)−1‖∇FS(w)‖22, ∀w ∈ W,

where wS = arg minw FS(w).

For gradient-dominated objectives, we can implement
SGD with O(n) iterations to achieve the learning rates
Õ(n−1d) for excess risks instead of gradients. The proof of
Theorem 7 is given in Section IV (Supplementary Material).

Theorem 7. Suppose Assumptions 1-4 hold. Let {wt}t be the
sequence produced by (1) with ηt = 2/(µS(t+ t0)) for all t ∈ N
and t0 ≥ max{4L/µS , 1}. Let δ ∈ (0, 1). Then we can choose
T � n to derive the following inequality with probability 1− δ

F (wT )−F (w∗)=O
(
n−1(d+log(1/δ)) log2 n log2(1/δ)

)
. (7)

Remark 6. We compare our results with the existing sta-
bility analysis. For gradient-dominated objectives, compu-
tational error bounds of the order O(1/T ) were devel-
oped for step sizes ηt = 2t+1

2µS(t+1)2 [26]. For this step-size
sequence, uniform stability bounds were shown to decay
as O(n−1T

α
α+1 ) (Theorem 3.8 of [15]), where α = L/µS

behaves as a condition number. Therefore, the stability
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approach implies E[F (wT )]−F (w∗) = O
(
T−1+n−1T

α
α+1
)
,

and one can choose T � n
α+1
2α+1 to derive the learning

rate O(n−
α+1
2α+1 ). As compared to Theorem 7, it is clear

that the stability-based rates have an advantage of being
dimensionality-free but meanwhile a worse dependency
on n. Indeed, the stability approach is preferable if n =

O(d
2α+1
α ), while our learning rate is better if d = O(n

α
2α+1 ).

Analogous to the case with general nonconvex objec-
tives, we can remove the dependency of learning rates on
the dimensionality for loss functions of the structure (4). We
omit the proof of Theorem 8 for brevity.

Theorem 8. Let assumptions in Theorem 7 hold. If f : W ×
Z 7→ R takes the form (4) with φ being Lφ-smooth w.r.t. the
first argument, then we can choose T � n to derive (7) with the
involved d removed.

Remark 7. The effectiveness of learning rates in Theorem 8
can be shown as follows. If we assume φ is Lipschitz contin-
uous and strongly convex w.r.t. the first argument, the best
known generalization bound of the order F (w̄T )−F (w∗) =
Õ(T−1) was derived in the online learning setting, where
w̄T is an average of the first T iterates [33]. This online
learning setting corresponds to the one-pass SGD since the
released training examples there need to be independently
drawn from ρ. Therefore the results in [33] correspond to
the generalization bound F (w̄T )− F (w∗) = Õ(n−1) in the
stochastic learning setting with T chosen proportionally to
the sample size, which matches the bounds in Theorem 8.

4.3 Sketch of the proof
We sketch here our main idea in proving our results in
Section 4. Our learning rates are derived by controlling the
population gradients in terms of two components as follows

‖∇F (wt)‖22 ≤ 2‖∇FS(wt)‖22 + 2‖∇FS(wt)−∇F (wt)‖22.

We refer to the first term as the computational error since
it is related to the optimization algorithm to minimize the
empirical risk FS . The second term is called the statistical
error since it is related to approximating the true gradient
with its empirical counterpart based on random samples.

Computational errors have received much attention in
the optimization community [11–13, 23]. However, existing
results are mainly studied in expectation, while our focus
here is to establish high-probability bounds (Lemma 4). Our
idea to this aim is to bound

∑t
k=1 ηk‖∇FS(wk)‖22 in terms

of two martingale difference sequences where the variance
of martingales plays an essential role in deriving the stated
high probability bounds. To apply uniform convergence of
gradients in Section 3 to control statistical errors, an essential
step is to control the norm of iterates in the following lemma
to be proved in Section III.2 (Supplementary Material).

Lemma 9. Suppose Assumptions 1-3 hold. Let {wt}t be pro-
duced by (1) with ηt ≤ 1/(2L). Then for any δ ∈ (0, 1), with
probability 1− δ we have uniformly for all t = 1, . . . , T

‖wt+1‖2≤C2

(( T∑
k=1

η2k

) 1
2

+1
)(( t∑

k=1

ηk
) 1

2

+1
)

log(4/δ), (8)

where C2 is independent of T and δ (explicitly given in the proof).

Our idea in proving Lemma 9 is to use (1) to get

‖wt+1‖2 ≤
∥∥ t∑
k=1

ηk∇f(wk; zjk)
∥∥
2
≤
∥∥∥ t∑
k=1

ηk∇FS(wk)
∥∥∥
2

+
∥∥ t∑
k=1

ηk
(
∇FS(wk)−∇f(wk; zjk)

)∥∥
2
.

The last second term of the above inequality can be con-
trolled by Lemma 4 together with the Schwartz’s inequality.
Furthermore, the term

∑t
k=1 ηk

(
∇FS(wk) − ∇f(wk; zjk)

)
is a summation of a martingale difference sequence, which
we can control by concentration inequalities of martingales.

5 DISCUSSIONS

We discuss here related work on computational errors, uni-
form convergence of gradients and stability-based analysis.

Computational errors. SGD for nonconvex learning is
mainly studied from the perspective of computational er-
rors. Initially, asymptotic properties of SGD were stud-
ied [34]. The key property on the smoothness of loss func-
tions was used to establish the first nonasymptotic con-
vergence rates in expectation E[‖∇FS(wu)‖22] = O(1/

√
T )

where u is drawn from a probability distribution on
{1, . . . , T} [13]. For gradient-dominated and smooth objec-
tives, it was further shown that E[FS(wT )]− infw FS(w) =
O(1/T ) [26]. These discussions were then extended success-
fully to other variants of SGD for nonconvex optimization,
including distributed SGD [25], stochastic composite opti-
mization [6, 14] and stochastic variance reduction [11, 12]. In
particular, near optimal iteration complexities were recently
achieved by some interesting variance-reduced algorithms
for nonconvex optimization [35–38].
Uniform convergence of gradients. In nonconvex learning,
convergence rates are generally stated for the gradients of
empirical risks [11–13, 39], which not necessarily means that
similar convergence rates can be carried to their population
counterparts. Motivated by this, the uniform convergence of
gradients is recently drawing increasing attention [18–20].
Based on the tool of covering numbers, convergence rates
O(
√
n−1 log n) were established for the uniform deviation

between population and empirical gradients [18, 19]. A
chain rule for vector-valued Rademacher complexities was
established to show the uniform convergence of gradients
for nonconvex functions with the structure (4) [20]. The
above mentioned uniform convergence results are estab-
lished for smooth functions. Recently, an interesting graphi-
cal convergence was studied for nonconvex and nonsmooth
loss functions, for which the convergence is measured by
the gradient of the Moreau envelops [40]. Similar to our
results in Section 3, the graphic convergence in [40] involves
a square-root dependency on the dimension d in general,
and is dimensionality-independent for loss functions of the
structure (4). These discussions apply to empirical risk mini-
mization, which do not take into account the computational
property of learning algorithms.
Stability-based analysis. Other than the uniform conver-
gence approach, another popular approach to investigate
the generalization behavior of a learning algorithm is to
study its algorithmic stability [41–43]. An advantage of
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(a) Segment (b) Fourclass (c) German

Fig. 1. Computational errors, statistical errors and test errors versus the number of passes for some datasets. Grad Tr, Grad Te and Grad diff refer
to computational errors, test errors and statistical errors, respectively.

