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a b s t r a c t

Objectives: This study utilised an Artificial Intelligence (AI) method, namely 3D-Deep 

Convolutional Generative Adversarial Network (3D-DCGAN), which is one of the true 3D 

machine learning methods, as an automatic algorithm to design a dental crown.

Methods: Six hundred sets of digital casts containing mandibular second premolars and 

their adjacent and antagonist teeth obtained from healthy personnel were machine- 
learned using 3D-DCGAN. Additional 12 sets of data were used as the test dataset, whereas 
the natural second premolars in the test dataset were compared with the designs in (1) 3D- 
DCGAN, (2) CEREC Biogeneric, and (3) CAD for morphological parameters of 3D similarity, 
cusp angle, occlusal contact point number and area, and in silico fatigue simulations with 
finite element (FE) using lithium disilicate material.

Results: The 3D-DCGAN design and natural teeth had the lowest discrepancy in mor
phology compared with the other groups (root mean square value = 0.3611). The Biogeneric 
design showed a significantly (p  <  0.05) higher cusp angle (67.11°) than that of the 3D- 
DCGAN design (49.43°) and natural tooth (54.05°). No significant difference was observed in 
the number and area of occlusal contact points among the four groups. FE analysis showed 
that the 3D-DCGAN design had the best match to the natural tooth regarding the stress 
distribution in the crown. The 3D-DCGAN design was subjected to 26.73 MPa and the 
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natural tooth was subjected to 23.97 MPa stress at the central fossa area under physiolo
gical occlusal force (300 N); the two groups showed similar fatigue lifetimes (F-N curve) 
under simulated cyclic loading of 100–400 N. Designs with Biogeneric or technician would 
yield respectively higher or lower fatigue lifetime than natural teeth. 

Significance: This study demonstrated that 3D-DCGAN could be utilised to design perso
nalised dental crowns with high accuracy that can mimic both the morphology and bio
mechanics of natural teeth. 

© 2023 The Author(s). Published by Elsevier Inc. on behalf of The Academy of Dental 

Materials. This is an open access article under the CC BY license (http://creative
commons.org/licenses/by/4.0/).   

1. Introduction 

With current advances in technology, digitisation has 
evolved in various industries. In dentistry, computer-aided 
design and computer-aided manufacturing (CAD/CAM) have 
created great opportunities to improve the productivity of 
dental prostheses. The conventional workflow for preparing 
dental prostheses is labour-intensive and time-consuming, 
generating health and environmental hazards. Although im
proved, the current CAD/CAM technology still encounters 
such problems. Each dental prosthesis must be customised to 
meet individual patient conditions and requirements. Even 
with the assistance of CAD software, this is a time-con
suming and labour-intensive process. 

Artificial Intelligence (AI) is the science and engineering of 
machines that act intelligently [1]. One of the pioneers of AI in 
crown design is CEREC Software; the algorithm [2,3] tries to find 
the mathematical relationships between the existing tooth 
morphology, tooth preparation, and adjacent and opposite 
teeth. Hence, it can fit customised conditions for individual 
patients. However, remaking CAD/CAM crowns is not un
common clinically because of marginal misfits [4]. The crown 
design also impacts the fracture behaviour of crowns and thus 
influences clinical outcomes [5]. Deep learning (DL) is a branch 
of AI, and in dentistry, most applications involve automatic 
diagnosis based on optical or radiology images [6,7]. Introduced 
by Goodfellow et al. [8], the generative adversarial network 
(GAN) is an algorithm based on DL to analyse the training data 
distribution to generate new data following the same distribu
tion. Hwang et al. [9] applied a GAN model to generate a crown, 
particularly in dental crown design. However, the study used a 
two-dimensional (2D) depth-projection method to learn data 
from dental prostheses designed by a dental laboratory. Some 
morphological features may be compromised during the 2D to 
3D transformation. Furthermore, using dental laboratory pros
theses as training data (ground truth) for DL is also question
able because the dentist usually adjusts a prosthesis at the 
chairside after receiving it from the dental laboratory; thus, the 
GAN model learns inaccurate morphology information. Re
cently, Yuan et al. [10] proposed an automatic occlusal surface 
design method based on conditional GAN and achieved sa
tisfactory results. However, it is a 2D pix2pix method that 
cannot fully reflect the 3D requirements of a tooth. A deep 
convolutional GAN (DCGAN) is a type of GAN introduced by 
Radford et al. [11], specifically for unsupervised learning. In 
2016, Wu et al. [12] introduced a 3D shape generative model, 

3D-DCGAN, which can be regarded as a natural extension of 
DCGAN in 3D space, extending its application to 3D images. 

An essential factor in the design of dental prostheses is 
occlusal surface design. The grooves and cusps follow a 
specific shape to assist the mastication and stability of the 
lower jaw. There are different recommendations and guide
lines regarding the design, such as cusp angle, cuspal in
clination, position and depth of grooves, ridges, bevels, and 
chamfers. These represent the current cognition of biological 
and mechanical ideas that are eventually perceived as func
tional and aesthetic requirements [13,14]. 

