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Abstract: Age-related macular degeneration (AMD) is a multifactorial disease associated with anatom-
ical changes in the inner retina. Despite tremendous advances in clinical care, there is currently
no cure for AMD. This review aims to evaluate the published literature on the therapeutic roles of
natural antioxidants in AMD. A literature search of PubMed, Web of Science and Google Scholar
for peer-reviewed articles published between 1 January 2011 and 31 October 2021 was undertaken.
A total of 82 preclinical and 18 clinical studies were eligible for inclusion in this review. We identified
active compounds, carotenoids, extracts and polysaccharides, flavonoids, formulations, vitamins and
whole foods with potential therapeutic roles in AMD. We evaluated the integral cellular signaling
pathways including the activation of antioxidant pathways and angiogenesis pathways orchestrating
their mode of action. In conclusion, we examined the therapeutic roles of natural antioxidants in
AMD which warrant further study for application in clinical practice. Our current understanding is
that natural antioxidants have the potential to improve or halt the progression of AMD, and tailoring
therapeutics to the specific disease stages may be the key to preventing irreversible vision loss.

Keywords: age-related macular degeneration; oxidative damage; retina; angiogenesis; antioxidants

1. Introduction

Age-related macular degeneration (AMD) is a progressive disease affecting the macu-
lar region of the retina. Approximately 290 million individuals are predicted to be affected
with AMD by 2040, with 110 million in Asia [1]. It was one of the major causes of blindness
globally in 2020 [2] among individuals aged 50 and older, after cataract and glaucoma.
The population-based longitudinal Beijing Eye Study revealed that visual impairment due
to AMD was relatively uncommon in the adult Chinese population in rural and urban
regions [3]. The Singapore Epidemiology of Eye Disease (SEED) Study reported that the
prevalence of early-stage AMD in Singapore was similar to that of Australia, although Sin-
gaporeans had a milder spectrum of early AMD lesions (soft distinct drusen and noncentral
location) compared to Australians [4]. According to a population-based cross-sectional
study conducted by Cheung et al. [5], early-stage AMD is more common in Chinese and
Indians than in Malays, whereas no apparent racial differences were observed in the
prevalence of late-stage AMD.

AMD has no known cure at present. Disease progression is monitored using Amsler
charts and scheduled clinic examination with the use of optical coherence tomography,

Pharmaceuticals 2022, 15, 101. https://doi.org/10.3390/ph15010101 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph15010101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0001-5669-8987
https://orcid.org/0000-0002-5402-6869
https://orcid.org/0000-0001-9810-5334
https://orcid.org/0000-0001-9046-9379
https://orcid.org/0000-0001-6692-6285
https://doi.org/10.3390/ph15010101
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph15010101?type=check_update&version=2


Pharmaceuticals 2022, 15, 101 2 of 50

which is a cross-sectional retinal scan. Treatment options such as intravitreal injection of
antivascular endothelial growth factor (anti-VEGF), photodynamic laser therapy (PDT), or
a combination of both, have been shown to improve vision and stabilize disease progres-
sion [6]. Nonetheless, concerns have been raised on potential ocular complications and
systemic side effects of these treatments.

As oxidative damage, inflammation and neovascularization are key pathological
events implicated in AMD, antioxidants such as active compounds, carotenoids, extracts
and polysaccharides, flavonoids, formulations, vitamins and whole foods may have the
potential to reverse or delay disease progression. The review aims to examine and synthe-
size the current research, i.e., published from 1 January 2011 to 31 October 2021, on the
therapeutic roles of natural antioxidants in the treatment of AMD. We also discuss the re-
ported molecular mechanisms of action of natural antioxidants, including their synergistic
effects and efficacies, as well as protective mechanisms. This review provides a mechanistic
framework for the role of antioxidants as therapeutics for AMD from preclinical studies to
clinical trials.

1.1. Pathogenesis of AMD

AMD is a multifactorial disease. Several hypotheses have been proposed to explain
the nature of AMD, such as aging, genetics and degeneration of photoreceptor-retinal
pigment epithelium (RPE) complex. Many factors have been linked to an increased risk of
developing AMD, including sex, ethnicity, iris pigmentation, hormones, hypermetropia,
arthritis, type II diabetes, medications, body mass index, level of education, socioeconomic
status, nutritional status, lifestyle (i.e., smoking and alcohol intake) and sunlight expo-
sure [7]. Oxidative damage and inflammation are the key features shared by these events,
as well as the driving forces in the pathogenesis of AMD. This is supported by Abokyi
et al. [8], who highlighted the central role of oxidative damage in the retina that contributes
to inflammation and angiogenesis.

Degeneration of retinal photoreceptors, retinal pigment epithelium, Bruch’s membrane
(BrM) and choriocapillaris have been shown to be involved in the pathogenesis of AMD [9],
culminating in the breakdown of the blood-retina-barrier and retinal degeneration. These
changes occur in the macula and proceed through various stages (early, intermediate and
advanced) over time.

AMD involves a variety of phenotypic changes in the posterior pole. There are two
types of AMD, namely dry (nonexudative) AMD, resulting from atrophy of the retinal
pigment epithelial layer, and wet (exudative) AMD, causing vision loss due to abnormal
blood vessel growth [10]. The characteristic lesions are aggregations of lipid-containing
extracellular particles in the RPE/BrM complex (drusen and basal deposits) that ultimately
impact RPE and photoreceptor integrity. Drusens appear clinically as focal white-yellow
deposits deep to the retina. They are divided into two main phenotypes, i.e., “hard” and
“soft”, that are discernible by their edges and the level of risk they confer on progression of
AMD [11].

Early-stage disease is characterized by soft or hard drusens, and/or irregular focal
hypo- or hyper- pigmentation. Wet AMD is characterized by soft drusens in the early stages.
Choroidal neovascularization (CNV) and subretinal fluid accumulation which eventually
leads to scarring and loss of photoreceptors RPE cells occur in the advanced stages. In
late stages of dry AMD, death of photoreceptors and RPE cells results in geographic
atrophy (GA) over the macula. In both instances, the loss of photoreceptors in the macula,
specifically, in the fovea region, leads to central vision loss.

1.1.1. Features of Choroidal Neovascularization

Choroidal neovascularization (CNV) is the manifestation of wet AMD and is defined
by the growth of new blood vessels from the choroid that extend into the subretinal or sub-
RPE space. Polypoidal choroidal vasculopathy (PCV), a subtype of CNV, is characterized
by the presence of multiple vascular saccular dilations (polyps) in choroidal circulation [12].
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As shown in Figure 1, abnormal vascularization causing exudation in eyes with PCV is
consistently observed between an elevated RPE and BrM. The clinical manifestation in-
cludes multiple recurrent serosanguineous or hemorrhagic detachment of RPE and retina,
usually around the optic nerve or in the central macula. CNV is one of the leading causes
of irreversible severe loss of vision among the elderly. In younger adults (age 50 years
and below), CNV can be idiopathic or secondary to underlying hereditary and acquired
conditions, including angioid streaks, high myopia, and traumatic or inflammatory disor-
ders. Assessments of CNV involve imaging the macula with optical coherence tomography
(OCT), fundus fluorescein angiography (FFA) and indocyanine green angiography (ICGA).
Hemorrhages, exudates, detachment of RPE or retina, and/or disciform scars are typical
findings [13]. OCT is routinely used to assess the clinical response to anti-VEGF or PDT.
Figure 2 shows two representative eyes with and without clinically detected CNV.

Figure 1. Schematic cross-sections of choriocapillaris (CC)-Bruch’s Membrane (BrM)-retinal pigment
epithelium (RPE)-photoreceptor complex. (A) Normal eye. BrM, from the RPE to the choroid,
consists of five distinctive layers: RPE basal lamina, inner collagenous layer, elastic layer, outer
collagenous layer, and basement membrane of choriocapillaris. (B) Eye with AMD. Formation of new
abnormal blood vessels by VEGF in the choroid and disturbance of integrity of BrM and RPE lead
to subretinal fluid accumulation (indicated by black circles) and visual impairment in the late-stage
AMD. Polypoidal choroidal neovascularization (CNV) in the form of small aneurysmal dilations of
vessels resembling a cluster of grapes has a high risk of bleeding and leakage. P, photoreceptors; RPE,
retinal pigment epithelium; RPE-BL, RPE basal lamina; ICL, inner collagenous layer; EL, elastic layer;
OCL, outer collagenous layer; ChC-BL, choriocapillaris basal lamina.

1.1.2. Features of Geographic Atrophy

Geographic atrophy (GA) is an advanced form of dry AMD which is characterized
by photoreceptor degeneration, leading to a loss of underlying RPE cells. The clinical
manifestations include sharply delineated areas of severe depigmentation and the absence
of RPE cells. Large choroidal vessels can be easily visualized on color fundus photography
(CFP). Unlike CNV, GA usually spares the foveal center until late in its course [14].

1.2. Standard Treatment Options for Wet AMD

There are several treatment options for wet AMD, namely, photodynamic therapy
(PDT), intravitreal injection of anti-VEGF (pegaptanib, ranibizumab, aflibercept and beva-
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cizumab), and laser photocoagulation [15]. Photodynamic therapy was first introduced in
the late 1990s [16] and involves the intravenous administration of Verteporfin (a photosen-
sitizing agent approved by the US Food and Drug Administration (FDA) for ophthalmic
use) at a dose of 6 mg/m2 of body surface area. Verteporfin is then activated with a
monochromatic laser light (range, 689–691 nm) in the presence of oxygen, which shifts it to
an electronically excited state [17]. This is followed by the generation of reactive oxygen
radicals that cause local damage to the vascular endothelium to destroy new abnormal
vessels. There have been major breakthroughs in the development of therapies targeting
VEGF since the early 2000s. Intravitreal injection of anti-VEGF is performed using a 30-
gauge needle at 3.5 to 4 mm posterior to the limbus under local anesthesia. The injection
site is compressed by a cotton swab to avoid reflux [18]. The fundus is then examined to
rule out any complications and to check the perfusion of the central retinal artery. The
subsequent inhibition of VEGF blocks the formation of new abnormal vessels, resulting in
vessels becoming porous, and in turn, ranibizumab has been shown to clinically improve
visual acuity significantly [19,20]. The efficacy and safety of ranibizumab and PDT with
verteporfin were evaluated in 423 patients with neovascular AMD in a phase III clinical
trial: The Anti-VEGF Antibody for the Treatment of Predominantly Classic Choroidal
Neovascularization in Age-Related Macular Degeneration (ANCHOR). The patients were
randomly assigned to receive either 0.3 or 0.5 mg of ranibizumab on a monthly basis or
active verteporfin therapy administered intravenously at 3-month intervals for 12 months.
The proportion of patients who gained ≥15 letters from baseline to 12 months in the best
corrected visual acuity (BCVA) test was 40.3%, 35.7%, and 5.6% in the 0.5 mg and 0.3 mg
ranibizumab and verteporfin groups, respectively. The rates of serious adverse events after
ranibizumab injections were reported to be low [19,21].

Figure 2. Representative fundus image: (A) Normal; (B) Wet age-related macular degeneration
(AMD). Asterisk indicates drusen, which are lipid-containing aggregations found in the retinal
pigment epithelium (RPE)/Bruch’s membrane (BrM) complex. (Original image from Kah-Hui Wong).

In addition, PDT in combination with anti-VEGF is considered a second-line treatment
for patients who fail to respond to monotherapy with anti-VEGF; it works by stimulating
polyp regression in PCV [22,23]. Combination therapy of ranibizumab and PDT [23,24] or
bevacizumab and PDT [25,26] has been found to be more effective than monotherapy. In



Pharmaceuticals 2022, 15, 101 5 of 50

a meta-analysis of randomized controlled trials conducted by Wei et al. [27], there were
no statistically significant differences in the parameters of BCVA, central retinal thickness
(CRT), proportions of patients gaining ≥15 letters, incidences of ocular and systemic
adverse events between patients who received a combination of bevacizumab and PDT,
and patients who were treated with bevacizumab monotherapy. However, the need for
monthly injections with bevacizumab was significantly lower in the combination therapy
group compared to the monotherapy group. This is in line with the findings of Ito et al. [28]
who reported that a combination of ranibizumab or aflibercept and PDT was effective
in preserving or improving visual acuity and anatomical structures in patients with PCV
evidenced by noticeable effect on choroidal thickness at a one-year follow-up.

On the other hand, the development of effective treatment options for dry AMD has
not progressed to a similar extent. No effective treatment have yet been found to prevent
the onset of GA and therefore dry AMD remains the largest unmet need in retinal disease
management [29].

There is no effective cure for AMD and current therapeutic strategies focus only on
symptomatic and supportive management, and limiting its progress [30]. The complexity
in the neurochemistry of AMD suggests that there may be multiple therapeutic targets.
Patients are usually reassured that progression of AMD is usually slow and they are
likely to retain their independence even if reading vision is compromised. Other useful
interventions may include smoking cessation, rehabilitation and low vision aids. Moreover,
pharmacological breakthroughs have yet to be fully translated into clinical benefits for
patients and medical practice, given the limited research on animal models.

