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Abstract: The Clouds and the Earth’s Radiant Energy System (CERES) generates one of the few global
satellite radiation products. The CERES ARM Validation Experiment (CAVE) has been providing
long-term in situ observations for the validation of the CERES products. However, the number of
these sites is low and their distribution is globally sparse, and particularly the surface net radiation
product has not been rigorously validated yet. Therefore, additional validation efforts are highly
required to determine the accuracy of the CERES radiation products. In this study, global land surface
measurements were comprehensively collected for use in the validation of the CERES net radiation
(Rn) product on a daily (340 sites) and a monthly (260 sites) basis, respectively. The validation results
demonstrated that the CERES Rn product was, overall, highly accurate. The daily validations had
a Mean Bias Error (MBE) of 3.43 W¨m´2, Root Mean Square Error (RMSE) of 33.56 W¨m´2, and R2 of
0.79, and the monthly validations had an MBE of 3.40 W¨m´2, RMSE of 25.57 W¨m´2, and R2 of 0.84.
The accuracy was slightly lower for the high latitudes. Following the validation, the monthly CERES
Rn product, from March 2000 to July 2014, was used for a further analysis. The global spatiotemporal
variation of the Rn, which occurred during the measurement period, was analyzed. In addition,
two hot spot regions, the southern Great Plains and south-central Africa, were then selected for
use in determining the driving factors or attribution of the Rn variation. We determined that Rn

over the southern Great Plains decreased by ´0.33 W¨m´2 per year, which was mainly driven by
changes in surface green vegetation and precipitation. In south-central Africa, Rn decreased at a rate
of ´0.63 W¨m´2 per year, the major driving factor of which was surface green vegetation.
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1. Introduction

The surface radiation budget (SRB) plays an important role in hydrological and biological
modeling, and agricultural science and its applications [1,2]. The SRB components consist of the
downward shortwave irradiance (DSW), upward shortwave irradiance (USW), downward longwave
flux (DLW), upward longwave flux (ULW), and net all-wave radiation (Rn). The surface Rn is the sum
of the four formerly-mentioned radiation components, and can be represented mathematically:

Rn “ RÓs ´ RÒs ` RÓl ´ RÒl (1)

where Rs
Ó denotes the DSW (W¨m´2), Rs

Ò denotes the USW (W¨m´2), Rl
Ó denotes the DLW (W¨m´2),

and Rl
Ò denotes the ULW (W¨m´2).
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The surface Rn can be obtained by ground observation stations, general circulation model (GCM)
simulations, and remote sensing retrieval [3]. Comparatively, in situ observations have the highest
accuracy; however, they are very expensive to measure at ground sites. Additionally, these ground
sites are sparsely distributed, globally, and cannot meet the requirements of various applications.
Data simulated by GCMs usually have a coarse spatial resolution and low accuracy [2]. Remote sensing
retrieval has become one of the most important methods for obtaining the radiation data [4]. However,
clouds make it impossible to retrieve surface thermal radiation components directly from satellite
observations, and the alternative solution is to estimate the all-wave net radiation from the satellite
shortwave net radiation product, in conjunction with other information [5,6].

The CERES surface net radiation data are calculated using the radiative transfer model, with the
atmospheric and surface properties obtained from a variety of sources used as the model inputs, but
constrained by both solar-reflected and Earth-emitted radiation from the top of the atmosphere (TOA) for
all-sky and clear-sky conditions [7]. Charlock et al. [8] conducted the CERES/ARM/GEWEX Experiment
(CAGEX) before the launch of satellites, in order to validate the Fu-Liou radiative transfer model [9].
They found that the modeled longwave radiation agrees well with the in situ observations, while the
shortwave radiation exhibits a large difference between the modeled and in situ data. Since then, CAGEX
has been developed to become the CERES ARM Validation Experiment (CAVE) [10], which provides
validation data and model parameters, which are measured on the ground for each version of the CERES
radiation product. It includes 84 sites, with limited spatial distribution [11]. David Rutan et al. [12]
utilized 40 sites in order to validate the Clouds and Radiative Swath (CRS), and found that the RMSEs
were related to the land cover type. Gui et al. [13] validated the CERES- Monthly Gridded Radiative
Fluxes and Clouds (FSW) in the Tibetan Plateau, and found that the CERES had a lower accuracy
for shortwave radiation. Wang et al. [14] also found that FLASHFlux/CERES (Fast Longwave and
Shortwave Fluxes Time Interpolated and Spatially Averaged/CERES) satellite products over rugged
terrains showed absolute errors of about 31.4 W¨m´2 (12.3%). Pan et al. [15] assessed the CERES Rn

