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A B S T R A C T 

We estimate the rate of tidal disruption events (TDEs) that will be detectable with future gra vitational wa ve detectors as well 
as the most probable properties of these events and their possible electromagnetic counterpart. To this purpose, we combine 
standard gravitational waves and electromagnetic results with detailed rates estimates. We find that the Laser Interferometer 
Space Antenna (LISA) should not detect any TDEs, unless black holes (BHs) are typically embedded by a young stellar 
population, which, in this situation, could lead up to few 10 events during the duration of the mission. If there are gravitational 
wave observ ations, these e vents should also be observable in the X-ray or the optical/UV part of the electromagnetic spectrum, 
which may open up the multimessenger era for TDEs. The generation of detectors following LISA will at least yearly observe 
10 

4 TDEs at cosmological distances, allowing to do population studies and constrain the black hole mass function. In all cases, 
most probable events should be around black holes with a mass such that the Keplerian frequency at the Schwarzschild radius 
is similar to the optimal frequency of the detector and with a large penetration factor. 

Key words: transients: tidal disruption events – gra vitational wa ves. 
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 I N T RO D U C T I O N  

f a star gets too close to a black hole (BH), the tidal force of the
atter can disrupt the former. The stellar debris is then accreted by
he BH, and this results in bright flares. These events are known
s tidal disruption events (TDEs, Hills 1975 ; Lacy, Townes & 

ollenbach 1982 ; Rees 1988 ), and they are now routinely detected
y optical wide field surv e ys (e.g. van Velzen et al. 2020a ; Jones
t al. 2020 ). 

The dynamics of the debris while falling on to the BH is a complex,
on-linear problem that depends on orbital properties of the initial 
H-star system (e.g. eccentricity and pericentre of the star, see Law- 
mith et al. 2020 ; Ryu et al. 2020d ), on the intrinsic properties
f the star (e.g . internal structure: Lodato, King & Pringle 2009 ;
uillochon & Ramirez-Ruiz 2013 ; Goicovic et al. 2019 ; Golightly, 
ixon & Coughlin 2019b ; or rotation: Golightly, Coughlin & Nixon 
019a ; Sacchi & Lodato 2019 ), and on the intrinsic properties of
he BH (e.g. spin; Kesden 2012 ). None the less, several recent
ydrodynamic codes allow to perform simulations of this problem 

see re vie w of Lodato et al. 2020 ), sometimes in a fully general
elativistic context (Liptai et al. 2019 ; Ryu et al. 2020b , c ). Since
he evolution of the rate at which debris are accreted by the BH can
e directly measured in these simulations, the time evolution of the 
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uminosity can be directly mapped to the initial parameters of the
DE, and this idea has been recently exploited to reverse-engineer 
arameters of observed TDE light curves (Mockler, Guillochon & 

amirez-Ruiz 2019 ; Ryu, Krolik & Piran 2020a ). 
These e xtreme ev ents involving massiv e BHs also result in the

mission of gravitational waves, which also carry information about 
he nature of the system (Kobayashi et al. 2004 ; Stone et al.
020 ; Toscani, Rossi & Lodato 2020 ). Gravitational waves being
ndependent from electromagnetic waves, observing events in both 
omains allows us to better understand them: this is a branch of
ultimessenger astronomy, which has recently started with the 

pectacular observation of a binary neutron star merger both in 
he electromagnetic and the gravitational spectrum (Abbott et al. 
017 ). The future space-based gravitational wave detectors Laser 
nterferometer Space Antenna (LISA, Amaro-Seoane et al. 2017 ), 
ianQin (Luo et al. 2016 ), DECI-hertz inteferometer Gravitational 
ave Observatory (Decigo, Sato et al. 2009 ), Advanced Laser 

nterferometer Antenna (ALIA, Baker et al. 2019 ), and Big bang
bservatory (Bbo Harry et al. 2006 ) will be designed to study
upermassive BHs. As such, one can naturally wonder if we will
nter in the multimessenger astronomy era for TDEs, and what this
ill unveil about our understanding of BHs. 
To address these questions, we estimate in this paper the expected 

ates that will be observed with these future gravitational wave 
etectors, what the properties of observed events will be, and if
here will be any associated electromagnetic counterpart. We start 
y describing the conditions to observe a single event in Section 2;
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e then compute the rates for a global population of galaxies in
ection 3; we finally give our results and conclusions in Section 4
nd Section 5. 

 DETECTION  O F  SINGLE  EVENTS  

n this section, we assume that a TDE occurs at a given redshift ( z):
 star of mass and radius m � and r � plunges into a BH with mass
 •. The nearly parabolic orbit of the star is such that, at pericentre

 r p ), it gets closer to the BH than the tidal radius ( r T = r � ( M •/ m � ) 1/3 )
here tidal force o v ercomes the stellar self-gravity, resulting in a
DE (we do not consider partial TDEs in this study and assume that
tars are fully disrupted for r p ≤ r T , see Ryu et al. 2020c ). During
ts journey, the star-BH system emits gravitational waves that may
e detected when they arrive on Earth. In Section 2.1, we describe
he formalism to define if a TDE is observable through gravitational
av es and deriv e the maximum redshift for such observations; in
ection 2.2, we perform the same e x ercise for the electromagnetic
ounterpart with the goal of determining whether multimessenger
etectable events are likely or not. 

.1 Gra vitational wa ves 

.1.1 Formalism 

hen a star orbiting a BH arrives at pericentre, the time-dependent
ass quadrupole moment tensor of the system star-BH results

n a burst of gravitational waves whose characteristic strain and
requency can be estimated as (Kobayashi et al. 2004 ; Stone et al.
019 ): 

 GW 

= 

2 G 

2 m � M •
χ ( z) c 4 r p 

= 10 −22 β

(
χ ( z) 

16 Mpc 

)−1 (
r � 

R �

)−1 

×
(

m � 

M �

)4 / 3 (
M •

10 6 M �

)2 / 3 

(1) 

 GW 

= 

( 

G M •
4 π2 r 3 p 

) 1 / 2 

= 10 −4 Hz × β3 / 2 

(
m � 

M �

)1 / 2 (
r � 

R �

)−3 / 2 

, (2) 

here χ ( z) is the comoving distance (we assume a � CDM cosmol-
gy with Planck parameters; Planck Collaboration XIII 2016 ); β =
 T / r p is the penetration factor (recall that in this study we have β ≥ 1
s we consider only full disruption of stars below the tidal radius); c
nd G are the speed of light and gravitational constant, respectively;
nd keeping in mind that the frequency is redshifted while travelling
o Earth so that the observed frequency is: 

 obs = 

f GW 

1 + z 
. (3) 

For highly penetrating orbits, the star is swallowed whole resulting
n a direct plunge. While this may result in the emission of observable
ra vitational wa ves, the debris would not form a luminous accretion
isc, and there would not be any electromagnetic counterpart. In
he simple ‘Newtonian picture with a BH of size the Schwarzschild
adius of the BH’ r Sch = 2 G M •/c 2 , a star on parabolic orbit will
irectly plunge for r p ≤ r Sch . In the more realistic relativistic
icture, the orbit of the star will follow the geodesic, and it is not
traightforward to know what should be the initial pericentre of the
NRAS 510, 2025–2040 (2022) 
arabolic orbit such that the star penetrates the BH. For simplicity,
e only keep orbits with: 

≤ βmax = 

r T 

κr Sch 
(4) 

= 

r � c 
2 

2 κGm 

1 / 3 
� M 

2 / 3 •

= 12 
(κ

2 

)−1 
(

m � 

M �

)−1 / 3 (
r � 

R �

)(
M •

10 6 M �

)−2 / 3 

, (5) 

here κ indicates some critical radius (in units of r Sch ) for direct
lunge. When it comes to the number of events per year, a larger
naturally results in less TDEs, and vice versa. We tried with κ =
 and κ = 2 and found the results to be changed by a factor of ∼2
nly. Ho we ver, since K esden ( 2012 ) has sho wn that κ ∼ 2 nearly
eproduced the correct relativistic rates (see their § IV.A.), we will
se κ = 2 ( r p ≤ 2 r Sch ) throughout the paper. We stress again that
hese are purely dynamical considerations, and that some of these
vents may actually not be observable. For instance, Krolik, Piran &
yu ( 2020 ) suggest that the rate of detectable events with r p ≤ 7 r Sch 

ould actually be lower than that of direct captures. 
In order to reduce the dimensionality of the study, we assume

hat the mass and the radius of stars are broken power-law related
 r � ∝ m 

θ
� ; Kippenhahn & Weigert 1990 ): 

r � 

R �
= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

(
m � 

M �

)0 . 8 

if m � ≤ M �

(
m � 

M �

)0 . 57 

if m � ≥ M � . 

(6) 

hile this relation is technically valid for stars with m � � 60 M �,
or some models (see Section 3.1.4), we will extrapolate up to 100 M �
n order to mimic a young stellar population. 

