
Quantum and Classical Data Transmission through Completely Depolarizing Channels
in a Superposition of Cyclic Orders

Giulio Chiribella *

QICI Quantum Information and Computation Initiative, Department of Computer Science,
The University of Hong Kong, Pokfulam Road 999077, Hong Kong;

Department of Physics, The University of Hong Kong, Pokfulam Road 999077, Hong Kong;
Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom;

HKU-Oxford Joint Laboratory for Quantum Information and Computation;
Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada

Matt Wilson
Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD,

United Kingdom and HKU-Oxford Joint Laboratory for Quantum Information and Computation

H. F. Chau
Department of Physics, The University of Hong Kong, Pokfulam Road 999077, Hong Kong

(Received 6 August 2020; revised 20 July 2021; accepted 15 September 2021; published 5 November 2021)

Completely depolarizing channels are often regarded as the prototype of physical processes that are
useless for communication: any message that passes through them along a well-defined trajectory is
completely erased. When two such channels are used in a quantum superposition of two alternative orders,
they become able to transmit some amount of classical information, but still no quantum information can
pass through them. Here, we show that the ability to place N completely depolarizing channels in a
superposition of N alternative causal orders enables a high-fidelity heralded transmission of quantum
information with error vanishing as 1=N. This phenomenon highlights a fundamental difference with the
N ¼ 2 case, where completely depolarizing channels are unable to transmit quantum data, even when
placed in a superposition of causal orders. The ability to place quantum channels in a superposition of
orders also leads to an increase of the classical communication capacity with N, which we rigorously prove
by deriving an exact single-letter expression. Our results highlight the more complex patterns of
correlations arising from multiple causal orders, which are similar to the more complex patterns of
entanglement arising in multipartite quantum systems.
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Introduction.—Shannon’s information theory was ini-
tially developed under the assumption that the information
carriers were classical systems [1]. At the fundamental
level, however, physical systems obey the laws of quantum
mechanics, which enable radically new communication
protocols [2,3] and give rise to a variety of new commu-
nication capacities [4].
Traditionally, the extension of Shannon’s theory to the

quantum domain assumed that the configuration of the
communication devices was fixed. In principle, however,
quantum theory is compatible with scenarios where the
communication devices are arranged in a coherent super-
position of alternative configurations. For example, the
available devices could act in different orders, and the
choice of order could be controlled by the state of a
quantum system using a primitive known as the “quantum
switch” [5,6]. Similarly, the devices could be used as
alternatives to one another, and the choice of which device
is used for communication could be controlled by the state

of a quantum system, giving rise to a superposition of
alternative quantum evolutions [7–12].
The ability to superpose different configurations of

communication devices can be exploited to achieve advan-
tages over the standard model of quantum Shannon theory,
where the configuration of the channels is fixed. The
advantages of the superposition of orders have been shown
in Refs. [13–19], while the advantages of the superposition
of channels have been shown in Refs. [9–11]. At a
conceptual level, these advantages can be rigorously
formalized in a resource-theoretic framework, where the
resources are communication devices, and the allowed
operations on them include placement operations, which
determine the arrangement of the communication devices
in space and time [20]. Different advantages can then be
understood as the result of different ways to enlarge the set
of placement operations allowed by standard quantum
Shannon theory. At a more practical level, new commu-
nication protocols with superpositions of configurations
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have been experimentally realized [21–25]. The information-
theoretic advantages of the superposition of causal orders
have also inspired a new line of investigation in quantum
thermodynamics [26].
One of the most striking advantages of the superposition

of configurations is the ability to communicate through
channels that completely block information when used in a
definite configuration. The prototype of such channels is
the completely depolarizing channel, which outputs white
noise independently of its input. Strikingly, it was shown
that two completely depolarizing channels can be used
for transmitting classical information when arranged in a
superposition of two alternative orders [13]. On the other
hand, this phenomenon is limited to the transmission of
classical bits. In this Letter, we will show that when two
completely depolarizing channels are combined in the
quantum switch, the resulting channel cannot be used to
transmit quantum data.
While the communication advantages of the quantum