The long-term effectiveness of all-ceramic crowns is es
sential yet challenging to evaluate. It is not only affected by 
the material used but also by the crown design. Finite ele
ment analysis (FEA) is instrumental in studying different 
designs that may not be clinically achievable. For example, 
Maghami et al. [15] studied different crown designs using FEA 
and found that crown height plays a more significant role 
because increasing the bonding area can relieve stress. More 
recently, a non-linear 3D FEA has been developed that can 
predict the fatigue lifetime of dental crowns on human teeth 
with a good match with the experimental results [16]. Thus, 
FEA is a useful biomechanical evaluation tool that can pro
vide helpful information to dental researchers and clinicians 
regarding different materials and design combinations. 

This study aimed to develop a true 3D AI algorithm for 
dental crown design. This will provide a functional AI tool 
used in dentistry that can innovate and automate the current 
digital dental prosthetic workflow. 

2. Materials and methods 

2.1. Dataset 

Six hundred digital casts with full arches of both the upper and 
lower jaws and occlusal relationships were obtained with in
formed consent (IRB Reference Number: UW 21–571) from 
healthy personnel (average age of 20.84 years old) using an in
traoral scanner (Cerec Omnicam, Sirona Dental Systems, 
Bensheim, Germany). Standard Tessellation Language (STL) 
files were exported from CEREC Software 4.6 (Sirona Dental 
Systems, Bensheim, Germany). In this study, tooth numbers 44, 
45, and 46 (Fig. 1A) in the ISO 3950 notation system were seg
mented manually using Meshlab software (ISTI-CNR, Pisa, Italy)  
[17], where 45 was the target, and 44 and 46 (Fig. 1B) were used 
as a reference for 3D-DCGAN model training. 
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2.2. GAN Training 

A 3D-DCGAN was adopted to train the machine learning 
model. The network was built on the PyTorch platform. The 
generator model consisted of four deconvolution layers with 
the number of filters as 128–64–32–1. The kernel size, stride, 
and padding size were set to 3 × 3 × 3, 1, and 1, respectively. A 
Tanh function was used in the last layer of the generator. The 
discriminator model consisted of four convolution layers, 
reflecting the same structure as the generator. With the ex
ception that the stride was set to two, a sigmoid function was 
applied at the last layer of the discriminator. Batch normal
isation was performed after each convolutional layer. 
LeakyReLUs were used in the generator and discriminator 
models, with a slope of 0.2. 

The training was performed on a desktop computer with 
an Intel(R) Xeon (R) W-2123 3.6 GHz CPU, an Nvidia GeForce 
RTX 2080 Ti GPU, and 16 GB RAM. Different parameters, such 
as learning rate, batch size, number of epochs, and training 
data, were investigated to determine the optimal parameters. 
To monitor the quality of the generated tooth morphology 
with increasing epochs, the interval between image sampling 
was set to 400, i.e. the training results were exported and 
saved every 400 epochs. 

2.3. Quality evaluation 

Twelve additional cases were randomly selected as the 
testing dataset, and 12 crowns were generated using the 
trained 3D-DCGAN. These AI crowns were compared with the 
original natural tooth (NT), CEREC biogeneric individual de
sign (BI), and technician CAD (Zfx Manager 2.0, Zfx GmbH, 
Dachau, Germany) design (TD) operated by an experienced 
dental technician with respect to the cusp angle, 3D simi
larity, occlusal contact, and dynamic FEA. 

2.3.1. Cusp angle 
Cusp angle (Fig. 2) is an important parameter in the dental 
crown design process. This affects the fracture resistance of 
the crowns. In general, a wider cusp angle can enhance the 
fracture resistance of the crown [18]. The cusp angles in all 
four groups (NT, AI, BI, and TD) were measured and com
pared. The crown designs were cut cross-sectionally, and the 

cusp angles were measured using Geomagic Control 2014 
software (3D Systems, Rock Hill, SC, USA). 

2.3.2. 3D Comparison 
The degree of discrepancy between the NT group and the 
other design groups was compared using the Geomagic 
software. With the NT group set as a reference, crowns from 
the other three groups (AI, BI, and TD) were superimposed 
with the reference crown using a best-fit algorithm and 
pairwise compared with the crown in the NT group. 
Irrelevant areas were cut, and only occlusal surfaces were 
reserved to eliminate errors during the comparison. The 3D 
measurement function was used to compare and calculate 
the discrepancies between different comparisons. The de
viation analysis function was used to evaluate the degree of 
discrepancy, and the mean positive/negative deviation and 
Root Mean Square (RMS) values were recorded. 

2.3.3. Occlusal contact measurement 
A digital approach was adopted to measure the occlusal 
contact point number and area using the Geomagic software. 
The STL file of the tooth to be measured and its opposing 
dentition was imported into the software. A virtual articu
lating paper approach was adopted by moving the teeth 
100 µm and 200 µm perpendicular to the occlusal surface. The 
100 µm and 200 µm offset represented the thicknesses of the 
articulating paper. Boolean operations were then performed 
to maintain the upper and lower dentition intersecting parts. 

Fig. 1 – One set of training data A) No. 44, 45, 46 tooth; B) No. 44, 46 tooth.    

Fig. 2 – A vertical cross-sectional view of a premolar 
indicating cusp angle and cusp plane.   
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The occlusal contact point number and area on the opposing 
dentition were then calculated accordingly. 

To better simulate tooth movement, four horizontal ex
cursive positions from maximal intercuspation were simu
lated: 0.5, 1.0, 2.0, and 3.0 mm. The excursive process was 
performed by horizontally displacing the opponent dentition 
away from the crown model and adjacent teeth, which si
mulates the occlusal in actual conditions. 