With all this, for a TDE involving a star with mass m � on
n orbit with a penetration factor β around a BH with mass M •
ccurring at redshift z, we are now able to estimate the strain
 h GW 

∝ βχ−1 m 

4 / 3 −θ
� M 

2 / 3 
• , where 4/3 − θ > 0) and the frequency

 f obs ∝ β3 / 2 m 

(1 −3 θ ) / 2 
� (1 + z) −1 , where (1 − 3 θ )/2 < 0) of gravita-

ional wave when they arrive on Earth. 
As a remark, during TDEs, there can also be other mechanisms

esulting in the emission of gravitational wav es, e .g . pulsation of the
tar due to the tides (Guillochon et al. 2009 ; Stone et al. 2019 ) or
nstabilities once the accretion disc is formed (Toscani, Lodato &
ealon 2019 ). We do not consider these processes in this work, such

hat we finally obtain lower estimates of the strain. We note, ho we ver,
hat these other processes are usually negligible (Stone et al. 2019 ). 

.1.2 Maximum redshift for detection 

n order to know if the event is detectable, we must compare the
train to the sensitivity of the detector. We define TDEs which signal
s at least a factor S / N lim 

larger than the characteristic amplitude noise
f the detector at the observ ed frequenc y h det ( f obs ) (Maggiore 2008 ;
olpi & Sesana 2017 ), as ‘detected’ events. In other words, the strain
f the signal has to be abo v e the sensitivity curve in Fig. A1 ; this
ields: 

h GW 

h det ( f obs ) 
= S/N ≥ S/N lim 

. (7) 

To give an example, we show in Fig. 1 the value of S / N for an
bservation with LISA 

1 of gravitational waves emitted by a TDE of
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Figure 1. Signal-to-noise ratio of a LISA observation of a TDE as a function 
of the mass of the disrupted stars for a 10 6 M � BH. We show the results 
when the penetration factor is changed (thicker lines referring to larger β) 
and when the TDE occurs at a different redshift, hence at a different comoving 
distance (shown as different colours). For larger β, the curves are truncated 
at small masses, when stars penetrate twice the Schwarzschild radius of 
the BH. The horizontal black dashed line indicates an S / N = 1, which can be 
considered as an (optimistic) limit for detection, and the thin light blue dashed 
line guides the eye to indicate S/N ∝ m 

−0 . 7 
� as predicted by equation (9). 

Gra vitational wa v es from β = 1 TDEs (thin lines) will not be observ ed by 
LISA; gra vitational wa ves from TDEs of Sun-like stars will be observed 
up to z ∼ 10 −2 for moderately β = 10 penetrating orbits (orange medium 

lines); at z ∼ 0.1, only gra vitational wa v es from e xtreme ev ents ( β = 25 and 
m � � 20 M �; green thick line) can be observed. 
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Table 1. Different detectors considered in this study. We indicate the optimal 
frequency ( f opt ), strain ( h det ( f opt )), and BH mass ( M •, opt ) of these detectors 
for detections of TDEs. 

Detector f opt h det ( f opt ) M •, opt 

Hz 10 −21 M �

LISA 6 × 10 −3 0.2 7 × 10 5 

Tianqin 0.02 7 2 × 10 5 

Alia 0.08 0.02 5 × 10 4 

Bbo 0.3 0.01 1 × 10 4 

Decigo 0.4 0.04 1 × 10 4 

Figure 2. Maximum redshift for observation with LISA of a TDE of a star 
with mass m � on an orbit with penetration factor β around a 10 6 M � BH 

assuming detection if S / N ≥ 5. The black region indicates when the orbit 
plunges directly toward the BH ( r T / β < 2 r Sch ). Conclusions are identical to 
that of Fig. 1 . 
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 star with mass m � , for different β (thickness of the lines) and z
colours) around a 10 6 M � BH. We also show the (optimistic) limit
or detection S / N lim 

= 1 with an horizontal black dashed line. Orbits
enetrating twice the Schwarzschild radius [ κ = 2 in equation (4)]
re excluded, and this is why the curves at high β are truncated at
ow mass. We find that β = 1 orbits (thin line), i.e. orbits that barely
enetrate the TDE radius, cannot be detected with LISA; moderately 
enetrating orbits with β = 10 (medium lines) can be detected up 
o z ∼ 0.01 (orange line) for � 1 M � stars; and β = 25 extremely
enetrating orbits (thick lines) may be observed up to z ∼ 0.1 (green
ine) for massive � 20 M � stars. 

It can be somewhat surprising that sometimes, for instance 
hen β = 1 (thin lines), S / N decreases with increasing m � while

quation (1) predicts that the strain increases with increasing m � , i.e.
arger stellar mass results in more ‘violent’ event. The reason is that
 GW 

(hence f obs ) also varies [equation (2)], and that the characteristic
mplitude noise of LISA is not flat (see Fig. A1 ). To be more
uantitative, we start with equation (7) in which we substitute h GW 

nd f obs by their expressions from equations (1) and (3): 

/N = 

π2 / 3 2 5 / 3 G 

5 / 3 

c 4 
× m � M 

2 / 3 
•

1 

χ ( z) 

f 
2 / 3 
GW 

h det 

(
f GW 

1 + z 

) . (8) 

f we further use for h det a broken power law ( h det ( f ) =
 opt ( f / f opt ) −a (( f / f opt ) c + 1) ( b + a )/ c , where f opt is the optimal frequency
f the detector, see Appendix (A), we find: 

/N ∝ 

⎧ ⎨ 

⎩ 

m 

1 + (1 −3 θ )( 1 3 + 

a 
2 ) 

� if f GW 

� f opt 

m 

1 + (1 −3 θ )( 1 3 − b 
2 ) 

� if f GW 

� f opt . 

(9) 

t this point, it is worth noting that, for β = 1, f GW 

� 10 −3 Hz for
 � � 0 . 01 M � such that for the different detectors (see Table 1 ), β =
 TDEs are al w ays in the regime f GW 

� f opt . For the particular case
f LISA ( a = 1.8) shown for m � ≤ M � [ θ = 0.8 in equation (6)]
n Fig. 1 , we find S/N ∝ m 

−0 . 7 
� (thin light blue dashed line) in

xcellent agreement with the numerical estimate. Conversely, the 
ighest possible f GW 

is obtained for β = βmax : 

 GW , max = 

(
c 6 

32 κ3 π2 G 

2 M 

2 •

)1 / 2 

∼ 4 × 10 −3 Hz 
(κ

2 

)−3 / 2 
(

M •
10 6 M �

)−1 

, (10) 

hich gives only f GW , max � f opt for � 10 4 M � BHs not considered
n this study. 

For a given detector ( h det known) and fixed S / N = S / N lim 

, M •, m � ,
nd β, we can solve equation (8) to obtain z max . In Fig. 2 , we show,
or the particular case of LISA, and for S / N lim 

= 5 and M • = 10 6 M �,
he value of z max as a function of the two parameters left, m � , and β.
ere, we recognize that, o v erall, a good rule of thumb is that TDEs
roduced by massive stars on penetrating orbits can be detected up
o higher redshift, but the details ultimately depend on the complex
hape of the sensitivity curve of the gravitational wave detector (LISA 

n this case). 
In order to understand the dependency of z max with M •, we fix
 � and S / N lim 

, and we solve equation (8) across all the possible β.
e show the results in Fig. 3 (light thick lines), where we explore

ifferent stellar masses m � and S / N lim 

for LISA (left-hand panel),
s well as for future gravitational waves detectors but with fixed
MNRAS 510, 2025–2040 (2022) 

art/stab3387_f1.eps
art/stab3387_f2.eps
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Figure 3. Left: Maximum redshift at which a TDE can be detected with LISA as a function of the mass of the BH around which the TDE occurs. We explore 
different stellar masses and thresholds for the signal-to-noise ratio (colours) and show the results of a numerical search (thick light lines) and from equation (12) 
(thin dark lines). LISA is optimal for a detection around a 10 6 M � BH. Right: Same, but for m � = 1 M � and S / N lim 

= 1 and different detectors (colours). The 
generation of gravitational waves detectors following LISA will be able to detect TDEs from intermediate mass BHs up to cosmological redshifts. 
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 � = M � and S / N lim 

= 1 (right-hand panel). Here, the exact shape
f the sensitivity curve appears even more clearly: LISA is optimal
round 10 6 M � BHs. 

All this can be understood as follows. Starting with equation (8)
nd using that, for z � 1, we can approximate χ ∼ cz / H 0 ( H 0 is the
ubble constant), we have: 

 ∼
z�1 

π2 / 3 2 5 / 3 G 

5 / 3 H 0 

c 5 
× m � M 

2 / 3 
•

S/N 

f 
2 / 3 
GW 

h det ( f GW 

) 
. (11) 

f f GW , max ≥ f opt , then there exists β for which h det ( f GW 

) = h opt , and
s h det is a steep function of f , this is where the maximal z is obtained.
n the other situation, if f GW , max ≤ f opt , then, given the U shape of
 det , the maximal z is obtained for f GW , max . Overall, equation (11)
iving the maximum redshift can be wrapped up as: 

 max = 0 . 01 

(
m � 

M �

)(
M •

10 6 M �

)2 / 3 

× S/N 

−1 
lim 

(
f � 

10 −2 Hz 

)2 / 3 (
h det ( f � ) 

10 −21 

)−1 

, (12) 

here 

 � = min 

( 

4 × 10 −3 Hz 
(κ

2 

)−3 / 2 
(

M •
10 6 M �

)−1 

, f opt 

) 

. (13) 

e conclude that z max ∝ m � S/N 

−1 
lim 

is al w ays true: more massive stars
an be detected farther away. Ho we ver, for BHs with f GW , max ≥ f opt 

BHs lighter than M •, opt , see Table 1 ), we have z max ∝ M 

2 / 3 
• , and for

 GW , max < f opt (‘massive’ BHs), z max decreases faster than M 

−1 / 3 
• :

ven though the signals are stronger for more massive BHs, there ex-
sts an optimal BH mass for detection given by f GW , max ( M •) = f det .
or LISA, this optimal mass is M •, opt ∼ 10 6 M �, and this is why
 max peaks at this value in Fig. 3 (left). We also show in Fig. 3 the
esults of equation (12) (thin lines), apart when z max ∼ 1 and our
ypothesis z � 1 is not correct anymore, the numerical estimate and
quation (12) are in excellent agreement. 

