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A B S T R A C T

Climate–vegetation interaction can be perturbed by human activities through deforestation and natural extreme
climatic events. These perturbations can affect the energy and water balance, exacerbating heat stress associated
with droughts. Such phenomena are particularly relevant in the Horn of Africa, given its economic and social
vulnerability to environmental changes. In this paper, we used 16-year time series (2001–2016) of remotely
sensed environmental data with the objective of 1) clarifying how rainfall–vegetation interaction affects land
surface temperature (LST) seasonality across the Horn of Africa, and 2) evaluating how this interaction affects
LST anomalies during forest loss and drought events. Our results showed that vegetation seasonality follows
rainfall modality patterns in 81% of the region. On the other hand, seasonality of daytime LST was negatively
related to vegetation greenness patterns across ecoregions, and rainfall modality. LST varied more strongly in
grasslands and shrublands than over other vegetation classes. Comparison of LST before and after forest loss in
three selected areas (two in Ethiopia and one in Kenya) revealed an annual average increase in LST of 0.7 °C,
1.8 °C, and 0.2 °C after climate variability correction, respectively. The average increase in LST was relatively
high and consistent during dry months (1.5 °C, 3 °C, and 0.6 °C). As expected, the rainfall anomalies during
droughts (2010/2011, 2015, and 2016) were positively correlated with vegetation greenness anomalies.
Nonetheless, the degree with which vegetation cover is affected by extreme rainfall events has a strong influence
in regulating the impact of droughts on temperature anomalies. This highlights the importance of vegetation
resilience and land cover management in regulating the impact of extreme events.

1. Introduction

The role of climate in the East African economy is particularly re-
levant compared with other parts of the world, due to the economy
being highly dependent on agriculture (Blein et al., 2013). The health of
climate–vegetation interaction in this region is therefore critical to
sustaining the lives of millions of people. Recurrent droughts, however,
pose a serious risk to food security. From 1900 to 2016, the Greater
Horn of Africa alone experienced 36 drought events affecting>150
million people, causing over 400,000 deaths and a total damage of USD
1,495,900,000 (EM-DAT: The Emergency Events Database, n.d.). The
frequency of droughts have increased in the region following reduced
spring precipitation over the last 30 years due to increase in westward
extension of Indian-Pacific warm pool bringing warm and dry winds
inhibiting rainfall (Williams and Funk, 2011). Future climatic projec-
tions suggest an increase in temperature in East Africa (Conway and
Schipper, 2011; Anyah and Qiu, 2012). These projections together with

the reduced precipitation trends in the region, drier conditions are
expected in the coming century (Williams and Funk, 2011). This will
cause further stress on vegetation.

The impact of drought on vegetation productivity can vary de-
pending on its magnitude, frequency, and duration. Drought events
impact agricultural productivity and can cause reduction in yield and
crop failure, leading to food shortage. Severe droughts can bring about
extensive decline or collapse in the normal seasonal patterns giving rise
to failures in the phenological cycle of plants as reported during
Australia's 2002 drought (Ma et al., 2015). Drought stress limits the
ability of plants to supply water to leaves for photosynthetic gas ex-
change and can ultimately result in extreme dryness and mortality
(Choat et al., 2012). Though several studies have been done to in-
vestigate the links between drought and vegetation productivity (Zhao
and Running, 2010; Meroni et al., 2017), less is known about how this
relationship impacts the land surface temperature (LST) and causes
warming anomalies in the Horn of Africa.
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Vegetation cover can help to mitigate the impact of local warming
related to drought. Vegetation suppresses the impact of local warming
through increasing transpiration rates, which enhance transport of la-
tent heat from the surface to the atmosphere, leading to surface cooling
(Anderson et al., 2011). The surface roughness, which is related to the
height of the vegetation, also favors surface cooling through facilitating
the exchange of sensible and latent heat energy between the land sur-
face and the atmosphere through creating turbulence that mixes the air
and transports heat and water (Sud et al., 1988). Vegetation cover (such
as forests) also has an important role in reducing the adverse impact of
droughts through increasing the infiltration and storage capacity of soil,
absorbing excess rainwater and releasing it during dry periods to re-
plenish stream flows (Scott, 2005; EEA, 2015). Furthermore, forests
play significant role in capturing atmospheric moisture by intercepting
fog and cloud droplets through their volume, which in montane forests
may enhance the water supply by providing additional moisture
(Ellison et al., 2017).