After fixing the horizontal displacement, vertical adjust
ment was conducted to fit the occlusal relationship between 
the maxillary and mandibular casts. The crown and its ad
jacent teeth to be tested were vertically shifted away from 
the opposing dentition in a 0.05 mm increment. Once the 
contact between the testing and the opposing dentition dis
appeared, the testing sample was shifted vertically towards 
the opposing dentition by 0.05 mm. This process enabled the 
examination of the working side contacts of the teeth in the 
occlusion relationship [19]. The models in all four groups 
followed the same protocol described above to ensure con
sistency. The steepness was calculated by relating the ver
tical mandibular offset to the horizontal displacement to 
quantify the level of vertical movement. The following 
equation was used to calculate the angle of steepness in de
grees. 

= HorizontalDisplacement
VerticalOffset

tan 1
(1) 

where θ represents the angle of steepness. A higher θ value 
indicates higher occlusal steepness [20]. 

The MeshLab software was used to visualise the occlusal 
relationship. A distance heat map can be obtained at the op
posite dentition using the functions “Distance from Reference 
Mesh” and “Colorize by Vertex Quality”. A 0–1 mm range of 
occlusal distance was selected. Given that the thickness of bite 
registration for dental use ranges from 8 to 200 µm, we included 
the distance below 200 µm as the contact area (red area in the 
heat map shown in Fig. 3). The number of contact points and 
areas can be obtained by the software accordingly (“Select by 
Vertex Quality” function followed by “Compute Area” function). 
The contact point numbers and areas obtained from Meshlab 
were compared with those obtained from Geomagic to verify 
the agreement between the two software packages. 

2.3.4. Dynamic Finite Element Analysis 
One mandibular second premolar with the same tooth pre
paration and four crown designs (NT, AI, BI, and TD) was se
lected randomly from the test group. A 50 µm adhesive layer 
was created by an offset function in Abaqus software (version 

Fig. 3 – Occlusal contact number and area of the NT, AI, BI and TD groups, cases 1–12.    
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6.5, ABAQUS Inc., Providence, RI, USA). Subsequently, a vali
dated dynamic non-linear finite element (FE) model [16] was 
used to evaluate the biomechanical fatigue performance of li
thium disilicate on human teeth in silico. In brief, a multi-block 
technique was adopted to simulate the complex details of the 
tooth surface, and hexahedral meshes were created [21]. The 
imported STL files are processed by assigning blocks to the 
current STL mesh. The volumetric hexahedral mesh of the 
crown, adhesive layer, and abutment tooth was created using 
the IA-FEMesh software (University of Iowa, Iowa City, IA, USA). 

As illustrated in Fig. 4, the final model for FEA consists of a 
crown, adhesive layer, and abutment tooth. A stainless steel 
hemisphere with a diameter of 5 mm was created as the in
denter. The hemisphere indenter was positioned precisely 
above the occlusal surface using SolidWorks (Dassault Sys
témes SolidWorks Corp., Waltham, MA, USA). The indenter 
was then fine-tuned and settled frictionlessly near the central 
fossa area, with two contact points on the buccal and lingual 
cusps contacting the indenter simultaneously. 

All models with their position information were then 
transferred to the Abaqus software. Lithium disilicate (LD) 
was selected as the crown material, and dentin was selected 
as the abutment material in the FE simulation. The required 
mechanical properties of the different materials used in the 
FEA model, such as Young’s modulus and Poisson’s ratio for 
the crown materials, adhesive cement, and dentine, were 
obtained from the literature [22–25] and are shown in Table 1. 
All parts of the model were assumed homogeneous, iso
tropic, and linearly elastic. 

The fatigue life of the LD ceramic crowns was calculated 
by comparing the maximum principal stress reached during 
loading with their stress-life (S-N) diagrams. The non-linear 
Basquin formula (Eq. 2) [26,27] was used to fit the fatigue 
behaviour of the crown material. 

= ( )A Na
B (2) 

where a is the stress amplitude, N is the fatigue life circles, and 
A and B are two material constants obtained from previous 
literature [28,29] and are listed in Table 1. Then, occlusal forces 
from 100 to 400 N were applied to compare the stress distribu
tions in different crown designs. Occlusal forces were selected 
based on natural occlusal forces for human premolars [30]. 

2.4. Statistical analysis 

Statistical analysis was performed using SPSS software (version 
27.0; IBM, Armonk, NY, USA). The statistical significance of the 
cusp angle, 3D discrepancy, and occlusal contact among the 
four design groups was studied using one-way analysis of var
iance (ANOVA) and Tukey’s HSD post hoc multiple comparisons. 
The level of significance was set at α = 0.05. 

3. Results 

3.1. Cusp angle 

Table 2 shows the cusp angles for the different crown de
signs. The mean cusp angles of the NT, AI, BI, and TD groups 

Fig. 4 – Schematics showing the structure of FE model: A) testing position of the whole model; B) indenter; C) ceramic crown; 
D) adhesive layer and E) dentine.   

Table 1 – Mechanical parameters, coefficient and exponent constants of fatigue curves of LD ceramic, dentine and 
adhesive resin cement.       

Materials Young’s Modulus (GPa) Poisson’s Ration A (MPa) B  

LD Ceramic 95.9 0.23 95.845 -0.012 
Dentine 18.6 0.31   
Adhesive Resin Cement 7.7 0.3     
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were respectively 54.05°, 49.43°, 67.11° and 63.34°. The NT 
group had a significantly lower mean cusp angle than the BI 
group, whereas the BI and TD groups had significantly higher 
mean cusp angles than the AI group. No significant differ
ences were found between the NT, AI, NT, and TD groups. 