(a) Segment (b) Fourclass (c) German

Fig. 2. Test errors versus the number of passes for step sizes of the form ηt = η1t−θ, θ ∈ {0, 1/2, 1} and some datasets.

stability-based approach is that it considers the specific
model produced by the learning algorithm, and therefore
can imply dimensionality-independent learning rates. As
a comparison, the dependence on the dimensionality is
generally inevitable for the uniform convergence approach.
Initially, stability bounds are especially useful to derive op-
timal generalization error bounds stated in expectation [44].
Recently, almost optimal generalization bounds with high
probability were developed for uniformly-stable algorithms
in a series of breakthrough papers [45–47]. The uniform
stability of SGD was established in a seminar paper [15],
which motivates some interesting work on data-dependent
stability [16] and on-average stability of SGD [17, 44]. How-
ever, stability bounds there are mainly derived for the spe-
cific step-size sequence ηt = O(1/t) in nonconvex learning,
for which one generally needs an exponential number of
iterations for a moderate decay of the associated compu-
tational errors [13]. Under gradient-dominance conditions
or quadratic growth conditions, black-box stability results
for first-order methods were established [32]. However, the
discussions there require to impose a strict assumption on
the convergence of a learning algorithm to global optimum
which is difficult to hold for nonconvex problems. Stability
of stochastic gradient Langevin dynamics is also drawing in-
creasing attention recently, where isotropic Gaussian noises
are added to each stochastic gradient steps [24].

The primary focus of stability bounds is to control
the generalization gap F (wT ) − FS(wT ) which ignores
computational errors, while we aim to study the gradients
of population risks where the interplay between compu-
tational and statistical errors plays an important role to
achieve satisfactory learning rates. Unlike existing bounds

stated in expectation [15–17, 24, 32], our analysis is able to
develop more challenging high-probability bounds. A key
observation is to show that the complexity of SGD iterates
grows in a controllable manner w.r.t. the step-size sequence
(Lemma 9), which allows us to relate the gradients of empir-
ical risks to their population counterparts via the uniform
convergence of gradients. Our analysis therefore provides
an alternative approach to study learning rates of SGD
in nonconvex learning without considering the stability of
an algorithm. As stated in Remark 5 and Remark 7, the
effectiveness of our learning rates is justified by matching
the existing generalization bounds in the convex learning
setting. Furthermore, our statistical errors are developed
for step sizes ηt = O(t−θ) with θ ∈ (0, 1) in the general
nonconvex learning setting, for which the associated com-
putational errors decay significantly faster than O(log−1 T )
achieved by the step sizes ηt = O(t−1). Although our
learning rates are dimensionality-dependent in general, one
can exploit the specific structure of loss functions to derive
dimensionality-independent bounds in specific cases.

For convex learning, generalization bounds of SGD were
studied via algorithmic stability [15, 16], integral opera-
tors [48–50] and tools in empirical process [30, 31].

6 SIMULATIONS

In this section, we present some simulation results to val-
idate our theory. According to Section 2.2, we consider a
generalized linear model for binary classification where the
loss function takes the form f(w; z) =

(
`(〈w, x〉) − y

)2
and ` is the logistic link function `(s) = (1 + e−s)−1. We
consider three datasets available from the LIBSVM dataset:
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Segment, Fourclass and German [51]. For each dataset, we
take 80 percents as the training dataset, and reserve the
remaining 20 percents for testing. Let FS(w) and FS̃(w) be
the objective function built on the training dataset S and the
testing dataset S̃, i.e., FS̃(w) = 1

|S̃|

∑
z∈S̃ f(w; z), where |S̃|

denotes the cardinality of the set S̃. It is clear that FS̃ serves
as a good approximation of F . We repeat experiments 100
times and report the average of results.

Our first aim is to illustrate how the computational and
statistical errors behave versus the number of passes, which
is the iteration number divided by the sample size. We
apply SGD with 200 passes and consider the step sizes
ηt = 5/

√
t. We plot the behavior of test errors ‖∇FS̃(wt)‖2,

computational errors ‖∇FS(wt)‖2 and statistical errors ver-
sus the number of passes. According to Fig. 1, along the
optimization process the computational errors continue to
decrease while the statistical errors continue to increase,
which is well consistent with our theory. It can be also seen
that the model trained by SGD also generalizes well by its
resistance to overfitting, i.e., the test error ‖∇FS̃(wt)‖2 does
not fluctuate even if we apply SGD with 200 passes.

Our second aim is to show how test errors would behave
versus different step sizes. To this aim, we consider step
sizes of the form ηt = η1t

−θ with θ ∈ {0, 1/2, 1}. For each θ,
we validate η1 over the set {1, 2, . . . , 28} based on a valida-
tion set, and report the behavior of the associated test errors
versus the number of passes in Fig. 2. In our experiments,
SGD with θ = 1/2 outperforms those with θ = 0 and θ = 1.
This is consistent with Theorem 5, where θ = 1/2 is shown
to achieve the best learning rates (up to logarithmic factors)
while achieving the minimal computation cost.

7 CONCLUSIONS

In this paper, we present learning rates of SGD for noncon-
vex learning problems from a joint perspective of optimiza-
tion and statistics, which allows us to see how an optimal
number of passes should be taken to trade-off the com-
putational and statistical errors. We consider both general
nonconvex and gradient-dominated objectives, and derive
learning rates comparable to the corresponding ones in the
convex case. For objective functions with a specific structure,
we show that the learning rates can be dimensionality-
independent. We control the statistical errors by giving high-
probability bounds on the complexity of SGD iterates, which
provides an alternative explanation on the generalization
performance of SGD to train nonconvex models.

There remain some interesting directions to pursue.
Firstly, it is interesting to extend the learning rates here
to some variants of SGD for nonconvex learning, including
SGD with variance reduction [52–54] and SGD with momen-
tum [22, 55]. Secondly, the existing stability bounds for non-
convex learning are developed for the step-size sequence
ηt = O(1/t). It is very interesting to study the stability of
SGD for the general polynomially-decaying step sizes.
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Abstract—In the Supplemental Material, we prove the theoretical results stated in the main text. The Supplemental Material consists
of four parts: some useful concentration inequalities on martingales, the proofs on uniform convergence of gradients, the proofs on
learning rates for general nonconvex objectives and the proofs of learning rates for gradient-dominated objectives.