Nonetheless, the land surface attributes are being modified due to
the increasing influence of man on the environment through degrading
terrestrial vegetation cover (in favor of agriculture, urbanization, fuel,
timber, etc.). Forests in particular are facing significant changes. These
changes can alter the energy, carbon, and water balance leading to
further warming/cooling depending on the relative impacts of radiative
(albedo) and non-radiative responses (evapotranspiration, surface
roughness), which vary across the latitudes (Li et al., 2015). Based on
satellite observation, Li et al. (2016) reported forest loss to have a
warming impact in the tropics and a cooling effect in boreal regions.
The warming in the tropics is attributed to the dominating impacts of
the reduction in evapotranspiration rate and surface roughness (causing
less heat convection), whereas the cooling in boreal regions is related to
an increase in albedo. In contrast, forest gains are found to have the
opposite effect, i.e., cooling in the tropics – mainly by driving away
energy from the surface to the atmosphere through increased evapo-
transpiration and heat convection – and warming in boreal regions
associated with decreased albedo (Bright et al., 2017; Li et al., 2016;

Peng et al., 2014). At a global scale, impacts of forest cover changes on
climate have been studied following different approaches (e.g. mod-
eling, remote sensing, and in situ observations) (Davin and de Noblet-
Ducoudre, 2010; Bright et al., 2017; Li et al., 2015). One important
advantage of remote sensing based approaches is that they enable re-
peated sampling of large areas. This is particularly important in regions
where in-situ measurements are lacking. Common to most remote
sensing studies on forest loss impacts is the use of land cover data and
threshold values to identify forest cover change (Li et al., 2016). The
accuracy of the results can be affected by the input data used (land
cover, LST), topography of forest loss area, choice of threshold values,
and interannual climatic variability (Alkama and Cescatti, 2016).
Therefore, further studies are needed at the regional and local level to
examine the impacts of forest loss on LST by focusing on areas ex-
periencing changes in forest cover, and by comparing before and after
situations using relatively high resolution and long periods of data.

Furthermore, temporal aspects of the feedbacks between droughts,
vegetation, and temperature are not yet fully understood. For instance,
the role of vegetation phenology in regulating the impact of droughts is
still unclear. It is therefore uncertain how the timing of extreme events
affects the vulnerability of the regions to extreme events. Likewise, it is
unclear how the interplay between vegetation resilience and drought
events can affect the magnitude of temperature anomalies during ex-
treme events. It is possible that severe but short extreme events cause
lower temperature anomalies than moderate but long droughts.
Clarifying these issues is critical for a better understanding of the bio-
physical processes taking place during droughts, and consequently to
improve land surface models and management strategies.

The objective of this study was to investigate how rain-
fall–vegetation interactions affect LST anomalies during forest loss and
drought events across the Horn of Africa using 16-years of data
(2001–2016). To meet this objective, the following research questions
were addressed: 1) How does rainfall–vegetation interaction affect
seasonal patterns in temperature in the Horn of Africa? 2) What are the
impacts of forest loss on temperature seasonality and anomalies? 3)

Fig. 1. Geographic location and elevation (GTOPO30 1 km) of Horn of Africa with forest loss locations presented. (Background image, Copernicus Sentinel data,
January 2017). Precipitation information from TRMM43B3.
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How does vegetation status/vigor affect LST anomalies during drought
events?

1.1. Study area

The study area covered five countries in the Horn of Africa:
Ethiopia, Eritrea, Djibouti, Somalia, and Kenya (Fig. 1). The region is
characterized by a wide range of topographic, climatic, and ecological
diversity. Elevation ranges from about 125m below sea level in the
Danakil Depression (Ethiopia) up to around 5199m above sea level at
Mount Kenya. Annual rainfall distribution varies from>1500mm in
the highlands to< 200mm in the lowlands. Much of the region shows a
bimodal rainfall pattern under significant influence of the Intertropical
Convergence Zone (Nicholson, 1996). Most portions of the region re-
ceive the main rainfall from March to May and a short period of rain
from October to December. This short period of rain is characterized by
high interannual variability associated with the El Niño–Southern Os-
cillation and the Indian Ocean Dipole (Bowden and Semazzi, 2007;
Indeje et al., 2000).

Three main types of ecoregions (Somali-Masai, Afromontane, and
Sudanian) with a dominantly arid and semi-arid climate characterize
the region. The Somali-Masai ecoregion (mainly shrubland, grassland,
and bushland) covers large parts of the low-lying region, while the
Afromontane (forest) ecoregion covers small parts of the highlands of
Ethiopia and Kenya. An extension of the Sudanian ecoregion (mainly
grassland) also covers the western periphery of Ethiopia (see White,
1983 for details).