3.2. 3D Morphology comparison 

The discrepancy of crown designs in the AI, BI, and TD groups 
was compared pairwise with the NT group. A heat map of the 
discrepancy between the NT and AI groups is shown in Fig. 5. 
The colour transitioned from blue to red, representing the 
contraction to the expansion of the crown surface from −1.5 
to 1.5 mm. The results of the numerical comparison are pre
sented in Table 3. 

As indicated in Table 3, the NT vs. AI group exhibited the 
lowest statistically significant discrepancy in mean positive 
deviation (MPD), mean negative deviation (MND), and root 
mean square (RMS) values. The discrepancy between the NT 
vs. BI group and the NT vs. TD group was not statistically 
significant for the last two items (MND and RMS). In addition, 
the NT vs. BI group exhibited significantly lower MPD values 
than those of the TD vs. NT group. 

3.3. Occlusal Contact 

Two types of virtual articulating papers with thicknesses of 
100 µm and 200 µm were used. The occlusal contact point 
number and area were measured for all groups. Fig. 6 shows 
the mean contact point number and area for the NT, AI, BI, 
and TD groups. The contact point numbers and areas for 
100 µm and 200 µm articulating papers did not differ sig
nificantly between the four groups. 

A horizontal displacement was applied to simulate the 
transverse working plane. As illustrated in Fig. 7, gradual 
decreases in the contact point number were observed for the 
NT, AI, and TD groups, except for group BI, which tended to 
increase with the 100 µm virtual articulating paper. The TD 

Table 2 – Mean cusp angle of the four crown designs.     

Groups Mean (SD) (Unit: degree) SE  

NT 54.05 (5.11)a 1.47 
AI 49.43 (5.53)a 1.60 
BI 67.11 (4.53)b 1.31 
TD 63.34 (4.98)ab 1.44 

*Different superscript letters indicate significant differ
ences (p  <  0.05)    

Fig. 5 – Heat map of the discrepancy of the AI and NT groups.    

Table 3 – Comparison of the mean discrepancy of crowns in the AI, BI and TD groups with the NT group.      

Groups Mean Positive Deviation (SD) Mean Negative Deviation (SD) Root Mean Square (SD)  

NT vs. AI 0.2502 (0.0494)a -0.3106 (0.1215)d 0.3611 (0.1160)f 

NT vs. BI 0.3480 (0.0576)b -0.4379 (00883)e 0.5065 (0.0700)g 

NT vs. TD 0.2919 (0.0455)c -0.3894 (0.1183)e 0.4550 (0.1019)g 

*Different superscript letters indicate significant differences (p  <  0.05)    

Fig. 6 – Mean occlusal contact point number and area of the 
crowns in different groups.   
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group had a more prominent decrease in the contact point 
number from 0.5 to 1.0 mm lateral offset than the NT and AI 
groups (Fig. 7A). The contact point number of the BI group in 
the 200 µm virtual articulating paper increased with an in
crease in lateral offset until 2 mm and then decreased, which 
differs from the other three groups (Fig. 7B). 

A significant difference (p  <  0.05) was found in the con
tact point number of the BI group compared with the AI and 
TD groups using 100 µm virtual articulating paper at a 0.5 mm 
horizontal displacement. No significant differences were 
found between the other groups regarding the contact point 
numbers with horizontal displacements (i.e. 0.5, 1.0, 2.0, and 
3.0 mm). The difference between all groups regarding the 
contact point area with 0.5-, 1.0-, 2.0, and 3.0 mm horizontal 
displacements was insignificant (Fig. 7C and 7D). 

As illustrated in Fig. 8, the occlusion steepness con
tinuously decreased for all groups as the lateral offset in
creased. The NT and AI groups had no significant differences, 
whereas significant differences were found between the BI 
and TD groups, which had significantly lower occlusal   

steepness than the NT and AI groups, indicating flatter oc
clusal surfaces in the BI and TD groups. 

3.4. Dynamic finite element analysis 

The stress distributions of the adhesive resin cement layer 
and abutment under physiological occlusal forces (300 N) are 
shown in Figs. 9–12. The corresponding numerical values of 
the stresses are listed in Table 4. Areas around the central 
fossa and contact points on the models were selected for 
measurement. 

As shown in Table 4, stresses at the central fossa area 
were generally lower than those at the contact point area, 
except in the BI group. The TD group had the highest stress 
value in both measured areas. In the inner layers of the 
crown (i.e. the adhesive layer and dentine), the maximum 
principal stress and shear stress varied. The AI group had the 
highest maximum principal stress, followed by the NT, TD, 
and BI groups in dentine. In the adhesive layer, the TD group 
had the highest maximum principal stress, followed by the 

Fig. 7 – Trend of mean occlusal contact point number (A and B) and area (C and D) when increasing the offset from 0.5 to 
3.0 mm on the lateral occlusion using different virtual articulating paper.   
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AI, NT, and BI groups. An obvious distinction was found in 
the maximum shear stress for the TD group, which was 2.5–4 
times lower than that of the other three groups. 