Overall, LISA can realistically detect TDEs only up to z ∼
.01 − 0.1 (depending on m � and S / N lim 

), but the next-generation
etectors will be able to detect TDEs around intermediate-mass BHs
p to cosmological redshifts. In all cases, detectors are most sensible
o BHs for which the Keplerian frequency around the critical radius
NRAS 510, 2025–2040 (2022) 
or direct plunge ( κ × r Sch ) is the same as the optimal frequency of
he detector, about 10 6 M � for LISA (see Table 1 ). 

.2 Electromagnetic counterpart 

DEs are very luminous electromagnetic sources bright both in the
-ray (e.g. Saxton et al. 2020 ) and in the optical (e.g. van Velzen

t al. 2020a ) part of the spectrum. With the aim of exploring possible
DEs observed as multimessenger sources, we estimate, using
bserv ationally moti v ated models, the electromagnetic luminosity
f TDEs. We begin with the optical emission in Section 2.2.1 and
hen mo v e to the X-ray emission in Section 2.2.4. 

.2.1 Optical emission 

ormalism . The origin of the optical emission is still debated:
hile some groups believe that it is caused by shocks during the

ircularization process (e.g. Lodato 2012 ; Piran et al. 2015 ; Shiokawa
t al. 2015 ), others believe that it is sourced by the accretion
uminosity reprocessed in the expanding outflow (e.g. Lodato &
ossi 2011 ; Dai et al. 2018 ; Roth & Kasen 2018 ). Discussion about

he origin of the optical component is beyond the scope of this
aper, and we instead adopt an observ ational-dri ven approach. We
ssume that the optical emission of TDEs can be well modelled with
 blackbody with temperature T opt = 3 × 10 4 K (mean temperature
rom table 3 of Wevers et al. 2017 but see also van Velzen et al.
020b ), and a luminosity equals to the Eddington limit: 

 Edd = 3 × 10 4 L �

(
M •
M �

)
, (14) 

here L � is the luminosity of the Sun. It should be noted that
ot all observed TDEs emit up to Eddington luminosity (e.g. Hung
t al. 2017 ). Furthermore, in our vast parameter space, the Eddington
uminosity can sometime exceed the luminosity at peak [e.g. Evans &
ochanek 1989 ; Stone, Sari & Loeb 2013 ; equation (24) of Stone &
etzger 2016 ]; for this reason, the final adopted luminosity is: 

 = L Edd × min 

( 

1; 133 

(
M •

10 6 M �

)−3 / 2 (
m � 

M �

)2 (
r � 

R �

)−3 / 2 
) 

, 

(15) 

here we adopted a constant radiative efficiency of 0.1. 

art/stab3387_f3.eps
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Figure 4. G magnitude as a function of M • for a TDE of a m � = 10 star 
occurring at the maximum observable redshift with different gravitational 
wave detectors. 

r

F

w  

P
w  

S

R

F

M

w
 

c
t

M

U
m  

t

c  

b
w  

a
a
i  

a

s

S  

c
z

M

A
L
m
(  

c  

w
H
t  

o  

t  

w  

w
l  

a  

M

2

F  

a  

L  

b  

t

R

a  

a
t  

s  

0

t  

m  

w  

d  

R  

w  

a
 

m  

T  

(  

p  

m  

b  

fi  

c  

p  

t

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/2/2025/6442297 by U
niversity of H

ong Kong user on 25 January 2022
This allows to write the spectral flux density (appropriately 
edshifted as in appendix A of Roth et al. 2020a ): 

 opt ( λ) = 

(1 + z) 2 

χ ( z) 2 
× 2 hc 2 

λ5 

× R 

2 
opt 

exp 
(
hc(1 + z) /λk B T opt 

)− 1 
, (16) 

here λ is wavelength in the observer frame; h , k B , and σ S are the
lanck , the Boltzmann, and the Stefan constants, respectively; and 
e defined the typical blackbody radius of emission ( R opt ) from the
tefan–Boltzmann law: 

 opt = 

√ 

L 

4 πσS T 
4 

opt 
. (17) 

rom all this, the G magnitude associated to the flux is 

 G 

= −2 . 5 log 10 

(
9 ×

(
λG 

Å

)2 

× F opt ( λG ) 

erg cm 

−2 s −1 Å
−1 

)
, (18) 

here λG ∼ 464 nm is the central wavelength of the G band. 
Note that for L = L Edd (most cases in our parameter space), we

an approximate equation (18) for small z similarly to Section 2.1.2 
o obtain the following simple expression: 

 G 

∼ 28 − 2 . 5 log 10 

(
M •

10 6 M �

)
+ 5 log 10 ( z) . (19) 

nder the observationally motivated assumption L = L Edd , the 
agnitude of a TDE solely depends on the mass of the BH and

he cosmological distance. 
Multimessenger TDEs : For a TDE with given properties, we 

an now estimate what the maximum redshift is at which it can
e observed with a gravitational wave detector [equation (12)] as 
ell as the G magnitude of this event [equation (18)]. In order to

ddress which events can be detected both in the electromagnetic 
nd the gravitational spectrum, we can estimate the G magnitude 
n the most pessimistic scenario ( M G , lim 

): when the TDE occurs
t z max . 

We show in Fig. 4 M G , lim 

as a function of M • for TDEs of 10 M �
tars and assuming that events can be gravitationally detected with 
 / N lim 

= 5. This can easily be generalized to any m � and S / N lim 

;
ombining the approximate expressions for M G [equation (19)] and 
 max [equation (12)], one finds: 

 G, lim 

= 18 + 5 log 10 

(
m � 

M �

)
− 5 log 10 ( S/N lim 

) 

+ 

5 

6 
log 10 

(
M •

10 6 M �

)

+ 5 log 10 

( (
f � 

10 −2 Hz 

)2 / 3 (
h det ( f � ) 

10 −21 

)−1 
) 

. (20) 

ny gravitational detection with the two upcoming interferometers 
ISA and Tianqin should be associated with a maximum M G , lim 

agnitude � 20, even detectable with current wide field facilities 
YSE and ZTF M G limit is 21.5, see Jones et al. 2020 ). As a
onsequence, if there is a detection of a TDE through gravitational
aves, there should be a detection of its electromagnetic counterpart. 
o we ver, future-generation detectors may see gravitational waves 

hat are not observed in the optical counterparts: there will be
rphans. Since for BHs lighter than the optimal mass for gravi-
ational waves detection ( M •, opt , see Table 1 ), M G , lim 

increases
ith the mass of the BH [as 5/6 × log 10 M •, see equation (20)],
hile it decreases for more massive BHs (faster than −5/2 ×

og 10 M •, given the expression of f � in this regime), these orphans
re most likely to be powered by BHs with a mass around
 •, opt . 

.2.2 X-ray emission 

ormalism . The origin of the X-ray emission is thought to be
ssociated to the inner parts of an accretion disc (e.g. Ulmer 1999 ;
odato & Rossi 2011 ). We adopt a similar method as in Section 2.2.1,
ut instead of fixing the temperature, we fix the blackbody radius at
he circularization radius of the stellar debris: 

 x = 

2 r T 
β

, (21) 

nd, similarly to the optical case (van Velzen et al. 2016 ), we
ssume that the luminosity equals the Eddington limit capped at 
he luminosity at peak [equation (15)]. This allows to estimate the
pectral flux density [equation (16)], which can be integrated in the
.3–10 keV band in order to obtain the X-ray flux. 
Multimessenger TDEs . Similarly to Section 2.2.1, we estimate 

he X-ray flux in the pessimistic regime of a TDE occurring at the
aximum redshift at which it can be observed with a gravitational
ave detector. Note that, contrary to the optical emission, this flux
epends on the mass of the star not only through z max but also through
 X . Note also that the value of β matters, and to estimate the flux,
e take β for which f GW 

= f � , i.e. such that the event is observable
t z max . 