1.3. Adverse Events following Standard Treatment for Wet AMD

Schnurrbusch et al. [31] evaluated the occurrence of complications following PDT with
verteporfin for subfoveal CNV secondary to AMD and pathologic myopia in a retrospective
case series. In general, PDT was well tolerated in patients with CNV secondary to AMD and
in patients with pathologic myopia. However, moderate and transient adverse reactions
were observed in some patients, including infusion-related back, chest or body pain,
dyspnea and flushing during infusion, dyspnea alone, elevated blood pressure, and general
pruritus. In addition, transient visual disturbances with haziness, blurriness, and flashing
lights were experienced by 27.8% of patients. These complications lasted for about 3 days
and were resolved spontaneously within days to weeks.

Tzekov et al. [32] demonstrated functional and morphological changes of the retina
detectable for up to 9 months in a primate model of cynomolgus monkey following a single
PDT treatment. The eye in this primate model is morphologically and functionally identical
to the human eye, and has been shown to be responsive to PDT treatment [33]. Intermittent
increase in subretinal fluid level, foveal thinning and loss of RPE can be present in the
same area, causing clinical long-term effects in some patients. The incidence of damage
to the neural retina overlaying the PDT-treated areas has been reported clinically [34–36].
Newman [37] revealed a higher incidence of adverse events with PDT when sealing the
leakage site close to the fovea, including damage to the normal choriocapillaris and RPE
leading to choroidal ischemia, RPE atrophy and secondary CNV.

Anti-VEGFs currently form the mainstay in the management of retinal diseases. De-
spite its promising efficacy in restoring vision, intravitreal injection of anti-VEGF is asso-
ciated with devastating complications. Ophthalmologists should consider the potential
ocular complications and systemic risks, while closely monitoring for adverse outcomes
experienced by their patients throughout the administration of anti-VEGF [18]. The compli-
cations that are unrelated to underlying ocular disease include endophthalmitis, intraocular
inflammation, rhegmatogenous retinal detachment, intraocular pressure elevation, ocular
hemorrhage and systemic adverse events, whereas those that are related to underlying
ocular disease (diabetic retinopathy, retinal vascular occlusions, AMD and other retinal dis-
eases) include vitreoretinal fibrosis, development of tractional retinal detachment, central
retinal artery occlusion, retinopathy of prematurity and development of secondary rheg-
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matogenous retinal detachment [38,39]. Furthermore, intravitreal injection of ranibizumab
has been shown to have greater risk of developing cardiovascular disease [40,41]. In a
study conducted by Singer et al. [42], the increase in complication rates is proportional to
the number of injections required for two years or more.

Although anti-VEGFs have been found to stabilize vision in many patients, monother-
apy was shown to be unable to achieve significant improvement in visual acuity in a
substantial number of AMD patients through long-term management [43–46]. While it sta-
bilized vision and reduced subretinal fluid and foveal thickness, anti-VEGF monotherapy
was ineffective at reversing choroidal vascular changes and polypoidal lesions at 3-month
follow-up [47], 9 to 18-month follow-up [48], and 12 to 30-month follow-up [49], which
could lead to recurrence of exudative maculopathy.

1.4. Role of Natural Antioxidants for AMD

Accumulating scientific and clinical evidence reveals that chronic oxidative damage is
one of the crucial factors in the pathogenesis of retinal degenerative diseases, including
AMD [50,51]. Oxidative damage is an imbalance between pro- and antioxidant species,
resulting in molecular and cellular damage. Excessive production of intracellular free
radicals, namely the reactive oxygen species (ROS) and reactive nitrogen species (RNS) can
react with and denature biological macromolecules (nucleic acids, lipids and proteins).

Substantial evidence from animal studies also indicated that prolonged light stim-
ulation to the retina can cause accumulation of oxidative damage [52–54]. Exposure to
ultraviolet (UV) radiation initiates oxidative DNA damage and inflammatory response
in RPE. Taken together, these events cause overproduction and accumulation of lipofus-
cin and formation of toxic aggregates of amyloid-β (Aβ) peptides. Under physiological
conditions, the cellular waste that includes lipofuscin, drusen and unnecessary proteins
are eliminated in RPE through ubiquitin-proteasome system (UPS) and autophagy. Im-
paired autophagy in RPE may contribute to further accumulation of such aggregates. Such
alterations are typically observed in drusen of AMD patients, denoting abnormal lipid-
and protein-rich sub-RPE deposits [55]. Moreover, postmortem fundus examination and
histopathology of samples from AMD patients revealed clinical signs of extensive free
radical damage [50,56,57].

Several studies support the notion that nuclear factor erythroid 2-related factor 2
(Nrf2) play an active role in the regulation of autophagy. In response to oxidative damage,
upregulation of Nrf2 signaling activates a complex antioxidant response which maintains
cellular redox homeostasis. Understanding the regulatory mechanisms that control Nrf2
protein levels, along with the molecular mechanisms of UPS and autophagy, will guide
future development of Nrf2-targeted therapeutics in AMD [8].

Consequently, antioxidant defense systems consisting of endogenous and exogenous
antioxidants are required to combat oxidative damage for maintaining cellular redox
homeostasis [58]. Exogenous antioxidants can be obtained from natural sources. Primary
antioxidants include phenolic compounds, phenolic acids and their derivatives, flavonoids,
tocopherols, phospholipids, amino acids, phytic acid, ascorbic acid, sterols and pigments.
Phenolic compounds act as free radical terminators to upregulate the activity of endoge-
nous antioxidant enzymes, and therefore indirectly attenuate oxidative damage [59–61].
Consistently, antioxidant-enriched diets have been shown to reduce the progression from
dry to wet AMD [62].

2. Materials and Methods
2.1. Search Strategy

A literature search of the electronic databases PubMed, Web of Science and Google
Scholar for peer-reviewed articles published between 1 January 2011 and 31 October 2021
was undertaken. The following search terms were used: (“advanced neovascular age-
related macular degeneration” OR “age-related macular degeneration” OR “dry macular
degeneration” OR “neovascular age-related macular degeneration” OR “non-neovascular
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age-related macular degeneration” OR “wet macular degeneration”) AND (alga OR algae
OR basidiomycetes OR “Chinese herb” OR “complementary and alternative medicine” OR
decoction OR fungi OR herb OR “herbal product” OR “herb remedies” OR mushroom OR
“natural antioxidant” OR “natural product” OR plant OR shrub OR “traditional Chinese
medicine”). The structured search strategy was used to identify all articles that evaluated
the therapeutic roles of natural antioxidants in AMD.

2.2. Eligibility Criteria

Studies were considered eligible if they met the following inclusion criteria: (i) pre-
clinical (in vitro and in vivo studies) and clinical studies, (ii) study model of AMD as the
primary disorder, and (iii) articles published in English. The exclusion criteria included:
(i) in silico studies, (ii) in ovo studies, (iii) synthetic antioxidant, (iv) review articles, (v) meta-
analysis, (vi) conference abstracts or proceedings, and (vii) articles written in languages
other than English.

2.3. Data Extraction and Analysis

After removing duplicates, titles and abstracts were screened based on the eligibility
criteria. Disagreements on the eligibility of the study or on the extraction of data were
resolved through discussions. The findings were extracted independently and narrated to
the best of our ability considering the inconsistencies in the methodology or experimental
designs of the retrieved studies.

3. Results
Study Selection

The literature search yielded 380 publications from PubMed, Web of Science and
Google Scholar. After removing duplicate studies, 272 studies remained and were further
screened by titles and abstracts. Overall, 163 articles were retrieved for further assessment
and evaluation, of which 63 were excluded according to the exclusion criteria regarding
study design and language. A total of 100 eligible studies (82 preclinical studies and
18 clinical studies) were included in this review.

4. Discussion

Most of the preclinical studies were based on the adult human retinal pigment ep-
ithelial cell line-19 (ARPE-19) and light-induced retinal degeneration models of oxidative
damage. Although ARPE-19 cells lack melanin, the model is widely used to study the
cell biology, pathological conditions and pharmacology of the retina. The acute model of
light-induced retinal degeneration employs short exposure durations (seconds to minutes)
to bright white light culminating in photoreceptor apoptosis and vision loss. Here, we
review the randomized controlled trials investigating the efficacy of dietary supplements
in patients with various stages of AMD. A randomized study design is often viewed as
the gold standard for determining the true relative efficacy of an intervention, as it can
eliminate the influence of unknown or immeasurable confounding variables, which can
lead to biased estimation of the treatment effect.

4.1. Active Compounds

The chemical structures, findings and mode of action of active compounds in preclini-
cal and clinical models are summarized in Table 1.
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Table 1. Active compounds in the alleviation of AMD.

Active Compound Model Concentration/Dose Finding Mode of Action Reference

Allicin
H2O2-induced oxidative damage

in human ARPE-19 cell line 10–40 µg/mL Protection against oxidative
damage

↑mRNA expression and protein level of Nrf2
↑ SOD and NQO1 (antioxidant enzyme)

↓mRNA expression and protein level of NOX4
[63]

Artemisinin

H2O2-induced oxidative damage
in human D407 cell line and

primary RPE cells

Various
concentrations

Protection against oxidative
damage and apoptosis ↑ pAMPKα [64]

Astragaloside

Isoflurane-induced apoptosis in
primary RPE cells 50 µg/mL Protection against apoptosis

↓mRNA expression and protein level of CDC42,
POLD1 and CCNA2 (cell cycle regulator), APH1B,

APPBP2, NCSTN and APH1A (formation of
β-amyloid), TRAF5 and NF-κB

↓ caspase-3/7

[65]

Berberine

H2O2-induced oxidative damage
in human D407 cell line and

primary human RPE cells
1 and 3 µM Protection against oxidative

damage and apoptosis
↓ caspase-3/7 activation

↑ AMPK and total AMPK phosphorylation [66]

H2O2-induced oxidative damage
in human D407 cell line and

primary human RPE cells

Various
concentrations

Protection against oxidative
damage and apoptosis

↑ protein level of LC3B (autophagy marker)
↓ protein level of P62 (autophagy marker)
↑ AMPK and ULK1 phosphorylation

↓mTOR phosphorylation

[67]

LED light-induced retinal
degeneration in BALB/c mice 200 mg/kg, PO Protection against

retinal degeneration

↑mRNA expression of Rho, RPE65 and MCT3
↓mRNA expression of HMOX1, CP, CAT, GPx-1,

SOD2 and AIF1 (oxidative damage and
inflammatory marker)

[68]
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Table 1. Cont.

Active Compound Model Concentration/Dose Finding Mode of Action Reference

Carnosic acid H2O2-induced oxidative damage
in human ARPE-19 cell line and
mouse photoreceptor-derived

661W cells

10 µM Protection against
oxidative damage

↑mRNA expression and protein level of HO-1,
NQO1, GCLM, xCT, NRF2 and SRXN1

(antioxidant enzyme)
↑ ARE activation and nuclear translocation of Nrf2

↓ Prx2 hyperoxidation
[69]

Light-induced retinal degeneration
in Sprague-Dawley rats 25 mg/kg, IP Protection against

retinal degeneration NE

Celastrol

LPS-induced inflammation in
human ARPE-19 cell line 0.05–1.5 µM Protection against

inflammation

↑ Hsp70
↓ IL-6 and phosphorylated NF-κB p65

(pro-inflammatory cytokine)
[70]

Curcumin

H2O2-induced-aging model in
human ARPE-19 cell line 10–100 µM Protection against oxidative

damage and apoptosis
↑ Bcl-2 (anti-apoptotic protein)

↓ Bax and caspase-3 (pro-apoptotic protein) [71]

H2O2-induced oxidative damage
in RPE cells derived from induced

pluripotent stem cells (iPSCs)
obtained from patients with

dry AMD

10 µM Protection against oxidative
damage and apoptosis

↑mRNA expression of HO-1, SOD2, and GPx1
(antioxidant enzyme)

↓mRNA expression of PDGF, VEGF and IGFBP-2
(oxidative stress marker)

[72]

Curcuminoid
Demethoxycurcumin

Bisdemethoxycurcumin

Blue light-induced cytotoxicity in
human ARPE-19 cell line 15 µM Protection against oxidative

damage and apoptosis
↓mRNA expression of c-Abl and p53

(pro-apoptotic factor) [73]
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Table 1. Cont.

Active Compound Model Concentration/Dose Finding Mode of Action Reference

Curcumin prodrug:
Curcumin diethyl disuccinate H2O2-induced oxidative damage

in human ARPE-19 cell line 10 µM Protection against
oxidative damage

↑ mRNA expression and protein level of Bcl-2, and
HO-1 and NQO1 (antioxidant enzyme)
↓mRNA expression and protein level of
phosphorylated p44/42 MAPK and Bax

[74]

Diarylheptanoid 7-(3,4
dihydroxyphenyl)-5-

hydroxy-1-phenyl-(1E)-1-
heptene H2O2-induced oxidative damage

in human ARPE-19 cell line 20 µM Protection against oxidative
damage and apoptosis NE [75]

Diphlorethohydroxycarmalol

H2O2-induced oxidative damage
in human ARPE-19 cell line 25 and 50 µM Protection against oxidative

damage and apoptosis

Modulation of γH2AX and 8-OHdG (DNA
damage marker)

↑ pro-caspase-9 and pro-caspase-3
(anti-apoptotic protein

↓ cytochrome c, Bax and cleaved poly (ADP-ribose)
polymerase (PARP) (pro-apoptotic protein)

[76]

FLZ

H2O2-induced oxidative damage
in human ARPE-19 cell line and

primary mouse RPE cells
1–25 µM Protection against oxidative

damage and apoptosis ↑ Akt activation [77]

TNF-α-induced inflammation in
human ARPE-19 cell line 10–50 µg/mL Protection against

inflammation
↓mRNA expression of ICAM-1

↓ NF-κB p65 and phosphorylated IκBα [78]
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Table 1. Cont.