switch of two channels are well known, much less is known
about the advantages of the quantum switch of multiple
channels. Recent works [16,17] considered the amount of
classical bits transmitted through N completely depolariz-
ing channels, showing an increase of the Holevo informa-
tion [27]. However, the Holevo information is only a lower
bound to the actual capacity [28,29], and an increase in the
Holevo information does not necessarily imply an increase
in the capacity. Moreover, the increase in the capacity,
while technically interesting, would only be a quantitative
improvement in a task that can already be accomplished
with N ¼ 2 channels. A natural question is whether there
exists some communication task that cannot be achieved at
all by superposing the order of two channels but instead
becomes possible when multiple channels are used.
Here, we answer the question in the affirmative, provid-

ing a concrete example of a communication task that can
only achieved when N > 2 causal orders are superposed.
We considerN completely depolarizing channels combined
in a superposition of N causal orders related to each other
by cyclic permutations. We show that a high-fidelity
heralded transmission of quantum bits can be achieved
with error vanishing as 1=N. Our finding is in stark contrast
to the impossibility of quantum data transmission through
N ¼ 2 completely depolarizing channels and highlights a
genuinely new feature arising from N > 2 channels in
alternative causal orders. The high-fidelity heralded trans-
mission of quantum data is also potentially relevant for the
task of entanglement distribution in quantum networks [30]
and for the task of private classical communication [31,32].
In addition to establishing the possibility of heralded

quantum communication, we analytically determine the
classical communication capacity of N completely depola-
rizing channels in a superposition of N causal orders, and
we demonstrate that the capacity increases monotonically
with N. To this purpose, we establish a connection between

the quantum switch of completely depolarizing channels
and the universal quantum NOT gate [33–36]. We then use
this connection to prove a single-letter formula for the
classical capacity. Our result demonstrates that increasing
the number of “useless” channels leads to an increase in the
number of bits that can be reliably transmitted. To the best
of our knowledge, this is the first rigorous demonstration of
a task where the benefit of the superposition of causal
orders grows monotonically with the number of configu-
rations that are superposed.
Communication devices in a quantum superposition of

alternative orders.—A communication device transmitting
a quantum system is described by a quantum channel, that
is, a completely positive trace preserving linear map C
transforming linear operators on the system’s Hilbert space
H. Any such map can be written in the Kraus representation
CðρÞ ¼ P

i CiρC
†
i , where the Kraus operators fCig sat-

isfy
P

i C
†
i Ci ¼ I.

Here, we consider the application of N channels in a
coherent superposition of different alternative orders. The
superposition of orders is constructed using the quantum
switch [5,6], a higher-order operation that transforms two
quantum channels into a new quantum channel in which the
two input channels are executed in one of two alternative
orders depending on the state of control qubit, called the
“order qubit.” Here, we adopt the original definition of the
quantum switch [5], where the two channels act in two
subsequent time steps, possibly allowing for intermediate
operations. Mathematically, the quantum switch transforms
two input quantum channels Cð1Þ and Cð2Þ into the output
channel

S½Cð1Þ; Cð2Þ�ð·Þ ¼
X

j1;j2

Wj1j2 ·W
†
j1j2

; ð1Þ

whose Kraus operators Wij are defined as

Wij ≔ j0ih0j ⊗ Cð1Þ
j1

⊗ Cð2Þ
j2

þ j1ih1j ⊗ Cð2Þ
j2

⊗ Cð1Þ
j1
; ð2Þ

where the three systems in the tensor product on the right-
hand side are the order qubit, the input system in the first
time step, and the input system in the second time step.

Here, fCð1Þ
j1
g and fCð2Þ

j2
g are Kraus operators for channels

Cð1Þ and Cð2Þ, respectively. Note that, while the individual
Kraus operators Wij depend on the choice of Kraus
representation for Cð1Þ and Cð2Þ, the overall quantum
channel S½Cð1Þ; Cð2Þ� depends only on the channels Cð1Þ

and Cð2Þ themselves, making the quantum switch a well-
defined operation on quantum channels [6,37].
It is worth stressing that, while the order of the two