We show in Fig. 5 the X-ray flux as a function of M •. We also
ark the optimistic flux limit of Lynx (10 −19 erg cm 

−2 s −1 ; The Lynx
eam 2018 ), but similar conclusions can be reached for eROSITA
flux limit of 10 −14 erg cm 

−2 s −1 ; Merloni et al. 2012 ). In the upper
lot, we focus on the case of LISA varying m � (colours). We find that
ost TDEs that LISA may reveal through gra vitational wa ves should

e detectable in the X-ray. Similarly to the optical counterpart, we
nd that, in general, if we consider more massive stars, the X-ray
ounterpart is fainter as the maximum redshift is larger. In the lower
lot, we show the results for future gra vitational wa ve detectors, with
he same conclusions. 
MNRAS 510, 2025–2040 (2022) 
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Figure 5. X-ray flux as a function of M •. Top: Case of LISA, we vary the 
total luminosity (varying the fraction of the Eddington limit, line style) and 
the mass of the disrupted star (colour, low-mass stars curves are truncated 
for large BH masses, when stars penetrate the Scwhazschild radius before 
being disrupted). Bottom: Case of future detectors (colours). In both cases, 
the Lynx limit is indicated in black. 
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 T D E  RATES  

s shown in Section 2, the detectability of a TDE, both in gravita-
ional and electromagnetic waves, depends on the mass of the BH as
ell as the properties of the disrupted star (mass and radius) and on

he pericentre of its orbit. In order to obtain the rate of observable
vents, we compute the total rate as a function of these parameters
n one single galaxy in Section 3.1, and we then generalize to a
opulation of galaxies in Section 3.2. 

.1 Single galaxy 

n this section, for a given galaxy with a central BH, we derive the
DE rate at which stars with a given mass and pericentre penetrate the

idal radius and are disrupted. A summary of the loss cone dynamics
s given in Section 3.1.1; as the rate depends on the structure of
he galaxy (e.g. density profile), we describe our assumptions in
ection 3.1.2, and we compare our results with previous studies

n Section 3.1.5. 

.1.1 Loss cone dynamics 

or a spherically symmetric bath formed by a monochromatic
opulation of stars m bg , we classically (Binney & Tremaine 1987 ;
NRAS 510, 2025–2040 (2022) 
erritt 2013 ; Stone & Metzger 2016 ) define the absolute value of
he specific energy, E , the specific angular momentum J , the specific
ngular momentum of a circular orbit at a given energy, J c ( E ),
heir ratio R = J 2 /J 2 c , the radial period, P ( E ), 2 and the mean- R
istribution function f ( E ). 
The flux of stars with a given energy and impact parameter that

iffuse through 2-body interactions within an angular momentum
imit R LC is given by equations (4.90–4.94) of Strubbe 2011 , and
ariable change): 

d 2 � 

d Ed ln β
= 

8 π2 G M •r T 
β

f ( E) 

1 + q −1 ξ ln 
(
R 

−1 
LC 

)
×
[ 

1 − 2 
∞ ∑ 

m = 1 

e −α2 
m q/ 4 

αm 

J 0 
(
αm 

β−1 / 2 
)

J 1 ( αm 

) 

] 

(22) 

= 1 − 4 
∞ ∑ 

m = 1 

e −α2 
m q/ 4 

α2 
m 

(23) 

( E, m � , m bg ) = 

P μ( E, m � , m bg ) 

R LC 
, (24) 

here q is the loss cone filling factor corresponding to the relative
hange of R to R LC per orbit; μ( E, m bg , m � ) is the orbit averaged
if fusion coef ficient in R corresponding to the inverse of the typical
ime to change R by order unity (equation [18] of Merritt 2013 ,
quation [11] of Stone & Metzger 2016 ); J k are the Bessel functions
f first kind of order k ; and αm is the m-th zero of J 0 . 
We define the TDE rate as the rate at which stars diffuse within

he angular momentum limit such that they are doomed to enter the
isruption zone on a time-scale of the orbital period, that is: 

 LC ( E , m � ) ∼ 4 E r T 

G M •
� 1 , (25) 

here we have used that E � G M •/r T , as most stars arrive on
ccentric orbit with semimajor axis much larger than r T . 

If we consider now a stellar population described by a mass
unction φ, then, in principle, (i) for a given test mass m � , the
iffusion caused by a multispecies stellar background should differ
rom the simple monochromatic case; and (ii) different test particles
ith different masses should diffuse differently. However, by a happy

oincidence (Magorrian & Tremaine 1999 , summary in Appendix B),
or a stellar population, the resulting rate happens to be the same as
f the distribution was made by a monochromatic bath with mass
 bg = 〈 m 

2 
� 〉 1 / 2 , where 〈 m 

2 
� 〉 = 

∫ 
m 

2 φ( m )d m is the root-mean-square
f the mass of a star. Obviously, this is not true anymore when φ
epends on the position: for instance, if there is mass se gre gation
hat brings more massive objects to the centre, or close enough
o the BH so that more massive stars are disrupted. We neglect
hese processes in what follows. Consequently, the rate at which
est particles diffuse within some angular momentum limit can be
btained using equation (22) with m bg = 〈 m 

2 
� 〉 1 / 2 . 

In order to obtain the rate for a given mass, one has to consider
hat only a fraction φ( m � )d m � of test particles have the mass m � , and
hat the boundary for disruption ( R LC ) depends on m � ; this yields: 

d 2 � 

d ln m � d ln β
= 

8 π2 G M •r T 
β

φ( m � ) m � 

×
∫ G M •/r T 

G( E, β, m � )d E (26) 
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( E, β, m � ) = 

f ( E) 

1 + q −1 ξ ln ( R 

−1 
LC ) 

×
[ 

1 − 2 
∞ ∑ 

m = 1 

e −α2 
m q/ 4 

αm 

J 0 
(
αm 

β−1 / 2 
)

J 1 ( αm 

) 

] 

(27) 

= 1 − 4 
∞ ∑ 

m = 1 

e −α2 
m q/ 4 

α2 
m 

(28) 

( E, m � ) = 

P ( E ) μ( E , 〈 m 

2 
� 〉 1 / 2 ) 

R LC 
, (29) 

here the upper bound in the integral comes from that orbits
ith higher E are within the tidal radius. We note that this upper
ound on E is in apparent contradiction with equation (25), but we
ave checked that the integral is independent of the upper value 
hosen, i.e., the rate is not dominated by the energy range near
 M •/r T . 
From equation (26), we can obtain the total TDE rate ( �) around

 particular BH as: 

 = 

∫ m �, max 

m � = m �, min 

∫ βmax 

β= 0 

d 2 � 

d ln m � d ln β
d ln m � d ln β , (30) 

here m � , min and m � , max are the boundaries of the stellar mass
unction (see following section). 

.1.2 Stellar properties around the BH 

tellar density function. In general, the estimate of f and q requires nu-
erical integration (for instance, using PHASEFLOW ; Vasiliev 2017 ; 
fister et al. 2019b , 2020a ; Pestoni et al. 2021 ) or approximations
Wang & Merritt 2004 ; Pfister et al. 2020b ). Ho we ver, we further
ssume that the stellar density profile surrounding the BH is a power
aw: 

( r) = ρ0 

(
r 

r inf 

)−α

, (31) 

here r inf is the influence radius of the BH, corresponding to the
adius encompassing a stellar mass equal to that of the BH (which
lso defines ρ0 ). In this situation, f and q can be obtained analytically
ithin r inf (Magorrian & Tremaine 1999 ; Strubbe 2011 ; Merritt 2013 ;
tone & Metzger 2016 ), when the potential is dominated by the BH,
s: 

 ( E) = 

(
2 πσ 2 

inf 

)−3 / 2 ρ0 

〈 m � 〉 
γ ( α + 1) 

γ ( α − 1 / 2) 

(
E 

σ 2 
inf 

)α−3 / 2 

(32) 

( E, m � ) = ν

(
E 

σ 2 
inf 

)α−4 

(33) 

( m � ) = 

8 
√ 

π

3 
(3 − α) 

γ ( α + 1) 

γ ( α − 1 / 2) 

[ 

5 

32( α − 1 
2 ) 

+ 

3 I B 
(

1 
2 , α

) − I B 
(

3 
2 , α

)
4 π

] (
G 〈 m 

2 
� 〉 

σ 2 
inf 〈 m � 〉 r T ( m � ) 

)
ln �, 

(34) 

here σinf = ( G M •/r inf ) 1 / 2 is the velocity dispersion at r inf ; 〈 m � 〉 =
 

m φ( m )d m is the mean stellar mass; ln � = ln (0.4 M •/ 〈 m � 〉 ) is the
oulomb logarithm (Spitzer & Hart 1971 ); γ is the Euler Gamma 
unction; 3 and we define I B as: 

 B 

(n 

2 
, α

)
= 

∫ 1 

0 
t −

n + 1 
2 (1 − t ) 3 −αB 

(
t , 

n 

2 
, α − 1 

2 

)
d t , (35) 

here B the incomplete Euler Beta function. 4 

In order to reduce the dimensionality of the problem, we assume
hat the density profile is an isothermal sphere [ α = 2 in equa-
ion (31)]: 

( r) = 

σ 2 

2 π G r 2 
(36) 

 inf = 

G M •
2 σ 2 

(37) 

inf = 

√ 

2 σ , (38) 

here σ is the velocity dispersion of the galaxy and is such that the
H lies on the M • − σ relation (Merritt & Ferrarese 2001 ): 

σ

km s −1 
= 68 

(
M •

10 6 M �

)0 . 22 

. (39) 

The assumption of an isothermal sphere lying on the M • − σ

elation is clearly a simplification of reality, as galaxies exhibit 
ifferent shapes (e.g. Lauer et al. 2007 ) and are not uniquely defined
y their BH mass (there is scatter in the relation, e.g. Kormendy & Ho
013 ). One possibility to o v ercome this issue would be to use a mock
atalogue (e.g. Pfister et al. 2020a ; Chen, Yu & Lu 2020 ), but (i) this
s beyond the scope of this study which aims only at providing trends
nd orders of magnitude on the gravitationally observed TDE rates, 
nd (ii) these mock catalogues are constructed from real observations 
or which the structure within the influence radius (the rele v ant region
or TDE rates estimates) is usually poorly resolved for BHs with
 • � 10 6 M � (Pechetti et al. 2019 ; S ́anchez-Janssen et al. 2019 ).

his said, we note that the isothermal sphere lying on the M • −
has been widely used in Astronomy (e.g. Volonteri, Haardt & 

adau 2003 ; Barausse et al. 2020 ), including TDE studies for which
t has shown to reproduce well observations (Wang & Merritt 2004 ;
ochanek 2016b ). We also note that the use of the M • − σ relation
f Merritt & Ferrarese ( 2001 ) among the different observationally
ound (e.g. Kormendy & Ho 2013 ) has little effects on the rate, as
hown by section 3.2 of Kochanek ( 2016b ). 