F

I CONCENTRATION INEQUALITIES

Our theoretical analysis is based on some concentration
inequalities on martingales. In Lemma I.1, we present con-
centration inequalities for real-valued martingales. Part (a)
is the Auzan-Hoeffding inequality for martingales with
bounded increments, while Part (b) is a Bernstein-type in-
equality where the concentration behavior is better quan-
tified in terms of the variance. Lemma I.2 is a Pinelis-
Bernstein inequality for martingale difference sequences in
a Hilbert space [1].

Lemma I.1. Let z1, . . . , zn be a sequence of random variables
such that zk may depend on the previous random variables
z1, . . . , zk−1 for all k = 1, . . . , n. Consider a sequence of func-
tionals ξk(z1, . . . , zk), k = 1, . . . , n. Let σ2

n =
∑n
k=1 Ezk

[(
ξk−

Ezk [ξk]
)2]

be the conditional variance.
(a) Assume that |ξk − Ezk [ξk]| ≤ bk for each k. Let δ ∈ (0, 1).

With probability at least 1− δ we have
n∑
k=1

ξk −
n∑
k=1

Ezk [ξk] ≤
(

2
n∑
k=1

b2k log
1

δ

) 1
2

. (I.1)

(b) Assume that ξk − Ezk [ξk] ≤ b for each k. Let ρ ∈ (0, 1] and
δ ∈ (0, 1). With probability at least 1− δ we have

n∑
k=1

ξk −
n∑
k=1

Ezk [ξk] ≤ ρσ2
n

b
+
b log 1

δ

ρ
. (I.2)

Lemma I.2. Let {ξk}k∈N be a martingale difference se-
quence in Rd. Suppose that almost surely ‖ξk‖2 ≤ B and∑t
k=1 E[‖ξk‖22|ξ1, . . . , ξk−1] ≤ σ2

t . Then, for any 0 < δ < 1,
the following inequality holds with probability at least 1− δ

max
1≤j≤t

∥∥ j∑
k=1

ξk
∥∥

2
≤ 2

(B
3

+ σt
)

log(2/δ).

II PROOFS ON UNIFORM CONVERGENCE

In this section, we present the proofs on uniform conver-
gence for the gradients of empirical risk to that of pop-
ulation gradients. To prove Corollary 2 and Proposition
3, we first relate the uniform deviation to the associated
expectation by McDimarid’s inequality (Lemma II.1). To this

aim, we need to show that the uniform deviation satisfies a
bounded increment condition.

Lemma II.1. Let c1, . . . , cn ∈ R+. Let Z1, . . . , Zn be indepen-
dent random variables taking values in a set Z , and assume that
g : Zn 7→ R satisfies

sup
z1,...,zn,z̄i∈Z

|g(z1, · · · , zn)− g(· · · , zi−1, z̄i, zi+1, · · · )| ≤ ci
(II.1)

for i = 1, . . . , n. Then, for any 0 < δ < 1, with probability at
least 1− δ we have

g(Z1, . . . , Zn) ≤ E
[
g(Z1, . . . , Zn)

]
+

√∑n
i=1 c

2
i log(1/δ)

2
.

Lemma II.2. Let δ ∈ (0, 1) and S = {z1, . . . , zn} be examples
drawn independently from ρ. Suppose Assumption 1 holds. Then
with probability at least 1− δ we have

sup
w∈BR

∥∥∇F (w)−∇FS(w)
∥∥

2
≤

2

n
ESEε sup

w∈BR

∥∥∥ n∑
i=1

εi∇f(w; zi)
∥∥∥

2
+

√
2
(
LR+ b̃

)2
log(1/δ)

n
.

Proof. By the L-Lipschitz continuity of ∇f , the following
inequality holds for all w ∈ BR

‖∇f(w; zi)‖2 ≤ ‖∇f(0; zi)‖2 + L‖w‖2 ≤ LR+ b̃. (II.2)

Let S̃ = {z̃1, . . . , z̃n} be independent examples drawn inde-
pendently from ρ and S̃i = {z1, . . . , zi−1, z̃i, zi+1, . . . , zn}.
Then, we have∣∣∣ sup
w∈BR

∥∥∇F (w)−∇FS(w)
∥∥

2
− sup

w∈BR

∥∥∇F (w)−∇FS̃i(w)
∥∥

2

∣∣∣
≤ sup

w∈BR

∣∣∣∥∥∇F (w)−∇FS(w)
∥∥

2
−
∥∥∇F (w)−∇FS̃i(w)

∥∥
2

∣∣∣
≤ sup

w∈BR

∥∥∇FS(w)−∇FS̃i(w)
∥∥

2

= n−1 sup
w∈BR

∥∥∇f(w; zi)−∇f(w; z̃i)
∥∥ ≤ 2(LR+ b̃)/n,

where we have used (II.2) for all w ∈ BR. Therefore,
(II.1) holds with g(z1, . . . , zn) := supw∈BR

[
‖∇F (w) −
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∇FS(w)‖2
]

and ci = 2(LR + b̃)/n. We can apply Lemma
II.1 to derive the following inequality with probability 1− δ

sup
w∈BR

∥∥∇F (w)−∇FS(w)
∥∥

2
≤

ES
[

sup
w∈BR

∥∥∇F (w)−∇FS(w)
∥∥

2

]
+

√
2
(
LR+ b̃

)2
log(1/δ)

n
.

By the standard symmetric trick, we get

ES sup
w∈BR

∥∥∇FS(w)−∇F (w)
∥∥

2

= ES sup
w∈BR

∥∥∥∇FS(w)− ES̃
[
∇FS̃(w)

]∥∥∥
2

≤ n−1ES,S̃ sup
w∈BR

∥∥∥ n∑
i=1

(
∇f(w; zi)−∇f(w; z̃i)

)∥∥∥
2

= n−1ES,S̃Eε sup
w∈BR

∥∥∥ n∑
i=1

εi
(
∇f(w; zi)−∇f(w; z̃i)

)∥∥∥
2

≤ 2

n
ESEε sup

w∈BR

∥∥∥ n∑
i=1

εi∇f(w; zi)
∥∥∥

2
.

We can combine the above two inequalities to derive the
stated inequality with probability 1 − δ. The proof is com-
plete.

It remains to estimate the vector Rademacher complex-
ities Eε supw∈BR

∥∥∑n
i=1 εi∇f(w; zi)

∥∥
2

[2, 3]. In the follow-
ing two subsections, we will estimate it by Rademacher
Chaos complexities and Gaussian complexities, respectively.

II.1 Proof of Theorem 1

We can prove Theorem 1 by showing that vector
Rademacher complexities in Lemma II.2 can be controlled
by Rademacher Chaos complexities.