processes Cð1Þ and Cð2Þ inside the quantum switch is
indefinite, the channel S½Cð1Þ; Cð2Þ� produced by the quan-
tum switch has a well-defined causal structure: the input of
the first time slot is provided first, followed by the output of
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the first time slot, the input of the second time slot, and,
finally, the output of the second time slot. Accordingly, a
communication protocol using the channel S½Cð1Þ; Cð2Þ� will
have a well-defined causal structure: first, the sender inputs
a state in the first time slot, then the first time slot is
connected to the second with some intermediate operation,
and finally the receiver collects the output of the second
time slot.
When N > 2 channels are available, the quantum switch

operation [Eq. (1)] can be applied to each pair of channels,
thus generating all possible permutations of their orders
[38]. In a resource theory of communication, the quantum
switch can be viewed as an operation performed by a
communication provider that places the available commu-
nication devices between the sender and receiver [20].
Here, we consider a placement of the N devices in a
network with N − 1 intermediate nodes, as illustrated in
Fig. 1. Again, note that the causal structure of the process
generated by the quantum switch is well-defined, even
though the N channels inside the quantum switch act in an
indefinite order. As a consequence, the causal structure of
the communication protocol in the network of Fig. 1 is
well-defined: first, the sender inputs the state in the first
node, then the first intermediate party receives the output at
the second node and sends it to the third node, and so on
until, finally, the receiver receives the output at the
last node.
We will assume that the order qubits are inaccessible to

the sender and are initialized by the communication
provider in a fixed state before the beginning of the
communication protocol. Also, we will take the intermedi-
ate nodes in Fig. 1 to contain identity operations, so that
the effective channel available to the sender and receiver
becomes

CeffðρÞ ¼
X

π;π0∈S

ωπ;π0 jπihπ0j ⊗ Cππ0 ðρÞ; ð3Þ

where S is a set of permutations, ω is the state of the order
qubits (with matrix elements ωπ;π0 and support in a sub-
space spanned by an orthonormal basis fjπigπ∈S labeled by
permutations in S), and

Cππ0 ðρÞ ≔
X

j1;…;jN

Cπð1Þ���πðNÞ
jπð1Þ;…jπðNÞρC

π0ð1Þ���π0ðNÞ†
jπ0ð1Þ;…jπ0ðNÞ

ð4Þ

with the notation Ci1���iN
ji1…jiN

≔ Cði1Þ
ji1

� � �CðiNÞ
jiN

, where fCðiÞ
ji
g

are Kraus operators for channel CðiÞ.
Heralded quantum communication through completely

depolarizing channels.—When the configuration of the
channels is fixed, the completely depolarizing channel
Dð·Þ ≔ I=dTr½·� is the prototype of a useless channel: since
its output is independent of the input, this channel does not
permit the transmission of any data, be it classical or
quantum.
Now, suppose that N completely depolarizing channels

are combined by the quantum switch, generating the
effective channel Ceff in Eq. (3). In the following, we will
take S to be the set of cyclic permutations π, mapping the
index a into the index πðaÞ ¼ ðaþ kÞ mod N for some
given k ∈ f0;…; N − 1g, and we will set ω ¼ je0ihe0j,
with je0i ¼

P
π jπi=

ffiffiffiffi
N

p
.

A convenient Kraus representation of the completely
depolarizing channel is a uniform mixture of an orthogonal
unitary basis fUigd2i¼1, namely DðρÞ ¼ P

d2
i¼1UiρU

†
i =d

2,
where d is the dimension of the system and Tr½U†

i Uj� ¼
dδi;j. Using this representation, we derive the relations

CππðρÞ ¼
I
d

and Cππ0 ðρÞ ¼
ρ

d2
∀ π ≠ π0 ð5Þ

(see the Supplemental Material [39]). Inserting these
relations into Eq. (3) yields the expression

CeffðρÞ ¼
I
N

⊗
I
d
þ
X

π≠π0
jπihπ0j ⊗ ρ

Nd2

¼ I
N

⊗
I
d
þ ðNje0ihe0j − IÞ ⊗ ρ

Nd2
; ð6Þ

the second equality following from the relations
Nje0ihe0j¼

P
π;π0 jπihπ0j and I ¼ P

π jπihπj. Rearranging
the terms in Eq. (6), we rewrite the effective channel as

CeffðρÞ ¼ ð1 − pÞρ0 ⊗ E0ðρÞ þ pρ1 ⊗ E1ðρÞ; ð7Þ

where ρ0 ≔ je0ihe0j and ρ1 ≔ ðI − je0ihe0jÞ=ðN − 1Þ are
orthogonal states of the control system, E0 and E1 are the
quantum channels defined by