Stellar mass function . In order to take into account that stars can
ave a variety of masses, which will produce differences in the strain,
e assume that the stellar population follows the usual Kroupa stellar
ass function (Kroupa 2001 ): 

( m � ) = φ0 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(
m � 

0 . 5 M �

)−1 . 3 

for m �, min ≤ m � ≤ 0 . 5 M �(
m � 

0 . 5 M �

)−2 . 3 

for 0 . 5 M � ≤ m � ≤ m �, max 

0 else , 

(40) 

here φ0 is such that 
∫ 

φ( m )d m = 1. Our fiducial model is for
 m �, min , m �, max ) = (0 . 08 , 10) M �, that is the stellar population is
ld enough so that massive stars have gone through supernovae 
similarly to Magorrian & Tremaine 1999 ; Stone & Metzger 2016 ),
ut we explore populations with m �, max ranging from 2 . 5 M � to
00 M �. For comparison with previous studies, we also consider the
0 
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Figure 6. Minimum stellar mass that can produce a TDE as a function of 
the mass of the BH for different κ (the critical radius for direct plunge, see 
Section 2.1.1). For the κ = 2 case, BHs with M • � 10 7 M � can disrupt all 
stars; for more massive BHs, low-mass stars are gradually remo v ed such 
that only massive stars can be disrupted, and for BHs with a mass abo v e 
∼ 2 × 10 8 M �, e ven most massi ve stars with m � ∼ 100 M � are swallowed 
whole. 

m  

t
 

1  

(  

(  

w  

u  

a
 

d  

s  

e  

a

3

A  

(  

b  

t  

1  

c  

w  

I

w  

m
 

o  

1  

a  

a  

s  

r  

o  

Figure 7. Ratio, for different BH masses (colours), of the TDE rate for 
a realistic stellar population o v er the TDE rate for a monochromatic solar 
population. The higher the BH mass, the better the matching between our 
model [solid line, equation (30)] and the empty loss cone model [dashed line, 
equation (41)]: in the low-mass end, the rate is not dominated by the empty 
loss cone regime. 
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onochromatic Solar population φ( m � ) = δ( m � − M �), where δ is
he delta Dirac function. 

The use of the Kroupa initial mass function among others (Salpeter
955 ; Chabrier 2003 ) is an arbitrary choice, but Stone & Metzger
 2016 ) have shown that the TDE rates depend more on the boundaries
 m �, min and m �, max ) than on the mass function chosen. While it
ould be interesting to also vary the initial mass function, it is
nfortunately impossible to explore all the possibilities in a finite
nd comprehensible paper. 

For a given BH with mass M •, we now have a unique stellar
ensity profile and distribution function ( f ). If we further assume a
tellar mass function ( φ), we can estimate all the different terms in
quation (26) to obtain the TDE rate for a given stellar mass ( m � )
nd impact parameter ( β). 

.1.3 Summary 

nalytical considerations . As noted by Magorrian & Tremaine
 1999 ) and Stone & Metzger ( 2016 ), if the TDE rate is dominated
y the ‘empty loss cone’ regime (or ‘dif fusi v e’ re gime with q � 1),
hen the total rate scales as � ∝ 〈 m 

2 
� 〉 / 〈 m � 〉 2 ( 〈 m 

2 
� 〉 / 〈 m � 〉 from μ and

/ 〈 m � 〉 from f ). As we also take into consideration that low-mass stars
an be swallowed whole, we have to remo v e the fraction f • of stars
ith m � ≤ m � , •, where m � , • is solution to βmax = 1 (equation [4]).

n the end, the total rate scales as: 

� 

� �
= f •

〈 m 

2 
� 〉 

〈 m � 〉 2 , (41) 

here f • = 

∫ m �, max 

m �, • φ( u )d u , and � � is the TDE rate for a monochro-
atic solar population. 
We show in Fig. 6 m � , • as a function of the BH mass. Given

ur minimum stellar mass considered of 0.08 M �, BHs with M • �
0 7 M � can disrupt all stars; for more massive BHs, low-mass stars
re gradually remo v ed such that only massive stars can be disrupted,
nd for BHs with a mass abo v e ∼ 2 × 10 8 M �, e ven most massi ve
tars with m � ∼ 100 M � are swallowed whole. As a consequence,
ather independently on the maximum boundary m �, max , the fraction
f stars that can be disrupted is f • = 1 for M • � 10 7 M � and gradually
NRAS 510, 2025–2040 (2022) 
rops to 0 for M • � 2 × 10 8 M � passing by 0.77 and 0.16 for M • =
0 7 and 10 7 . 5 M �. 
We show in Fig. 7 , for different BH masses (colours), the ratio

f the TDE rate with respect to the one of a monochromatic solar
opulation. This ratio is shown as a function of the maximum stellar
ass m �, max in the stellar mass function. The results are presented

or our model obtained using equation (30) (solid lines) as well as in
he empty loss cone regime using equation (41) (dashed line). The
caling with the empty loss cone is o v erall quite good. Yet, in the
ow-mass BH regime (10 4 − 10 5 M �, blue and orange), there is a
ismatch between the empty loss cone ratio and the ‘real’ ratio. In

he higher-mass BH regime (10 7 . 5 M �, red), the agreement is better.
his is in agreement with Stone & Metzger ( 2016 ), who find that

he fraction of TDEs in the empty loss cone regime dominates in the
igh-mass BH end but not for low-mass BH. 
Comparison with previous results . We show in Fig. 8 the TDE

ate � [equation (30)] as a function of M • for our model (solid lines)
nd from previous studies (dashed lines). For our model, we perform
he e x ercise for the three different stellar mass functions (shown
s different colours). Our results with a monochromatic Sun-like
opulation (solid blue) are in excellent agreement with those from
ang & Merritt ( 2004 ) (dashed pink): this was expected as both
odels use similar assumptions, but this is a nice test to confirm

he validity of our model, of our numerical implementation, and
f our results. As discussed in the paragraph abo v e, and similarly
o Magorrian & Tremaine ( 1999 ) or Stone & Metzger ( 2016 ), we
nd an enhancement of the rate when we extend the stellar mass
unction. Finally, we also note that the TDE rates sharply drop to
 at M • ∼ 10 8 M � for a monochromatic Sun-like population and
moothly decreases starting from few 10 7 M � for a more realistic
tellar population. This is due to that low-mass stars (see Fig. 6 ) are
radually remo v ed when we shift to wards more massi ve BHs (see
lso fig. 4 of Kochanek 2016b ). 

Fraction of observable TDEs with gravitational waves . Since we
re confident with our rate calculation, we look at the differential
ate, as estimated using equation (26), as a function of the impact pa-
ameter β and the mass of the disrupted star m � . We show in Fig. 9 the
xample of a 10 6 M � BH surrounded by two fiducial [0 . 08; 10] M �
nd [0 . 08; 100] M � Kroupa stellar mass function, and we o v erplot the
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Figure 8. TDE rate as a function as the mass of the central BH. We show 

the results from our study (thick lines) and from previous works (dashed 
lines; Wang & Merritt 2004 ; Stone & Metzger 2016 ; van Velzen 2018 ). Rates 
are increased if we change the stellar mass function (at first order, it scales 
with 〈 m 

2 
� 〉 / 〈 m � 〉 2 ; Magorrian & Tremaine 1999 ; Stone & Metzger 2016 ), 

but our results for a monochromatic Sun-like population (blue line) are in 
excellent agreement with previous studies. When more massive stars are 
included, TDEs can occur around more massive BHs, which explains why 
the drop shifts towards heavier BH masses when the stellar mass function is 
extended. 
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aximum redshift at which these TDEs can be observed with LISA
see also Fig. 2 ). For the [0 . 08; 10] M � case (left), we find that most
DEs have β � 2, which reflects that we typically have ∂ β� ∝ 1/ β2 

Stone & Metzger 2016 ; Kochanek 2016b , or see equation (26); note,
o we ver, that this is not entirely true as this neglects the dependency
f G with β). Most TDEs are also powered by low-mass stars with
 � � 1 M �, which reflects the fact that the stellar mass function

s bottom-heavy. These most numerous TDEs (cyan region) can 
nfortunately be detected only in our galaxy ( z max ∼ 10 −5 ). Events
ith m � � 6 M � and β � 10 (purple region) are typically 100–
000 times rarer, but their gravitational waves also carry more energy 
nd can be detected up to z ∼ 10 −2 , yielding a much larger volume.
or the [0 . 08; 100] M � case (right), we find similar conclusions, even

f at same m � and β, rates are different. Overall, the rate of observed
ravitationally detected TDEs will be a competition between their 
arity and the volume within which they can be seen. 