In sub-Saharan Africa, croplands are cleared at the expense of forest
and native vegetation (Brink and Eva, 2009; Pellikka et al., 2013). In a
recent study by Brink et al. (2014) in the Horn of Africa, 28% increase
in croplands was recorded between 1990 and 2010, the yearly increase
rate being 1.4%. The Abobo, Shakiso and Kapcherop are some of the
areas experiencing forest loss in the region (Fig. 1). The Abobo forest
loss area, which occupies the lowlands of Gambella region in Ethiopia,
is covered by Sudanian woodland. It has mean elevation of around
568m a.s.l, maximum temperature of 35 °C–40 °C and receives ex-
tended rainfall from March to November. The Shakiso forest loss site,
on the other hand, is located in the vicinity of Shakiso town, in Oromia
regional states of Ethiopia. The area has mean elevation of 1792m a.s.l
with an annual average temperature of 20 °C. It receives rainfall twice
per year between March to May and September to November. Wooded
grassland makes up most of the vegetation cover in this area. The
Kapcherop forest loss area, which is one of the Afromontane forests in
the highlands of Kenya, has mean elevation of around 2390m a.s.l and
annual average temperature around 16 °C. Tropical humid climate with
extended rainfall (April to November) characterize the area (Fig. 1).

2. Material and methods

2.1. Remote sensing data and pre-processing

To characterize vegetation seasonality, we used monthly Enhanced
Vegetation Index (EVI) (Huete et al., 2002) imagery from 2001 to 2016.
The Moderate Resolution Imaging Spectroradiometer (MODIS) product
used was the MCD43B1, which provides bidirectional reflectance

distribution function (BRDF) model parameters for 8-day periods at
1 km spatial resolution (NASA LP DAAC, 2014). We first calculated
nadir view reflectance factors considering a 45° solar zenith angle and
nadir view angle for each 8-day product, therefore excluding the in-
fluence of sun-sensor geometry artifacts on the time series. Monthly
averages for each band were then calculated and used to construct the
monthly EVI imagery for the 16 years (2001–2016).

In characterizing vegetation condition using vegetation indices, re-
moving the impact of non-vegetation signal is important to assess
changes attributed only to vegetation. Thus, we preferred EVI over
other indices (e.g., normalized difference vegetation index (NDVI))
since it is less affected by non-vegetation signal coming from back-
ground soil. Furthermore, atmospheric influence on the red band has
been further reduced, which is additional advantage in terms of sensi-
tivity to variations in the biophysical characteristics of vegetation (Gao
et al., 2000; Huete et al., 2002). The EVI was calculated using the blue,
red, and near-infrared (NIR) bands (Huete et al., 2002):

=
−

+ × − × +
EVI 2.5

ρ ρ
ρ 6 ρ 7.5 ρ 1

NIR red

NIR red blue (1)

where ρ refers to BRDF corrected reflectance. The resultant product is
less affected by atmospheric contamination, cloud cover is explicitly
masked, and impacts of sun-sensor geometry are corrected.

LST refers to the skin or radiometric temperature at the surface (Jin
and Dickinson, 2010). It differs from air temperature not only in its
definition, but also in the way it is measured and its magnitude. Land
heats and cools more quickly than air, and as a result, LST is higher
(lower) during the day (night) than air temperature. Its magnitude is
also affected by land surface properties (such as vegetation cover and
surface albedo) and atmospheric interactions (Jin and Dickinson,
2010). Thus it is a key parameter in measuring energy fluxes between
the land surface and atmosphere. The LST product chosen for the study
was the MOD11A2 8-day composite at 1 km resolution. Radiance-based
validation of this product indicated an accuracy better than one Kelvin
in vegetation, soil, and lake areas in clear-sky conditions (Wan, 2015).
LST values that are severely contaminated by clouds and heavy aerosols
have been removed from this product and a quality control layer is
provided for identification of good quality pixels (Wan, 2015). In this
study, we have further removed cloud contaminated and bad quality
pixels through assessment of the quality assessment flags. Once the
images were filtered to allow only good quality pixels, monthly average
LST from 2001 to 2016 was calculated. Furthermore, although the LST
algorithm is fine-tuned to improve its effectiveness in desert regions,
where the split-window algorithm normally shows poor performance,
we masked these areas from our analysis (Hulley and Hook, 2009; Wan,
2015). We also preferred daytime LST over nighttime because much of
the vegetation activity which affects LST (such as transpiration and
photosynthesis) takes place during the daytime.