Active Compound Model Concentration/Dose Finding Mode of Action Reference

Ginsenoside

Human ARPE-19 cell line 250 nM

Combination of
ginsenoside-Rb1 and VEGF

reduced the secretion
of VEGF

NE [79]

Human donor eyes Various
concentrations

Improvement of hydraulic
and diffusional transport
across Bruch’s membrane

NE [80]

Glycyrrhizin Sodium iodate-induced oxidative
damage in human ARPE-19

cell line
20–200 µmol Protection against oxidative

damage and apoptosis
↑ p-Akt, Nrf2 and HO-1

↓ cleaved caspase-3 (pro-apoptotic protein)
[81]

Sodium iodate-induced retinal
degeneration in C75BL/6 mice 50 mg/kg, IP Protection against

retinal apoptosis NE

GPETAFLR

H2O2-induced oxidative damage
in human ARPE-19 cell line 50 and 100 µg/mL Protection against oxidative

damage and inflammation

↓mRNA expression and protein level of IL-1β,
IL-6, TNF-α, IFNγ and VEGF
(pro-inflammatory cytokine)

[82]
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Table 1. Cont.

Active Compound Model Concentration/Dose Finding Mode of Action Reference

Gypenoside

Oxidized low-density
lipoprotein-induced oxidative
damage in human ARPE-19

cell line

5 µg/mL Protection against oxidative
damage and inflammation

↑mRNA expression and protein level of LXRα,
TSPO, ABCA1, ABCG1, CYP27A1 and CYP46A1

(cholesterol metabolism and trafficking)
↓ NF-κB p65, IL-1β, IL-6, IL-8 and TNFα

(inflammatory cytokine), and LDLR

[83]

Kinsenoside

H2O2-induced oxidative damage
in human ARPE-19 cell line

Various
concentrations

Protection against oxidative
damage and apoptosis

Reduced VEGF secretion
↓ ERK and p38 phosphorylation, VEGF and NF-κB [84]

Phillyrin

H2O2-induced oxidative damage
in human ARPE-19 cell line 5–20 µM Protection against oxidative

damage and apoptosis

↑ Bcl-2, pro-caspase-8, pro-caspase-9 and
pro-caspase-3 (anti-apoptotic protein), cyclin E,

CDK2, cyclin A, total Nrf2 and nuclear Nrf2
↓ Bax, cytochrome c and Fas (pro-apoptotic

protein), p53, p-p53, p21 and Keap1

[85]

Rosmarinic acid

New Zealand white rabbits 400 µg,
IV implant

Protection against retinal
degeneration NE [86]
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Table 1. Cont.

Active Compound Model Concentration/Dose Finding Mode of Action Reference

Total saponins
Polyphyllin I

Polyphyllin II

Polyphyllin VII

Polyphyllin H

H2O2-induced oxidative damage
in human ARPE-19

cell line
10–40 µg/mL Protection against oxidative

damage and apoptosis

↑ Bcl-2 (anti-apoptotic protein), Nrf2, HO-1, γ-GCS
and NQO1

↓mRNA expression and protein level of Fas, FasL,
Bax and caspase-3 (pro-apoptotic factor)

[87]
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4.1.1. Alkaloids

Plants are regarded as the oldest source of alkaloids, including morphine, quinine,
strychnine and cocaine. Allicin is an organosulfur compound present in garlic, whereas
berberine is an isoquinoline alkaloid present in the roots, rhizomes and stems of Cop-
tis chinensis. Chopping or crushing garlic releases allicin, which has a pungent smell.
Preclinical evidence has revealed the modulation of ROS-associated enzymes involving su-
peroxide dismutase (SOD), NADPH oxidase 4 (NOX4), NAD(P)H dehydrogenase quinone
1 (NQO1), Nrf2; [63] caspase-3/7, adenosine monophosphate-activated protein kinase
(AMPK)-mediated autophagy; [66,67] RHO, retinal pigment epithelium-specific 65 (RPE65),
monocarboxylate transporter 3 (MCT3) as well as inflammatory markers (heme oxygenase-
1 (HMOX1), ceruloplasmin (CP), catalase (CAT), glutathione peroxidase-1 (GPx-1), SOD2
and allograft inflammatory factor 1 (AIF1) [68] contributing to the protective effects of
allicin and berberine.

4.1.2. Curcumin

Curcumin is a lipophilic polyphenol present in Curcuma longa (turmeric) roots. Turmeric
has been gaining tremendous attention due to its antioxidant abilities by scavenging ROS,
including superoxide radicals (O2

•), hydrogen peroxide (H2O2), hydroxyl radicals (OH•)
and singlet oxygen (1O2). The positive outcomes of its therapeutic effects in cataract and
diabetic retinopathy are well documented [88].

Curcuminoids are yellow pigments which confer the characteristic color to the rhi-
zome. Curcuminoids are linear, diarylheptanoid molecules including curcumin and related
compounds [89]. Other major constituents include ar-turmerone, turmerone, curlone, Zin-
giberene and Curcumene. There is ample evidence from in vitro tests based upon the hu-
man ARPE-19 cell line [71,73,74], as well as induced pluripotent stem cells (iPSCs)-derived
RPE cells [90], to demonstrate the protective effects of curcumin against the development
of AMD. Muangnoi et al. [74] pioneered the investigation on a succinate ester prodrug of
curcumin, designated as curcumin diethyl disuccinate against oxidative damage induced
in human ARPE-19 cells. Modulation of multiple molecular targets has been found to be
associated with its protective effects, namely the p44/42 (extracellular-signal-regulated
kinase (ERK)), Bcl2 associated X (Bax), B-cell lymphoma 2 (Bcl-2), heme oxygenase-1 (HO-1)
and NQO1. This discovery may make it possible to overcome challenges related to the
poor solubility of curcumin resulting in low bioavailability.

A recent finding by Allegrini et al. [91] highlighted an emerging strategy for the
treatment of neovascular AMD. A curcumin supplement consisting of 95% curcuminoids,
Age-Related Eye Disease Study 2 (AREDS2) components, astaxanthin and resveratrol, in
combination with intravitreal injection of anti-VEGF, was shown to improve functional
outcomes in a retrospective case-control study. Curcuma, used in an adjuvant setting,
would be necessary to reduce the need for ongoing injection therapy. However, recall bias
occurs most often in case-control studies. These studies may prove an association, but they
do not demonstrate causation; this can be overcome by cohort studies. Despite promising
findings, further evidence is needed to evaluate the impact of curcuma in human clinical
trials of AMD. A lack of clinical trials evaluating the safety and efficacy of the adjuvant
setting can be a point of concern for evidence-based research in alternative medicine.

4.1.3. Ginsenoside

Panax ginseng, or Korean ginseng, has been traditionally used for several millennia in
East Asian countries. Ginseng refers to the root of P. ginseng. Ginsenosides are the major
pharmacologically active ingredients of ginseng. Approximately 40 structurally divergent
ginsenosides have been isolated and identified from ginseng.

Betts et al. [79] revealed the efficacy of ginsenoside-Rb1 in triggering cell proliferation
and reducing the secretion of VEGF in human ARPE-19 cells. This could be mediated by
estrogen receptor signaling mechanisms based on a report indicating that high levels of
estrogen decreases extracellular level of VEGF in the retinal capillary cells of rhesus monkey.
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The observation could further support the clinical application of ginsenoside-Rb1 in reduc-
ing the frequency of anti-VEGF injections. On the other hand, Lee et al. [80] demonstrated
an improvement of hydraulic and diffusional transport across BrM by ginsenosides. BrM
and RPE form a serially coupled transportation system for nutrients and waste products.
Aging causes gross anatomical changes in these compartments, and further exaggerated in
AMD. Therefore, direct targeting of transport systems serves as a therapeutic intervention
in delaying the progression of AMD. However, the findings have not been validated in
clinical trials.

4.1.4. Other Active Compounds

Numerous compounds, namely, artemisinin (a lactone isolated from Artemisia annua) [64],
astragaloside (a cycloartane-type glycoside isolated from Astragalus membranaceus) [65], celas-
trol (a quinone methide triterpene) [70], carnosic acid (a phenolic diterpene isolated from
rosemary extract) [69], diarylheptanoids isolated from Curcuma comosa [75], diphloretho-
hydroxycarmalol (a phlorotannin isolated from brown macroalga Ishige okamurae) [76],
FLZ (a novel synthetic cyclic analogue of natural squamosamide isolated from Annona
glabra) [77,78], glycyrrhizin (a glycoside isolated from licorice roots (Glycyrrhiza glabra)) [81],
GPETAFLR (a biopeptide isolated from Lupinus angustifolius) [82], gypenosides (dammarane-
type triterpene saponins isolated from Gynostemma pentaphyllum) [83], kinsenoside isolated
from Anoectochilus roxburghii [84], phillyrin (a lignan isolated from dried fruit of Forsythia
suspense) [85], rosmarinic acid isolated from Rosmarinus officinalis [86] and total saponins
isolated from rhizomes of Paris polyphylla [87] also demonstrated promising protective
effects against oxidative damage in preclinical models.

The molecular signaling mechanisms governing these effects were largely related
to AMP-activated protein kinase (artemisinin),TNF receptor-associated factors 5 (TRAF5)
(astragaloside), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-Kb)
(astragaloside, kinsenoside and FLZ), intracellular 70-kDa heat shock proteins (HSP70)
(celastrol), modulation of inflammatory cytokine (celastrol and GPETAFLR), antioxidant
response elements including Nrf2 (carnosic acid, diarylheptanoids, glycyrrhizin, phillyrin
and total saponins), modulation of DNA damage marker, pro-apoptotic and anti-apoptotic
protein (diphlorethohydroxycarmalol, glycyrrhizin, phillyrin and total saponins), protein
kinase B (Akt) and nuclear factor of kappa light polypeptide gene enhancer in B-cells
inhibitor, alpha (IκBα) (FLZ).

In addition, Biswas et al. [83] revealed that gypenosides may have potential for the
treatment of patients with early-stage AMD by enhancing the ability of efflux pathways to
remove cellular cholesterol from RPE cells. Apolipoprotein E (APOE) and ATP binding
cassette subfamily A member 1 (ABCA1), cholesterol efflux genes and cholesterol accu-
mulation beneath the RPE cells have been shown to contribute to the pathogenesis of
AMD [92]. However, definitive proof remains elusive on how cholesterol efflux influences
the accumulation of lipids in sub-RPE deposits.

A recent, remarkable trial on New Zealand white rabbits demonstrated the efficacy
of therapeutically designed rosmarinic acid-poly lactic-co-glycolic acid (PLGA) implants
in impeding ocular neovascularization. This strategy takes a long-term view toward the
possible use of PLGA, a biodegradable polymer as an implantable intravitreal device to
promote prolonged and controlled release of rosmarinic acid in vitreous humor [86].

4.2. Carotenoids

The chemical structures, findings and mode of action of carotenoids in preclinical and
clinical models are summarized in Table 2.
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Table 2. Carotenoids in the alleviation of AMD.

Carotenoid Model Concentration/Dose Finding Mode of Action Reference

β-cryptoxanthin
LED light-induced retinal

degeneration in Wistar
Albino rats

2 and 4 mg/kg, PO Protection against
oxidative damage

Modulation of ATF4, ATF6, Grp78, Grp94
(mitochondrial stress marker)

↑ Bax and caspase-3 (pro-apoptotic protein),
HO-1 (antioxidant enzyme), NCAM

and GAP-43
↓ IL-1β, IL-6 and NF-KB (inflammatory

cytokine), Bcl-2 (anti-apoptotic protein), GFAP
and VEGF

[93]

Crocetin TBHP-induced oxidative
damage in

human ARPE-19 cell line
1–200 µM Protection against

oxidative damage
Preservation of energy production pathways

↑ ERK1/2 activation [94]

Lutein and zeaxanthin
Lutein

Zeaxanthin

UVB irradiation-induced
oxidative damage in

human ARPE-19 cell line

5 µM Protection against
oxidative damage ↓ p38 MAPK and JNK1/2 phosphorylation [95]

Double-blind randomized
controlled trial in young

healthy subjects

10 mg/day lutein and
2 mg/day zeaxanthin

Increased serum levels of lutein
and zeaxanthin; and macular

pigment optical density
Improvement in chromatic
contrast and recovery from

photostress

NE [96]

Meso-zeaxanthin
Double-blind randomized

controlled trial in patients with
non-advanced-stage AMD

10 mg meso-zeaxanthin in
combination with

co-antioxidants

Improvement in contrast
sensitivity and visual function NE [97]

Undefined carotenoids Prospective cohort study in
healthy elderly subjects

Scoring of predicted
plasma carotenoid

Long term reduced risk of
developing advanced-stage AMD NE [98]
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Carotenoids are found as fat soluble and colored-pigments in yellow-orange fruits
and vegetables, as well as in some varieties of dark green vegetables. Approximately
750 structurally different carotenoids have been isolated from natural sources to date.
Seven types are commonly found in the human diet and plasma serum, namely, lutein,
zeaxanthin, α-carotene, β-carotene, lycopene, meso-zeaxanthin and cryptoxanthin [99]. The
lipid-soluble pigments promote stabilization function with respect to the plasma membrane
and modification of diffusion barrier to and across the membrane. The conjugated polyene
chromophore determines not only the light absorption properties, but also the photochemi-
cal properties of the molecule and consequent light-harvesting and photoprotective action.
The polyene chain is responsible for the chemical reactivity of carotenoids toward blue
light absorption, quenching of excited singlet and triplet states by molecular oxygen and
free radical scavenging, and hence for any antioxidant role.