.2 Population of galaxies 

n the previous section, we have obtained the TDE rate for a single
alaxy. In order to compute the total observable rate, one needs 
he BH mass function ( � •, giving the volumetric number of BHs
ithin a certain mass range) to sum the contributions of all BHs. We
escribe our choice in Section 3.2.1 and finally wrap up everything 
n Section 3.1.5. 

.2.1 BH mass function 

e adopt here two different models for the BH mass function. 
Our first model ( � •, 1 ) assumes that all galaxies host a central BH

nd that the mass of the BH can be inferred from the mass of the
alaxy. In particular, we assume that the redshift-dependent galaxy 
ass function can be expressed as: 

 gal ( M gal , z)d M gal = e −M gal /M � 
d M gal 

M � 

×
[
� 

� 
1 

(
M gal 

M � 

)α1 

+ � 

� 
2 

(
M gal 

M � 

)α2 
]

, (42) 

here � 

� 
1 , � 

� 
2 , M � , α1 , and α2 depend on redshift and are obtained

tting the ‘total sample’ galaxy mass function of the COSMOS field 
see table 1 of Davidzon et al. 2017 ). Using, in addition, the BH
ass–galaxy mass relation from Reines & Volonteri ( 2015 ): 

og 10 

(
M •
M �

)
= 7 . 45 + 1 . 05 × log 10 

(
M gal 

10 11 M �

)
, (43) 

e can express the BH mass function as: 

 •, 1 ( M •, z) = � gal ( M gal , z) 
d M gal 

d M •
. (44) 

Our second model ( � •, 2 ) is simply the BH mass function from
allo & Sesana ( 2019 ) 5 6 : 

og 10 

� •, 2 
cMpc −3 M 

−1 
�

= −9 . 82 − 1 . 10 × log 10 

(
M •

10 7 M �

)

−
(

M •
128 × 10 7 M �

)1 / ln (10) 

. (45) 
 We report here the correct equation as there is a typo in the original paper, 
ri v ate communications with A. Sesana. 
 We use cMpc for comoving Mpc. 

m  

n  
While the first model seems more realistic, as it depends on
edshift, it assumes that (i) all galaxies host a central BH, and
hat (ii) the mass of this central BH correlates with the mass of
he galaxy. While these are reasonable assumptions in the high 
alaxy mass/BH mass end ( � 10 10 M �/ 10 6 M �; Kormendy & Ho
013 ), in the dwarf/intermediate-mass BH regime, the occupation 
raction may be less such that some dwarfs do not host any
Hs in their centre (Tremmel et al. 2015 ; Pfister et al. 2017 ,
019a ), and the scaling relations between galaxies and BHs may
reak down (Greene, Strader & Ho 2019 ). Furthermore, both 
avidzon et al. ( 2017 ) and Reines & Volonteri ( 2015 ) use a

ample of � 10 9 . 5 M � (10 6 M �) galaxies (BHs) that we extrap-
late to lower masses. Our second model from Gallo & Sesana
 2019 ) takes into account that the occupation fraction may not
e unity through the entire mass spectrum and explores BHs 
ith masses down to 10 4 M �, but it is valid only in the local
niverse. 
We report in Fig. C1 the BH mass functions used in this work. 

.2.2 Summary 

e now have all the ingredients to estimate the rate of TDEs
bservable with gravitational waves ( Ṅ ). 
Combining all the sections abo v e, the rate at given z and BH with
ass M • of a star with mass m � on an orbit with penetration factor β

s: 

d 4 � 

d z d M • d m � d β
= 

d 2 � 

d m � d β

1 

1 + z 
� • × 4 πc 

χ2 ( z) 

H ( z) 
, (46) 

here the first line is simply the differential rate for a single BH
easured in the observer frame, and the second line expresses the

umber of BH at given mass and redshift ( H is the Hubble parameter).
In the end, the final equation of interest for us is: 

d 4 Ṅ 

d z d M • d m � d β
= 

d 4 � 

d z d M • d m � d β
�( z, M •, m � , β, S/N lim 

) , (47) 
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Figure 9. Differential TDE rate as a function of the stellar mass and the impact parameter. We show the particular case of a 10 6 M � BH and a Kroupa stellar 
mass function in [0 . 08; 10] M � (left) and in [0 . 08; 100] M � (right). We o v erplot the maximum redshift at which these events can be detected with LISA with 
S / N lim 

= 5 (colour lines). Most TDEs have m � � 1 M � and β � 2 but can be observed up to only z ∼ 10 −5 (which is cosmologically irrele v ant and makes them 

impossible to observe with gravitational waves). Rarer events can be observed to larger distances yielding a larger observable volume. 
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Figure 10. Observable TDE rate with gravitational waves as a function 
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wave detectors. While a detection with LISA and Tianqin is unlikely, the 
second generation of space-based gra vitational wa ve detectors will observe 
gra vitational wa ves of TDEs. 
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here � is either 0 or 1 depending on whether the particular event
an be detected: 

 = 

{ 

0 if z ≥ z max 

1 else , 
(48) 

nd z max can approximately be obtained through equation (12) (see
ection 2.1.2). 

.3 Caveats 

ur method is fully analytical; this has several advantages and down-
ides. On the one hand, this allows us to study a variety of models
e.g. different detectors and abilities to extract physical signals from
he noise, different maximum stellar masses surrounding BHs, or
ifferent BH mass functions) and to understand what are the physical
ele v ant parameters for detection of gravitational waves from TDEs.
n the other hand, the simplicity of the method comes at the price of
any assumptions due to our still incomplete understanding of the

hysics (e.g. maximum penetration factor, mass-to-radius relation
f massive stars), or due to that incorporating such physics would
dd an extra layer of complexity beyond the scope of this paper
e.g. isothermal sphere lying on the M • − σ relation). As such,
ur predictions should be regarded only as guidelines and order-of-
agnitude estimates. Yet, we believe that our results provide insight

n the feasibility of gravitationally detected TDEs. 

 TOTA L  R ATES  O F  GRAV ITATIONA LLY  

BSERV ED  TD ES  

n this section, we compute the number of TDEs emitting gravita-
ional waves we can detect and their properties. We first focus in
ection 4.1 on one particular model and e x emplify what different
etectors can tell about this model; in Section 4.2, we detail what
hese future observations can tell us about the underlying properties
f TDEs. 

.1 Typical numbers of obser v ations and distributions 

n this section, we focus on one model: the Kroupa stellar mass
aries between [0 . 08; 10] M � and the BH population is obtained
NRAS 510, 2025–2040 (2022) 
rom the galaxy mass function and BH–galaxy mass scaling re-
ations [ � •, 1 , equation (44)]. We chose this model as ‘fiducial’
ecause m �, max = 10 M � corresponds to a relatively old stellar
opulation (10 − 100 Myr , Choi et al. 2016 ) consistent with pre-
ious works (Stone & Metzger 2016 ), and because this model
or the BH population depends on redshift, which is necessary
s Bbo and Decigo can detect TDEs up to z � 1 −10 (see
ig. 3 ). 
We show in Fig. 10 the observable rate of TDEs ( 

∫ 
d 4 Ṅ ) as a

unction of the S / N lim 

threshold for detection, or in other words, the
umber of detection in a year as a function of our (in)ability to detect
vents in the noise. We show the rates for different detectors (colours)
nd we also mark the critical rate of 1 event per year (horizontal
lack dashed line). We find that it is unlikely that LISA and TianQin
ill detect TDEs. Future generations of gravitational wave detectors

Bbo and Decigo) should, ho we ver, detect tens of thousands of events
er year. In both cases, we note that the observed rate is extremely
ensitive to our ability to detect signal from the noise. 
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Figure 11. Distribution of TDEs if we were able to detect all of them (‘global population’, dashed lines), and distributions of ‘GW-detected’ TDEs (solid lines) 
for different gravitational wave detectors (colours). 