Rainfall was assessed using monthly data from the Tropical Rainfall
Measuring Mission (TRMM) at 0.25° spatial resolution. The product
used was the TRMM 3B43 version7, which combines the 3-hourly
merged infrared estimates with rain gauge analysis from the monthly
accumulated Global Precipitation Climatology Centre (GPCC) rain
gauge analysis (GES DISC, NASA 2016). A summary of the remote
sensing data is presented in Table 1. Furthermore, standardized

Table 1
Remote sensing data.

Data type Sensor Product Version Spatial resolution Temporal resolution Year Reference

BRDF/Albedo model parameters MODIS MCD43B1 5 1 km 8-day composite 2001–2016 NASA LP DAAC, (2014)
LST MODIS MOD11A2 6 1 km 8-day composite 2001–2016 Wan, (2015)
Rainfall TRMM 3B43 7 0.25° Monthly 2001–2016 GES DISC, (2016)
Elevation GTOPO30 1 km USGS EDCDAAC, (2016)
Global Land Cover-SHARE 1 km 2014 Latham et al., (2014)
Global Forest Change Landsat 30m 2000–2014 Hansen et al., (2013)
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anomalies for EVI, LST, and rainfall were calculated as follows:

=
−

X
X μ

σsd (2)

where Xsd is the standardized anomaly; X is the value for the month; μ
and σ are the mean and standard deviation over the 2001–2016 time
period, respectively.

2.2. Identification of modality patterns and land–climate interactions

Unimodal and bimodal patterns, in our context, refers to rainfall
(EVI) distribution with one and two local maxima (peaks), respectively.
To identify and map the modality patterns for both rainfall and vege-
tation, we followed four steps. First, we resampled rainfall data to 1 km
resolutions to match EVI data; then monthly climatology was calculated
from the timeseries data (2001–2016). Second, a non-parametric locally
weighted polynomial regression model (LOESS) was run to fit the sea-
sonality curve. The model was combined with a peak identification
function and applied in randomly chosen test pixels to determine peak
identification and model parameters for the best fit. The function first
identifies all local maxima from the rainfall climatology and then
checks if the value is at least twice higher than the neighboring values.
Then, if it meets this criterion, assigns the number of peak(s) for each
pixel. We defined this criterion after testing its applicability in identi-
fying rainfall peak(s) in the region by randomly choosing pixels from
known unimodal and bimodal areas. This way, the function is con-
strained to ignore small fluctuations so that distinct local maxima can
be identified. Third, once the best fit was obtained, the monthly cli-
matology data were stacked sequentially (January–December) for both
rainfall and EVI, and the modality was calculated for every pixel.
Correlation between monthly climatology of rainfall and EVI was also
checked using non-parametric Spearman's rank correlation.

To evaluate the influence of rainfall–vegetation interaction on LST,
we selected representative samples (10× 10 km), one from unimodal
and another from bimodal area, for each of the three most common
classes of natural vegetation cover (forest, grassland and shrubland)
where EVI-rainfall interaction is strong (correlation
coefficient≥ 0.8).Average values of EVI and LST were then extracted
from each sample area using the monthly climatology and plotted for
unimodal and bimodal areas separately. Scatter plots of rainfall against
EVI were classified using the corresponding LST value for each location
to show how the three variables interact with each other. To identify
how LST changes with changes in seasonality of vegetation across dif-
ferent vegetation classes, we used the monthly climatology data, stan-
dardized values to a common scale, and then calculated the slope of a
linear regression between EVI (predictor) and LST (dependent variable)
for each pixel.

2.3. Forest loss impact on land surface temperature

The impacts of forest loss on LST were assessed across three selected
areas (Fig. 1) that underwent significant forest loss (> 90% of the area)
between 2001 and 2016. For identifying the areas, we first narrowed
down the search using Global Forest Change data (Hansen et al., 2013).
The candidate areas were verified using high resolution imagery from
Google Earth. Areas showing a mix of forest loss and gain, and areas
that did not show deforestation according to high resolution imagery
despite Global Forest Change data indicated loss, were excluded.
Eventually, areas which were completely covered by forest at the be-
ginning of the observation period but lost forest cover progressively
towards the end of the observation period (> 95% for Ethiopian areas
and>85% for Kenyan area) were selected as forest loss areas covering
15 km2, 160 km2, and 1 km2, respectively (Fig. 1).

To classify the before and after forest loss states, we used the period
when 75% of the forest cover was intact as before forest loss state, and
the period when forest cover was<50% as after forest loss state, for all

three areas. Then, average EVI and LST were calculated for both states
using monthly climatology data.

We also analyzed dry months (January, February, March, and
December) – defined in this study as months with< 100mm of rain –
separately to identify forest loss impact on LST anomalies. For this
purpose, monthly anomalies of EVI and LST were calculated from the
time series and the results were displayed as bar plots.