Lutein and zeaxanthin have been demonstrated to be protective against the develop-
ment of AMD in numerous studies. With respect to key molecules in signaling pathways,
inhibition of phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and
c-Jun N-terminal kinase (JNK)1/2 by lutein and zeaxanthin has been found to play a protec-
tive role in a cellular model of UVB irradiation-induced oxidative damage [95]. In a recent
study by Orhan et al. [93] using an animal model of light-induced retinal degeneration,
β-cryptoxanthin was shown to attenuate oxidative damage to mitochondria and inflamma-
tion through the inhibition of inflammatory cytokine, modulation of apoptotic pathways
and mitochondrial stress markers. Several studies have been performed to investigate the
association between α-carotene, β-carotene, and lycopene; and risk of AMD. However,
their results were inconsistent [100,101].

Carotenoids are concentrated in the macula or central region of the retina, also known
as macular pigment [98]. The yellow coloration of the macula lutea is attributed to the
presence of macular pigment in the photoreceptors [102]. Cho et al. [103] reported an inverse
association of lutein/zeaxanthin with advanced AMD. These results are in accordance with
clinical trials conducted by Age-Related Eye Disease Study 2 (AREDS2) Research Group
(2013) [104,105]. Nevertheless, observational data from AREDS2 did not achieve sufficient
evidence to demonstrate the beneficial effects of lutein and zeaxanthin when added to
the original Age-Related Eye Disease Study (AREDS) formulation in reducing the risk of
progression to advanced AMD.

4.3. Extracts and Polysaccharides

The chemical structure, findings and mode of action of extracts and polysaccharides
in preclinical models are summarized in Table 3.
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Table 3. Extracts and polysaccharides in the alleviation of AMD.

Extract/
Polysaccharide Model Concentration/Dose Finding Mode of Action Reference

Arctium lappa
ethanol extract

A2E-induced cytotoxicity in human
ARPE-19 cell line 5–30 µg/mL Protection against oxidative

damage and apoptosis

↑ Bcl-2 (anti-apoptotic protein)
↓ Bax and cleaved caspase-3

(pro-apoptotic protein) [106]

White light-induced retinal
degeneration in BALB/c mice 50–200 mg/kg, PO Protection against retinal

degeneration NE

Bilberry anthocyanin-rich
aqueous extract

Light-induced retinal degeneration in
pigmented rabbits 250 and 500 mg/kg, PO Protection against

photoreceptor apoptosis

↓ Bax, Bcl-2, and caspase-3 (pro-apoptotic
protein); IL-1β and VEGF (inflammatory

cytokine and angiogenic marker)
[107]

Bilberry ethanol extract
Blue light-emitting diode light-induced
photoreceptor degeneration in murine

photoreceptor (661 W) cells
10 µg/mL Protection against oxidative

damage

↓ LC3 autophagy marker), caspase-3/7
(pro-apoptotic protein), p38 MAPK and

NF-KB activation
[108]

Bucida buceras
ethanol extract

H2O2-induced oxidative damage in
human ARPE-19 cell line Various concentrations Protection against oxidative

damage and apoptosis ↓ caspase-3 (pro-apoptotic protein) [109]

Centella asiatica
ethanol extract

MNU-induced apoptosis in human
RPE-19 cell line Various concentrations Protection against oxidative

damage and apoptosis

↓ caspase-8, pro-caspase-9, pro-caspase-3 and
pro-PARP (pro-apoptotic protein), p21

and CDK2

[110]Blue light-induced oxidative damage
in human RPE cell line Various concentrations Protection against oxidative

damage NE

MNU-induced retinal degeneration in
C57BL/6 mice 50–100 mg/kg, PO Protection against retinal

degeneration and apoptosis

↑ Nrf2 and HO-1 (antioxidant enzyme)
↓ caspase-3 and pro-caspase-3 (pro-apoptotic

protein)

Cranberry ethyl
acetate extract

Blue light-induced oxidative damage
in human ARPE-19 cell line 5–50 µg/mL Protection against oxidative

damage NE [72]

Crude fucoidan
TBHP-induced oxidative damage in

human ARPE-19 cell line and primary
RPE cells

1–250 µg/mL Reduced VEGF secretion NE [111]

Curcuma longa
ethanol extract

Blue light-induced cytotoxicity in
human ARPE-19 cell line 15 µM Protection against oxidative

damage and apoptosis
↓mRNA expression of c-Abl and p53

(pro-apoptotic factor) [73]
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Table 3. Cont.

Extract/
Polysaccharide Model Concentration/Dose Finding Mode of Action Reference

Diospyros kaki
ethanol extract

H2O2-induced oxidative damage in
immortalized rat retinal precursor cell

line (R28)
Various concentrations Protection against oxidative

damage NE

[112]

MNU-induced retinal degeneration in
C57BL/6J mice 10–100 mg/kg, PO Protection against retinal

degeneration

↑ rhodopsin (retinal factor)
↓ nectin and GFAP (retinal factor), SOD1,
SOD3 and GPx-1 (antioxidant enzyme)

Emblica officinalis extract
Amyloid-β-induced cellular stress in

human RPE AMD transmitochondrial
cybrid cells

25 mg/mL Protection against oxidative
damage and apoptosis

↑mRNA expression of MT-RNR2, SOD2 and
PGC-1α

↓ caspase-3/7 (pro-apoptotic protein)
↓mRNA expression of caspase-3

(pro-apoptotic factor) and VEGF (angiogenic
marker)

[113]

Fucoidan

Human ARPE-19 cell line, primary
porcine RPE cells, RPE/choroid

perfusion organ culture
100 µg/mL

Combination of fucoidan
and bevacizumab reduced
the secretion of VEGF and

angiogenesis

↓ VEGF165 [114]

H2O2- and TBHP- induced oxidative
damage in OMM-1 and human
ARPE-19 cell lines, and primary

porcine RPE cells

1–100 µg/mL Reduced VEGF secretion NE [115]

H2O2- and TBHP- induced oxidative
damage in OMM-1 and human
ARPE-19 cell lines, and primary

porcine RPE cells

10 µg/mL Reduced VEGF secretion NE [116]

H2O2-induced oxidative damage in
OMM-1 and human ARPE-19 cell lines 1–100 µg/mL Reduced VEGF secretion NE [117]

Garcinia cambogia extract

CoCl2-induced HIF activation in
murine retinal cone cell line (661W)

and human ARPE-19 cell line
1 mg/mL Protection against HIF

activation

↓mRNA expression and protein level of
VEGFA, HIF-1α, BNIP3 and PDK1 (angiogenic

marker and pro-apoptotic factor) [118]

Laser-induced CNV in C57BL6/J mice 0.2% extract mixed with MF
diet, 30 mg/kg, IP Protection against CNV ↓ HIF-1α
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Table 3. Cont.

Extract/
Polysaccharide Model Concentration/Dose Finding Mode of Action Reference

Grape skin extract Blue light-induced oxidative damage
in human ARPE-19 cell line 0.2–5 µg/mL Protection against A2E

oxidation, apoptosis

↑mRNA expression and protein level of
GRP78 (ER stress and unfolded protein

response marker); Bcl-2 (anti-apoptotic factor)
↓ CHOP, JNK, p-JNK, Bax, caspase-9,

caspase-3, cleaved caspase-3 and cleaved
caspase-9 (pro-apoptotic protein)

[119]

Lactoferrin
CoCl2-induced HIF activation in 661W

and human ARPE-19 cell line 1 mg/mL Protection against HIF
activation

↓mRNA expression of Pdk1, VEGFA and
Glut1 (hypoxia response element)

[120]

Laser-induced CNV in C57BL6/J mice
and Hif1a conditional knockout mice 1600 mg/kg Protection against CNV ↓ HIF-1α

Lingonberry ethanol
extract

Blue light-emitting diode
light-induced photoreceptor

degeneration in cultured murine
photoreceptor (661 W) cells

10 µg/mL Protection against oxidative
damage

↓LC3 (autophagy marker), caspase-3/7
(pro-apoptotic protein), p38 MAPK and

NF-KB activation
[108]

Lycium barbarum aqueous
and ethanol extracts

UVB irradiation-induced growth arrest
in

human ARPE-19 cell line
25–50µg/mL Protection against DNA

damage and apoptosis

↑ toll-like receptor (TLR), peroxisome
proliferator-activated receptor (PPAR) and

integrin activation
[121]

Lycium barbarum
polysaccharides

H2O2-induced oxidative damage in
human ARPE-19 cell line 10–5000 µg/mL Protection against oxidative

damage and apoptosis
↑ Bcl-2
↓ Bax [122]

Aβ1–40 oligomers-induced retinal
degeneration in human ARPE-19

cell line
3 and 14 mg/L Protection against

pyroptosis

↓ IL-1β, IL-18, NLRP3, caspase-1 and
membrane GSDMD-N (pyroptosis-related

proteins)
[123]

Light-induced retinal degeneration in
BALB/cJ mice 150 and 300 mg/kg, PO Protection against

photoreceptor degeneration
↑mRNA expression of Nrf2 and TrxR1
↓mRNA expression of PARP14 [124]
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Table 3. Cont.

Extract/
Polysaccharide Model Concentration/Dose Finding Mode of Action Reference

Melissa officinalis ethanol
extract

H2O2-induced oxidative damage in
human ARPE-19 cell line 100 µg/mL Protection against oxidative

damage and apoptosis

↑ Akt phosphorylation
↓ caspase-3/7 and PARP cleavage

(pro-apoptotic protein)
[125]

Pueraria lobata ethanol
extract

H2O2-induced oxidative damage in
human ARPE-19 cell line Various concentrations Protection against oxidative

damage
↑ ZO-1

↓ p38 MAPK and JNK phosphorylation [126]

Red wine extract Human ARPE-19 cell line 30–100 µg/mL Inhibition of VEGF-A
secretion

↓ VEGF, VEGF-A, VEGF-R2 and
phosphorylated VEGF-R2 (angiogenic

marker); MEK and ERK 1
2 phosphorylation

[127]

Rosemary extract White light-induced retinal
degeneration in Sprague-Dawley rats Various concentrations, IP Protection against retinal

degeneration

↑ HO-1 (antioxidant enzyme), rhodopsin, cone
opsin, cone arrestin, retinal DNA and GFAP

↓ CEP (AMD biomarker)
[128]

Saudi Origanum vulgare
extract-mediated gold

nanoparticles

H2O2-induced oxidative damage in
human RPE-19 cell line and human

umbilical vein endothelial cells
(HUVEC) and human RPE cells

0.1–1 mg/mL Protection against oxidative
damage and apoptosis

↓mRNA expression of IL-6, TNF-α, caspase-3
and NLRP-3 (inflammatory cytokine and

pro-apoptotic factor)
↓ VEGF and F4/80

[129]

Solanum melongena
ethanol extract

Blue light-induced oxidative damage
in human RPE cell line Various concentrations Protection against oxidative

damage

↓ nuclear p65, CXCL8, IL-1β, RELA and PARP
cleavage (inflammatory cytokine and

pro-apoptotic protein) and NF-κB activation
↓mRNA expression of CXCL8, NFKBIA,

IL-1β, RELA, TRIB3 and XBPIs (inflammatory
cytokine and unfolded protein

response marker)

[130]

Blue light-induced retinal
degeneration in BALB/c mice 100 and 200 mg/kg, PO Protection against retinal

degeneration NE

Tribulus terrestris ethanol
extract

H2O2-induced oxidative damage in
human RPE-19 cell line 100 and 200 µg/mL Protection against oxidative

damage and apoptosis

↑mRNA expression of Nrf2, CAT, SOD1,
SOD2, GST-pi, HO-1, NQO1 and GCLM
↑ Bcl-2 (anti-apoptotic factor) and Nrf2

activation
↓ Bax, cleaved caspase-3 and cleaved

caspase-9 (pro-apoptotic protein)

[131]
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Table 3. Cont.

