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ABSTRACT

The public specialty ophthalmic clinics in Hong
Kong, under the Hospital Authority, receive
tens of thousands of referrals each year. Triaging
these referrals incurs a significant workload for
practitioners and the other clinical duties. It is
well-established that Hong Kong is currently
facing a shortage of healthcare workers. Thus a
more efficient system in triaging will not only
free up resources for better use but also improve
the satisfaction of both practitioners and
patients. Machine learning (ML) has been
shown to improve the efficiency of various

medical workflows, including triaging, by both
reducing the workload and increasing accuracy
in some cases. Despite a myriad of studies on
medical artificial intelligence, there is no
specific framework for a triaging algorithm in
ophthalmology clinics. This study proposes a
general framework for developing, deploying
and evaluating an ML-based triaging algorithm
in a clinical setting. Through literature review,
this study identifies good practices in various
facets of developing such a network and proto-
cols for maintenance and evaluation of the
impact concerning clinical utility and external
validity out of the laboratory. We hope this
framework, albeit not exhaustive, can act as a
foundation to accelerate future pilot studies and
deployments.
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Key Summary Points

The public specialty ophthalmic clinics in
Hong Kong, under the Hospital Authority,
receive tens of thousands of referrals each
year. Triaging these referrals incurs a
significant workload for practitioners and
the other clinical duties.

Machine learning (ML) has been shown to
improve the efficiency of various medical
workflow, including triaging, by both
reducing the workload and increasing
accuracy in some cases.

This study proposes a general framework
for developing, deploying and evaluating
a machine learning-based triaging
algorithm in a clinical setting.

We hope this framework, albeit not
exhaustive, can act as a foundation to
accelerate future pilot studies and
deployments.

INTRODUCTION

Timely and accurate triaging to ophthalmology
specialist outpatient clinics (SOPC) is vital in
holistic patient care and an efficient public
health system. Currently, outpatient referrals
from primary care are sorted into one of three
categories by healthcare professionals in Hong
Kong: urgent, semi-urgent, and stable cases.
Unfortunately, the size of workforce in Hong
Kong SOPC is generally not adequate for the
great demand from the public [33]. For instance,
the median waiting time for stable cases at
Kowloon Central Cluster is 64 weeks, and the
longest waiting time is up to 148 weeks [17].
With such a huge workload, the triaging process
can become very time-consuming, and work-
place burnout and oversight can increase [18].

Furthermore, with limited resources for
ophthalmology clinic appointments, the more
accurate a triage system is, the more patients

with potentially correctable sight-threatening
pathology can be attended to for timely and
effective intervention. A study in England
reported that a median delay in care of 22 weeks
resulted in permanently reduced visual acuity
(VA) in 72% of patients and deterioration in the
visual field (VF) in 23% of patients [13]. These
show the urgent public health need for novel
and efficient solutions to improve the waiting
time and accuracy of triage systems. Teleoph-
thalmology models of care have been deployed
in England and Singapore and shown to enable
more targeted referrals from primary care to
specialists [4, 27]. However, infrastructure and
human resources are still significant constraints.

For years researchers have been exploring the
possibility of using artificial intelligence (AI) as
a decision support system for medical triage
[32]. The use of intelligent systems can poten-
tially alleviate the aforementioned human
resources constraints in processing referrals.
With the advancement in AI and its related
technologies, more and more departments
worldwide are starting to evaluate and even
adopt AI in their triaging workflow to increase
the accuracy and decrease the workload of the
clinical staff. For instance, the audiology
department at Mayo Clinic in Florida, USA
deployed a triage AI algorithm at their clinic.
The algorithm was evaluated on three metrics:
the algorithm’s accuracy, savings to clinicians’
time as compared to manual triaging, and the
average number of appointments saved. They
found an approximately 20% drop in dizziness
referrals to otolaryngology and led the clinic to
find significant over-referrals of dizziness to
otolaryngology [10]. Other examples include
dermatology, emergency departments and
COVID-19 triage. In dermatology, a meta-anal-
ysis [46] found that the accuracy of computer-
aided diagnosis for melanoma detection is
comparable to that of experts at a sensitivity of
0.74 and specificity of 0.84, but noted uncer-
tainties in real-world applicability owing to
overfitting and uncorrected bias in some of the
studies. In emergency departments, a systemic
review found an improvement in the health
professionals’ decision-making, thereby leading
to better clinical management and patient out-
comes [25]. In COVID-19 triage, a hospital in
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Switzerland deployed a machine learning model
in predicting severe outcomes and achieved an
AUC of 0.94 in both retrospective and
prospective cohort studies [35].