Moreover, we studied non-forest loss signal due to climatic varia-
bility by calculating the monthly average LST difference for the ad-
jacent intact forest areas (< 5 km) using the corresponding periods
(before and after forest loss) (Alkama and Cescatti, 2016) as follows:

∆ = −LST LST LSTb f (3)

where ΔLST is change in LST due to climatic variability; LSTbis the
average LST for the corresponding before forest loss period
(2001–2008, 2001–2006, and 2001–2010); and LSTf is average LST
after the forest loss period (2010–2016, 2008–2016, and 2012–2016)
for areas 1, 2, and 3, respectively. In intact forest, where there was no
forest loss, we assumed that change in LST comes mainly from climatic
variability.

2.4. Drought impact on land surface temperature

Rainfall anomalies from two recent and strong drought years were
selected (2010/2011, and 2015) (Dutra et al., 2013). For the 2011
drought, rainfall anomalies were detected since October 2010; thus we
used 2010 (October–December) and 2011 (March–May) rainfall
anomalies. Then for the same period, we calculated EVI and LST
anomalies from the time series (2001–2016) using Eq. (2), and plotted
rainfall and EVI anomalies classified by LST anomalies in order to un-
derstand their interaction. A similar approach was followed for the
2015 drought. Average LST anomalies over EVI and rainfall anomaly
bins were calculated to quantitatively demonstrate their relative im-
pact.

3. Results

3.1. Rainfall–vegetation interaction and its impact on daytime land surface
temperature

The spatial patterns in rainfall and vegetation modality are pre-
sented in Fig. 2. The vegetation seasonal growth pattern followed the
rainfall modality pattern in both unimodal and bimodal areas. Unim-
odal rainfall and EVI patterns were shown mainly in Ethiopia, whereas
bimodal patterns were widely distributed across Kenya, Somalia, and
the southern parts of Ethiopia. The rainfall modality showed 81% si-
milarity with the EVI modality pattern. The disparity is distributed
mainly in the humid parts of western Ethiopia. The correlation between
rainfall and EVI showed that EVI and rainfall have a strong and positive
correlation (r > 0.7) for most areas of significant relationship
(p < 0.05) and this accounts for 78% of the total area (Fig. 2c).

Temperature showed a negative relationship with EVI and rainfall
in all areas of shrubland, grassland, and forest, and the same relation-
ship was observed across unimodal and bimodal patterns (Fig. 3). The
daytime LST seasonality curve changes in the opposite phase to the EVI
pattern for all vegetation classes. During the wet season, EVI reaches a
local maximum and LST displays a local minimum. During dry periods,
in contrast, LST displayed the local maximum for the corresponding EVI
local minimum. The degree with which LST changes with EVI pattern,
however, is higher in unimodal than bimodal areas.

For the same areas, the relationships between rainfall, EVI, and LST
were studied using monthly time-series data (2001–2016) to under-
stand how rainfall–EVI interaction affects LST (Fig. 4). The results show
that when rainfall and EVI increase, LST decreases and vice versa for all
vegetation classes (Fig. 4). Furthermore, this interaction is consistent
for both unimodal and bimodal areas.
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The spatial variability of the EVI–LST relationship is presented in
Fig. 5. Daytime LST is negatively related to EVI in all areas, with a
significant linear relationship (p < 0.05) (Fig. 5a). The slope of linear
regression between LST (response variable) and EVI (predictor vari-
able) shows that LST in grassland and shrubland changes more strongly
(−1.9 to −4.9) than over other vegetation classes (such as cropland
and forest) (Fig. 5a, b). On the other hand, in arid areas, LST is not
significantly related to EVI (p > 0.05).

3.2. Forest loss impact on land surface temperature

Fig. 6 shows the seasonal patterns of EVI and LST before and after
forest loss, in three selected areas (Fig. 1). In Abobo area (Fig. 6a, b),
EVI displayed a continuous decline for consecutive dry months (Ja-
nuary–April) after forest loss occurred in 2009, while LST showed an
increase of 2.2 °C for the same period. However, during wet periods
(May–September), the EVI trend changed and showed an increasing
pattern. LST, on the other hand, fluctuated from a decreasing (June–
September) to increasing (after September) trend. Comparison of LST
before and after forest loss considering all months and non-forest loss

Fig. 2. Map showing a) modality of rainfall pattern, b) modality of EVI pattern, and c) rainfall– EVI correlation. Vegetation was masked using Global Land Cover
data.