product by using 50 ground sites in China, and showed that 56% of the net radiation errors come from
the net shortwave radiation. Kratz et al. [16] validated the CERES_Ed2b algorithms, and found that
the shortwave radiation had systematic errors of approximately 14–21 W¨m´2, which does not meet
the meteorological research. In addition, the CERES Ocean Validation Experiment (COVE) [17] has
been collecting data for the validation of CERES on the sea using one site. Charlock et al. [18] validated
the CERES data on the sea in 2001, using the Chesapeake Lighthouse and Aircraft Measurements for
Satellites (CLAMS) and COVE data, and the results were good. However, all of these previous studies
into the validation of the CERES had a low number and distribution of sites, and the accuracies of the
CERES Rn around the global land surface are still generally unknown. Therefore, the CERES surface net
radiation product needs to be validated globally.

Wild et al. [19] obtained a global Rn mean value from 2000 to 2004 by calculating the best estimation
of shortwave and longwave radiation over the land surface and oceans utilizing 43 Coupled Model
Intercomparison Project Phase 5 (CMIP5) model datasets. Sobrino et al. [20] researched the DSW and
Rn around the globe from 1980 to 2010 by using National Centers for Environmental Prediction (NCEP)
and the National Center of Atmospheric Research (NCAR) re-analysis data and detected a decrease
in these values in selected areas. Gao et al. [21] detected a decrease in Rn over China by using the
1961–2010 data of 699 meteorological stations. Shi et al. [22] fused several radiation data and analyzed
the spatiotemporal variation of SRB over the Tibetan Plateau in the past 30 years. However, these
previous studies on Rn variation were based mainly on data with high uncertainties, and some research
focused only on partial areas. Therefore, global spatiotemporal analysis of Rn utilizing data with high
accuracy is urgently needed.

In this study, the measurements obtained from observation sites around the world were collected
to be used for validating the CERES_SYN1deg_Ed3A Rn product under all-sky conditions on a daily
(340 sites) and a monthly (260 sites) basis, respectively. Considering that most Rn variation studies
were mainly developed in limited areas and the chosen radiation data had high uncertainties, the
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CERES monthly Rn product, from March 2000 to July 2014, was used for a further spatiotemporal
analysis across the global land surface. As the southern Great Plains and south-central Africa are
located in special and vital geographical locations, they were chosen as hot spots for a detailed analysis
of the relationship between the variations in surface Rn and their driving factors.

This paper proceeds as follows: the CERES, in situ observations, driving factor datasets, and
experiment methods are introduced in Section 2; the validation and spatiotemporal analysis results
and discussions are shown in Section 3; and the conclusions are provided in Section 4.

2. Data and Methods

2.1. Data

2.1.1. The CERES Data

The CERES_SYN1deg_Ed3A product is used in this study. The “SYN” (Synoptic Radiative Fluxes
and Clouds) means that this version provides radiation data on clear and all sky conditions, the ”1deg”
means it has a 1 degree spatial resolution, and the “Ed3A” is the version number [23]. In addition
to the radiation flux, this version also provides MODIS cloud properties and aerosols information.
As the three-hourly sampled geostationary (GEO) radiances and cloud properties were used to model
the diurnal variability between observations, this version achieves more accurate retrieval results
than previous versions [24]. The CERES consists of three-hourly, daily, and monthly data, released
on Greenwich Mean Time (GMT) [25]. The data we used ranged from 1 March 2000 to 30 July 2014.
In this study, three-hourly and monthly DSW, USW, DLW, and ULW products, in all-sky conditions,
were selected to calculate the Rn by us to be used in the validation.

2.1.2. In Situ Observation Data

Observations taken from 15 measurement networks, shown in Figure 1, were collected, and the
metadata for these measurement networks are given in Table 1 [26–36]. The sites are located around
the Earth’s surface, representing different land cover types, such as forests (135 sites), scrublands
(20 sites), grasslands (76 sites), bare lands (four sites), wetlands (18 sites), tundra (two sites), ice
(23 sites), croplands (61 sites), and urban areas (one site). Some ground sites were eliminated from the
monthly validation because their monthly in situ observations were less than 12.
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Table 1. Metadata for the 15 measurement networks.