Proof of Theorem 1. According to Jensen’s inequality, we
know(

Eε sup
w∈BR

[∥∥∥ n∑
i=1

εi∇f(w; zi)
∥∥∥

2

])2

≤ Eε
[

sup
w∈BR

∥∥∥ n∑
i=1

εi∇f(w; zi)
∥∥∥2

2

]
= Eε

[
sup

w∈BR

〈 n∑
i=1

εi∇f(w; zi),
n∑
i=1

εi∇f(w; zi)
〉]

≤ sup
w∈BR

n∑
i=1

〈
∇f(w; zi),∇f(w; zi)

〉
+ 2Eε

[
sup

w∈BR

∑
1≤i<j≤n

εiεj
〈
∇f(w; zi),∇f(w; zj)

〉]
≤ n(LR+ b̃)2 + 2nUS(FR), (II.3)

where we have used (II.2) and the definition of Rademacher
Chaos complexities. It then follows that

Eε sup
w∈BR

[∥∥∥ n∑
i=1

εi∇f(w; zi)
∥∥∥

2

]
≤
√
n(LR+b̃)+

√
2nUS(FR).

We can plug the above bound into Lemma II.2 to derive the
stated bound with high probabilities.

II.2 Proof of Corollary 2
To prove Corollary 2, it remains to estimate the involved
Rademacher Chaos complexity, which can be further con-
trolled by the following entropy integral in terms of cover-
ing numbers.

Definition 1. Let (G, d) be a metric space and set F ⊆ G. For
any ε > 0, a set F4 ⊂ F is called an ε-cover of F if for every
f ∈ F we can find an element g ∈ F4 satisfying d(f, g) ≤
ε. The covering number N (ε,F , d) is the cardinality of the
minimal ε-cover of F :

N (ε,F , d) := min
{
|F4| : F4 is an ε-cover of F

}
.

Lemma II.3 ([4]). Let F : Z ×Z 7→ R be a function class with
supf∈F dS(f, 0) ≤ D and S = {z1, . . . , zn} ⊂ Z , where dS is
a pseudometric on F defined as follows

dS(f, g) :=
( 1

n2

∑
1≤i<j≤n

|f(xi, xj)− g(xi, xj)|2
)1/2

. (II.4)

Then

US(F) ≤ 24e

∫ D

0
log
(
N (r,F , dS) + 1

)
dr.

Proof of Corollary 2. We define a metric dS over FR by

dS(w, w̃) =
( 1

n2

∑
1≤i<j≤n

∣∣〈∇f(w; zi),∇f(w; zj)〉

− 〈∇f(w̃; zi),∇f(w̃; zj)〉
∣∣2)1/2

.

For any w and w̃ in BR, there holds

n2d2
S(w, w̃)

=
∑

1≤i<j≤n

∣∣〈∇f(w; zi),∇f(w; zj)〉−〈∇f(w̃; zi),∇f(w̃; zj)〉
∣∣2

≤ 2
∑

1≤i<j≤n

〈
∇f(w; zi)−∇f(w̃; zi),∇f(w; zj)

〉2
+ 2

∑
1≤i<j≤n

〈
∇f(w̃; zi),∇f(w; zj)−∇f(w̃; zj)

〉2
≤ 2

∑
1≤i<j≤n

∥∥∇f(w; zi)−∇f(w̃; zi)
∥∥2

2

∥∥∇f(w; zj)
∥∥2

2

+ 2
∑

1≤i<j≤n

∥∥∇f(w̃; zi)‖22‖∇f(w; zj)−∇f(w̃; zj)
∥∥2

2

≤ 2L2
∑

1≤i<j≤n

[∥∥∇f(w; zj)
∥∥2

2
+ ‖∇f(w̃; zi)‖22

]
‖w − w̃‖22

≤ 2L2(LR+ b̃)2n(n− 1)‖w − w̃‖22, (II.5)

where we have used (III.3) and the decomposition

〈∇f(w; zi),∇f(w; zj)〉 − 〈∇f(w̃; zi),∇f(w̃; zj)〉 =

〈∇f(w; zi)−∇f(w̃; zi),∇f(w; zj)〉
+ 〈∇f(w̃; zi),∇f(w; zj)−∇f(w̃; zj)〉

in the first inequality, the L-smoothness of f in the third
inequality and (II.2) in the last inequality. It then follows
that

logN (r,FR, dS) ≤ logN
(
r/
(√

2L(LR+ b̃)
)
, BR, d2

)
≤ d log

(
3
√

2LR(LR+ b̃)r−1
)
,
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where we have used the classical result logN (r,BR, d2) ≤
d log(3R/r) [5] and d2 is the metric over BR defined by
d2(w, w̃) = ‖w − w̃‖2. Furthermore, (II.5) also implies
dS(w, 0) ≤

√
2LR(LR+ b̃) for w ∈ BR. We can now apply

Lemma II.3 to show that

US(FR) ≤ 24e

∫ (LR+b̃)
√

2LR

0
log
(
1 +N (r,FR, dS)

)
dr

≤ 24e

∫ (LR+b̃)
√

2LR

0

(
log 2+d log

(
3
√

2LR(LR+b̃)r−1
))

dr

≤ 24
√

2e(LR+ b̃)LR
(

log 2 + d log(3e)
)
,

where we have used∫ (LR+b̃)
√

2LR

0
log
(

3
√

2LR(LR+ b̃)r−1
)

dr

=
√

2LR(LR+ b̃)

∫ 1

0
log(3/r)dr =

√
2LR(LR+ b̃) log(3e).

The stated bound then follows by plugging the above bound
on Rademacher Chaos complexities into Theorem 1. The
proof is complete.

II.3 Proof of Proposition 3
Before proving Proposition 3, we first apply a comparison
(Slepian’s lemma, Lemma II.4 below) on the suprema of
Gaussian processes to estimate the vector Rademacher com-
plexity in Lemma II.2.

Lemma II.4. Let {Xθ : θ ∈ Θ} and {Yθ : θ ∈ Θ} be two
mean-zero separable Gaussian processes indexed by the same set
Θ and suppose that

E[(Xθ − Xθ̄)
2] ≤ E[(Yθ −Yθ̄)

2], ∀θ, θ̄ ∈ Θ. (II.6)

Then E[supθ∈Θ Xθ] ≤ E[supθ∈Θ Yθ].

Lemma II.5. Suppose f :W×Z 7→ R takes the form f(w; z) =
φ(〈w, x〉, y) with φ being Lφ-smooth with respect to the first
argument. Then

Eε sup
w∈BR

∥∥∥ n∑
i=1

εi∇f(w; zi)
∥∥∥

2
≤
(
2LφRκ+b̃

)√
2
( n∑
i=1

‖xi‖22
) 1

2

.

Proof. By the structure of f , we know

Eε sup
w∈BR

∥∥∥ n∑
i=1

εi∇f(w; zi)
∥∥∥

2

= Eε sup
w∈BR

∥∥∥ n∑
i=1

εiφ
′(〈w, xi〉, yi)xi∥∥∥

2

= Eε sup
w∈BR,v∈B1

〈 n∑
i=1

εiφ
′(〈w, xi〉, yi)xi,v〉

≤ Eg sup
w∈BR,v∈B1

n∑
i=1

giφ
′(〈w, xi〉, yi)〈xi,v〉, (II.7)

where φ′ denotes the derivative of φ with respect to the first
argument, g1, . . . , gn are i.i.d. N(0, 1) random variables and
we have used the following inequality on Rademacher and
Gaussian complexities

Eε sup
f

n∑
i=1

εif(zi) ≤ Eg sup
f

n∑
i=1

gif(zi).