Figure 12. Observable TDE rate with gravitational waves as a function of the maximum stellar mass in the Kroupa stellar mass function. We show the results 
for LISA (left) and Decigo (right), and in both cases for our two models for the BH mass function (colour, see Section 3.2.1) and ability to detect the signal 
from the noise (line style). 
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In order to know what the typical parameters of these possible
etections will be, we show in Fig. 11 the distribution functions 
 

4 P = d 4 �/ ̇� (d 4 P = d 4 Ṅ / Ṅ ) marginalized on to the different
ele v ant parameters ( M •, β, m � , z) for the global (gravitationally
bserved) population of TDEs. 
We begin with the global populations of TDEs (black dashed lines

n Fig. 11 , obtained with �), that is the intrinsic distribution of TDEs
or our model that may or may not be observed with electromagnetic
r gravitational waves. 
The distribution with the BH mass (upper left) decreases by ∼

 dex in the range 10 4 − 10 6 M �, which reflects the fact that both the
H mass function (see Fig. C1 ) and the TDE rate at fixed BH mass

see Fig. 8 ) decrease by ∼ 1 dex . The distribution with the penetration
actor (upper right) peaks at β ∼ 1, then scales as 1/ β2 on a wide
MNRAS 510, 2025–2040 (2022) 
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ange of values, and finally smoothly decreases to reach 0 at β =
max . This is in agreement with previous results (Stone & Metzger
016 ; Kochanek 2016a ), suggesting a combination of δ-dirac and
/ β2 distributions, respectively, in the empty and full loss cone, but
e find here an exact continuous distribution, which will be detailed
ore in depth in Wong, Pfister & Dai 2021 . The distribution with

he stellar mass (lower left) is similar to that of the underlying stellar
ass function chosen, which reflects that stars diffuse similarly as

if fusion coef ficients are independent of the stellar mass. Finally, the
istribution with (the log of) redshift (lower right) scales as z 3 , which
eflects that equation (46) scales as ∂ z � ∝ z 2 . In summary, this
nalysis shows that, albeit inexact, it is reasonable to o v erall write
he global differential rate as: 

d 4 � 

d z d M • d m � d β
∼ �( M •) 

(1 + z) 
× βmax 

β2 ( βmax − 1) 
× φ × � •

× 4 πc 
χ2 ( z) 

H ( z) 
. (49) 

o our knowledge, this is the first time such a demonstration is
btained, although similar forms of this equation have been used in
revious works (e.g. Kochanek 2016b ; Toscani et al. 2020 ). When
xpressed as this, it clearly appears that if we know the distribution
f TDEs, then we have a viable way to probe the BH mass function,
he stellar mass function, or even cosmological parameters through
he H and χ dependency. 

Ho we ver, we do not have direct access to the distribution of TDEs
ut to the distribution of gravitationally observed TDEs. This is
hy we now mo v e the population of TDEs observed with different
etectors (solid lines in Fig. 11 , obtained with Ṅ ). We recall that we
ay not even observe TDEs with LISA or TianQin ( S / N lim 

= 5 in
his case) such that these distributions really makes sense for future-
eneration detectors. None the less, they can be useful to obtain the
ost probable events, in the situation in which, by chance, we have
 detection with LISA or TianQin. 

The distribution with the BH mass (upper left) differs greatly from
he one of the intrinsic populations. This reflects that, as discussed in
ection 2.1.2, detectors are particularly sensible to BHs for which the
eplerian frequency around the critical radius for direct plunge ( κ ×
 Sch ) is the same as the optimal frequency of the detector : similar to
ig. 3 (right), the peak is at M •, opt (see Table 1 ). The distribution with

he penetration factor (upper right) typically exhibits a peak at β �
0, e.g. β ∼ 20 for LISA and β ∼ 250 for Decigo. This reflects
hat, for an average population of stars, say with 〈 m � 〉 ∼ 1 M �,
ypically disrupted around BHs with mass M • ∼ M •, opt , detectors
re particularly sensible to events with β ∼ βmax [equation (4)]: that
s, β ∼ 15 for LISA, and β ∼ 250 for Decigo. The distribution with
he stellar mass (lower left) is rather difficult to interpret as, on the one
and, low mass stars are more numerous but, on the other hand, high-
ass stars can be detected to higher redshift [equation (12)] and can

e disrupted across the entire BH mass range ( βmax scales positively
ith m � ). In the end, the distribution for most sensitive detectors,
hich will be able to detect most TDEs (Bbo and Decigo), is similar

o that of the underlying stellar mass function, while the distribution
or less-sensitive detectors (LISA, TianQin and Alia) is skewed
owards high-mass stars. Finally, the distribution with redshift (lower
ight), similarly to that of the global rate, scales as z 3 at ‘low’
edshift; subsequent evolution is a competition between volume,
hich makes events more and more numerous, and distance, which
akes them less and less detectable; it results in gradual flattening

f the distribution where it reaches its maximum ( z ∼ few 10 −3 for
ISA and z ∼ few 10 −1 for Decigo) and then decreases. This reflects
NRAS 510, 2025–2040 (2022) 
hat most detected TDEs will be of stars with a mass m �, opt (10 M �for
ISA and 1 M �for Decigo) around M •, opt BHs at z max (Fig. 3 ) for
olume effects, which yields ∼ few 10 −3 for LISA and ∼ few 10 −1 

or Decigo. 
In summary, we will unlikely detect TDEs with gravitational

aves during the LISA and TianQin missions, but next-generation
etectors will observe hundreds to tens of thousands of events per
ear. We also derive a complete β-distribution encompassing, but
onsistent with, both the full and empty loss cone regimes (black
ashed line in the upper right-hand panel of Fig. 11 ). Finally,
e show how the underlying and the observed distributions of
DEs are affected by the different detectors, allowing to predict

he properties of the most probable observed events. For LISA,
lthough detections are unlikely, most probable TDE detection
ill be disruptions of ∼ 10 M � stars on β ∼ 20 orbits around

n ∼ 5 × 10 5 M � BHs at z ∼ 0.005. For Decigo, most probable
DE detection will be disruptions of ∼ 1 M � stars on β ∼ 200
rbits around an ∼ 10 4 M � BHs at z ∼ 0.5. This results in a G
agnitude of 15 and 29, or X-ray flux of 10 −11 erg cm 

−2 s −1 and
0 −16 erg cm 

−2 s −1 , respectively. As a consequence, these TDEs
bserved with gravitational waves will also be observed by facilities
n the electromagnetic spectrum-like Lynx (The Lynx Team 2018 ),
thena (Nandra et al. 2013 ), or the LSST (Ivezi ́c et al. 2019 ). The

nformation encoded in the gravitational wave signal ( M •, β, m � ,
 but also information on the internal structure of the star, or the
pin of the BH, see Stone et al. 2019 ) combined with those of
he electromagnetic signal (which are already used to understand
DEs, e.g. Mockler et al. 2019 ) will open the multimessenger era

or TDEs and unveil new physics currently not well constrained (e.g.
oth et al. 2020b ; Bonnerot & Stone 2021 ; Dai, Lodato & Cheng
021 ). 
In this section, we focused on the detection rate of several detectors

ssuming one fiducial model. In the following section, we focus
n the case of LISA (in construction detector) and Decigo (next-
eneration detector) and discuss different models. 

.2 The need for detector impro v ement 

he different models explored in this paper differ by the BH mass
unction and the maximum stellar mass in the Kroupa stellar mass
unction (see Section 3.3). We show in Fig. 12 the observable rate
f TDEs as a function of m �, max , for the two BH mass functions
colours), for two S / N lim 

(line style), and for LISA (left) and Decigo
right). 

In all cases, we note that there is still a strong dependency with
ur ability to detect events from the noise. 
The case of LISA (left) is interesting because, if we are able

o detect events with S / N lim 

= 1, there exists a set of models for
hich there will be up to few detections per year. This means

hat (non) observations will fa v our (rule out) these models. To
e more precise, if we observe TDEs with LISA, this implies
hat typical stellar population around BHs is rather young with
 �, max � 60 M �, independently of the BH mass function, and vice

ersa. 
This information can then be used to better interpret the future ob-

ervations of Decigo (right). Choosing again the example of S / N lim 

=
, if, for instance, ∼10 4 ev ents are yearly observ ed, one cannot know
f the underlying population is � •, 1 with m �, max ∼ 20 M � or � •, 2 
ith m �, max ∼ 100 M �, but previous (non) observations with LISA

an help in disentangling the two scenarios. 
In summary, apart from the optimistic case m �, max ∼ 100 M �, it

s quite unlikely that LISA will observe any TDEs during its 4-
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r mission. Ho we ver, (non) observ ations will already constrain the
ypical stellar age around BHs and will be useful to better understand
uture observations. 

 C O N C L U S I O N S  

e determine the rates of possible observations of TDEs with 
uture gra vitational wa ve spacecrafts as well as their possible
lectromagnetic counterpart. To this purpose, we develop a simple 
emi-analytical model combining standard gravitational wave and 
lectromagnetic results (Section 2) and rates estimates (Section 3). 
e summarize our findings below: 

(i) LISA could detect gravitational waves from extreme TDEs 
 m � ∼ 100 M � on an orbit that skims the Schwarzschild radius of a
0 6 M � BH) up to z max ∼ 0.1 (see Fig. 3 ). We provide an analytical
xpression for z max [equation (12)]. 

(ii) Under the assumptions that all TDEs produce prompt and 
uminous optical or X-ray emissions, then all these LISA grav- 
tational detections should be detectable electromagnetically (see 
igs 4 and 5 ). 
(iii) The TDE rate of a monochromatic stellar population is about 

 times lower than that of a Kroupa stellar population (Fig. 8 ). Since
e remo v e ev ents for which the star is swallowed whole (assuming a
chwarzschild BH), we find a smooth decay of the TDE rate with M •
tarting at ∼ 10 7 M � BH where ∼ 0 . 1 M � stars are being swallowed
nd finishing at � 10 8 M � where > 1 M � stars are being swallowed
see Fig. 6 ). 

(iv) This enhancement is in broad agreement with previous ana- 
ytical results (Fig. 7 ), although we derive in this paper more detailed
ates, in particular, regarding the dependency with the penetration 
actor β. 