Abbr. Full Name Num. URL

La Thuile La Thuile dataset 188 [26]
CEOP Coordinated Enhanced Observation Network of China 16 z

CERN Chinese Ecosystem Research Network 1 [27]
AsiaFlux AsiaFlux dataset 19 [28]

GAME.ANN GEWEX Asian Monsoon Experiment 13 z

SURFRAD Surface Radiation Network 7 [29]
BSRN Baseline Surface Radiation Network 5 [30]
ARM Atmospheric Radiation Measurement 29 [31]

SMOSREX Surface Monitoring of Soil Reservoir Experiment 1 [32]
CEOPInt z 7 z

ASIAQ Asiaq- Greenland Survey 1 [33]
GC-NET Greenland Climate Network 21 [34]

HiWATER HiWATER dataset 20 z

LBA-ECO The Large-Scale Biosphere-Atmosphere Experiment in Ecology 10 [35]
SAFARI A Southern African Regional Science Initiative 2 [36]

Data from all those networks were checked site by site, and some extremely abnormal values
were removed. Most networks had long time range observations, whereas CEOP and HiWATER in
China had shorter time ranges and discontinuous observation data. All are trustworthy based on
network control and continuous project support and have been utilized in many applications.

2.1.3. Land Cover Type Data

Given that the surface Rn is closely related to the land cover type, MCD12Q1 [37] land cover type
data were used in this study, as shown in Figure 2 for reference.
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2.1.4. Data for Attribution Analysis

As the sum of the four surface radiation components, Rn can be synthetically affected by many
atmospheric and land surface conditions. Therefore, it is necessary to select multiple driving factors
for further analysis in order to provide evidence to support the explanations for the variations in
Rn. Normalized Difference Vegetation Index (NDVI), which characterizes the vegetation growth and
coverage states, affected surface albedo directly [38]. Additionally, vegetation also influences surface
temperature and diurnal temperature range, and further surface longwave radiation [39]. The snow cover
affects surface albedo that regulates USW. Albedo largely determines surface shortwave net radiation.
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Solar radiation significantly affects the Tm that determines the ULW directly as a feedback according to
Stefan-Boltzmann law. As for atmospheric factors, both precipitation (Pre) and cloud cover (CC) affect the
DSW and DLW [40]. In addition, Pre greatly affects vegetation growth. So, all of the chosen factors are
helpful to analyze the Rn variations. The characteristics of these data are listed in Table 2.

Table 2. Metadata for the Driving Factors.

Driving Factors Sources Units Space
Resolution

Time
Resolution Time Range

Precipitation (Pre) Climatic Research Unit (CRU)
TS3.22 Precipitation [41] mm 0.5˝ monthly 1.2000–12.2013

Cloud Cover (CC) Climatic Research Unit (CRU)
TS3.22 Cloud Cover [41] % 0.5˝ monthly 1.2000–12.2012

Temperature Range (T∆) CRU TS3.22 Diurnal Temperature
Range [41]

˝C 0.5˝ monthly 1.2000–12.2013

Surface Mean
Temperature (Tm) CRU TS3.22 Mean Temperature [41] ˝C 0.5˝ monthly 1.2000–12.2013

NDVI GLASS products [42,43] z 0.05˝ 8 days 1.2000–12.2013

Snow Cover (SC) MODIS/Terra [44] % 0.05˝ monthly 1.2000–12.2013

Albedo GLASS products [42,45,46] z 0.05˝ 8 days 1.2000–12.2013

CRU datasets are based on interpolated station observations. Harris et al. [47] found that each
variable of the CRU datasets agree tightly with the other published datasets at regional and global
scales, such as mean temperature data of the University of Delaware (UDEL), precipitation data of
the Global Precipitation Climatology Centre (GPCC), DTR from Vose et al. [48]. The GLASS products,
which are spatiotemporally continuous, have long temporal ranges and higher spatial resolutions than
the similar satellite products. They are produced from multiple satellite data but mainly from MODIS
data for the period of 2000–2013 [42].