Artificial intelligence is a vast field of study,
and machine learning (ML) is a subset of AI
which allows an algorithm to detect patterns
within data without explicit instructions. Deep
learning (DL) is a popular subset within ML
algorithms. Its popularity in recent years is due
to advancements in computation power and big
data, making these algorithms computationally
tractable even with a large amount of data. The
DL architecture most commonly used in the
medical imaging field includes convolutional
neural network (CNN), which is partly inspired
by the structure of our biological visual system.
Another widely used architecture is the trans-
former [45], commonly used in natural lan-
guage understanding (NLU)1 for biomedical
texts processing. A general understanding of all
these architectures helps in planning for a
framework as they confer different trade-offs,
e.g. accuracy, computation power needed,
explainability.2

Despite encouraging pilot studies, significant
difficulty exists between model development
and translation into clinical application and
outcome [39]. This article aims to propose a
production ML-based framework for triaging
referrals to ophthalmic outpatient clinics in
Hong Kong, with the end goal of reducing
triaging workload and improving patients’ well-
being. This paper will go through the data col-
lection process, architecture, deployment and
operational aspects of such a system and discuss
possible impacts and limitations. Lastly, we
hope this paper can provide useful insights to
bridge the gap between ML and clinical utility.

METHODOLOGY

The study involved searching relevant literature
in artificial intelligence in the biomedical field.
Google Scholar, PubMed and Microsoft Aca-
demic databases were explored in the search.
Keywords included ‘‘ophthalmology’’, [‘‘ma-
chine learning’’ OR ‘‘artificial intelligence’’ OR
‘‘deep learning’’], [‘‘triaging’’ OR ‘‘referrals’’] and
‘‘teleophthalmology’’. Only English language
journals were included. A review of the litera-
ture was performed to assess the architecture,
deployment and evaluation metrics. The clini-
cal impacts and limitations of the studies were
noted. Afterwards, a conceptual framework for
machine learning-aided triaging was developed
based on the current system in public specialty
ophthalmology clinics in Hong Kong. This
article is based on previously conducted studies
and does not contain any new studies with
human participants or animals performed by
any of the authors.

FRAMEWORK AND DISCUSSION

An end-to-end clinical framework for deploying
intelligent systems should include data collec-
tion and pre-processing protocols, data anno-
tation, system architecture, deployment
strategies and evaluation metrics. Our proposed
framework uses colour fundus photos (CFPs)
and referral synopses as the inputs since pilot
studies have shown their utility in triaging [41]
and grading important diseases, including dia-
betic retinopathy (DR) [14], age-related macular
degeneration (AMD) [5] and urgent cases such
as glaucoma [6]. Research in emergency
department triaging has also found that textual
data is significant for the accuracy of a triaging
ML network [31]. Other imaging studies such as
optical coherence tomography might be useful,
but generally not performed in the primary
sector, and therefore is not included. For pilot
studies, a portion of the referral can be pro-
cessed by the framework delineated in Figs. 1
and 2, and the results compared to the current
protocol via metrics including accuracy, con-
sultation time saved and waiting time reduced.

1 NLU focuses on the meaning and context of the texts,
while natural language processing (NLP) encompasses a
much wider gamut of tasks including speech recogni-
tion, part-of-speech tagging, structure extraction etc.
2 Explanability refers to the ability to explain or visu-
alise how a network arrives at the output.
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Fig. 1 Overview of the proposed framework
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Data Collection, Cohort Selection,
and Data Pre-processing

The first step for developing a machine learn-
ing-based system is to devise a protocol for
collecting data. In healthcare, the development
team should coordinate and ensure compliance
with the privacy law in the region—for Hong
Kong, it is the Personal Data (Privacy) Ordi-
nance. Data should undergo de-identification,
and patients’ permissions should be acquired.
Furthermore, utilising CFPs from other sources
such as APTOS [2], Messidor-2 [26], and Eye-
PACS [12] datasets for pre-training can reduce
training time and increase accuracy.