As shown in Figs. 9–12, the maximum principal stress and 
maximum Tresca (shear) stress of the adhesive layer and 
dentine were observed in the shoulder area. In contrast, as 
expected, no stress concentrations were found in the occlusal 
directions of the adhesive layer and dentine in all cases, as 
the shoulder area should be the main load-bearing structure. 
Among all the cases analysed by FE, as shown in Fig. 12, the 
TD crown showed a high-stress concentration in both the 
dentine and adhesive layers compared to the other models. 

The fatigue-life circles were estimated. As illustrated in  
Fig. 13, the AI group had the closest estimated fatigue lifetime 
compared with the NT group. The AI group achieved ca. 10e32 
(1032) cycle lifetime in the area near the contact area and ca. 
10e35 (1035) cycles in the central fossa area under 400 N 
loading, while the numbers in the NT group were determined 
to be ca. 10e38 (1038) for both areas. 

4. Discussion 

AI-generated crowns by 3D-DCGAN revealed a higher degree 
of similarity with natural teeth (NT) morphology regarding 
cusp angle, MPD, MND, RMS, and fatigue biomechanics than 
the BI and TD groups. The proposed 3D-DCGAN learns from 
natural teeth, whereas BI and TD have different mechanisms. 
BI utilised a tooth library, and a technician made adjust
ments. Regarding TD, as there are no regulated standards for 
the design of occlusal surfaces, the position and dimensions 
of the design, such as groves and cusps, vary. Different 
technicians may have different preferences and ideas. 
Current designs mainly rely on crown’s intra-oral ‘try-in’ to 
evaluate its quality. If patients found no discomfort or a 
‘high’ bite, then this design is acceptable. However, the de
sign aspects shown in this study can affect the biomecha
nical performance and thus exhibit different fatigue lifetimes 
(Fig. 13). The small differences in design played an essential 
role in the long-term success rate. 

According to the heat map (Fig. 5), based on the 3D stan
dard deviation results, the maximum positive/negative de
viations frequently appeared at the groove or central fossa 
area in most cases. This may be due to the relatively lower 
accuracy of intraoral scanners in detecting Z-axis (depth) 
data. The precision of digital scanners is an essential factor in 
maintaining the accuracy of the dental crown design. Many 

Fig. 8 – Trend of mean occlusion steepness when increasing 
the offset from 0.5 to 3 mm on the lateral occlusion.   

Fig. 9 – Max principal stress (A,C) and Tresca (Shear) stress (B,D) of tooth preparation (A,B) and adhesive cement layer (C,D) 
forthe NT group. 
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studies have revealed that the accuracy of various intraoral 
and extraoral scanners must be improved, especially for full- 
arch scanning. A 50 µm accuracy level is sufficient for man
ufacturing [31]. Some studies have indicated that intraoral 
scanners have more errors in Z-axis (depth) scanning [32,33]. 
This might explain the maximum discrepancy in AI-gener
ated crowns that often appeared around the groove or central 
fossa area, as they were usually the lowest areas on the oc
clusal surface.    

Two different approaches were used in this study to measure 
the number and area of occlusal contact points. In Geomagic 
software, the measurement of occlusal contact was achieved 
by vertically shifting the crowns manually to be measured, 
followed by Boolean operation and maintaining the inter
section part of the crown and the opposing dentition. While 
Meshlab software created a distance map between the crown 
and the opposing dentition, occlusal contact can be calcu
lated by filtering the mesh vertices with distances less than 

Fig. 10 – Max principal stress (A,C) and Tresca (Shear) stress (B,D) of tooth preparation (A,B) and adhesive cement layer (C,D) 
for the AI group.   

Fig. 11 – Max principal stress (A,C) and Tresca (Shear) stress (B,D) of tooth preparation (A,B) and adhesive cement layer (C,D) 
for the BI group.   
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200 µm. Several studies have used software for dental oc
clusion research [20,34–36]. However, none of these studies 
compared the uniformity of the two approaches. Although 
implemented by different approaches in measuring occlusal 
contacts, we found very high uniformity in the results mea
sured by the two software programs. The deviation was cal
culated to be within 5 % of all the occlusal contacts measured 
in this study. Both software programs can be useful tools for 
measuring occlusal contact in dentistry. 

Occlusion remains a long-standing challenge in prostho
dontics. The occlusal evaluation cannot only be based on 
static occlusion. Dynamic occlusion is critical for the design 
of a good dental crown. To better simulate the trajectory of 
the tooth, lateral movement of the crowns at four horizontal 
excursive positions (0.5–3.0 mm) from the maximal inter
cuspation was adopted. The occlusal contact number and 
area decreased as the lateral movement increased in most 
cases, except in the BI group. This result was consistent with 
that of Ogawa et al. [37]. In this study, the steepness of the 
occlusal area was measured. From the viewpoint of anatomic 
features, the fossa area is steeper than the cuspal area [38], 
which is in accordance with our results. 

In our study, the occlusal contact point number and area 
showed no significant differences among the four groups, as the 
data variation was quite significant with high SDs. This result 
identifies with a study from Watanabe-Kanno et al. [39]. The 
number and area of contact points depend on the individual’s 
anatomy. In addition, the degrees of overjet and overbite are 
important factors that influence occlusal contact [40,41]. 