2.2. Methodology

2.2.1. Validation

The three-hourly surface Rn values were calculated from the four radiation components using
Equation (1). As the CERES data were released in GMT, while ground sites were in local time, the
CERES sample data were converted into local time formats and averaged to the daily values for use in
the for daily validations. The CERES monthly sample data were used for the monthly validations.

Due to the fact that different measurement networks have different temporal resolutions and units,
the observations were handled as follows: for calculating daily in situ observations, measurement data
must be recorded in every hour of one day; for obtaining the monthly in situ observations, at least six
daily data should be recorded every 10 days in one month (the daily data should be recorded for more
than 18 days in February). If the data did not meet these conditions, they would be eliminated before
the validation. We unified the units of measurement to be in W¨m´2 and calculated the average for the
daily/monthly in situ observations. This method is trustworthy and controls the data quality strictly.
Data recorded at sites that did not have at least 12 samples were also eliminated. In total, there were
340 sites used for the daily validations and 260 sites used for the monthly validations.

In order to express the land cover complexity in a better way, land cover data were re-sampled
from 0.5 km to 0.05˝. The normalized square deviation of the merging pixels was then taken to be the
new pixel value. The new dataset was called the “land cover complexity”. This dataset was the base
map on which the ground sites were displayed, and used as a reference for comparing the land surface
complexity. In additionally, we also made a complexity data set with a 1˝ resolution, matching the
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CERES data. The code names for the International Geosphere-Biosphere Program (IGBP) land cover
types are shown in Table 3.

Table 3. Code Names of IGBP Land Cover Types.

Code Names Land Cover Types Code Names Land Cover Types

0 Water 9 Savannas
1 Evergreen Needle leaf Forest 10 Grasslands
2 Evergreen Broadleaf Forest 11 Permanent Wetland
3 Deciduous Needle leaf Forest 12 Croplands
4 Deciduous Broadleaf Forest 13 Urban and Built-Up
5 Mixed Forests 14 Cropland/Natural Vegetation
6 Closed Shrublands 15 Snow and Ice
7 Open Shrublands 16 Barren or Sparsely Vegetated
8 Woody Savannas

The Mean Bias Error (MBE), Root-Mean-Square Error (RMSE), and coefficient of determination
(R2) were selected to measure the validation results.

2.2.2. Spatiotemporal Analysis

The monthly CERES Rn data were chosen for the spatiotemporal analysis, but also aggregated to
seasonal and annual scales. The driving factor datasets have different spatial and temporal resolutions,
which are higher than those of the CERES. Before beginning the quantitative analysis, we re-sampled
all of the datasets at a resolution of 1˝, using the following principles. If all the merging pixels have no
null values, average them directly. In the case where the number of null merging pixels is more than
60% of the total, this new pixel value is judged a null value. If the number of null pixels is less than
60%, take the average of the remaining non-null values as the new pixel value. All the datasets are
re-sampled to obtain monthly mean values (the NDVI re-sampling is based on the maximum pixel
value of each month). If the time range of the data recorded in a month is less than 20 days, the data in
that month are excluded.

The effects of the driving factors on the Rn were analyzed using general linear models (GLMs) [49].
First, we obtained the correlation coefficient (R) between the driving factors and the Rn. Then, the
driving factors entering the model were selected by a forward stepwise procedure by correlation
order [50]. When adding a new independent variable or driving factor into the GLMs, the explained
variance of the new model increases. We subtracted the previous explained variance to calculate the
percentage sum of squares explained (%SS). However, the result cannot get rid of factors’ collinearity.
The %SS of dependent driving factors may have a larger difference as the latter factor provides little
information for the GLMs [51]. Considering the limitations of the %SS, the partial least squares
(PLS) regression [52] was developed and combined with the variable importance in the projection
(VIP) scores to be used in a further analysis. The aim of this further analysis was to characterize the
relative importance of these driving factors, in terms of their influence on the Rn dynamics. All of
the independent variables are projected into principal components, and the VIP score of independent
variable j can be represented mathematically:

VIPj “

g

f

f

f

f

f

f

e

k ‚
m
ř

h“1
r2pY, chqw2

hj

m
ř

h“1
r2pY, chq

(2)

where k is the number of independent variable; ch is the one of m principal components; r(Y, ch) is the
correlation index between ch and dependent variable Y; whj is the weight of independent variable j for
ch. Thus, the PLS regression is the combination of multivariable linear regression modeling, correlation
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analysis, and principal components analysis, showing its strength when the independent variables are
interrelated and when there are fewer data samples available [53].