Introduce two mean-zero separable Gaussian processes in-
dexed by BR ×B1

Xw,v =
n∑
i=1

giφ
′(〈w, xi〉, yi)〈xi,v〉

Yw,v =
√

2κ
n∑
i=1

giφ
′(〈w, xi〉, yi)+√2

(
b̃+LφRκ

) n∑
i=1

g̃i〈xi,v〉,

where g̃1, . . . , g̃n are independentN(0, 1) random variables.
For any w, w̃ ∈ BR and v, ṽ ∈ B1, the independence
among gi and Eg2

i = 1,∀i = 1, . . . , n imply that

Eg
[(
Xw,v − Xw̃,ṽ

)2]
=

n∑
i=1

(
φ′
(
〈w, xi〉, yi

)
〈xi,v〉 − φ′

(
〈w̃, xi〉, yi

)
〈xi, ṽ〉

)2

≤ 2
n∑
i=1

(
φ′
(
〈w, xi〉, yi

)
− φ′

(
〈w̃, xi〉, yi

))2(
〈xi,v〉

)2
+ 2

n∑
i=1

(
φ′
(
〈w̃, xi〉, yi

))2(
〈xi,v〉 − 〈xi, ṽ〉

)2
≤ 2κ2

n∑
i=1

(
φ′
(
〈w, xi〉, yi

)
− φ′

(
〈w̃, xi〉, yi

))2

+ 2
(
b̃+ LφRκ

)2 n∑
i=1

(
〈xi,v〉 − 〈xi, ṽ〉

)2
= Eg

[(
Yw,v −Yw̃,ṽ

)2]
,

where we have used the elementary inequality (III.3), the
decomposition

φ′
(
〈w, xi〉, yi

)
〈xi,v〉 − φ′

(
〈w̃, xi〉, yi

)
〈xi, ṽ〉 =(

φ′
(
〈w, xi〉, yi

)
− φ′

(
〈w̃, xi〉, yi

))
〈xi,v〉

+ φ′
(
〈w̃, xi〉, yi

)(
〈xi,v〉 − 〈xi, ṽ〉

)
and the following inequality due to the Lφ-smoothness of φ∣∣φ′(〈w̃, xi〉, yi)∣∣ ≤ b̃+ Lφ|〈w̃, xi〉 − 0| ≤ b̃+ LφRκ.

Therefore, we can apply Lemma II.4 to show

Eg sup
w∈BR,v∈B1

Xw,v ≤ Eg sup
w∈BR,v∈B1

Yw,v

≤
√

2κEg sup
w∈BR

n∑
i=1

giφ
′(〈w, xi〉, yi)

+
√

2
(
b̃+ LφRκ

)
Eg sup

v∈B1

n∑
i=1

gi〈xi,v〉

≤
√

2LφκEg sup
w∈BR

n∑
i=1

gi〈w, xi〉

+
√

2
(
b̃+ LφRκ

)
Eg sup

v∈B1

n∑
i=1

gi〈xi,v〉,

where we have used the Lφ-Lipschitz continuity of φ′ and
the contraction lemma of Gaussian complexities in the last
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step. Furthermore, it follows from the Jensen’s inequality
that

Eg sup
w∈BR

n∑
i=1

gi〈w, xi〉 = Eg sup
w∈BR

〈
w,

n∑
i=1

gixi
〉

≤ REg
∥∥∥ n∑
i=1

gixi

∥∥∥
2
≤ R

√√√√Eg
[〈 n∑

i=1

gixi,
n∑
i=1

gixi
〉]

= R
( n∑
i=1

‖xi‖22
) 1

2

.

In a similar way, we can show Eg supv∈B1

∑n
i=1 gi〈xi,v〉 ≤(∑n

i=1 ‖xi‖22
) 1

2

. Therefore,

Eg sup
w∈BR,v∈B1

Xw,v ≤
(
2LφRκ+ b̃

)√
2
( n∑
i=1

‖xi‖22
) 1

2

.

Plugging the above inequality into (II.7) then gives the
stated bound. The proof is complete.

Proof of Proposition 3. By the Lφ-smoothness of φ, we know
that f is (Lφκ

2)-smooth∥∥∇f(w; z)−∇f(w̃; z)
∥∥

2
=
∣∣φ′(〈w, x〉, y)− φ′(〈w̃, x〉, y)

∣∣‖x‖2
≤ Lφ|〈w − w̃, x〉|‖x‖2 ≤ Lφκ2‖w − w̃‖2.

Therefore, Lemma II.2 holds with L = Lφκ
2. By Lemma II.5

and the definition of κ, we know

Eε sup
w∈BR

∥∥∥ n∑
i=1

εi∇f(w; zi)
∥∥∥

2
≤
(
2LφRκ+ b̃

)√
2nκ,

which, together with Lemma II.2, gives the stated bound.
The proof is complete.

III PROOFS ON LEARNING RATES FOR GENERAL
NONCONVEX OBJECTIVES

In this section, we prove learning rates for general noncon-
vex objectives. We first prove Lemma 4 related to computa-
tional errors. Then, we move on to the proof of Lemma 9 on
the norm of SGD iterates, based on which we finally prove
the learning rates in Theorem 5.

III.1 Proof of Lemma 4
In this section, we present the proof of Lemma 4. Our idea
is to use the L-smoothness of f to derive

t∑
k=1

ηk‖∇FS(wk)‖22 = O(1)
( t∑
k=1

ξk +
t∑

k=1

ξ′k +
t∑

k=1

η2
k

)
,

where {ξk}k and {ξ′k} are two martingale difference se-
quences. We can apply Lemma I.1 to establish high prob-
ability bounds for

∑t
k=1 ξk and

∑t
k=1 ξ

′
k, which then yield

the stated bound.

Proof of Lemma 4. According to Assumption 1, we know FS
is also L-smooth, from which and 2’ we derive

FS(wt+1)≤FS(wt)+〈wt+1−wt,∇FS(wt)〉+
L

2
‖wt+1−wt‖22

= FS(wt) + ηt〈∇FS(wt)−∇f(wt; zjt),∇FS(wt)〉
− ηt‖∇FS(wt)‖22 + 2−1Lη2

t ‖∇f(wt; zjt)‖22
= FS(wt) + ξt − ηt‖∇FS(wt)‖22 + 2−1Lη2

t ‖∇f(wt; zjt)‖22,
(III.1)

where we have introduced a martingale difference sequence

ξt = ηt〈∇FS(wt)−∇f(wt; zjt),∇FS(wt)〉, t ∈ N. (III.2)

By the elementary inequality

(a1 + a2)2 ≤ 2(a2
1 + a2

2), ∀a1, a2 ∈ R, (III.3)

we know

‖∇f(wt; zjt)‖22 =
∥∥∇f(wt; zjt)−∇FS(wt) +∇FS(wt)