This study semi-quantitatively evaluated the biomecha
nical performance of an AI-generated 3D dental subject using 
an in silico fatigue developed by Homaei et al. [16], a validated 
dynamic non-linear FE model encompassing multi-layered 
teeth, materials (crown and resin cement), and design. This 
model closely matched the simulated fatigue lifetimes and 
experimental results for premolar crowns with different 
materials. Ideally, FEA estimates the fatigue properties based 
on the material type, stress distribution, Young’s modulus, 
and Poisson’s ratio, and it represents the condition that all 
parts of the model are homogeneous, isotropic, and linearly 
elastic. However, the material used in the experimental setup 
may have some nonhomogeneous structures, and the inter
faces within the model may not have a constant elastic 
modulus or strength. The inconsistency between the 

Fig. 12 – Max principal stress (A,C) and Tresca (Shear) stress (B,D) of tooth preparation (A,B) and adhesive cement layer (C,D) 
for the TD group.   

Table 4 – Stress distribution on crowns, maximum principal and shear stress on adhesive layer and dentine area with 
different designs subjected to physiological occlusal forces.         

Groups Stress Distribution on Crown Max Stresses on Dentine Max Stresses on Adhesive Layer 

Central Fossa 
Area (MPa) 

Around Contact 
Area (MPa) 

Max. Principal 
Stress (MPa) 

Max. Shear 
Stress (MPa) 

Max. Principal 
Stress (MPa) 

Max. Shear 
Stress (MPa)  

NT  23.97  24.13  74.79  147.16  67.22  41.00 
AI  26.73  28.48  79.98  150.60  70.25  138.41 
BI  20.04  18.90  60.79  125.30  63.18  110.05 
TD  40.72  54.18  72.22  155.66  74.71  160.43   
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theoretical simulation and experimental study causes higher 
fatigue lifetimes in the simulation than in the experimental 
results. Even so, the numbers still showed good correlations, 
at least in consistency. 

In FEA, the amount of loading applied to the indenter was 
determined based on the average fatigue failure loads in an 
experimental study [42]. A previous study [43] formulated an 
S–N fatigue curve for LD dental ceramics. Using the fatigue 
properties of the LD material from the reported S-N curve and 
finding the stress value in the presented ceramic crowns, the 
number of cycles under loading can be calculated using the 
non-linear Basquin formula [26,27]. The present study con
sidered different occlusal forces (100–400 N). The stress values 
were computed for each load. The Force vs. lifetime curve (F-N 
curve) was used to compare the lifetime of each crown design 
in an informative approach. This representation provides va
luable information on the lifetimes of different crown designs 
and their relationships with exceeding loading. However, it 
should be noted that the estimated lifetime based on the FEA 
has some limitations. Owing to the complex geometry of 
dental crowns, various parameters, such as the degree of the 

polished surface and the possible microcracks, may affect the 
failure phenomena. For instance, monitoring the initiation of a 
microcrack can provide more insightful data on the lifetime of 
a ceramic crown than recording the maximum stress. Thus, 
the FE models in the present study can be improved using 
various advanced computational methods to estimate the 
lifetime [44–46]. 

5. Conclusion 

We proposed a new artificial intelligence (AI) approach to 
design dental crowns based on a true 3D deep learning al
gorithm (3D-DCGAN) that showed the least discrepancy with 
natural teeth compared to BI and TD. Regarding occlusal 
contact point and area, 3D-DCGAN, BI, and TD have com
parable occlusal relationships that match well with natural 
teeth. Regarding the fatigue properties of lithium disilicate 
crowns, dynamic FEA revealed no stress concentration for 
3D-DCCAN-designed crowns, and the estimated lifetime was 
best matched with natural teeth. 

CRediT authorship contribution statement 

H. Ding: Contributed to design, data acquisition, analysis, and 
interpretation, drafted and critically revised the manuscript; 
Z. Cui and E. Maghami: Contributed to analysis and inter
pretation; Y. Chen: Contributed to data acquisition; W. Wang, 
J.P. Matinlinna and M.F. Burrow: Contributed to conception, 
critically revised the manuscript; E.H.N. Pow and Alex Fok: 
Contributed to grant acquisition and critically revised the 
manuscript. J.K.H. Tsoi: Contributed to grant acquisition, 
conception and design, data analysis and interpretation, 
drafted and critically revised the manuscript. All authors 
gave their final approval and agreed to be accountable for all 
aspects of the work. 

Acknowledgements 

This work is submitted in partial fulfilment of the require
ments of the degree of PhD for the first author at the Faculty 
of Dentistry, The University of Hong Kong. Part of the data 
has been presented in the 35th Annual Scientific Meeting of 
the IADR-SEA Division, Hong Kong, along with support from 
IADR-SEA Research Category Award (Dental Materials and 
Biomaterials Category) in 2021. This research study is sup
ported by General Research Fund from the Research Grants 
Council, Hong Kong (GRF 17120220), Health and Medical 
Research Fund from the Health Bureau, The Government of 
the Hong Kong SAR (HMRF 08193056), and Innovation and 
Technology Fund from Innovation and Technology 
Commission, The Government of the Hong Kong SAR (MHP/ 
075/20). 

references  

[1] Norvig P. Artificial intelligence: early ambitions. N Sci 2012. 
216:ii-iii. 

Fig. 13 – Force vs. lifetime estimation (in log scale) for the 
crown designs in (A) central fossa area and (B) contact 
point area.   

330 dental materials 39 (2023) 320–332   



[2] Mehl A, Blanz V, Hickel R. Biogeneric tooth: a new 
mathematical representation for tooth morphology in lower 
first molars. Eur J Oral Sci 2005;113:333–40. 