3. Results Analysis and Discussion

3.1. Validation of the CERES Rn Product

3.1.1. Daily Scale

The daily CERES Rn samples, from March 2000 to July 2014, were compared with the observations
taken from 340 sites. The resulting density of scatter diagram is shown in Figure 3.
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Figure 3 indicates that the daily CERES Rn data show a strong consistency with the in situ
observations. The MBE of the CERES data samples was 3.43 W¨m´2, the RMSE was 33.56 W¨m´2, and
the R2 was 0.79. The MBE was positive, therefore showing that the CERES Rn data are slightly larger
than the in situ observations.

The validation results of the CERES Rn, at each site, are shown in Figure 4. The grey scale represents
the land cover complexity, to be used as a reference.

The MBE and RMSE values, at a number of sites in China, are much larger than most sites in
Europe and America. This may be related to the measurement accuracy of different networks, as, for
example, the La Thuile and the ARM networks have higher accuracy requirements. Compared with other
networks, the CEOP, HiWATER, and CEOPInt, built in China, have poorer data continuity and a lower
quantity of data. The CERES accuracy in Greenland appears to be lower. Inamdar et al., also found
the CERES net shortwave radiation has large errors in the underlying surface snow [54]. The CERES
Rn showed bad performance on a site in the central southern region of the United States. By checking
the 0.05˝ land cover complexity results, we determined that this site is located on a more complicated
underlying surface. Considering that the CERES Rn showed strong agreement with other sites in this
region, the accuracy is still considered trustworthy.
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3.1.2. Monthly Scale

The monthly CERES Rn samples were compared with the observations taken from 260 sites.
The resulting density of scatter diagram is shown in Figure 5.
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At a monthly scale, the MBE was 3.40 W¨m´2, the RMSE was 25.57 W¨m´2, and the R2 was 0.84.
This indicates that the CERES Rn data are slightly larger than the in situ observations, regardless of noise.

The validation results, at each ground site, are displayed in Figure 6.
Compared with the daily validation results, the performance of the monthly product is much

better. It should be noted that there appears to be a poorer precision at a number of sites near the coast,
and in Greenland. This reduction in precision may be caused by the large pixel areas with higher land
cover complexity. Both daily validation and monthly validation showed lower accuracy of CERES Rn

over Greenland.
The preprocessing of in situ data and CERES data was very strict, and the results are trustworthy.

The validation results demonstrate that the CERES Rn product is, overall, highly accurate, although
the accuracy is slightly lower for high latitudes.
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3.2. Spatiotemporal Analysis

3.2.1. Global Analysis of Rn

The monthly CERES Rn data, from 2001 to 2013, were used to detect the mean values of the Rn

and annual trends in the Rn across the land surface, as showed in Figure 7. Data from years 2000 and
2014 covered less than one full year and were used only for the seasonal analysis.

There are entirely different distributions and trends of the Rn across the land surface over the
past 13 years. It is evident that Rn, in some regions, has been increasing, such as in Greenland, the
African tropical rainforest regions, the southeast of Brazil, the coast of Antarctica, and the west of
Australia. Over the southwest of Greenland, Rn increased the fastest, at a rate of 4.21 W¨m´2 per year.
Conversely, there are some regions where Rn has decreased over time, such as in the southeast of
Argentina, the African savannah, the southern Great Plains, and especially on the eastern side of the
Andes Mountains, where Rn has decreased at a rate of 5.10 W¨m´2 per year.
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In order to understand what caused these significant changes, we selected two geographical
hotspot regions (the southern Great Plains and south-central Africa, where significant changes
happened, the CERES Rn product and ancillary data for attribution analysis are relatively accurate),
marked by the thick lines in Figure 7, for further analysis.

3.2.2. Southern Great Plains

The Great Plains is a well-known geographic area of the United States, and its southern chosen
region covers parts of Colorado, Kansas, New Mexico, Oklahoma, and Texas [55]. This region is a major
cotton and wheat production area of the U.S., and animal husbandry is another important industry [56].
The distribution of surface Rn influences its continental arid climate, which determines the agricultural
yield and husbandry production in this region. Moreover, this region includes Tornado Alley [57]; the Rn

variation affects the wind speed, which causes sand–dust disasters and tornadoes. The southern Great
Plains is currently experiencing a remarkable decrease in Rn.