∥∥2

2

≤ 2‖∇f(wt; zjt)−∇FS(wt)‖22 + 2‖∇FS(wt)‖22
= 2ξ′t + 2Ejt

[
‖∇f(wt; zjt)−∇FS(wt)‖22

]
+ 2‖∇FS(wt)‖22,

(III.4)

where we have introduced another martingale difference
sequence

ξ′t = ‖∇f(wt; zjt)−∇FS(wt)‖22
− Ejt

[
‖∇f(wt; zjt)−∇FS(wt)‖22

]
, t ∈ N. (III.5)

Combining (III.1), (III.4) together and using Assumption 3,
we know that FS(wt+1) is upper bounded by

FS(wt)+ξt−ηt‖∇FS(wt)‖22+Lη2
t

(
σ2+ξ′t+‖∇FS(wt)‖22

)
≤ FS(wt) + ξt − 2−1ηt‖∇FS(wt)‖22 + Lη2

t σ
2 + Lη2

t ξ
′
t,

(III.6)

where we have used the inequality Lη2
t − ηt ≤ −ηt/2 due

to the assumption ηt ≤ 1/(2L).
Taking a summation of the inequality (III.6) gives

FS(wt+1) = FS(w1) +
t∑

k=1

(
FS(wk+1)− FS(wk)

)
≤ FS(w1) +

t∑
k=1

ξk − 2−1
t∑

k=1

ηk‖∇FS(wk)‖22

+ Lσ2
t∑

k=1

η2
k + L

t∑
k=1

η2
kξ
′
k. (III.7)

It is clear that Ejk [ξk] = 0 and therefore {ξk} is a martingale
difference sequence. According to Assumption 2, the magni-
tude of ξt can be controlled by (note Assumption 2 implies√
ηt‖∇FS(wt)‖2 ≤ G)

|ξk|≤ηk
(
‖∇FS(wk)‖2+‖∇f(wk; zjk)‖2

)
‖∇FS(wk)‖2≤2G2.

(III.8)
According to Assumption 3 and the inequality Ejk

[(
ξk −

Ejk [ξk]
)2] ≤ Ejk [ξ2

k], we have the following inequality on
conditional variances

t∑
k=1

Ejk
[(
ξk − Ejk [ξk]

)2]
≤

t∑
k=1

η2
kEjk

[
‖∇FS(wk)−∇f(wk; zjk)‖22

]
‖∇FS(wk)‖22

≤ σ2
t∑

k=1

η2
k‖∇FS(wk)‖22 ≤

σ2

2L

t∑
k=1

ηk‖∇FS(wk)‖22.

(III.9)
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Plugging (III.8), (III.9) back into Part (b) in Lemma I.1 with
ρ = min

{
1, LG2/σ2

}
, we derive the following inequality

with probability 1− δ/2
t∑

k=1

ξk ≤
ρσ2

∑t
k=1 ηk‖∇FS(wk)‖22

4LG2
+

2G2 log(2/δ)

ρ

≤ 4−1
t∑

k=1

ηk‖∇FS(wk)‖22 + 2 log(2/δ) max{G2, σ2/L}.

According to Assumption 2, we know

ξ′k ≤ 2
(
‖∇f(wk; zjk)‖22 + ‖∇FS(wk)‖22

)
≤ 4η−1

k G2.

In a similar way, one can also show that ξ′k ≥ −4η−1
k G2.

Therefore, one can apply Part (a) of Lemma I.1 to derive the
following inequality with probability at least 1− δ/2
t∑

k=1

η2
kξ
′
k≤4G2

(
2

t∑
k=1

η2
k log(2/δ)

) 1
2 ≤8G2 log(2/δ)+G2

t∑
k=1

η2
k,

where we have used the Schwartz’s inequality in the last
step. Plugging the above inequalities back into (III.7) shows
that with probability 1− δ

FS(wt+1) ≤ FS(0)+2 log(2/δ) max{G2, σ2/L}+LG2
t∑

k=1

η2
k

− 4−1
t∑

k=1

ηk‖∇FS(wk)‖22 +Lσ2
t∑

k=1

η2
k + 8LG2 log(2/δ),

which can be written as (5). The proof is complete.

III.2 Proof of Lemma 9
We are now ready to prove Lemma 9. The idea is to relate
wt to a summation of martingale difference sequences plus
a summation of weighted empirical gradients, which can
be respectively controlled by concentration inequalities and
Lemma 4.

Proof of Lemma 9. According to (1), we know

wt+1 = wt − ηt
(
∇f(wt; zjt)−∇FS(wt)

)
− ηt∇FS(wt).

Taking a summation of the above inequality and using w1 =
0 then give

wt+1 =
t∑

k=1

ξk −
t∑

k=1

ηk∇FS(wk),

and therefore

‖wt+1‖2 ≤
∥∥ t∑
k=1

ξk
∥∥

2
+
∥∥∥ t∑
k=1

ηk∇FS(wk)
∥∥∥

2
, (III.10)

where we introduce the martingale difference sequence

ξk = ηk
(
∇FS(wk)−∇f(wk; zjk)

)
, k ∈ N.

By Assumptions 2, 3 and ηk ≤ 1/(2L), we know

‖ξk‖2 = ηk
∥∥∇f(wk; zjk)−∇FS(wk)

∥∥
2
≤ 2G

√
ηk ≤ G

√
2/L

and
T∑
k=1

Ejk [‖ξk‖22] ≤
T∑
k=1

η2
kσ

2.

Then, we can apply Lemma I.2 to derive the following
inequality with probability 1− δ/2

max
1≤t≤T

∥∥ t∑
k=1

ξk
∥∥

2
≤ 2

(G√2/L

3
+ σ

( T∑
k=1

η2
k

) 1
2
)

log(4/δ).

(III.11)
Furthermore, according to Lemma 4 and the Schwartz’s in-
equality, we derive the following inequality with probability
1− δ/2 for all t = 1, . . . , T∥∥∥ t∑
k=1

ηk∇FS(wk)
∥∥∥2

2
≤
( t∑
k=1

ηk‖∇FS(wk)‖2
)2

≤
( t∑
k=1

ηk
)

×
( t∑
k=1

ηk‖∇FS(wk)‖22
)
≤
( t∑
k=1

ηk
)

(CT + C1 log(4/δ)).

It then follows the following inequality with probability 1−
δ/2 uniformly for all t = 1, . . . , T∥∥∥ t∑

k=1

ηk∇FS(wk)
∥∥∥

2
≤
(

(CT + C1 log(4/δ))
t∑

k=1

ηk
) 1

2

.

Plugging the above inequality and (III.11) into (III.10) then
gives the following inequality with probability 1− δ

‖wt+1‖2 ≤ 2
(G√2/L

3
+ σ

( T∑
k=1

η2
k

) 1
2
)

log(4/δ)

+
(

(CT + C1 log(4/δ))
t∑

k=1

ηk
) 1

2

,

which can be written as the stated form with

C2 = max
{

2G
√

2/(9L),
√
C1 + 4b, 2σ,

√
4L(σ2 +G2)

}
.