Fig. 3. Monthly mean EVI and daytime-LST for different ecoregions using 2001–2016 time series. Comparison was made using 10×10 km sample areas (see Fig. 2b)
taken from different ecoregions where EVI–rainfall interaction was strong (correlation coefficient≥ 0.8).
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Fig. 4. EVI, rainfall, and LST interaction for different ecoregions based on 2001–2016 time series. Sample areas of 10×10 km (see Fig. 2c) were used for each
vegetation cover type: forests, grasslands, and shrublands.

Fig. 5. a) Slope of regression between EVI (predictor variable) and LST (dependent variable) for every pixel using 2001–2016 monthly climatology data, and b)
vegetation cover extracted from 2014 Global Land Cover data. Areas having significant (p < 0.05) EVI–LST relationship are hashed. Non-vegetated and no-data
areas (due to cloud) are masked.
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signal corrections shows an average 0.68 °C increase in LST (Fig. 7a).
In Shakiso area, forest loss was observed in 2007 (Fig. 6c, d). During

the dry period, EVI showed a similar declining pattern. However, in the
wet period, it displayed neither significant increase nor decrease. LST,
on the other hand, showed a notable and consistent increment of 2.9 °C
on average throughout all months after forest loss. After removal of the
non-forest loss signal due to climate variability, the area showed an
overall average increase of 1.8 °C (Fig. 7b).

In Kapcherop area (Fig. 6e, f), EVI showed a similar decreasing
pattern after forest loss in 2011, particularly in the dry period (Feb-
ruary–April). LST, in contrast, displayed an average 1.98 °C increase in
the same period. During the wet periods, however, both EVI and LST
displayed a fluctuating trend. Taking all months into account, the area
experienced an overall average increase in LST of 0.2 °C after correction
(Fig. 7c).

Based on these results, dry months (December, January, February,
and March) were selected to further investigate the impact of forest loss
on the EVI and LST pattern. In Abobo, LST showed both negative and
positive anomalies before forest loss (2009) but negative anomalies
were more common (Fig. 8b). EVI, unlike LST, displayed a relatively
continuous and predominantly positive anomaly for the same period
(Fig. 8a). After forest loss (2009), on the other hand, LST and EVI ex-
hibited dominantly positive and negative anomaly patterns, respec-
tively. Evaluation of the LST and EVI patterns in the Shakiso area
showed relatively distinct patterns, i.e., before forest loss LST (EVI)
displayed a dominantly negative (positive) anomaly pattern (Fig. 8c, d),
while after forest loss (2007) they switched their pattern, i.e., LST (EVI)
displayed a dominantly positive(negative) pattern. The Kapcherop area
displayed an alternating and opposite sequence of positive and negative
anomaly patterns for EVI and LST before forest loss (2009), while after
forest loss LST changed its pattern and displayed mainly positive
anomalies consistent with Abobo and Shakiso areas (Fig. 8e, f).

3.3. Impact of drought on land surface temperature anomalies

LST anomalies caused by mild or severe droughts were significantly
higher when vegetation vigor (i.e., greenness) was severely affected
(i.e., EVI anomaly<−1σ) (Fig. 9; Table 2). The impact of droughts on
LST anomalies decreased gradually when vegetation greenness was not
affected by rainfall anomalies. In some cases, when vegetation green-
ness anomalies varied from zero to positive, LST anomalies could be
quite small, even in severe drought conditions (Table 2). This demon-
strates the strong influence of vegetation status in regulating the impact
of droughts on temperature anomalies.

In the 2010 drought (October–December), in areas with mild
drought (rainfall anomaly between −0.5σ and −1σ), LST anomalies
consistently decreased from positive to negative as EVI anomalies in-
creased (Fig. 9, Table 2). In regions with more severe drought (rainfall
anomaly<−1σ), average LST anomalies increased considerably (1.4σ)
when vegetation canopy turned brown (negative EVI anomalies). On
the other hand, when EVI anomalies were positive, the effects of severe
droughts on mean LST anomalies were substantially reduced (−0.7σ).
The impact of vegetation greenness was more considerable in reducing
warming anomalies (from 1.41 to −0.7σ) than in other drought per-
iods.

Furthermore, while similar impacts of vegetation in reducing
drought are displayed both by the 2011 and 2015 (mild and severe)
drought periods (Table 2), the degree to which vegetation greening
(0–2σ) suppressed the ability of severe (<−1σ) drought to cause the
LST anomaly was considerably reduced from 1.57σ to 0.14σ (when EVI
increased from<−2σ to 1–2σ) during June to August drought period
(Fig. 9, Table 2).