Extract/
Polysaccharide Model Concentration/Dose Finding Mode of Action Reference

Vaccinium uliginosum
water extract

Blue light-induced cytotoxicity in
human ARPE-19 cell line Various concentrations Protection against oxidative

damage and apoptosis
↓ caspase-3 and Bax/Bcl-2 ratio (pro-apoptotic

protein) [132]

Blue light-induced cytotoxicity in
human ARPE-19 cell line Various concentrations Protection against oxidative

damage NE
[133]

Blue light-induced retinal
degeneration in BALB/c mice 25, 50 and 100 mg/kg, PO Protection against retinal

degeneration NE
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Several preclinical models have been used to explore the potential role of aqueous
and ethanol extracts of medicinal plants in the mitigation of oxidative damage associated
with AMD. In each of these models, early indicators include pigmentary and structural
RPE changes, as well as retinal and choroidal thinning, contributing to the pathogenesis of
AMD. Ethanol extracts of Arctium lappa or burdock [106], bilberry [108], Bucida buceras [109],
Centella asiatica or pennywort [110], Diospyros kaki or persimmon [112], lingonberry or
cowberry [108], Melissa officinalis or lemon balm [125], Pueraria lobate [126], Solanum melon-
gena or eggplant [130], Tribulus terrestris or puncture vine [131], and aqueous extracts of
Vaccinium uliginosum or bog bilberry [132], purified Emblica officinalis or amla extract [113],
grape skin extract [119], Saudi Origanum vulgare extract-mediated gold nanoparticles [129]
and Garcinia cambogia or Malabar tamarind extract [118] have been revealed to prevent
the oxidative damage involved in the development of AMD. These findings have gen-
erated interest in botanical substances with antioxidant capabilities associated with the
upregulation of antioxidant enzymes, downregulation of hypoxia response element (HRE)
sequence and modulation of endoplasmic reticulum (ER) stress and unfolded protein re-
sponse. Importantly, activation of transcription factor NF-κB and inflammatory cytokine
tumor necrosis factor alpha (TNF-α) has been linked to apoptosis, which could provide
insight into the critical effector pathways regulating the therapeutic intervention in AMD.
Interestingly, these pathways often intersect with the mechanism of action of numerous
botanical substances, namely asiaticoside [110], carotenes, triterpenes, steroids, lactonic
groups [109], flavonoids including chlorogenic acid and proanthocyanidin [108,130,132],
hydroxycinnamic acid derivatives [125], hydroxycitric acid [118], phenolic acids including
trans-resveratrol [107], tannins, amines, amino acid and saponins [109].

Wang et al. [129] demonstrated the remarkable protective effects of synthesized gold
nanoparticles of Saudi O. vulgare extract in the prevention of early-stage or dry AMD by
inhibiting angiogenesis and apoptosis, and increasing the expression of pro-inflammatory
cytokines. Nanotechnology has the potential to make a significant impact on pharmaco-
logical and surgical interventions. Nanocarriers are designed to overcome the difficulties
associated with anatomical and physiological barriers limiting the access to retina.

Mounting evidence suggests that overexposure to blue light induces a significant
increase in ROS production, contributing to the loss of photoreceptors, lipid peroxidation
and cell apoptosis. As a major component of drusen, N-retinylidene-N-retinylethanolamine
(A2E) is a metabolic by-product of RPE cells and a blue light absorbing retinal chromophore
that accumulates with age. The interaction of blue light, A2E and photoreversal of bleach-
ing will further aggravate photochemical damage and cause the activation of inflammatory
reactions, DNA damage and inhibition of mitochondrial and lysosomal function. Inter-
estingly, ethanol extract of A. lappa [106], C. asiatica [110], and S. melongena [130], aqueous
extract of V. uliginosum [132,133] and grape skin extract [119] displayed cytoprotective
effects against A2E oxidation induced by blue light in ARPE-19 cells.

Various lines of evidence have also revealed a downregulation of expression of VEGF
family members at mRNA and protein levels in halting the development of patholog-
ical angiogenesis in CNV. Bilberry anthocyanin-rich aqueous extract [107], G. cambogia
extract [118], purified E. officinalis [113], lactoferrin [120], red wine extract [127], and Saudi
O. vulgare extract-mediated gold nanoparticles [130] have been shown to downregulate
VEGF in preclinical models. VEGFA is the most potent mediator of both retinal and
choroidal angiogenesis, and its inhibition through the regulation of hypoxia-inducible
factor (HIF)/VEGF axis indicates the role of HIF in maintaining cellular homeostasis in
response to changes in the oxygen status. HIF-1α is a major regulator of angiogenesis and
is expressed ubiquitously to control various genes such as VEGF, BCL2 interacting protein
3 (BNIP3) and phosphoinositide-dependent kinase 1 (PDK1).

Fucoidan is a sulfated polysaccharide of long-branched chains of sugars with high
fucose content extracted from brown macroalgae. Fucoidans have recently been used for
the treatment of wet AMD in various in vitro models studying VEGF expression. Crude
fucoidan of Fucus distichus subsp. evanescens [111]; fucoidans of Fucus vesiculosus [114],
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Fucus vesiculosus, F. distichus subsp. evanescens, Fucus serratus, Laminaria digitata, Saccha-
rina latissimi [115,117] and Laminaria hyperborean [116] have been shown to reduce VEGF
expression. Intriguingly, Dithmer et al. [114] revealed a novel antiangiogenic approach
of fucoidans in preventing the secretion of VEGF in ARPE-19 cells, primary porcine RPE
cells and RPE/choroid perfusion organ culture incubated with bevacizumab. Therefore, fu-
coidans can be developed as VEGF antagonists in the treatment of angiogenesis-dependent
diseases as in CNV. However, the molecular mechanisms mediating the regulation of VEGF
has not yet been entirely elucidated.

Lycium barbarum (wolfberry, goji berry) has been used for more than 2000 years in
traditional Chinese medicine (TCM). Its medicinal values are documented in the Pharma-
copoeia of the People’s Republic of China. Indeed, the polysaccharides which comprise
5–8% of dried fruits have been reported to possess antioxidant, anti-inflammatory and
anti-apoptotic effects. Accumulating evidence suggests that L. barbarum may enhance
macular health and prevent AMD [134]. The polysaccharides of L. barbarum have revealed
potent preclinical efficacy against AMD [122–124]. Modulation of pro-apoptotic genes (Bax
and Bcl-2), upregulation of antioxidant genes (Nrf2 and thioredoxin reductase 1 (TrxR1)),
downregulation of DNA repair gene [poly (ADP-ribose) polymerase family member 14
(PARP14)] and restoration of antipyroptosis activity contributed to the protective effect of
polysaccharides against photoreceptor apoptosis in preclinical models.

4.4. Flavonoids

The chemical structures, findings and mode of action of flavonoids in preclinical
models are summarized in Table 4.

Table 4. Flavonoids in the alleviation of AMD.

Flavonoid Model Concen-
tration/Dose Finding Mode of Action Reference

Anthocyanin
Cyanidin-3-O-glucoside

Malvidin 3-glucoside

Malvidin 3-galactoside

UVB
irradiation-induced
oxidative damage in
human ARPE-19 cell

line

5 µM Protection against
oxidative damage

↓ JNK1/2 and p38
MAPK phosphorylation [95]

H2O2-induced
oxidative damage in
human ARPE-19 cell

line

5 µg/mL

Protection against
oxidative damage

and apoptosis

↑ Akt phosphorylation
and Bcl-2

↓ Erk1/2 and p38
phosphorylation;
caspase-3 and Bax

(pro-apoptotic protein)
and VEGF

[135]
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Table 4. Cont.

Flavonoid Model Concen-
tration/Dose Finding Mode of Action Reference

Chlorogenic acid

Light-induced
retinal degeneration
in pigmented rabbits

39.42 mg/kg,
PO

Protection against
retinal

inflammation
↓ NF-κB activation [136]

Epigallocatechin gallate H2O2-induced
oxidative damage in
human ARPE-19 cell

line

1–50 µM

Protection against
ocular

neovascularization
and vascular
permeability

↓mRNA expression and
protein level of MMP-9,
VEGF, VEGF receptor-2

and TNF-α

[137]VEGF-induced
vascular leakage in

Sprague-Dawley rats
Alkali burn-induced
corneal angiogenesis

in BALB/c mice

200 mg/kg,
PO

Protection against
ocular

neovascularization
and vascular
permeability

↑MMP-9 and platelet
endothelial cell adhesion

molecule
(PECAM/CD31)

↓ vascular leakage and
permeability

Fisetin Etoposide-induced
apoptosis in human
ARPE cell line and

primary human RPE
cells

50 µM Protection against
inflammation

↓ IL-8 and IL-6
(inflammatory cytokine) [138]

Homoisoflavonoids Human retinal
microvascular

endothelial cells
(HRECs)

0.01–10 nM Protection against
angiogenesis NE [139]

Kaempferol

H2O2-induced
oxidative damage in
human ARPE-19 cell

line

20 and 50 nM
Protection against
oxidative damage

and apoptosis

↑mRNA expression and
protein level of Bcl-2
(anti-apoptotic factor)
↓mRNA expression and
protein level of Bax and
caspase-3 (pro-apoptotic

factor) [140]

Sodium
iodate-induced

retinal degeneration
in Sprague-Dawley

rats

3%,
intravitreal,

IV

Protection against
retinal

degeneration and
apoptosis

↑ RPE65
↓mRNA expression and

protein level of VEGF

Luteolin
Etoposide-induced
apoptosis in human
ARPE cell line and

primary human RPE
cells

50 µM Protection against
inflammation

↓ IL-8 and IL-6
(inflammatory cytokine) [138]
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Table 4. Cont.

Flavonoid Model Concen-
tration/Dose Finding Mode of Action Reference

Proanthocyanidins

Light-induced
retinal degeneration
in Sprague-Dawley

rats

30–300
mg/kg, PO

Protection against
oxidative damage

and apoptosis
NE [141]

Quercetin

H2O2-induced
oxidative damage in
human ARPE-19 cell

line

100 µM
Protection against
oxidative damage
and inflammation

↑mRNA expression of
Nrf2 and HO-1

↓mRNA expression of
IL-6 and IL-1β

(inflammatory cytokine)

[142]

4-Hydroxynonenal-
induced oxidative
damage in human
ARPE-19 cell line

50 µM Protection against
inflammation

↓mRNA expression and
protein level of IL-6, IL-8

and MCP-1
(inflammatory cytokine)
↓ p38, MAPK, ERK and
CREB phosphorylation

[143]

Light-induced
retinal degeneration
in pigmented rabbits

33.63 mg/kg,
PO

Protection against
oxidative damage
and inflammation

↑ HO-1 (antioxidant
enzyme)

↓MCP-1, IL-8, IL-1β,
TNF-α and COX-2

(inflammatory cytokine)

[136]

Light-induced
retinal degeneration
in Sprague-Dawley

rats

50 mg/kg, IP

Protection against
photoreceptor
apoptosis and

retinal
degeneration

↓ AP-1-regulated
c-Jun/c-Fos

heterodimerization
[144]

Resveratrol

Human ARPE-19
cell line 100µM

Combination of
resveratrol and
bevacizumab
reduced the

secretion of VEGF

↑mRNA expression of
Notch 4

↓MEK1/2 (Ser217/221)
and 44/42 MAPK
(Thr202/Tyr204)

phosphorylation and
vimentin

[145]

Immorto mice (H-
2K(b)-ts-A58(+/+)
derived-choroidal
endothelial cells

100 µM Protection against
CNV

↑ p53 (pro-apoptotic
protein)

↓ Akt activation
[146]

Hydroquinone-
induced oxidative
damage in primary

human RPE cells

15 and 30 µM Protection against
oxidative damage

↑mRNA expression and
protein level of HO-1

and GCLC (antioxidant
enzyme)
↓ XBP1

[147]



Pharmaceuticals 2022, 15, 101 27 of 50

Anthocyanins are the water-soluble pigments responsible for the red, blue and purple
colors observed in plants, flowers and fruits. Chromophores and glycosides anthocyanins,
namely, pelargonidin, cyanidin, delphinidin, peonidin, petunidin and malvidin, are the
most common anthocyanidins distributed in plants. Anthocyanin extract from blueberry,
malvidin, malvidin-3-glucoside and malvidin-3-galactoside have been found to increase
the level of endogenous antioxidant enzymes while decreasing ROS and malondialdehyde
(MDA) formed during oxidative degeneration through the activation of Akt and inhibition
of MAPKs in an in vitro model of oxidative damage [135]. Silvan et al. [95] also demon-
strated the protective effects of cyanidin-3-O-glucoside through the inhibition of MAPKs
(JNK1/2 and p38 MAPK) phosphorylation. These observations support the hypothesis
that dietary supplements rich in anthocyanins may prevent AMD progression through
antioxidant mechanisms.

Oxidative damage-induced inflammation leading to photoreceptor apoptosis and
retinal degeneration can be reversed by quercetin. The associated molecular mechanisms
and signaling pathways are well-elucidated in preclinical models. Inhibition of inflamma-
tory cytokines and mediators [136,142,143], regulation of antioxidant enzymes [136,142]
and inhibition of c-Jun/c-Fos heterodimerization regulated by activator protein-1 (AP-
1) [144] have been shown to play important roles in the progression of AMD. AP-1 is a
dimeric complex that is composed of heterodimers of the Fos and Jun family of proteins.
Activation of AP-1, particularly the c-Jun transcription factor has been implicated in the in-
duction of apoptosis activated by extracellular stimuli, whereas c-Fos triggers light-induced
photoreceptor apoptosis.

Resveratrol (3,5′,4-trihydroxystilbene) is a polyphenol phytoalexin found in citrus
fruits. Under various models of oxidative damage using human RPE cells, resveratrol
has been demonstrated to be protective against the development of AMD by regulating
the gene expression of antioxidant enzymes [147], Notch 4 signal transduction [145], vi-
mentin [147] and MAPK expression [145,148]. Notch signaling is essential for vascular
morphogenesis in response to ischemia by laying down primary vascular plexus for arterial
specification [149]. Activation of MAPKs are implicated in RPE cell homeostasis following
oxidative damage [150,151]. Moreover, resveratrol has been shown to inhibit the prolifer-
ation, migration and network formation of activated choroidal endothelial cells through
the activation of p53 and inactivation of Akt in choroidal endothelial cells, leading to its
antiproliferative and antimigratory properties [146].