The proof is complete.

III.3 Proof of Theorem 5
Theorem 5 is proved by decomposing the gradients of
population risks into computational and statistical errors.
We can apply Lemma 4 to control computational errors, and
uniform convergence of gradients together with the norm
estimate of iterates in Lemma 9 to control stastistical errors.

Lemma III.1. We have the following elementary inequalities.
(a) If θ ∈ (0, 1), then

∑t
k=1 k

−θ ≤ t1−θ/(1− θ);
(b) If θ = 1, then

∑t
k=1 k

−θ ≤ log(et);
(c) If θ > 1, then

∑t
k=1 k

−θ ≤ θ
θ−1 .

Proof of Theorem 5. By the elementary inequality (III.3) and
Lemma 4, we derive the following inequality with probabil-
ity 1− δ/3
T∑
t=1

ηt‖∇F (wt)‖22

=
T∑
t=1

ηt
∥∥∇F (wt)−∇FS(wt) +∇FS(wt)

∥∥2

2

≤ 2
T∑
t=1

ηt
∥∥∇F (wt)−∇FS(wt)

∥∥2

2
+ 2

T∑
t=1

ηt
∥∥∇FS(wt)

∥∥2

2

≤ 2
T∑
t=1

ηt max
t=1,...,T

∥∥∇F (wt)−∇FS(wt)
∥∥2

2
+O

( T∑
t=1

η2
t +log

1

δ

)
,
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from which we derive∑T
t=1 ηt‖∇F (wt)‖22∑T

t=1 ηt
≤ 2 max

t=1,...,T

∥∥∇F (wt)−∇FS(wt)
∥∥2

2

+O(1)
( T∑
t=1

ηt
)−1( T∑

t=1

η2
t + log(1/δ)

)
. (III.12)

According to Lemma 9 and Lemma III.1, with probability
1 − δ/3 we have the following inequality uniformly for all
t = 1, . . . , T

‖wt‖2 ≤ RT :=


O(log(1/δ))T 1− 3θ

2 , if θ < 1/2

O(log(1/δ))T
1
4 log

1
2 T, if θ = 1/2

O(log(1/δ))T
1−θ
2 , if θ > 1/2.

(III.13)
According to Corollary 2, the following inequality holds
with probability 1− δ/3 (we assume RT ≥ 1)

sup
w∈BRT

‖∇F (w)−∇FS(w)‖2 ≤ C3RTn
− 1

2 , (III.14)

where

C3 =(L+ b̃)
(
2+2

√
48e
√

2
(

log 2+d log(3e)
)

+
√

2 log(3/δ)
)
.

(III.15)
Combining (III.12), (III.13) and (III.14) together, with proba-
bility 1− δ we derive the following inequality( T∑
t=1

ηt
)−1 T∑

t=1

ηt‖∇F (wt)‖22 ≤ 2 sup
w∈BRT

‖∇F (w)−∇FS(w)‖22

+O(1)
( T∑
t=1

ηt
)−1( T∑

t=1

η2
t + log(1/δ)

)
≤ 2C2

3R
2
Tn
−1 +O(1)

( T∑
t=1

ηt
)−1( T∑

t=1

η2
t + log(1/δ)

)
.

This, together with Lemma III.1, gives the following in-
equality with probability 1− δ( T∑

t=1

ηt
)−1 T∑

t=1

ηt‖∇F (wt)‖22

=


O(Λn,d,δ)T

2−3θ +O(T−θ log(1/δ)), if θ < 1/2

O(Λn,d,δ)T
1
2 log T +O(T−

1
2 log(T/δ)), if θ = 1/2

O(Λn,d,δ)T
1−θ +O(T θ−1 log(1/δ)), if θ > 1/2,

where Λn,d,δ := n−1(d+ log(1/δ)) log2(1/δ).
If θ < 1/2, we can choose T � (nd−1)

1
2(1−θ) to derive

the following inequality with probability 1− δ( T∑
t=1

ηt
)−1 T∑

t=1

ηt‖∇F (wt)‖22 = O
(

(nd−1)
θ

2(θ−1) log3(1/δ)
)
.

If θ = 1/2, we can choose T � nd−1 to derive the following
inequality with probability 1− δ( T∑
t=1

ηt
)−1 T∑

t=1

ηt‖∇F (wt)‖22 = O
(
n−

1
2 d

1
2 log(T/δ) log3(1/δ)

)
.

If θ > 1/2, we can choose T � (nd−1)
1

2(1−θ) to derive the
following inequality with probability 1− δ( T∑

t=1

ηt
)−1 T∑

t=1

ηt‖∇F (wt)‖22 = O
(
n−

1
2 d

1
2 log3(1/δ)

)
.

The stated bound then follows. The proof is complete.

IV PROOFS OF LEARNING RATES FOR GRADIENT-
DOMINATED OBJECTIVES

In this section, we present the proof of Theorem 7 on fast
learning rates under gradient-dominance conditions. Our
idea is to still control computational and statistical errors,
separately. However, in this case we have a refined bound
on computational errors as

∑T
t=1(t+ t0 − 1)‖∇FS(wt)‖22 =

Õ(T ) and a refined estimate on the norm of SGD iterates for
the associated step sizes. For brevity, we assume µS ≤ 2 in
the proof.

Lemma IV.1. For the step size ηt = 2/(µS(t+ t0)), t ∈ N and
t0 ≥ 1, we have

T∑
t=1

ηt ≤
2

µS

T∑
t=1

1

t+ t0
≤ 2

µS
log(T + 1).

Proof of Theorem 7. Since t0 ≥ 4L/µS , we know ηt ≤ 1/(2L)
and therefore Lemma 9 holds. According to Lemma 9
and (III.3), we know the existence of an event Ω

(1)
T with

Pr{Ω(1)
T } ≥ 1−δ/2 conditioned on which we know ‖wt+1‖2

can be upper bounded by for all t = 1, . . . , T

C2

(
(2L)−

1
2

( T∑
t=1

ηt
) 1

2

+ 1
)(( T∑

t=1

ηt
) 1

2

+ 1
)

log(8/δ)

≤ 2C2 max
{

(2L)−
1
2 , 1
}( T∑

t=1

ηt + 1
)

log(8/δ)

≤2C2 max
{

(2L)−
1
2 , 1
}(

2µ−1
S log(T+1)+1

)
log(8/δ)≤CT,δ,

where we have used Lemma IV.1 and have introduced
(2µ−1

S ≥ 1)

CT,δ := 2C2 max{(2/L)
1
2 , 2}µ−1

S log
(
e(T + 1)

)
log(8/δ).