[3] Mehl A, Blanz V. New procedure for fully automatic occlusal 
surface reconstruction by means of a biogeneric tooth 
model. Int J Comput Dent 2005;8:13–25. 

[4] Atlas A, Isleem W, Bergler M, Fraiman HP, Walter R, Lawson 
ND. Factors affecting the marginal Fit of CAD-CAM 
restorations and concepts to improve outcomes. Curr Oral 
Health Rep 2019;6:277–83. 

[5] Chen Y, Lee JKY, Kwong G, Pow EHN, Tsoi JKH. Morphology 
and fracture behavior of lithium disilicate dental crowns 
designed by human and knowledge-based AI. J Mech Behav 
Biomed Mater 2022;131:105256. 

[6] Hwang J-J, Jung Y-H, Cho B-H, Heo M-S. An overview of deep 
learning in the field of dentistry. Imaging Sci Dent 
2019;49:1–7. 

[7] Ding H, Wu J, Zhao W, Matinlinna JP, Burrow MF, Tsoi JK-H. 
Artificial intelligence in dentistry – a review. Front Dent Med 
2023;4:1085251. 

[8] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley 
D, Ozair S, et al. Generative adversarial nets. Adv Neural Inf 
Process Syst 2014:27. 

[9] Hwang J.-J., Azernikov S., Efros A.A., Yu S.X. Learning beyond 
human expertise with generative models for dental 
restorations. arXiv preprint arXiv:180400064. 2018. 

[10] Yuan F, Dai N, Tian S, Zhang B, Sun Y, Yu Q, et al. 
Personalized design technique for the dental occlusal 
surface based on conditional generative adversarial 
networks. Int J Numer Method Biomed Eng 2020;36:e3321. 

[11] Radford A., Metz L., Chintala S. Unsupervised representation 
learning with deep convolutional generative adversarial 
networks. arXiv preprint arXiv:151106434. 2015. 

[12] Wu J., Zhang C., Xue T., Freeman W.T., Tenenbaum J.B. 
Learning a probabilistic latent space of object shapes via 3d 
generative-adversarial modeling. Proceedings of the 30th 
International Conference on Neural Information Processing 
Systems 2016. p. 82–90. 

[13] Wiskott HA, Belser UC. A rationale for a simplified occlusal 
design in restorative dentistry: historical review and clinical 
guidelines. J Prosthet Dent 1995;73:169–83. 

[14] Türp JC, Greene C, Strub J. Dental occlusion: a critical 
reflection on past, present and future concepts. J Oral 
Rehabil 2008;35:446–53. 

[15] Maghami E, Homaei E, Farhangdoost K, Pow EHN, Matinlinna 
JP, Tsoi JK-H. Effect of preparation design for all-ceramic 
restoration on maxillary premolar: a 3D finite element study. 
J Prosthodont Res 2018;62:436–42. 

[16] Homaei E, Jin X-Z, Pow EHN, Matinlinna JP, Tsoi JK-H, 
Farhangdoost K. Numerical fatigue analysis of premolars 
restored by CAD/CAM ceramic crowns. Dent Mater 
2018;34:e149–57. 

[17] Cignoni P., Callieri M., Corsini M., Dellepiane M., Ganovelli F., 
Ranzuglia G. Meshlab: an open-source mesh processing tool. 
Eurographics Italian Chapter Conference: Salerno, Italy; 
2008. p. 129–36. 

[18] Wan B, Shahmoradi M, Zhang Z, Shibata Y, Sarrafpour B, 
Swain M, et al. Modelling of stress distribution and fracture 
in dental occlusal fissures. Sci Rep 2019;9:4682. 

[19] Abduo J, Bennamoun M, Tennant M, McGEACHIE J. Effect of 
prosthodontic planning on lateral occlusion scheme: a 
comparison between conventional and digital planning. J 
Appl Oral Sci 2015;23:196–205. 

[20] Abduo J. Geometrical effects of conventional and digital 
prosthodontic planning wax-ups on lateral occlusal contact 
number, contact area, and steepness. J Oral Sci 
2017;59:431–8. 

[21] Grosland NM, Shivanna KH, Magnotta VA, Kallemeyn NA, 
DeVries NA, Tadepalli SC, et al. IA-FEMesh: an open-source, 
interactive, multiblock approach to anatomic finite element 
model development. Comput Methods Prog Biomed 
2009;94:96–107. 

[22] Dejak B, Młotkowski A, Langot C. Three-dimensional finite 
element analysis of molars with thin-walled prosthetic crowns 
made of various materials. Dent Mater 2012;28:433–41. 

[23] Andreaus U, Colloca M, Iacoviello D. Coupling image 
processing and stress analysis for damage identification in a 
human premolar tooth. Comput Methods Prog Biomed 
2011;103:61–73. 

[24] Jiang W, Bo H, Yongchun G, LongXing N. Stress distribution 
in molars restored with inlays or onlays with or without 
endodontic treatment: a three-dimensional finite element 
analysis. J Prosthet Dent 2010;103:6–12. 

[25] Dejak B, Mlotkowski A. Three-dimensional finite element 
analysis of strength and adhesion of composite resin versus 
ceramic inlays in molars. J Prosthet Dent 2008;99:131–40. 

[26] Mutluay MM, Yahyazadehfar M, Ryou H, Majd H, Do D, Arola 
D. Fatigue of the resin–dentin interface: a new approach for 
evaluating the durability of dentin bonds. Dent Mater 
2013;29:437–49. 