Data should undergo pre-processing. Pre-
processing may encompass many steps, includ-
ing data cleaning, standardisation, image or
text processing, and defining protocols for data
augmentation.

Data cleaning refers to removing poor qual-
ity data and thus reducing the possibility of
garbage in, garbage out (GIGO).3

Image processing includes techniques such
as noise removal filters, feature extraction filters
and colour manipulation. They have been
shown to visually emphasise important features
such as optic disc boundaries and blood vessels
[16]. However, whether these techniques
improve network detection rate significantly is
still unclear and will require further research.
Textual data processing includes tokenisation
and padding. Previous research [41] demon-
strated good accuracy with sub-word tokenisa-
tion and word-sequence-independent methods

(e.g. ANN, random forest), achieving an AUC of
0.83 and accuracy of 0.81 in categorising urgent
vs non-urgent ophthalmology referrals. With
these methods of pre-processing, the referral
texts do not have a defined structure and
therefore can contain any information. The
research identified word stems like ‘IOP’, ‘vi-
sion’ and ‘urgent’ being more significant, and
therefore it is likely this information is more
useful in categorisation. Huggingface [48] is an
open-source library for tokenisers and pre-
trained models in natural language processing
(NLP). For pilot studies, biomedical texts
tokenisers and pre-trained models from Hug-
gingface can be used for the foundation.

The data format should be standardised
before annotation and training. Since medical
data frequently contains missing data, imputa-
tions should also be performed.

Imbalance among different data sources (e.g.
different clinics, equipment) should be identi-
fied by performing exploratory data analysis
(EDA). Multiple factors, including patient
demographics, labels, image quality and out-
liers, should be thoroughly explored. Further-
more, note if the distribution of labels is
imbalanced across data sources. For instance, if
two data sources have a significant difference in
the ratio of positive to negative samples, the
algorithm might learn subtle differences (e.g.
lighting, artefacts) between the two data sources
instead of learning the features of the CFPs for
prediction. Moreover, positive and negative
samples should be inspected to look for any
feature leakage. For example, positive samples
acquired directly from centres might have
annotations made by optometrists or ophthal-
mologists on the CFPs.

Fig. 2 Development flow chart

3 GIGO refers to when a network is fed ‘‘garbage’’ data, it
will have poor predictive power.
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Data augmentations are techniques that can
increase the amount of data by adding modified
copies of the original data (e.g. rotation in
images, random deletion in texts) [36]. They
can act as regularisation and an approach to
unbalanced datasets.

Data Annotation

For passive annotation, the labels can be
acquired from past triaging records. Interna-
tional Classification of Diseases 10th Revision
(ICD-10) medical codes and interoperability
with the clinical management system (CMS)
can be leveraged for faster passive annotation.
Since all cases are digitalised and documented
with ICD-10 codes in Hong Kong Hospital
Authority, we can trace and extract the final
diagnosis and procedures done for each referral
case. The optimal referral category (urgent,
semi-urgent, stable) of the referrals can there-
fore be inferred by experts. For training data, we
can retrospectively retrieve past referral cases
and use the diagnoses and procedures for
annotations. For evaluation, we can trace the
final diagnosis and procedures done and derive
the optimal referral category.

However, if we wish to annotate CFPs sepa-
rately, we might require manual annotation.
Since medical data annotation requires domain
experts, we cannot use crowdsourcing services
like scale.ai or Amazon Mechanical Turk.
Researchers have proposed a crowdsourcing
framework for medical datasets and can serve as
a reference and guidelines in protecting
patients’ privacy [52].

Research has shown considerable grader
variability by medical professionals in the
analysis of CFPs and adjudication,4 instead of
taking a simple majority, is a better way to
annotate unlabelled data [22]. This nevertheless
incurs a heavier workload and might be hard to
adopt. For medical AI development, a common
bottleneck is the resource-intensive process of
medical image and data annotation. Therefore,
for confident samples, simple majority or

individual expert can be used while reserving
adjudication for ambiguous cases.