(v) The TDE rate o v erall decreases with the stellar mass and the
enetration factor, but its complex variations are depicted in Fig. 9 
nd will be discussed in more details in Wong et al. 2021 . 

(vi) LISA should not detect any TDEs (Fig. 10 ), unless BHs are
ypically embedded by a young stellar population with m �, max � 

0 M � which, in this situation, could lead up to few 10 events
uring the duration of the mission (Fig. 12 ). As such, the number of
non) detections will reveal the typical age surrounding BHs, with 
non) detections if BHs are typically embedded in a young (old)
tellar population. 

(vii) The following generation of detectors (Alia, Bbo, and De- 
igo) will be more sensitive and will be able to yearly detect
housands to millions of events (Fig. 10 ) at cosmological redshift
Fig. 3 ), allowing to probe the BH mass function (Fig. 12 ). 

(viii) For each detectors and models, we obtain the distribution 
f parameters (Fig. 11 ). The most probable BH mass corresponds
o BHs for which the Keplerian frequency around the critical radius
or direct plunge ( κ × r Sch ) is the same as the optimal frequency of
he detector (see Table 1 ). Assuming this most probable BH mass
nd some typical m � ∼ 1 M �, the most probable penetration factor
orresponds to the maximum possible value [equation (4)], and the 
ost probable redshift corresponds to the maximum redshift for the 

etector [equation (12)]. 

In order to end up with a finite paper, several assumptions have
een made (Kroupa stellar mass function, one single choice of the 
 • − σ relation, non-spinning BHs etc.), which may affect the exact 

ates obtained in this paper. As such, these predictions should be 
egarded as guidelines. It would be interesting to investigate in depth 
he detailed effects of other parameters in future studies. 
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Figure A1. Sensitivity curve as a function of frequency for several gravi- 
tational wave detectors (colours) as well as the fit (black dashed lines) with 
equation (A1). 
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Table A1. Best-fitting parameters of the strain of the different detectors with 
equation (A1). 

Detector f opt h opt a b c 
Hz 10 −21 

LISA 6 × 10 −3 0.2 1.8 1.5 1.7 
Tianqin 0.02 7 2.0 1.4 0.8 
Alia 0.08 0.02 2.5 2.3 0.6 
Bbo 0.3 0.01 1.6 1.2 2.0 
Decigo 0.4 0.04 1.6 0.7 3.3 
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7 There is actually a small dependency through the Coulomb logarithm factor 
ln � , but this dependency is logarithmic and usually neglected. 
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nd f � f opt . The fitting parameters can be found in Table A1 with
he resulting curve shown with dashed black lines in Fig. A1 . 

PPEN D IX  B:  F O K K E R – P L A N C K  EQUATION  

ITH  A  STELLAR  POPULATION  

n this appendix, we show how we can use the formalism developed
or monochromatic stellar population to study a more complex 
opulation of stars. It is mostly a summary and combination of the
orks of Magorrian & Tremaine ( 1999 ) and Strubbe ( 2011 ). 

1 Diffusion coefficients 

f the medium is homogeneous such that the stellar mass function ( φ)
s independent of position and time, then we may write the density
unction f � as: 

 � ( r , v , m � )d r d v d m � = f ( r , v )d r d v × φ( m � )d m � . (B1) 

Following Section 8.3 from Binney & Tremaine ( 1987 ), assuming
he background follow the density f ( r , v ), we define ψ( w , � w , m � ,
 scat )d 6 � w d t as the probability that a star of mass m � is scattered

rom w to w + � w ( w = ( r , v )) by a background star of mass
 scat during a transition time d t . Since the background is made of
 population of star with distribution φ, the probability that a star
f mass m � is scattered from w to w + � w ( w = ( r , v )) by the
ackground during d t is: 

 � ( w , � w , m � )d 
6 � w d t 

= d 6 � w d t 
∫ 

φ( m scat ) ψ( w , � w , m � , m scat )d m scat . (B2) 

This allows to classically write the evolution of f � as a Fokker–
lanck equation: 

d f � 
d t 

= −
3 ∑ 

i= 1 

∂ 

∂v i 
[ f � ( w , m � ) D � ( �v i , m � ) ] 

+ 

1 

2 

3 ∑ 

i,j= 1 

∂ 2 

∂ v i ∂ v j 

[
f � ( w , m � ) D � ( �v i �v j , m � ) 

]
, (B3) 

here we have defined the diffusion coefficient which, a priori, 
epends on m � : 

 � ( �v i , m � ) = 

∫ 
�v i ψ � ( w , � w , m � )d 

6 � w (B4) 

= 

∫ 
φ( m scat )d m scat 

×
[∫ 

�v i ψ( w , � w , m � , m scat )d 
6 � w 

]
(B5) 

= 

∫ 
φ( m scat ) D( �v i , m � , m scat )d m scat , (B6) 
nd D ( �v i , m � , m scat ) is the diffusion coefficient of test particle
f mass m � moving in a monochromatic population of star m scat 

ith density function f ( r , v ) (see §8.3 from Binney & Tremaine 
987 ). 
When written as this, equation (B3) shows that the evolution 

f a star with mass m � , 1 differs from the evolution of a star with
ass m � , 2 because their diffusion coefficients differ. This means 

hat to study the evolution of our system, one should study a set
f coupled equations, with one Fokker–Planck equation for each 
ass. 

2 The particular case of TDEs 

his set of coupled Fokker–Planck equations can be greatly sim- 
lified in the case of TDEs. After changing variables from w
o (minus the specific) energy ( E = −v 2 /2 + �( r ), � is the
otential) and R = J 2 /J 2 c ( E) ( J = | r ∧ v | is the angular momentum
nd J c ( E ) is the circular angular momentum at a given energy),
 Fokker–Planck equation for f � can still be written. Neglecting 
iffusion in E as it relaxes on a longer time-scale than R (Light-
an & Shapiro 1977 ; Cohn & Kulsrud 1978 ; Merritt 2013 ), this 

ields: 

d f � 
d t 

= 

∂ 

∂R 

[ 
−f � D � ( �R, m � ) (B7) 

+ 

1 

2 

∂ 

∂R 

[ f � D � (( �R) 2 , m � )] 
] 
. (B8) 

ere again, D � (., m � ) are the dif fusion coef ficients and a priori depend
n m � . 

The diffusion coefficient of interest can be computed (Lightman & 

hapiro 1977 ; Magorrian & Tremaine 1999 ; Bar-Or & Alexander
016 ; Stone & Metzger 2016): 

 � ( �R, m � ) = 

r 2 D � (( �v ⊥ 

) 2 , m � ) 

J 2 c 

(B9) 

 � (( �R) 2 , m � ) = 2 R D � ( �R , m � ) , (B10) 

here D � (( �v ⊥ 

) 2 , m � ) is the dif fusion coef ficient in ( �v ⊥ 

) 2 , corre-
ponding to the orthogonal component of the variation of the velocity. 
sing equation (B6) and that D (( �v ⊥ 

) 2 , m � , m scat ) is [equation (8
-22) of Binney & Tremaine 1987 ]: 

(( �v ⊥ 

) 2 , m � , m scat ) = 

32 π2 G 

2 m 

2 
scat ln � 

3 v 

×
(∫ v 

0 

(
3 ̃  v 2 − ˜ v 4 

v 2 

)
f ( r , ̃  v )d ̃  v 

+ 2 v 
∫ ∞ 

v 

˜ v f ( r , ̃  v )d ̃  v 

)
, (B11) 

e have the remarkable result that D � (( �v ⊥ 

) 2 , m � ), hence D � ( � R ,
 � ) and D � (( � R ) 2 , m � ), which are the two dif fusion coef ficients of

nterest for us, are independent 7 of m � . This means that, under our
ssumptions, the evolution of a test particle is independent of its mass,
nd everything happens as if the particle was moving in a background
omposed by stars of mass 〈 m 

2 
� 〉 1 / 2 = 

(∫ 
m 

2 
scat φ( m scat )d m scat 

)1 / 2 
, that

s D � ( �R) = D( �R, m scat = 〈 m 

2 
� 〉 1 / 2 ) = μ (note that we have now

ropped the m � dependency). 
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All this allows to write a Fokker–Planck equation for f : 

d f 

d t 
= 

∂ 

∂R 

[ 
−f D � ( �R) (B12) 

+ 

1 

2 

∂ 

∂R 

[ f D � (( �R) 2 )] 
] 

(B13) 

= μ
∂ 

∂R 

(
R 

∂f 

∂R 

)
, (B14) 

here we recognize the starting point of estimates of TDE rates (e.g.
erritt 2013 ). 
In conclusion, for our purpose and under approximation, the

volution of a test mass in a medium composed by a stellar population
s the same as a test mass in a medium composed single type of stars
ith mass 〈 m 

2 
� 〉 1 / 2 . 

PPENDIX  C :  BH  MASS  F U N C T I O N  

e report in Fig. C1 the two BH mass functions used in this work.
his simple plot emphasizes our current poor knowledge about BH
opulation, even at low redshift. 
NRAS 510, 2025–2040 (2022) 
igure C1. The BH mass functions used in this work: � •, 1 , which results
rom the combination of Davidzon et al. ( 2017 ) and Reines & Volonteri
 2015 ), is shown at two different redshifts, and � •, 2 which is directly taken
rom Gallo & Sesana ( 2019 ). 
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