FIG. 1. Communication through N channels in a superposition
of N cyclic orders. A sender, located at node 1 of a quantum
communication network, sends messages to a receiver, located at
node N þ 1, through a sequence of intermediate nodes, labeled as
2;…; N. The intermediate nodes are connected by N quantum
channels Cð1Þ;…; CðNÞ, which have been placed in one of N
configurations related by cyclic permutations, as shown in the
graphic. The choice of configuration is controlled by a quantum
system in a coherent superposition.
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E0ðρÞ ≔
N − 1

N − 1þ d2
ρþ d2

N − 1þ d2
I
d
; ð8Þ

and

E1ðρÞ ≔
d2

d2 − 1

I
d
−

1

d2 − 1
ρ; ð9Þ

respectively, and p ≔ ðN − 1Þðd2 − 1Þ=ðNd2Þ. Two alter-
native ways to generate the channel Ceff from depolarizing
channels in a superposition cyclic orders are discussed in
the Supplemental Material [39].
Equation (7) shows that the effective channel Ceff is a

mixture of two channels E0 and E1, flagged by two
orthogonal states of the order qubits. By measuring the
order qubits, it is then possible to herald the occurrence of
the channels E0 and E1.
The channel E1 is independent of N. For d ¼ 2, it is the

universal NOT channel introduced by Bužek, Hillery, and
Werner [33] and experimentally realized in a series of
works [33–36]. The universal NOT gate is known to be an
entanglement-breaking channel [40], or equivalently, a
“measure-and-reprepare” channel, which can be realized
by measuring the input and preparing an output state
depending on the measurement outcome [63]. Since
entanglement-breaking channels have zero quantum capac-
ity [41], no quantum information can be transmitted
through the channel E1. For d > 2, the channel E1 is a
generalization of the universal NOT and can be charac-
terized as the channel that minimizes the fidelity between a
generic input state jψi and the corresponding output state
E1ðjψihψ jÞ. In the Supplemental Material [39], we show
that E1 is entanglement-breaking and therefore unable to
transmit any quantum data.
The channel E0, instead, is a depolarizing channel, with

probability of depolarization equal to d2=ðN þ d2 − 1Þ.
Remarkably, this probability vanishes as d2=N in the large
N limit, enabling a perfect transmission of quantum data. It
is also remarkable that the probability of high-fidelity
transmission does not vanish in the large N limit: such a
probability remains larger than 1=d2 for every value of N.
For qubits, this means that the state of the target system has
a probability of at least 25% of reaching the receiver with
an error smaller than 4=N.
The heralded high-fidelity transmission of quantum

information could be exploited for the distribution of
entanglement in quantum networks [30], which in turn
serves as a primitive for distributed quantum computation
[64]. Our results could also be useful for cryptographic
purposes such as private classical communication [31,32]
or the generation of secret keys via the BB84 [2] or E91
protocols [3]. A discussion of these applications is provided
in the Supplemental Material [39].
For finite N, it is possible to show that channel E0 has a

nonzero quantum capacity for all values of N larger than a

given finite value N0 > 2. For example, for d ¼ 2 and
N > 13, it is possible to show that the probability of
depolarization is less than 1=4, which guarantees that the
depolarizing channel E0 has a nonzero quantum capacity
[4]. In turn, the nonzero quantum capacity of channel E0

ensures that the overall channel Ceff has a nonzero quantum
capacity assisted by two-way classical communication
[42], as shown in the Supplemental Material [39]. In the
Supplemental Material we also show that quantum data
transmission with the assistance of two-way classical
communication is possible through the quantum switch
of N cyclic permutations if and only if N ≥ dþ 2.
The possibility of quantum information transmission is a