The temporal trend of the Rn over the Southern Great Plains was determined by a linear regression.
The annual and seasonal trend plots were generated, and shown in Figure 8. The four seasons are
conventionally defined as spring (March, April, and May), summer (June, July, and August), autumn
(September, October, and November), and winter (December, January, and February).
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Figure 8. Annual and seasonal trends of Rn over the southern Great Plains. The pixels marked with
a dot indicate their statistical significance, with p-values < 0.05. Units: W¨m´2 per year. (a) annual
trend; (b) trend in spring; (c) trend in summer; (d) trend in autumn; and (e) trend in winter.

The Rn decreased over the entire southern Great Plains by ´0.33 W¨m´2 per year. The fastest
decrease occurred in summer, with a gradient of ´0.58 W¨m´2 per year, while the slowest decrease
in spring was only ´0.09 W¨m´2 per year. Furthermore, the Rn decreased in the central region, and
increased in the west edge. In the summer, the central part decreased sharply at a rate of ´2.41 W¨m´2

per year. However, also in the summer, the Rn in the northwest increased with a gradient of 1.62 W¨m´2

per year. Rn in the east flat area did not show any significant trend.
In the significantly changing areas, the correlation analysis was carried out and %SS values were

calculated between the CERES Rn and the driving factors, as shown in Table 4.

Table 4. Statistics for the correlation coefficient (R) and percentage sum of squares explained (%SS)
between the Rn and the driving factors for the southern Great Plains. Numbers marked with a
* indicates p-values < 0.10, and ** indicates p-values < 0.05, in which case the results are deemed to be
significant. R stands for the correlation coefficient, Rn for the net radiation, Pre for precipitation, CC for
cloud cover, T∆ for temperature range, Tm for surface temperature, and SC for snow cover.

Annual Spring Summer Autumn Winter

R %SS R %SS R %SS R %SS R %SS

Rn and Pre 0.47 * 5 ´0.16 2 0.26 25 0.02 1 ´0.45 0
Rn and CC 0.56 ** 16 ´0.05 0 0.60 ** 36 0.17 13 ´0.47 * 4
Rn and T∆ ´0.77 ** 12 ´0.03 0 ´0.53 ** 0 ´0.09 0 0.29 0
Rn and Tm ´0.15 0 ´0.04 0 ´0.39 8 0.25 2 0.71 ** 2

Rn and Albedo ´0.27 0 ´0.12 34 ´0.58 ** 4 ´0.35 12 ´0.77 ** 8
Rn and NDVI 0.71 ** 51 0.06 3 0.60 ** 5 0.71 ** 50 0.66 8

Rn and SC ´0.11 8 0.13 2 ´0.13 1 ´0.34 3 ´0.78 ** 62
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At an annual scale, NDVI explained 51% of the Rn variation, and CC explained 16%. In the spring,
albedo explained 34% of the Rn variation. The lower %SS of the NDVI and SC may be caused by the
co-linearity in the GLMs. In summer, CC and Pre played an important role, accounting for 61% of the
Rn variation together. In autumn, NDVI explained 50% of the Rn variation. In winter, SC explained
62% of Rn variation.

However, due to the relevant dependency of certain variables within the GLMs (for example,
albedo and SC in the winter), some factors cannot be used individually in an explanatory capacity.
Additionally, the majority of correlation coefficients were not significant. Therefore, we conducted
a further analysis utilizing the PLS regression to deal with the problems brought on by the interrelated
nature of these driving factors. The VIP scores of these driving factors are shown in Figure 9.
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Figure 9. Variable importance in the projection (VIP) scores of the driving factors in the southern
Great Plains.

Considering the %SS and VIP scores, it is clear that NDVI and T∆ were more dominating at
an annual scale. Pre and CC effects also performed noticeably well. We think that the decreasing NDVI
increased the albedo in the southern Great Plains, which affected the Rn in shortwave net radiation,
and declining vegetation caused the larger T∆ and negative correlation with Rn, which affected the
longwave net radiation. CC and precipitation affected the DSW and the decreasing precipitation or
drought might be one of the reasons that influenced the NDVI. In the spring, precipitation, SC, and
albedo were the key factors. SC changed the albedo and affected the USW so they were negatively
correlated with Rn, and precipitation in the spring often was in the form of snow, further affecting the
USW, especially of the western higher altitude areas.