Furthermore, multiple pro- and anti- apoptotic proteins were found to be regulated in
the retina of a light-induced retinal degeneration model, indicating the therapeutic potential
of resveratrol supplementation in preventing retinal degeneration caused by exposure to
direct sunlight and several artificial light sources [146]. Intriguingly, resveratrol has been
shown to inhibit bevacizumab expression and secretion in ARPE-19 cells incubated with
resveratrol and bevacizumab [145]. The findings pave the way for future research design to
explore the synergistic effects of resveratrol and anti-VEGF for patients with neovascular
AMD in an anticipation to minimize the complications of anti-VEGF treatment regime.

Other flavonoids, namely, chlorogenic acid, epigallocatechin gallate, fisetin, homoiso-
flavonoids, kaempferol, luteolin and proanthocyanidins, also demonstrated promising
protective effects against oxidative damage in preclinical models through the downregu-
lation of matrix metalloproteinase (MMP)-9 and VEGF [137], inhibition of transcription
factor NF-κB activation [136], inhibition of inflammatory cytokines [138] and modulation
of apoptotic pathways [140].

4.5. Formulations

The findings and mode of action of the formulations in preclinical and clinical models
are summarized in Table 5.
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Table 5. Formulations in the alleviation of AMD.

Formulation Model Concentration/Dose Finding Mode of Action Reference

AREDS and
rosemary/carnosic
acid/ursolic acid

Light-induced retinal
degeneration in Sprague-Dawley

rats
17 mg/kg, IP Protection against retinal

degeneration

↑mRNA expression of EGR1, GNG11,
RGD1564999, SCN7A, Olr425, Vom2r65,

OPRK (retinal factor)
↑ HO-1 antioxidant enzyme) rhodopsin, rod

S-antigen, cone opsin and cone arrestin
↓ CEP (AMD biomarker)

[152]

AREDS2
Double-blind randomized

controlled trial in healthy elderly
subjects

Dose-ranging, PO
No effect on reducing the risk
of progression to advanced

AMD
NE [104]

Chuanqi microemulsion
in situ gel

Sodium iodide-induced retinal
degeneration in Sprague Dawley

rats
20µL, dripping Protection against retinal

degeneration NE [153]

Curcumin supplement
Retrospective case-control study

in patients with neovascular
AMD

NE
Combination of curcuma

and anti-VEGF reduced the
frequency of injections

NE [91]

Fufang Xueshuantong
Prospective randomized

controlled pilot study in patients
with CNV

4500 mg/day, PO

Combination of Fufang
Xueshuantong with

ranibizumab reduced the
CNV-PED complex thickness

Improvement in BCVA

NE [154]

Liquid formulation of
omega-3 concentrate

Open-label pilot study in patients
with dry AMD

3.4g of eicosapentaenoic acid
(EPA) and 1.6g of

docosahexaenoic acid (DHA), PO
Improvement in vision NE [155]

Lutein formulation
Light-induced retinal

degeneration in Sprague-Dawley
rats

104 mg/kg, PO
Protection against

photoreceptor apoptosis and
retinal degeneration

NE [156]

Milk-based formulation
of Lycium barbarum

Double-blind randomized
controlled trial in healthy elderly

subjects
13.7 g, PO

Protection against macula
hypopigmentation and

accumulation of soft drusen
NE [157]

Mingjing
Double-blind randomized

controlled trial in patients with
neovascular AMD

5.95 g, PO
Combination of Mingjing and

ranibizumab reduced the
frequency of injections

NE [158]
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Table 5. Cont.

Formulation Model Concentration/Dose Finding Mode of Action Reference

Nanomicellar drop H2O2-induced oxidative damage
in human D407 cell line 10 µM Protection against oxidative

damage ↓ VEGF [159]

Ophthalmic drop
formulation

Laser radiation-induced in a
nonhuman primate model of

AMD-rhesus monkey
1 mg/mL, dripping Promotion of autophagy and

suppression of angiogenesis ↑ 1,25D3-MARRS [160]

Pharmaceutical
composition (Patent No:

WO2012079419)

Light-induced retinal CNV in
Brown Norway rats NA Protection against CNV NE

[161]
Clinical trial in patients with

neovascular CNV NA Protection against CNV NE

RESVEGA® Human ARPE-19 cell line Various concentrations Inhibition of VEGF-A
secretion

↓ VEGF-R2/Cav-1 complex dissociation into
lipid rafts, and MAPK activation [162]

Resveratrol formulation Human RPE AMD
transmitochondrial cybrid cells 1000 µM Protection against oxidative

damage NE [163]

Shihu Yeguang
Bright light-induced

photoreceptor degeneration in
BALB/c mice

57 mg/20 g, PO Protection against retinal
degeneration and apoptosis

↑ Bcl-2 (anti-apoptotic factor)
↓mRNA expression of c-fos and c-jun

(pro-apoptotic factor); TNF-α
(pro-inflammatory cytokine)

[164]

Triphala

TNF-α-induced angiogenesis and
inflammation in rhesus monkey
choroidal-retinal endothelial cell

line (RF/6A)

Various concentrations
Protection against

inflammation, tube formation,
chemotaxis and proliferation

↑ IL-10 and IL-13 (inflammatory cytokine)
↓MMP-9; p38, ERK and NF-κB

phosphorylation
↓mRNA expression of IL-6, IL-8, eotaxin,

MCP-1, MIP-1β, RANTES, IL-5 and
PDGF-BB (inflammatory cytokine)

[165]

ZQMT

Randomized clinical trial in
patients with CNV 15 tablets, PO

Improvement in visual acuity
Combination of ZQMT and

ranibizumab reduced the
frequency of injections

NE [166]

Laser-induced CNV in Crb1rd8
mice 25 mg/mL, PO Protection against

AMD-related retinopathy
↑ CCL2 and CX3CR1 (chemokine axis)

activation [167]
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The Age-Related Eye Disease Study Research Group (ARED) [168] standardized a
clinical protocol in 2000, giving rise to a formulation catering to patients with moderate-
to advanced-stage AMD. The aim of this prospective multicenter nonrandomized study
was to re-appraise the concept of antioxidants in the prevention and management of
AMD. Subsequently, the original formulation was re-examined and completed in 2012
as AREDS2. The goal was to evaluate the effect of adding omega-3 fatty acids, replacing
beta-carotene with lutein-zeaxanthin, and eliminating or lowering the zinc in AREDS.
AREDS2 demonstrated a 10% reduction in the progression of intermediate dry AMD to
advanced forms of atrophic and neovascular AMD compared to placebo [104].

Wong et al. [152] presented the combined effects of AREDS and nontraditional antiox-
idants (rosemary or its active compounds, carnosic acid or ursolic acid) in delaying the
progression of AMD in an animal model of light-induced retinal degeneration. Chronic
administration of the combination may be a useful adjunct to the therapeutic benefit of
AREDS in slowing the loss of photoreceptor cells and the progression of AMD to advanced
disease by regulating retinal gene expression, and increasing rhodopsin, rod S-antigen,
cone opsin and cone arrestin.

As macular pigment consists of constituents derived solely from the diet, dietary
modification has been postulated to promote potential progressive improvement in macular
pigment optical density [169]. Consistent with the theory, the clinical efficacy of milk-based
formulation designated as Lacto-Wolfberry [157] and whole fruit of L. barbarum [170] have
been evaluated in randomized double-blinded placebo-controlled involving healthy elderly
subjects and patients with neovascular AMD, respectively. The 90-day supplementation
showed a striking ability to sustain visual function and delaying macular degeneration
associated with soft drusen and areas of hypopigmentation. Recently, RESVEGA® has
been revealed to promote disruption of antiangiogenic action targeting on VEGF and its
receptor, vascular endothelial growth factor receptor 2 (VEGFR-2) [162]. The formulation
contains trans-resveratrol and omega-3 fatty acids, among other nutrients. The observation
highlights the importance of AP-1 transcription factors in the regulation of VEGF and
VEGFR-2 levels, and disrupting the dissociation of VEGF-R2/caveolin-1(CAV-1) complex
into lipid rafts following VEGF stimulation for the therapeutic efficacy.

Further, the depletion of omega-3 fatty acids has been suggested as one of the causes
of oxidative damage to the retina, leading to photoreceptor degeneration and accumulation
of drusen in the sub-RPE or subretinal space. Omega-3 fatty acids are found in plants and
marine-based foods in short- (alpha-linolenic acid [ALA]) and long- chain (eicosapentaenoic
acid [EPA], and docosahexaenoic acid [DHA]) forms. In two cohort studies, omega-3 fatty
acids incorporated in the regular diet has been revealed to reduce the risk and confer
protection against various stages of AMD. The study population was derived from the Blue
Mountains Eye Study and National Academy of Sciences-National Research Council World
War II Veteran Twin Registry. Evaluation was performed by grading of retinal photographs
and visual acuity test [171,172]. In an open-label pilot study in patients with dry AMD, a
liquid formulation of omega-3 concentrate has been reported to enhance visual function
following 6 weeks of supplementation [155]. Nevertheless, there was no evidence from
randomized trials to justify the effectiveness of the interventions.

In addition, the synergistic therapeutic effects of TCM are mainly derived from the
complex interactions between multiple active constituents within the herbal formulations.
As such, Mingjing granule that consists of Radix astragali, Salvia miltiorrhiza, Fructus lycii,
Ecliptae herba, Pollen Typhae and Cirsii Japonici Herba Carbonisata [158], and ZQMT,
a traditional Chinese Patent Medicine consists of Rheum officinale, Panax notoginseng, S.
miltiorrhiza, Eclipta prostrata, Ilex pubescens, Rehmannia glutinosa, Radix Paeoniae Rubra, Paeo-
nia suffruticosa, Scutellaria baicalensis, Fructus ligustri lucidi and Leonuri Semen [166] have
been demonstrated to reduce the frequency of intravitreal injection of ranibizumab in
patients with neovascular AMD. Likewise, combination of Fufang Xueshuantong with
ranibizumab reduced the thickness of RPE–Bruch’s membrane complex thickness in neo-
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vascular AMD [154]. The preparation consists of P. notoginseng, Radix astragali, S. miltiorrhiza
and Radix Scrophulariaceae.

On the other hand, Du et al. [153] recently developed a novel ophthalmic preparation
known as Chuanqi ophthalmic microemulsion in situ gel. Topical administration of the
preparation, which consists of Ligusticum chuanxiong and A. membranaceus var. mongholicus,
can be transported from conjunctival/cornea surface to the retina by three different routes;
the transvitreal, uvea-scleral and periocular routes in an animal model of dry AMD in-
duced by sodium iodide. Additionally, a patented pharmaceutical composition (Patent No:
WO2012079419) demonstrated a positive impact on the course of CNV based on animal and
human trials. Its main ingredients include A. membranaceus, Angelica sinensis, Poria cocos,
Fritillaria thunbergii, Panax pseudoginseng, charred Radix et Rhizoma Rhei, Pollen Typhae
and Curcuma aromatic [161]. Shihu Yeguang, a formulation consisting of 24 herbs has been
revealed to prevent the development of bright light-induced photoreceptor degeneration
by suppressing photo-oxidative stress-induced apoptosis [164]. This approach greatly
bridges the gap between TCM and modern medicine by encouraging further studies into
the synergistic actions of TCM.

Other formulations that offer protection against the development of macular degener-
ation are lutein formulation that contains Calendula officinalis, Lycium barbarum, Vaccinium
myrtillus, Cassia obtusifolia, and Rhodiola rosea [156], nanomicellar drop formulation of
curcumin [159], ophthalmic drop formulation that contains nanoparticles of diosgenin
extracted from the tubers of Dioscorea wild yam [160], resveratrol formulation [163] and
Triphala, a polyherbal Ayurvedic medicine consists of dried fruit powder of Terminalia
chebula, Terminalia bellerica and Phyllanthus emblica [165].

4.6. Vitamins

The chemical structure, findings and mode of action of vitamin B6 in preclinical models
are summarized in Table 6. Early clinical and epidemiological studies predicted associations
between vitamins and AMD [100,173]. A diet rich in multivitamins may prevent or delay
progression to advanced-stage AMD, particularly the CNV. In addition, the effects of
vitamin B6 was recently verified in preclinical models of oxidative damage [174]. As a
component of rice bran, vitamin B6 was shown to suppress retinal neovascularization
through the inhibition of HIF and decreased mRNA expression of VEGF. HIF promotes an
adaptive transcriptional response to hypoxia, and as such, is a major regulator of immune
cell survival and function. HIF is an oxygen-sensitive dimeric transcription factor that
promotes an adaptive response to hypoxia by regulating essential inflammatory functions
of immune cells.

Table 6. Vitamin in the alleviation of AMD.

Vitamin Model Concentration/Dose Finding Mode of Action Reference

Vitamin B6
CoCl2-induced hypoxic

condition in mouse
photoreceptor-derived 661W

and human ARPE-19 cell lines

1 mg/mL
Suppression of
retinal neovas-

cularization

↓mRNA
expression of

VEGF
↓ HIF [174]

Light-induced retinal
degeneration in C57BL/6 and

BALB/c mice
9 and 35 mg/kg, PO

Suppression of
retinal neovas-

cularization

↓ HIF

4.7. Whole Foods

The findings and mode of action of whole foods in preclinical and clinical models are
summarized in Table 7.
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Table 7. Whole foods in the alleviation of AMD.