Fig. 6. Impact of forest loss on seasonality of EVI and LST for Abobo (a,b), Shakiso (c,d), and Kapcherop (e,f) areas.Shaded area indicates± standard deviation.
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4. Discussion

4.1. Rainfall–vegetation interaction and its impact on land surface
temperature seasonality

The strong and positive relationship between EVI and rainfall in the
region suggests that vegetation growth is primarily driven by rainfall
(Fig. 2a, b). Deviations were observed along the unimodal– bimodal
rainfall transition zone, where a unimodal vegetation pattern is spa-
tially extended and changes gradually to a bimodal pattern, unlike
rainfall. This is likely due to the availability of water between rainfall
peak months, which supports vegetation green up. For instance, in the
southwestern parts of Ethiopia, where such a case was clearly shown,
the transition to a bimodal pattern is extended because the area still
receives a relatively high amount of rainfall for most of the year
(March–October).

Daytime LST showed a negative relationship to EVI and rainfall.
However, the strength of this relationship varied with climatic zones
(semi-arid and arid) and vegetation types. Semi-arid areas showed a

stronger relationship than arid areas. Weak LST response in arid areas is
attributed to the high radiation load and low latent heat flux associated
with scarce vegetation cover and low precipitation (Rotenberg and
Yakir, 2011). With respect to vegetation cover types, areas covered by
grassland and shrublands, particularly in semi-arid areas, show a strong
but inconsistent LST response to changes in vegetation greenness across
seasons. Global studies have already indicated that LST responds to
land cover change because this change can alter surface properties such
as albedo, heat flux, and energy distribution (Bright et al., 2017).
However, further studies are needed to clarify the inconsistent re-
sponses of LST, and other factors contributing to LST sensitivity, over
various vegetation classes under stable conditions.

4.2. Impact of forest loss on land surface temperature

All three areas evaluated showed an overall warming after forest
loss. The warming was particularly high and consistent during dry
periods. In general, our results agree with previous studies on forest loss
impact in the tropics, which have reported an increase in LST (Alkama

Fig. 7. Change in LST due to forest loss before and after correction for climate variability for Abobo, Shakiso, and Kapcherop areas.
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and Cescatti, 2016; Li et al., 2016). The consistent and high warming
during the dry period corresponds to a decrease in EVI in all three areas
(Fig. 6). The warming is likely caused by the decline in the rate of
evapotranspiration and the diminishing of surface roughness together
with a relatively high incoming solar radiation (insolation) during the
dry periods (Sud et al., 1988; Li et al., 2016; Bright et al., 2017). In most
cases across tropical regions, forest loss leads to an increase in albedo;
however, the cooling effect caused by the increase in albedo is out-
weighed by the warming impacts caused by reduced evapotranspiration

and surface roughness (Li et al., 2016). Evapotranspiration plays an
important role in cooling the land surface through changing surface
energy from sensible to latent heat (Schwartz and Karl, 1990). Its re-
duction thus leads to a rise in LST. On the other hand, surface rough-
ness, which is affected by the height of vegetation cover, is an im-
portant factor in enhancing the exchange of sensible and latent heat
fluxes and momentum between the land surface and the atmosphere
through the convection of turbulent heat and convergence of moisture
(Sellers et al., 1997; Sud et al., 1988). Through forest loss, this property

Fig. 8. EVI and LST monthly standardized anomalies before and after forest loss for dry months (January, February, March, and December) from 2001 to 2016 in
Abobo (a,b), Shakiso (c,d), and Kapcherop (e,f) areas. Shaded region shows time after forest loss.

Fig. 9. Impact of rainfall – EVI interaction on LST
anomalies during October–December 2010,
March–May 2011, March–May 2015, and
June–August 2015 drought periods. All anomalies
are in units of standard deviation. Grids show bins
used for calculating average LST values in Table 2.
Each dot represents a pixel of 25 km in the study
area. Non-vegetated pixels were excluded from ana-
lysis.
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of the land surface will be suppressed leading to an amplifying impact
on LST.

During the wet period, on the other hand, the lack of consistency in
warming is possibly explained by the impact of the vegetation cover
that replaced the forest (e.g. agricultural crops or pastures), the en-
hanced soil moisture, and the reduction in the incoming solar radiation
flux due to clouds. High values of EVI shown during peak rainfall
months after forest loss (Fig. 6a, c, e) further suggest an improvement in
the evapotranspiration and surface roughness conditions, and this can
possibly regulate the local climate through reducing the warming
caused by forest loss during this season. When assessing the impacts of
forest loss, it is important to separate changes in LST attributed to forest
loss from non-forest loss climate variability. The non-forest loss signal
had a diminishing role in one of the studied areas, whereas it had an
exaggerating effect for the other two areas. This, however, does not
change the high and consistent warming during the dry period and
fluctuating patterns of warming during the wet period. Maximum LST
values for the three areas were registered during the dry periods after
correction for non-forest signals due to climatic variability.