In the summer, many factors, such as CC, T∆, Tm, albedo, and NDVI, have large VIP scores. The CC,
which reduces the DSW, showed positive correlation with Rn notably. We think that DSW was ample in
the summer, as the NDVI decreased and albedo went up, more shortwave radiation was lost, longwave
radiation played an important role in Rn variation. The Tm performance provided the proof to support
this viewpoint, while CC might just decrease matched with Rn variation due to little rainfall, and fewer
CC decreased the DLW especially in the night, and increased the T∆ combined with fewer NDVI due to
the heat preservation [58].

In autumn, the key factors were the NDVI and albedo. SC also became an active factor. NDVI
and SC both affected the Rn by changing the albedo, so land cover types played a more vital role and
atmospheric factors had limited influence.

In the winter, the SC and NDVI had the highest VIP scores. It is clear that snowfall increased the
albedo and NDVI was easily affected by the SC and vegetation growth periodicity in the winter, so
these two factors both affected the albedo, thus changing the Rn.
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Overall, we deduced that the NDVI was the main driving factor in the southern Great Plains, and
precipitation played an indispensable role.

3.2.3. South-Central Africa

The second hot spot is situated in south-central Africa, including a majority of the Congo basin and part
of the South African Veld. Abundant creatures and mineral resources exist in south-central Africa [59,60].
Countries located here are dominated by agriculture and mining industry. Therefore, understanding the
Rn variation can help guide the population towards developing agriculture in a better way. Abundant flora
and fauna exist in south-central Africa; the Rn variation could be an indicator of climate change that
determines the habitat environment [61]. Therefore, research and protection of the biodiversity in this
region is crucial. It is noteworthy that a clear decrease in Rn was observed. As this area has a tropical
savanna climate, we performed the Rn variation analysis that is shown in Figure 10, separately, during
the dry season (from May to October) and wet season (from the previous November to April).
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Figure 10. Annual and seasonal trends of the Rn variation over south-central Africa. The pixels marked
with a dot indicate their statistical significance, with p-values < 0.05. Units: W¨m´2 per year. (a) annual
trend; (b) trend in dry seasons; and (c) trend in wet seasons.

In the annual analysis, the Rn decreased at a rate of´0.63 W¨m´2 per year, overall. The dry season
decreased at a slower rate of´0.39 W¨m´2 per year, whereas the wet season decreased at a faster rate of
´0.82 W¨m´2 per year. With the exception of the western and eastern coasts, the Rn for the majority of
south-central Africa was observed to decrease. The correlation analysis and %SS were calculated, and
are shown in Table 5. South-central Africa had very little snow cover, and therefore the SC factor was
excluded from the analysis.

Table 5. Statistics for the R and %SS between the Rn and the driving factors in south-central Africa.
Numbers marked with a * indicates p-values < 0.10 and ** indicates p-values < 0.05, in which case the
results are deemed to be significant.

Annual Dry Season Wet Season

R %SS R %SS R %SS

Rn and Pre 0.15 2 0.11 2 ´0.12 3
Rn and CC ´0.10 0 0.24 0 ´0.39 1
Rn and T∆ 0.06 0 ´0.37 2 0.39 9
Rn and Tm 0.37 8 0.15 2 0.48 * 5

Rn and Albedo ´0.52 * 1 ´0.34 10 0.44 6
Rn and NDVI 0.80 ** 63 0.75 ** 56 0.51 * 26
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It is clear that the NDVI was the dominant driving factor. It had the largest explanatory power,
accounting for more than 50% of the Rn variation for both the annual and dry season analyses.
The albedo showed higher correlation with Rn but limited %SS. The results likely occurred because
albedo does not provide more information than NDVI owing to the collinearity with NDVI. Tm showed
a positive correlation with Rn; it is widely accepted that Tm determines the ULW but is affected by the
shortwave radiation. We conclude that shortwave radiation was the major part of the surface radiation
budget here in the wet season. Considering the limitation mentioned previously, the VIP scores of the
driving factors in south-central Africa are shown in Figure 11.
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The VIP scores corresponded very well with the %SS. No matter what period it is, the NDVI is
the major driving factor, and we thought that the albedo, here, was also predominantly affected by this
factor, as we infered from %SS. Additionally, the Tm had a significant impact during the wet season
compared with the dry season. The Pre and CC had limited impact on the variation of the Rn during
the annual analysis and dry season. CC in the wet season got higher VIP scores; we inferred that the
increase of CC resisted more DSW, which controlled the surface radiation budget as we discussed.
CC also influenced the T∆ and they got similar performance in all time, and precipitation had little
variation in all time period so it had limited impact on Rn variation. It was hypothesized that the
variation of Rn was perhaps caused by the degradation of forests and grassland due to drought in the
dry season and human activities.