Whole Food Model Concentration/Dose Finding Mode of Action Reference

Defined grape powder Laser-induced CNV in C57BL/6J mice 100 mg/animal, PO Protection against CNV NE [146]

Fermented Capsicum
annuum

Sodium iodate-induced oxidative
damage in human ARPE-19 cell line 500 µg/mL Protection against oxidative damage

and apoptosis
↓ cleaved PARP-1, caspase-8 and
caspase-3 (pro-apoptotic factor);

AKT, JNK and p38
phosphorylation

[175]
Sodium iodate-induced retinal
degeneration in C57BL/6 mice 195 mg/kg, PO Protection against retinal degeneration

Lycium barbarum Double-blind randomized controlled
trial in patients with neovascular AMD

25 g/day, PO Improvement in macular pigment
optical density NE [170]

Rice bran

CoCl2-induced hypoxic condition in
mouse photoreceptor-derived 661W and

human ARPE-19 cell lines
1 mg/mL Suppression of retinal

neovascularization
↓ HIF

↓mRNA expression of VEGF
[174]

Light-induced retinal degeneration in
C57BL/6 and BALB/c mice 587.5 mg/kg, PO Suppression of retinal

neovascularization ↓ HIF

Rosemary oil White light-induced retinal degeneration
in Sprague-Dawley rats Various concentrations, IP Protection against retinal degeneration

↑ HO-1 (antioxidant enzyme),
rhodopsin, cone opsin, cone

arrestin, retinal DNA and GFAP
↓ CEP (AMD biomarker)

[128]

Saffron

Light-induced retinal degeneration in
Sprague-Dawley rats 1 mg/kg, PO Protection against photoreceptor

degeneration NE [176]

Open-label longitudinal study in
patients with AMD 20 mg/day, PO Improvement in macular function in

early/moderate-stage AMD NE [177]

Open-label longitudinal study in
patients with AMD 20 mg/day, PO Improvement in macular function NE [178]

Double-blind randomized controlled
trial in patients with AMD 30 mg/day, PO Improvement in retinal function in

advanced-stage AMD NE [179]

Clinical trial in patients with dry AMD 50 mg/day, PO Improvement in visual function
Delaying the progression of dry AMD NE [180]

Double-blind randomized controlled
trial in patients with AMD 20 mg/day, PO Preservation of retinal function in

mild/moderate-stage AMD NE [181]
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Table 7. Cont.

Whole Food Model Concentration/Dose Finding Mode of Action Reference

Saffron (Patent:
W02015/145316)

Light-induced retinal degeneration in
albino rats 1 mg/kg Protection against photoreceptor

apoptosis and retinal degeneration ↓MMP-3
[182]

Clinical trial in patients with AMD NE Delaying the progression of AMD NE
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A2E, N-retinyl-N-retinylidene ethanolamine; ABCA1, ATP binding cassette subfamily
A member 1; ABCG1, ATP binding cassette subfamily G member 1; Aif1, allograft inflamma-
tory factor 1; AIFL, apoptosis-inducing factor-like; Akt, protein kinase B; AMD, age-related
macular degeneration; AMPK, adenosine monophosphate-activated protein kinase; ANG,
angiogenin; ANGPTL3, angiopoietin-like protein 3; AP-1, activator protein-1; APH1A,
Aph-1 homolog A, gamma-secretase subunit; APH1B, Aph-1 homolog B, gamma-secretase
subunit; APPBP2, amyloid protein-binding protein 2; ARE, antioxidant response element;
AREDS, Age-Related Eye Disease Study; AREG, amphiregulin; ARPE-19, human retinal
pigment epithelial cell line-19; ATF, activating transcription factor; BAP, biological antioxi-
dant potential; Bax, Bcl2 associated X; Bcl-2, B-cell lymphoma 2; BCVA, best corrected visual
acuity; BiP, binding immunoglobulin protein; Bnip3, BCL2 interacting protein 3; c-Abl,
tyrosine-protein kinase ABL; CAT, catalase; Cav-1, caveolin-1; CCL2, C–C motif chemokine
ligand 2; CCNA2, cyclin A2; CD31, cluster of differentiation 31; CDC42, cell division control
protein 42 homolog; CDK2, cyclin-dependent kinase 2; CEP, carboxyethylpyrrole; cFXST,
Fufang xueshuantong; CHOP, C/EBP homologous protein; CNV, choroidal neovasculariza-
tion; CoCl2, cobalt (II) chloride; COX-2, cyclooxygenase 2; CP, ceruloplasmin; CREB, cAMP
response element-binding protein; CX3CR1, C-X3-C motif chemokine receptor 1; CXCL8, C-
X-C motif chemokine ligand 8; CYP27A1, cytochrome P450 family 27 subfamily A member
1; CYP46A1, cytochrome P450 family 46 subfamily A member 1; d-ROM, diacron-reactive
oxygen metabolites; DHA, docosahexaenoic acid; DLL4, delta-like 4; EGFR, epidermal
growth factor receptor; EGR1, growth response 1; EIF2α, eukaryotic initiation factor-2α;
EPA, eicosapentaenoic acid; ERG, electroretinogram; ERK, extracellular-signal-regulated
kinase; GCLC, glutamate cysteine ligase catalytic subunit; GCLM, glutamyl cysteine ligase
modifier subunit; GFAP, glial fibrillary acidic protein; GNG11, G protein subunit gamma
11; GPx, glutathione peroxidase; GRP, glucose regulatory protein; GSDMD, gasdermin D;
GSH, glutathione; GST-pi, glutathione S-transferase pi; GSSG, oxidized glutathione; HIF,
hypoxia-inducible factor; HNE, 4-hydroxynonenal; HO-1 or HMOX1, heme oxygenase-1;
HRECS, human retinal microvascular endothelial cells; HUVECs, human umbilical vein
endothelial cells; Iba1, ionized calcium binding adaptor molecule 1; ICAM-1, intercellular
adhesion molecule-1; IFNγ, interferon gamma; IGFBP, insulin-like growth factor binding
protein; IκBα, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor,
alpha; IL, interleukin; INOS, inducible nitric oxide synthase; IP, intraperitoneal; IV, intravit-
real injection; JNK, c-Jun N-terminal kinase; Keap1, Kelch-like ECH-associated protein 1;
LC3, microtubule-associated protein light chain 3; LDLR, low density lipoprotein receptor;
LPO, lipid hydroperoxide; LPS, lipopolysaccharides; LXR-α, liver X receptor alpha; MAPK,
mitogen-activated protein kinase; MCP-1, monocyte chemoattractant protein-1; MCT3,
monocarboxylate transporter 3; MDA, malondialdehyde; MEK, mitogen-activated protein
kinase kinase; MIP-1β, macrophage inflammatory protein-1β; MMP, matrix metallopro-
teinase; MNU, N-Methyl-N-nitrosourea; MT-RNR2, mitochondrially encoded 16S RRNA;
NCAM, neural cell adhesion molecule 1; NCSTN, nicastrin; NE, not evaluated; NF-κB,
nuclear factor kappa-light-chain-enhancer of activated B cells; NFKBIA, NFKB inhibitor
alpha; NLRP3, NLR family pyrin domain containing 3; NOX4, NADPH oxidase 4; NQO1,
NAD(P)H dehydrogenase quinone 1; Nrf2, nuclear factor erythroid 2-related factor 2;
Ocln, occludin; Olr425, olfactory receptor 425; OMM-1, uveal melanoma cell line; OPRK,
opioid receptor kappa; PAI-1, plasminogen activator inhibitor 1; PARP1, poly(ADP-ribose)
polymerase 1; PARP14, poly(ADP-ribose) polymerase 14; PDGF, platelet-derived growth
factor; PDK1, pyruvate dehydrogenase kinase 1; PECAM, platelet endothelial cell adhesion
molecule; PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha;
PO, per oral; POLD1, DNA polymerase delta 1; PPAR, peroxisome proliferator-activated re-
ceptor; Prx2, peroxiredoxins 2; RANTES, regulated upon activation, normal T cell expressed
and presumably secreted; RELA, v-rel avian reticuloendotheliosis viral oncogene homolog
A; RGD1564999, isopentenyl-diphosphate delta isomerase 2; ROCK, rho-associated coiled-
coil kinase; RPE65, retinal pigment epithelium-specific 65; SCN7α, sodium channel protein
type 7 subunit alpha; SOD, superoxide dismutase; SRXN1, sulfiredoxin 1; SIRT1, surtuin
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1; TBHP, tert-Butyl hydroperoxide; TLR, toll-like receptor; TNF-α, tumor necrosis factor
alpha; TRAF5, TNF receptor-associated factor 5; TRIB3, tribbles pseudokinase 3; TrxR1,
thioredoxin reductase 1; TSPO, translocator protein; UVB, ultraviolet B; VEGF, vascular
endothelial growth factor; Vom2r65, vomeronasal 2 receptor, 65; XBP1s, spliced X-box
binding protein 1; xCT, Na+-independent-cysteine/glutamate exchanger; ZO-1, zonula
occludens-1; γ-GCS, gamma-glutamylcysteine synthetase; γH2AX, phosphorylated histone
H2AX; 8-OHdG, 8-hydroxydeoxyguanosine.

4.7.1. Saffron

Saffron, the dried stigmas of Crocus sativus flowers, is a well-known spice which
is highly valued for its golden color, flavor and aroma in the preparation of traditional
dishes. A phytochemical analysis of saffron reported the presence of 150 compounds, of
which carotenoids, crocin and crocetin were the most biologically active components [183].
Crocetin is a dicarboxylic carotenoid whereas crocin is a glycosylated carotenoid/crocetin.

Robust preclinical evidence established a strong rationale for testing the beneficial
effect of long-term consumption of saffron in early-stage AMD. The studies involving
a dietary saffron [176] and a patented saffron [182] show the key role of MMP-3 in the
protection against photoreceptor apoptosis in animal models of light-induced retinal de-
generation. Moreover, activation of ERK1/2 by crocetin has been found to demonstrate
a protective role in a cellular model of Tert-butyl hydroperoxide-induced oxidative dam-
age through the preservation of redox homeostasis and energy-yielding pathways [94].
Metabolic pathways such as glycolysis and mitochondrial respiration are the major sources
of adenosine 5′-triphosphate (ATP) production. Indeed, nonspecific oxidative damage
induced by excessive mitochondrial ROS production are observed together with increased
protein aggregation and inflammation in AMD.

In a randomized, double-blinded, placebo-controlled crossover study, saffron sup-
plementation for 90 days was found to improve macular function as assessed by focal
electroretinogram (fERG) [184], accompanied by a significant increase in the average visual
acuity on Snellen eye chart. The crossing over of AMD patients was conducted in accor-
dance with the principles outlined by Maccarone et al. [185]. fERG is a tool for diagnosis,
analysis of pathogenesis, prediction of prognosis and estimation of retinal flicker sensitivity
in patients with early-stage AMD. A fERG can be recorded from the macular region in
response to a continuous flickering of the straylight source in the periphery.

In addition, open-label longitudinal studies and double-blind randomized controlled
trials have proven the efficacy of saffron in delaying the progression of dry [180], mild to
moderate- [177,181] and advanced-stage AMD [179]. Di Marco et al. [182] postulated that
saffron is superior to AREDS in delaying the progression of AMD. Considering that these
findings were based on a relatively well-nourished American population, recommendations
should be based on risk factors and demographic data.

Furthermore, common genetic variants, including complement factor H (CFH), com-
plement factor I (CFI), complement factor B (CFB), complement 3 (C3) and human serine
protease high temperature requirement A1 (HTRA1) [186], as well as the substitution of
serine for alanine at codon 69 (A69S) in age-related maculopathy susceptibility 2 (ARMS2)
gene positioned at a locus on chromosome 10q26 [187], are associated with AMD. Inter-
estingly, Marangoni et al. [178] revealed that the functional effects of long-term saffron
supplementation in improving visual function were not influenced by genetic polymor-
phisms associated with risk of AMD.

4.7.2. Other Whole Foods

Organisciak et al. [128] studied the synergistic properties of an admixture of rosemary
oil and zinc oxide (ZnO) in an animal model of light-induced retinal damage. The mineral
supplementation was adjusted based on the recommendation of the Age-Related Eye
Disease Study 1 (AREDS1) Research Group. The combination was found to be effective in
preventing the progression of advanced-stage AMD by restoring the level of rhodopsin,
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cone opsin and cone arrestin, and decreasing the level of carboxyethylpyrrole (CEP) adducts.
Furthermore, the inflammatory response was regulated by HO-1, a potent antioxidant.
Cone phototransduction and survival are essential for color vision and visual acuity. As
the rods and cones degenerate under a variety of pathological conditions including AMD,
biomarkers are the most reliable prognostic indicators of disease progression. CEP adducts,
derived from fragmentation of docosahexaenoate (DHA)-containing lipids, have been
compellingly linked to AMD by triggering pathological angiogenesis.

Likewise, the antiangiogenic effects of defined grape powder [146], fermented Cap-
sicum annuum or paprika [175] and rice bran [174] in apoptotic RPE cells that release
VEGF were regulated through the inhibition of HIF and VEGF expression mediated by
phosphoinositide 3-kinases (PI3K)/AKT and MAPK-dependent pathways.

Collectively, the effects of activating the signaling pathways which are responsible
for antioxidant and anti-inflammatory-mediated effects and inhibiting VEGF of natural
antioxidants, in terms of promoting the survival of RPE cells under oxidative damage, are
shown in Figures 3 and 4, respectively.