By (III.6) and Assumption 4, we know FS(wt+1) can be
upper bounded by

FS(wt) + ξt − 2−1ηt‖∇FS(wt)‖22 + Lη2
t σ

2 + Lη2
t ξ
′
t

≤ FS(wt) + ξt − 4−1ηt‖∇FS(wt)‖22
+ ηtµS

(
FS(wS)− FS(wt)

)
+ Lη2

t σ
2 + Lη2

t ξ
′
t,

where {ξt}t and {ξ′t}t are defined in (III.2) and (III.5),
respectively. It then follows that

1

2µS(t+ t0)
‖∇FS(wt)‖22 + FS(wt+1)− FS(wS)

≤ (1− ηtµS)
(
FS(wt)− FS(wS)

)
+ ξt + Lη2

t σ
2 + Lη2

t ξ
′
t

=
t+t0−2

t+ t0

(
FS(wt)−FS(wS)

)
+ξt+

4Lσ2

µ2
S(t+t0)2

+
4Lξ′t

µ2
S(t+t0)2

.

Multiplying both sides by (t+ t0)(t+ t0 − 1), we derive

(2µS)−1(t+ t0 − 1)‖∇FS(wt)‖22 + (t+ t0 − 1)(t+ t0)×(
FS(wt+1)−FS(wS)

)
≤ (t+t0−2)(t+t0−1)

(
FS(wt)−FS(wS)

)
+ (t+ t0 − 1)(t+ t0)ξt + 4Lσ2µ−2

S + 4Lµ−2
S ξ′t.
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Taking a summation of the above inequality from t = 1 to
t = T , we derive

(2µS)−1
T∑
t=1

(t+ t0 − 1)‖∇FS(wt)‖22

+ (T + t0 − 1)(T + t0)
(
FS(wT+1)− FS(wS)

)
≤ (t0 − 1)t0

(
FS(w1)−FS(wS)

)
+

T∑
t=1

(t+ t0 − 1)(t+ t0)ξt

+ 4Lσ2µ−2
S T + 4Lµ−2

S

T∑
t=1

ξ′t. (IV.1)

Introduce two sequences of martingale difference sequences

ξ̃t = ηt
〈
∇FS(wt)−∇f(wt; zjt),∇FS(wt)

〉
I{‖wt‖2≤CT,δ}

ξ̃′t =
(
‖∇f(wt; zjt)−∇FS(wt)‖22−

Ejt
[
‖∇f(wt; zjt)−∇FS(wt)‖22

])
I{‖wt‖2≤CT,δ}.

The following inequality holds for all t = 1, . . . , T

(t+ t0 − 1)(t+ t0)|ξ̃t| ≤ 2µ−1
S (t+ t0 − 1)×

‖∇FS(wt)−∇f(wt; zjt)‖2‖∇FS(wt)‖2I{‖wt‖2≤CT,δ}
≤ 4µ−1

S (T + t0 − 1)
(
LCT,δ + b̃

)2
,

where we have used (II.2). Furthermore, the conditional
variances can be bounded by

Ejt
[
(t+ t0 − 1)2(t+ t0)2ξ̃2

t

]
≤ 4µ−2

S (t+t0−1)2‖∇FS(wt)‖22Ejt‖∇FS(wt)−∇f(wt; zjt)‖22
≤ 4µ−2

S σ2(t+ t0 − 1)2‖∇FS(wt)‖22.

Applying Part (b) of Lemma I.1 together with the above
bounds on magnitudes and variances, we know the exis-
tence of Ω

(2)
T with Pr{Ω(2)

T } ≥ 1−δ/8 conditioned on which
the following inequality holds

T∑
t=1

(t+ t0 − 1)(t+ t0)ξ̃t

≤ 4ρσ2
∑T
t=1(t+t0−1)2‖∇FS(wt)‖22

4µ2
Sµ
−1
S (T + t0 − 1)C̃2

T,δ

+
4(T+t0−1)C̃2

T,δ log 8
δ

ρµS

≤ ρσ2
∑T
t=1(t+t0−1)‖∇FS(wt)‖22

µSC̃2
T,δ

+
4(T+t0−1)C̃2

T,δ log 8
δ

ρµS

≤ (4µS)−1
T∑
t=1

(t+ t0 − 1)‖∇FS(wt)‖22

+ 4µ−1
S (T + t0 − 1) log(8/δ) max

{
4σ2, (LCT,δ + b̃)2

}
,
(IV.2)

where we introduce C̃T,δ := LCT,δ + b̃ and set ρ =
min{(4σ2)−1(LCT,δ + b̃)2, 1}. According to the definition
of ξ̃′t and (II.2), we know

ξ̃′t≤2
(
‖∇f(wt; zjt)‖22+‖∇FS(wt)‖22

)
I{‖wt‖2≤CT,δ}≤4C̃2

T,δ.

In a similar way, we can also show ξ̃′t ≥ −4C̃2
T,δ . We now

can apply Part (a) of Lemma I.1 to show the existence of Ω
(3)
T

with Pr{Ω(3)
T } ≥ 1−δ/8 conditioned on which the following

inequality holds

T∑
t=1

ξ̃′t ≤ 4(LCT,δ + b̃)2(2T log(8/δ))
1
2 .

Under the event Ω
(1)
T , we know ξ̃t = ξt and ξ̃′t = ξ′t.

Plugging the above inequality and (IV.2) back into (IV.1),
we derive the following inequality under the event Ω

(1)
T ∩

Ω
(2)
T ∩ Ω

(3)
T

(4µS)−1
T∑
t=1

(t+ t0 − 1)‖∇FS(wt)‖22

+ (T + t0 − 1)(T + t0)
(
FS(wT+1)− FS(wS)

)
≤ (t0 − 1)t0

(
FS(w1)− FS(wS)

)
+ 4µ−1

S (T + t0 + 1) log(8/δ) max{4σ2, (LCT,δ + b̃)2}
+ 4Lσ2µ−2

S T + 16Lµ−2
S (LCT,δ + b̃)2(2T log(8/δ))

1
2 .

This together with (3) shows that (notice CT,δ =
O(log T log(1/δ)))

‖∇FS(wT+1)‖22 = O
(
T−1 log2 T log3(1/δ)

)
. (IV.3)

According to Corollary 2, we know the existence of Ω
(4)
T

with Pr{Ω(4)
T } ≥ 1− δ/4 such that

sup
‖w‖2≤CT,δ

∥∥∇F (w)−∇FS(w)
∥∥

2
≤ C3CT,δn

− 1
2 ,

where C3 is defined in (III.15). Under the event of Ω
(1)
T ∩

Ω
(2)
T ∩ Ω

(3)
T ∩ Ω

(4)
T , we can combine (IV.3) and the above

inequality to derive the following inequality (notice CT,δ =
O(log T log(1/δ)))

‖∇F (wT+1)‖22
≤ 2‖∇F (wT+1)−∇FS(wT+1)‖22 + 2‖∇FS(wT+1)‖22
≤ 2 sup

‖w‖2≤CT,δ

∥∥∇F (w)−∇FS(w)
∥∥2

2
+O

(
T−1 log2 T log3(1/δ)

)
= O

((
n−1(d+ log(1/δ))

)
+T−1 log(1/δ)

)
log2 T log2(1/δ)

)
.

Using the gradient-dominance condition and choosing T �
n, we derive the stated inequality with probability 1−δ. The
proof is complete.
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