However, several uncertainties should be discussed. The accuracy of the atmospheric factors
obtained from the CRU in Africa is not as high as the data in the southern Great Plains owing to the
lower number of sites. Harris et al. [47] compared the CRU mean temperature data with data from
UDEL in southern Africa and detected highly similar trends with a correlation coefficient of 0.91.
Precipitation data were also compared with GPCC data with a correlation index of 0.89. Therefore, the
CRU data are still trustworthy in this region. The reasons behind the high number of non-significant
correlation coefficients were analyzed and were outlined here: (1) the R was calculated over areas with
distinctly changing Rn, which includes different land cover types. Different underlying surfaces and
elevation may lead to the different, or even contradictory, relationships between the Rn and the driving
factors; (2) the time range of the CERES is short; and (3) the Rn can be influenced by many driving
factors, and the Rn, itself, can influence the land surface or sky conditions though negative feedbacks.
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4. Conclusions

There is a vast potential for developing remote sensing for use in determining the SRB, and the
CERES product has become one of the most representative products. However, with a low number
of in situ sites and poor distribution of CAVE sites, additional validation efforts are still required
in order to determine the global accuracy of the CERES radiation products. This study validated
the CERES Rn product close to the earth’s land surface at daily and monthly basis, and analyzed its
spatiotemporal variation from 2001 to 2013. Two hot spot regions (the southern Great Plains and
south-central Africa) were then selected for use in determining the driving factors. The conclusions of
this study are summarized in the following points:

1. This paper validated the CERES_SYN1deg_Ed3A all-sky surface Rn at a daily and monthly basis,
respectively. The daily validations had an MBE of 3.43 W¨m´2, RMSE of 33.56 W¨m´2, and R2

of 0.79. The monthly validations had an MBE of 3.40 W¨m´2, RMSE of 25.57 W¨m´2, and R2

of 0.84. Considering that the CERES_Ed2b was previously found to have a systematic bias of
14~21 W¨m´2 [16], the integral accuracy of the CERES_SYN1deg_Ed3A is high enough for use in
scientific research.

2. The accuracy distribution of the daily and monthly CERES Rn products were calculated. It was
found that areas in the middle and low latitudes had a higher accuracy, and that the R2 was lower
for areas in the high latitudes, such as Greenland. This may be caused by the lower accuracy of
CERES inversion over the snow surface. The uncertainty near the coast was caused by the coarse
resolution of the CERES products matching with in situ observations.

3. This study analyzed the spatiotemporal variation of the monthly CERES Rn, from 2001 to 2013,
and found that different regions exhibited vastly differing rates of change. In terms of the hot
spot analysis, the Rn decreased slightly over the entire southern Great Plains, with a gradient
of ´0.33 W¨m´2 per year. As for the attribution analysis, percentage sum of squares explained
and VIP scores were calculated. From the annual and seasonal analysis, we concluded that
NDVI, which represents the surface vegetation condition, was the major driving factor of the
Rn variation over the southern Great Plains and that precipitation played an indispensable role.
We determined that little precipitation was one of reasons for the deterioration of the vegetation.
Moreover, barren soil increased the T∆ and added more ULW. In the winter, SC was the main
factor of Rn variation because it easily changed the albedo and controlled shortwave radiation.
The Rn over south-central Africa decreased at a rate of ´0.63 W¨m´2 per year, with NDVI
as the main driving factor. Regardless of the analysis period, NDVI was always the leading
factor, as evidenced by the high VIP scores and %SS. Different from the case of the Great Plains,
precipitation showed little correlation with Rn variation. This may be attributed to the little
variation of precipitation, particularly during the wet season.

To identify the contributing factors that caused the changes in Rn in the two hotspots regions, CRU
data were used. Although CRU data is based on interpolated ground stations, the data can be considered
as, overall, reliable for our analysis in the hotspot regions.
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