4.3. The impact of drought on land surface temperature anomalies

During both severe and mild drought periods, EVI anomalies de-
creased significantly, while LST anomalies increased. The possible
reason for the warming anomalies is the change in the radiation balance
caused by the water stress. Lack of water in the soil suppresses vege-
tation productivity and causes browning of vegetation leading to a
decline in the evapotranspiration rate. This in return slows down the
dissipation of energy (from sensible to latent heat) giving rise to an
increase in the sensible heat flux. Hence, with a lack of moisture in the
soil and vegetation, much of the sunlight goes into raising the ground
temperature.

On the other hand, the impact of drought on warming anomalies
generally decreases when EVI anomalies increase from negative to
positive. We showed that areas affected by the same drought severity
level can show a different degree of browning and greening. This var-
iation is likely attributed to the difference in the sensitivity and resi-
lience among plant species because different species respond differently
to drought conditions (Claussen et al., 2013). For example, drought
resistant plants maintain their physiological activity for an extended
period of time during droughts either by maximizing their water uptake
through tapping deep water from the soil profile using their deep and

dense root system or through minimizing water loss by stomatal closure
and reduction of their leaf area (Kramer and Boyer, 1995; Martínez-
Vilalta and Garcia-Forner, 2017; Pinheiro et al., 2005). Water stress
during drought favors an increase in root size and density among deep-
rooted plant species and this further enhances water uptake in times of
drought stress (Ovalle et al., 2015). The ability of plants to transport
water from the soil to the areas of photosynthesis is largely determined
by the differences in the structure of the plant's xylem, and this property
varies widely among plant species and determines the plant's ability to
survive under periods of prolonged drought (Choat et al., 2012). Fur-
thermore, Isbell et al. (2015) showed that high grassland plant diversity
has increased ecosystem resistance to different degrees of drought se-
verity and duration and suggests biodiversity can increase the re-
sistance of ecosystem productivity to climate extremes. Hence, these
differences among plant species across the study area possibly explain
why some areas showed an amplified response while others remained
resistant, maintaining their greening during mild drought conditions.
Vegetation resilience can also be impacted by other factor such as to-
pography. In our study area, vegetation resilience increased with ele-
vation with the exception of March–May 2015 drought. The general
increment, though, lacks consistency in particular when greening
anomaly reaches peak values (i.e., EVI anomaly between 1–2σ) (Sup-
plementary Fig. S1 and Table S1).

Further studies are necessary to clarify and identify the degree of
sensitivity and resilience of various plant species to different extents of
drought severity and duration in the region. This requires using high
spectral-and-spatial resolution satellite, as well as ground level data,
and considering additional factors, such as tree species type, density,
and age. Moreover, the relation between vegetation resilience and
landcover distribution (and changes) needs further investigation in the
region.

5. Conclusion

In this study, we evaluated how rainfall–vegetation interactions can
affect surface temperature patterns across the Horn of Africa, particu-
larly when forest loss and extreme climatic events take place. Rainfall
was shown to drive vegetation seasonality in approximately 80% of the
study area, having an influence on the modality, magnitude, and timing
of vegetation greening seasonal patterns. This rainfall–vegetation in-
terplay had a strong and direct impact on LST seasonality and
anomalies. An inverse relationship between vegetation greening and
LST was evident across different ecosystem and bioclimatic conditions,
with lower LST being observed when vegetation greening was higher.
Given this relationship, forest loss was shown to considerably increase
LST, particularly during dry seasons, when average LST increase due to
forest loss was up to 6 °C. Forest loss also increased the frequency and
magnitude of LST anomalies. Our results demonstrate that during
drought events, vegetation greenness plays a crucial role in regulating
LST anomalies. Even during the extreme droughts, areas where vege-
tation greenness were maintained could minimize or completely avoid
heat stress. This highlights the importance of vegetation resilience in
mitigating the impact of droughts. For instance, replacing natural ve-
getation by croplands or pastures, with more shallow rotting systems,
creates landscapes that are more susceptible to climatic oscillations.
Hence, future agricultural expansion may not only increase average
LST, but will also significantly amplify heat stress during droughts.
Furthermore, the increase in the frequency of droughts caused by cli-
mate change is likely to push the capacity of vegetation to maintain
productivity, and consequently greenness, increasing the vulnerability
of the region to extreme climatic events.
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