Figure 3. Genetic, aging and environmental factors exaggerate dysfunction and degeneration of reti-
nal pigment epithelium (RPE) in age-related macular degeneration (AMD). Excessive production of
reactive oxygen species (ROS) leads to mitochondrial dysfunction and mitochondrial DNA (mtDNA)
damage, and therefore causing extracellular accumulation of insoluble protein aggregates. Modulation
of extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK)1/2, p38 mitogen-activated
protein kinase (MAPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), protein
kinase B (Akt) and adenosine monophosphate-activated protein kinase (AMPK) activities by natural
antioxidants results in decreased pyroptosis, inflammation, mitochondrial stress and apoptotic activity.
Upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and
nuclear factor erythroid 2-related factor 2 (Nrf2) promotes the expression of antioxidant genes and
enhances the capacity of antioxidant defense systems in attenuating the damaging effects of ROS and
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reversing mitochondrial dysfunction. AIF1, allograft inflammatory factor 1; Akt, protein kinase
B; AMPK, adenosine monophosphate-activated protein kinase; AP-1, activator protein-1; ARE,
antioxidant response element; ATF, activating transcription factor; Bax, Bcl2 associated X; Bcl-2,
B-cell lymphoma 2; BNIP3, BCL2 interacting protein 3; c-Abl, tyrosine-protein kinase ABL; CAT,
catalase; CHOP, C/EBP homologous protein; COX-2, cyclooxygenase 2; CP, ceruloplasmin; CXCL8,
C-X-C motif chemokine ligand 8; ERK, extracellular-signal-regulated kinase; GCLC, glutamate
cysteine ligase catalytic subunit; GCLM, glutamyl cysteine ligase modifier subunit; GPx, glutathione
peroxidase; Grp, glucose regulatory protein; GSDMD, gasdermin D; GSH, glutathione; GST-pi,
glutathione S-transferase pi; HO-1, heme oxygenase-1; IFNγ, interferon gamma; IL, interleukin; INOS,
inducible nitric oxide synthase; JNK, c-Jun N-terminal kinase; MAPK, p38 mitogen-activated protein
kinase; MCP-1, monocyte chemoattractant protein-1; mtDNA, mitochondrial DNA; NF-κB, nuclear
factor kappa-light-chain-enhancer of activated B cells; NLRP3, NLR family pyrin domain containing 3;
NQO1, NAD(P)H dehydrogenase quinone 1; Nrf2, nuclear factor erythroid 2-related factor 2; PARP1,
poly(ADP-ribose) polymerase 1; PDK1, pyruvate dehydrogenase kinase 1; PGC-1α peroxisome
proliferator-activated receptor gamma coactivator 1-alpha; RELA, v-rel avian reticuloendotheliosis
viral oncogene homolog A; ROS, reactive oxygen species; RPE, retinal pigment epithelium; SOD,
superoxide dismutase; SRXN1, sulfiredoxin 1; TNF-α, tumor necrosis factor alpha; UV, ultraviolet;
xCT, Na+-independent-cysteine/glutamate exchanger; γ-GCS, gamma-glutamylcysteine synthetase.

Figure 4. Hypoxia and excessive production of reactive oxygen species (ROS) promote active angio-
genesis and neovascularization by upregulating mRNA expression of hypoxia-inducible factor-α
(HIF-α). Modulation of extracellular-signal-regulated kinase (ERK)1/2, mitogen-activated protein
kinase kinase (MEK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and
p38 mitogen-activated protein kinase (MAPK) activities by natural antioxidants results in decreased
inflammation and downregulation of hypoxia response element (HRE). Inhibition of vascular en-
dothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) lead to attenuation of
angiogenesis and neovascularization. AIF1, allograft inflammatory factor 1; COX-2, cyclooxygenase
2; CP, ceruloplasmin; CXCL8, C-X-C motif chemokine ligand 8; ERK, extracellular-signal-regulated
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kinase; HIF-α, hypoxia-inducible factor-α; HRE, hypoxia response element; IFNγ, interferon gamma;
IGFBP, insulin-like growth factor binding protein; IL, interleukin; INOS, inducible nitric oxide
synthase; MAPK, p38 mitogen-activated protein kinase; MCP-1, monocyte chemoattractant protein-1;
MEK, mitogen-activated protein kinase kinase; MMP, matrix metalloproteinase; NF-κB, nuclear factor
kappa-light-chain-enhancer of activated B cells; PDGF, platelet-derived growth factor; RELA, v-rel
avian reticuloendotheliosis viral oncogene homolog A; ROS, reactive oxygen species; RPE, retinal
pigment epithelium; TNF-α, tumor necrosis factor alpha; UV, ultraviolet; VEGF, vascular endothelial
growth factor.

5. Limitations and Future Prospects

Although the results of this study are encouraging, several shortcomings are worth
mentioning. Complementary and alternative medicines have been used for decades to
treat various diseases including AMD [188,189]. Synergistic therapeutic effects have been
demonstrated in herbal formulations and TCM [190,191]. The safety and effectiveness of
some of these formulations, especially complementary and alternative medicines, are un-
certain because no relevant, well-designed clinical trials or pharmacovigilance studies have
been undertaken. Most of the prescribed formulations and herbal remedies used in primary
health care have not been officially approved by the US Food and Drug Administration
(FDA). Therefore, ophthalmologists should consider the potential risks and adverse effects
before recommending these formulations to their patients [192].

In addition, the use of natural antioxidants, especially in traditional Chinese medicine,
has been associated with some potential issues. A major challenge is the variation of raw
compositions of natural antioxidants due to ecological and environmental differences,
changing geography, phylogenetic cross-over, and species purity [193,194]. The therapeutic
efficacy of plant-derived phytochemical compounds with high molecular weight is also of
great concern due to their poor permeation through lipid bilayers and reduced bioavailabil-
ity in humans [195]. The possible steroidal activity of TCM herbs and supplements in their
raw and finished forms has been questioned, as they can lead to adverse reactions such
as adrenal insufficiency, Cushing’s syndrome, hepatotoxicity, and nephrotoxicity. Some
herbs could contain compounds that are structurally similar to steroids, which could inter-
fere with steroid metabolism or bind to steroid receptors [196]. Therefore, analytical and
high-throughput screening of the purified natural antioxidants is needed to understand the
mechanisms of action of these natural products or traditional medicines [193].

Nevertheless, emerging trends in nanotechnology are revolutionizing the develop-
ment of natural antioxidants. Nanotechnology can be used to facilitate the delivery of
natural antioxidants and compounds by delaying the development of drug resistance, with
improved responses comparable to modern medicine approaches [197]. In this respect, nan-
otherapeutics could be developed to facilitate the delivery of drug treatments for CNV by
enhancing bioactivity, improving bioavailability at the target sites and allowing sustained
drug release with prolonged action [198]. Although the use of nanomicellar and ophthalmic
drop formulations may have therapeutic advantages for AMD [157,160], clinical trials are
still needed to assess potential nanoparticle toxicity in the ocular surface, lens, retina and
optic nerve.

In addition, the design of the study and choice of model are important for inves-
tigating the therapeutic effects and mechanisms of action of treatments targeting AMD.
Primary cultures of human fetal and adult RPE cells are suitable for in vitro studies, as
they retain the characteristics of native RPE tissue and are physiologically mature [199].
However, primary RPE cells cultured from different donors are genetically and physio-
logically different. Moreover, primary RPE cells tend to lose their RPE characteristics and
their re-differentiation capacity after several passages [200]. Although there are a few com-
mercially available continuous RPE cell lines, one limitation is that they lack their original
pigmented phenotype, especially melanin [201,202]. Nevertheless, ARPE-19 cells can be
repigmented using isolated melanosomes from porcine RPE, which promotes higher drug
binding affinity and accumulation [203]. Furthermore, long-term appropriate culture and
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differentiation of low passage human ARPE cells can develop phenotypic characteristics
and express genes specific to native RPE cells [204].

Although laser-induced CNV in animal models can mimic neovascularization with
rapid CNV development, this is an acute injury and does not produce the complex chronic
events leading to AMD. Injection-induced CNV can stimulate deposits and lesions, but
this is less effective compared to laser-induced CNV. Transgenic murine models often
exhibit symptoms of dry AMD, and thus, laser or injection is needed to stimulate neovas-
cularization [199]. Laser-induced CNV in transgenic mice with expression or knock-out
of gene variants can be used to test short-term hypotheses such as the involvement of
environmental factors and external stress in AMD [205]. Moreover, rabbit models have the
advantage of larger eyes, which is beneficial for the administration of subretinal injections
and vectors for gene therapy [206]. However, laser-induced damage in the Bruch’s mem-
brane and injection of proangiogenic factors are not applicable in rabbits, thus injection
of Matrigel containing proangiogenic factors has been used to produce CNV lesions and
disrupt Bruch’s membrane to resemble AMD [207].

Nonhuman primate animal models with mostly similar anatomy to human have
also been used in preclinical studies. Unlike other animals, primates have a macula,
which is needed for high acuity central vision and photoreceptor organization, and is an
important part of the visual pathway [206,208]. Some nonprimate models are useful for
AMD studies, including rhesus, cynomolgus and Japanese macaque monkeys that can have
early-onset drusen, and African green monkeys that can have induced neovascularization
by intravitreal injection of DL-alpha-aminoadipic acid [208–210]. Besides the difficulty in
breeding and handling these animals, there are cost and ethical issues associated with their
usage in AMD studies [211]. Before any animal study can be translated to a human study, it
is crucial to consider the risk-benefit analysis, informed consent procedures, ethical review,
and monitoring processes in order to develop a safe and effective treatment for AMD [212].

Current clinical studies on AMD, such as exploratory studies of gene variants, mRNA
sequencing, and protein association, may not be sufficient to determine the cellular and
signaling pathways. Consequently, different experimental designs, such as human clinical
and pathological specimen analysis, imaging and genetic studies, mechanistic studies
using in vitro and in vivo models (genetic, transcriptional, and proteomic studies) will be
required [205]. Considering the prevalence of AMD is different among populations in
different regions, the design of clinical studies should be standardized to allow consistent
results for comparisons. A standardized grading system of AMD lesions should also
be adopted in clinical studies such as the Wisconsin Age-Related Maculopathy Grading
System, Age-Related Eye Disease Study System of Classifying AMD, the International
Classification and Grading System for AMD, or the Clinical Classification of Age-Related
Macular Degeneration [213]. Additionally, no validated clinical endpoints are accepted
by all regulatory agencies. The only accepted primary endpoint in AMD clinical study is
the best-corrected visual acuity (BVCA) that requires high contrast and high luminance,
but it is not sensitive enough to detect the functional deficits in early or intermediate
AMD [214,215]. Therefore, there is a need to develop and validate novel clinical endpoints
or appropriate tools that are acceptable to regulatory agencies for clinical trials on early
and intermediate AMD [216].

Generally, there has been a lack of animal and human studies evaluating the efficacy
of natural antioxidants targeting AMD. Although there are many in vitro studies on the
therapeutic impacts of curcumin, only one study of animal model of retinal disorder [217]
and one retrospective study of AMD [91] have been revealed. One major disadvantage of
retrospective studies is the small sample size, which may have selection bias, suboptimal
handling of missing data and loss to follow-up. Although retrospective studies can reflect
the results in the clinical setting compared to a randomized study, it does not accurately
represent real world population outcomes [218,219]. Retrospective studies are also limited
by their geographical reach, as the results cannot be applied to larger populations or other
regions [220]. The signaling pathway of Lycium barbarum used in AMD is well elucidated
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in preclinical models. On the other hand, only two randomized controlled trials conducted
in healthy older subjects and neovascular AMD patients have been reported [157,170].
Although randomized studies are often viewed as the gold standard for clinical evidence of
the true relative efficacy of an intervention, there might be unknown or immeasurable con-
founding variables that can lead to a biased estimation of the treatment effect. Randomized
studies are also time-consuming and expensive compared to other types of study [221].

In the future, a multitherapeutic approach should be adopted, as there is no experi-
mental model that can emulate and represent the full pathophysiology of AMD. A model
that is ideal for AMD research and the development of therapeutics should share similar
anatomical features, physiological mechanisms and disease progression patterns with
modifiable translational endpoints [222]. The “virtuous cycle” of bidirectional translation
studies in AMD could be started by discovering and observing the human phenotype
in AMD patients. Preclinical animal models could then be conducted to understand the
pathophysiology and explore potential therapeutics. Finally, knowledge and potential
therapeutics from preclinical studies need to be further tested and validated for their ef-
ficacy and tolerability in AMD patients [223]. Besides exploring other treatment options
for wet AMD, there is a need to explore new treatments for dry AMD, as many potential
therapeutic approaches targeting dry AMD have failed. Future therapeutic protocols will
require treatments that target different aspects of AMD pathobiology, which will require
concerted effort to discover potential therapies [224].

6. Conclusions

This review provides an overview of the available evidence from preclinical and
clinical trials of the ability of natural antioxidants to improve or halt the progression of
AMD. Nevertheless, there is increasing concern about the use of natural antioxidants,
particularly traditional formulations, and their potential drug interactions. Elucidating the
mechanisms underlying natural antioxidant-drug interactions also poses great challenges
for AMD treatments. Another issue is the lack of adequate knowledge on the compositions
and pharmacological actions of natural antioxidants. Therefore, scientific evidence and
the dissemination of research are essential for the integration of natural antioxidants into
evidence-based clinical practice.
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