Model Architecture and Training

Amodel architecture is arrived at mainly by trial
and error. However, we can try to provide a
framework based on literature review. Before
implementing the architecture and training,
the dataset should be split into a development
set and test set. For the development set, cross-
validation, bootstrap, or hold-out validation
strategies can be used depending on the number
of samples and computation power of the pro-
ject [21, 50]. For grading of diabetic retinopa-
thy, previous studies have used both cross-
validation and hold-out validation to achieve
the state of the art (SOTA) results [43, 44].

Network architecture changes rapidly from
time to time in the field of artificial intelligence.
Networks used before in image classification
tasks include small networks like VGG16 [20] to
large networks like U-Net and Inception-v3 [44].
The current SOTA on image classification is
EfficientNet [42], whose pre-trained weights on
ImageNet [9] are publicly available. For NLU
tasks, networks in the literature on biomedical
texts span from convolutional neural networks
[41] to transformers (e.g. BERT and its variants)
[51].

Owing to the complexity of fundus photos
and referral synopsis, transfer learning and self-
supervised learning [40] can be considered
before the main training routine. Transfer
learning can reduce the training time and
increase the final accuracy [47], while self-su-
pervised learning is suitable for inadequate
annotated data or a large amount of data.

In transfer learning, we ‘‘transfer’’ the
weights of a previously trained network to our
network and substitute the last few layers to our
needs, followed by ‘‘fine-tuning’’ the network
with our data. Previous research has shown that
transfer learning greatly reduces time and
improves accuracy [20] in tasks similar to ours.
For instance, if we use EfficientNet, pre-trained
weights on ImageNet can be used as the foun-
dation, followed by pre-training on third-party
databases (e.g. APTOS), and finally fine-tuned4 Adjudication refers to a group of experts deliberating

together on sample annotation.
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on the data we acquired from our locality.
Ensembling5 can also be considered.

If we use both CFPs and referral synopsis as
the input to our network, our architecture will
need to combine these two inputs to generate
the final prediction. We can first obtain the
baseline by training two networks using only
CFPs or referral texts respectively. To combine
the two inputs, we can add a concat layer after
the respective pre-trained network. Afterwards,
we train the whole network. Past research has
shown that such a technique can improve the
performance of a network considerably [11, 37].
A possible network architecture is illustrated in
Fig. 3.

Before training, the loss function and rele-
vant metrics (e.g. AUC, weighted Cohen’s
kappa) should also be defined. Heavier weight-
ing to specific groups (e.g. urgent cases) can be
considered as they incur a significant public
health risk. Since the triage levels (i.e. stable,
semi-urgent, urgent) are ordinal, we can use a
linear unit for the final output. Alternatively,
we can have three logit outputs as the proba-
bility of the respective classes. If the threshold is
not met on all three outputs, the network
deems the case ungradable.

Model Deployment and Clinical
Evaluation

An AI system may perform well in the labora-
tory, but faces significant challenges in a clini-
cal environment or even fail to have any clinical
impact when deployed [15]. Google’s attempt at
using AI to screen for diabetic retinopathy in

Thai clinics [3] is an example of the immense
challenges faced when an algorithm is deployed
in the real world. For instance, blurry images
that are human-readable were rejected by the
system and caused frustration with nurses, and
poor internet connections cause delays in
screening at clinics. Therefore, a human-centred
approach and evaluation are needed when
deploying a medical AI system.

Logs should be kept and inspected for the
deployed system, e.g. percentage of images or
texts that are ungradable. A proper channel for
doctors’ and nurses’ feedback should be estab-
lished, and on-site surveys should be performed
from time to time. It is noted in previous
research that human and societal factors have as
much impact as the accuracy of the algorithm
on the clinical efficacy of the model. Therefore,
a successful clinical AI decision tool requires a
user-centric approach in post-deployment
improvements.

To evaluate clinical impact, we can track
metrics including clinician’s time saved, the
average number of appointments saved and
time to referral. Metrics should reflect the clin-
ical utility the tool contributed, instead of
merely the model’s performance. Nevertheless,
the model’s performance should be tracked as
trained static models are known to degrade over
time [1] because of concept shifts such as
changes in imaging equipment, improvement
in image qualities, or changes in the underlying
distribution. Misclassification should also be
noted and inspected.