fundamental difference between the bipartite and the
multipartite quantum switch in a way that is somewhat
reminiscent of the difference between bipartite and multi-
partite entanglement. For N ¼ 2, we prove that no super-
position of causal orders permits the transmission of
quantum bits through completely depolarizing channels
under the natural assumption that the sender does not
use the control system to establish entanglement with the
receiver (see the Supplemental Material [39] for the
details).
All the results presented so far concerned the super-

position of completely depolarizing channels. A natural
question is whether any of our conclusions would change if
we were to consider partially depolarizing channels. In
particular, one could ask whether the quantum switch could
enable the transmission of quantum information using
N ¼ 2 partially depolarizing channels that individually
have zero quantum capacity. In the Supplemental
Material, we answer the question in the negative, showing
that the quantum capacity of each depolarizing channel is
a bottleneck for the amount of quantum information one
can send through the quantum switch. An interesting open
question is whether the use of partially depolarizing
channels could reduce the number of channels needed to
achieve quantum data transmission starting from channels
with zero capacity. More broadly, the study of quantum
communication with partially depolarizing channels in an
indefinite causal order remains an interesting problem for
future research.
Enhanced transmission of classical information.—We now

quantify the amount of classical bits transmittable through
N depolarizing channels in a superposition of N alter-
native orders. By the Holevo-Schumacher-Westmoreland
theorem [28,29], the classical capacity of a generic
noisy channel N is given by CðN Þ¼limn→∞χðN⊗nÞ=n,
where χ is the Holevo information [27], defined as χðN Þ ¼
maxðρx;pxÞx∈XS½

P
x pxN ðρxÞ� −

P
x pxS½CðρxÞ�, ðρx; pxÞ∈X

being an arbitrary ensemble of quantum states, and SðρÞ ¼
−Tr½ρ log ρ� being the von Neumann entropy. In the
Supplemental Material [39], we prove that the Holevo
information of the effective channel Ceff is additive, and
therefore the classical capacity has the single-letter formula
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CðCeffÞ ¼ χðCeffÞ, for which we provide an exact
expression.
The classical capacity is plotted in Fig. 2 for different

values of N and d. The capacity increases monotonically
with N, rigorously demonstrating the benefit of increasing
the number of alternative orders. In the Supplemental
Material [39], we provide an asymptotic expression for
the capacity in the large N limit, showing that it decreases
with d, tending to zero for d → ∞. For N ¼ 2, the decrease
with d was observed for the Holevo information [13],
although it was not known whether the actual channel
capacity was also decreasing.
Conclusions.—We demonstrated a communication ad-

vantage of the superposition of multiple causal orders by
showing a communication task that cannot be achieved
by superposing two orders but becomes possible when
the number of orders is sufficiently large. Specifically, we
demonstrated that the placement of N completely depola-
rizing channels in a superposition of N cyclic orders
enables a high-fidelity heralded transmission of quantum
information with error vanishing as 1=N. For finite N, we
found that a nonzero quantum capacity assisted by two-way
classical communication can be achieved with N qubit
depolarizing channels whenever N ≥ 4.
The possibility of quantum data transmission through

completely depolarizing channels highlights a fundamental
difference with the N ¼ 2 scenario, where no quantum
information can pass through completely depolarizing chan-
nels. A recent experiment [65] on the superposition ofN ¼ 4
channels suggests that an experimental demonstration of
nonzero quantum capacity assisted by two-way classical
communication could be achieved in the near future. Most
importantly, our results motivate an investigation of the
operational features of the different types of quantum super-
positions arisingwhenmultiple causal orders are superposed.
It is intriguing to imagine that the distinction between the

superposition of two and multiple causal orders could
mirror the distinction between bipartite and multipartite
entanglement, whose study has led to the discovery of a
wealth of new quantum information protocols. In this

respect, our result indicates that the superposition of
multiple causal orders is a genuinely new resource that
is not reducible to the superposition ofN ¼ 2 causal orders,
just as genuine multipartite entanglement is not reducible
to bipartite entanglement. We hope that our work will
stimulate future explorations of the analogy between
superpositions of causal orders and multipartite entangle-
ment, thereby leading to a deeper understanding of the
interplay between causality and quantum physics.
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