[27] Yahyazadehfar M, Mutluay MM, Majd H, Ryou H, Arola D. 
Fatigue of the resin–enamel bonded interface and the 
mechanisms of failure. J Mech Behav Biomed Mater 
2013;21:121–32. 

[28] Ausiello P, Franciosa P, Martorelli M, Watts DC. Numerical 
fatigue 3D-FE modeling of indirect composite-restored 
posterior teeth. Dent Mater 2011;27:423–30. 

[29] Nalla RK, Kinney JH, Marshall SJ, Ritchie RO. On the in vitro 
fatigue behavior of human dentin: effect of mean stress. J 
Dent Res 2004;83:211–5. 

[30] Ye Y, Di P, Jia S, Lin Y. Occlusal force and its distribution in 
the position of maximum intercuspation in individual 
normal occlusion: a cross-sectional study. Zhong Hua Kou 
Qiang Yi Xue Za Zhi = Chin J Stomatol 2015;50:536–9. 

[31] Rudolph H, Luthardt RG, Walter MH. Computer-aided 
analysis of the influence of digitizing and surfacing on the 
accuracy in dental CAD/CAM technology. Comput Biol Med 
2007;37:579–87. 

[32] Amornvit P, Rokaya D, Sanohkan S. Comparison of accuracy 
of current ten intraoral scanners. Biomed Res Int 
2021;2021:2673040. 

[33] Nagy Z, Simon B, Mennito A, Evans Z, Renne W, Vág J. 
Comparing the trueness of seven intraoral scanners and a 
physical impression on dentate human maxilla by a novel 
method. BMC Oral Health 2020;20:1–10. 

[34] Buschang PH, Ross M, Shaw SG, Crosby D, Campbell PM. 
Predicted and actual end-of-treatment occlusion produced 
with aligner therapy. Angle Orthod 2015;85:723–7. 

[35] Xiao N, Sun Y, Zhao Y, Wang Y. Preliminary study on three 
digital analysis methods for analyzing the distribution and area 
of occlusal contacts. J Peking Univ, Health Sci 2020;52:144–51. 

[36] Solaberrieta E, Otegi JR, Goicoechea N, Brizuela A, Pradies G. 
Comparison of a conventional and virtual occlusal record. J 
Prosthet Dent 2015;114:92–7. 

[37] Ogawa T, Ogimoto T, Koyano K. Pattern of occlusal contacts 
in lateral positions: canine protection and group function 
validity in classifying guidance patterns. J Prosthet Dent 
1998;80:67–74. 

[38] Wang M, Mehta N. A possible biomechanical role of occlusal 
cusp–fossa contact relationships. J Oral Rehabil 
2013;40:69–79. 

[39] Watanabe-Kanno GA, Abrão J. Study of the number of 
occlusal contacts in maximum intercuspation before 
orthodontic treatment in subjects with Angle Class I and 

331 dental materials 39 (2023) 320–332   



Class II Division 1 malocclusion. Dent Press J Orthod 
2012;17:138–47. 

[40] Magalhães IB, Pereira LJ, Marques LS, Gameiro GH. The 
influence of malocclusion on masticatory performance: a 
systematic review. Angle Orthod 2010;80:981–7. 

[41] Al-Rayes NZ, Hajeer MY. Evaluation of occlusal contacts 
among different groups of malocclusion using 3D digital 
models. J Conte Dent Pr 2014;15:46–55. 

[42] Homaei E, Farhangdoost K, Pow EHN, Matinlinna JP, Akbari 
M, Tsoi JK-H. Fatigue resistance of monolithic CAD/CAM 
ceramic crowns on human premolars. Ceram Int 
2016;42:15709–17. 

[43] Homaei E, Farhangdoost K, Tsoi JKH, Matinlinna JP, Pow 
EHN. Static and fatigue mechanical behavior of three dental 

CAD/CAM ceramics. J Mech Behav Biomed Mater 
2016;59:304–13. 

[44] Carrara P, Ambati M, Alessi R, De, Lorenzis L. A framework to 
model the fatigue behavior of brittle materials based on a 
variational phase-field approach. Comput Methods Appl 
Mech Eng 2020;361:112731. 

[45] Maghami E, Pejman R, Najafi AR. Fracture micromechanics 
of human dentin: a microscale numerical model. J Mech 
Behav Biomed Mater 2021;114:104171. 

[46] Desmorat R, Ragueneau F, Pham H. Continuum damage 
mechanics for hysteresis and fatigue of quasi-brittle 
materials and structures. Int J Numer Anal Methods 
Geomech 2007;31:307–29.  

332 dental materials 39 (2023) 320–332   


	Morphology and mechanical performance of dental crown designed by 3D-DCGAN
	1. Introduction
	2. Materials and methods
	2.1. Dataset
	2.2. GAN Training
	2.3. Quality evaluation
	2.3.1. Cusp angle
	2.3.2. 3D Comparison
	2.3.3. Occlusal contact measurement
	2.3.4. Dynamic Finite Element Analysis

	2.4. Statistical analysis

	3. Results
	3.1. Cusp angle
	3.2. 3D Morphology comparison
	3.3. Occlusal Contact
	3.4. Dynamic finite element analysis

	4. Discussion
	5. Conclusion
	CRediT authorship contribution statement
	Acknowledgements