For better integration, interoperability with
the clinical management system/hospital
information system (HIS) can be considered.
The model can be hosted either on-site, if
equipment allows, or on the cloud [19].

Fig. 3 Proposed network architecture

5 Ensemble methods is a technique that combines
several models to produce a better predictor e.g. simple
average over multiple outputs.
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Infrastructure should be planned with system
experts, and various researchers have suggested
blueprints [23].

Model Explainability

Model explainability is vital in medical AI as
decisions should be explainable to both the
practitioners and patients. Previous research has
used attention mechanism [29] and Grad-CAM
[7] to show the pertinent areas in images and
texts. Other methods include SHAP (SHapley
Additive exPlanations) [24] and Lime [30]. We
can visualise which part of the text or image the
network paid most attention to, to generate the
output through these methods.

LIMITATIONS AND CHALLENGES

Several challenges can be foreseen. For practical
challenges, interoperability with existing HIS
and workflow is useful but challenging to
establish. Clinical guidelines have to be adap-
ted, which involves a lot of stakeholders and
deliberation. Model explainability is still in its
infancy for more complicated networks and
might not satisfy practitioners’ and patients’
expectations. For technical challenges, previous
works on CFPs mainly focus on a single disease
like diabetic retinopathy or glaucoma, but a
referral system will need to recognise multiple
conditions. An acceptable model might take a
long time to develop, and resources might be
limited, impacting development and deploy-
ment. For legal challenges, legal liability is an
area of concern and approaches to addressing
them are multifaceted [34]. For pilot studies, a
human should monitor the system. Incorpo-
rating human experts in AI systems is known as
human-in-the-loop (HITL), and limitations of
both humans-only and AI-only systems can be
addressed. Limitations for AI-only systems
include inaccuracies in rarer conditions, and
limitations for human experts include fatigue
[38]. HITL has been employed in chest radio-
graph diagnosis and was superior to AI-only or
human expert-only systems, with HITL model
achieving an AUC of 0.840, the experts-only
system achieving 0.763 and AI-only system

achieving 0.685 [28]. Also, further collaboration
with legal experts should be considered if a
system is to be deployed. While HITL systems
still require human supervision and the effi-
ciency increment varies from case to case, HITL
systems have been shown to improve both
accuracy and efficiency in radiology reporting
[49] and general medical triaging [8]. The degree
of human involvement can also be varied
according to the confidence of the network,
further improving efficiency.

CONCLUSION

This framework for a machine learning-aided
triaging system in ophthalmology clinics in
Hong Kong has been developed after reviewing
the local situation and literature. This article
provided a simple overview of the possible
strategies for data collection, pre-processing,
data annotation, system architecture, deploy-
ment strategies, evaluation metrics, limitations
and challenges of such a system. In deploying
and utilising medical AI systems, we should pay
equal attention to both the accuracy of the
network as well as the actual clinical utility
when deployed. Although future work is needed
to validate the proposal listed in this article, we
hope this framework will be helpful as a foun-
dation for development, pilot testing and
deployment for referral system in both oph-
thalmic clinics and other specialty clinics.
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35. Schöning V, Liakoni E, Baumgartner C, et al.
Development and validation of a prognostic
COVID-19 severity assessment (COSA) score and
machine learning models for patient triage at a
tertiary hospital. J Transl Med. 2021;19(1):56.

712 Ophthalmol Ther (2021) 10:703–713

www.audiologyonline.com
http://www.eyepacs.com/
https://www.ha.org.hk/haho/ho/sopc/dw_wait_ls_eng.pdf
https://www.ha.org.hk/haho/ho/sopc/dw_wait_ls_eng.pdf
https://www.kaggle.com/google-brain/messidor2-dr-grades
https://www.kaggle.com/google-brain/messidor2-dr-grades


36. Shorten C, Khoshgoftaar TM. A survey on image
data augmentation for deep learning. J Big Data.
2019;6(1):1–48.

37. Soguero-Ruiz C, Hindberg K, Mora-Jiménez I. Pre-
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