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Abstract: Myelodysplastic syndrome (MDS) is a heterogeneous, clonal hematological disorder
characterized by ineffective hematopoiesis, cytopenia, morphologic dysplasia, and predisposition
to acute myeloid leukemia (AML). Stem cell genomic instability, microenvironmental aberrations,
and somatic mutations contribute to leukemic transformation. The hypomethylating agents (HMAs),
azacitidine and decitabine are the standard of care for patients with higher-risk MDS. Although
these agents induce responses in up to 40–60% of patients, primary or secondary drug resistance
is relatively common. To improve the treatment outcome, combinational therapies comprising
HMA with targeted therapy or immunotherapy are being evaluated and are under continuous
development. This review provides a comprehensive update of the molecular pathogenesis and
immune-dysregulations involved in MDS, mechanisms of resistance to HMA, and strategies to
overcome HMA resistance.

Keywords: myelodysplastic syndromes; hypomethylating agents; treatment resistance; targeted
therapy; immunotherapy

1. Introduction

Myelodysplastic syndrome (MDS) is a hematological disorder characterized by inef-
fective hematopoiesis, cytopenia, and the propensity of clonal progression to acute myeloid
leukemia. The Revised International Prognostic Scoring System (IPSS-R) is the most com-
monly used prognostic tool for predicting the risk of leukemic transformation and overall
survival. Patients with lower-risk MDS (LR-MDS) are managed largely with support-
ive care and agents targeting improvements in anemia. Patients with higher-risk MDS
(HR-MDS) are treated with the hypomethylating agents, azacitidine (AZA) or decitabine
(DEC) [1]. Allogeneic hematopoietic stem cell transplant (HSCT) remains the only curative
treatment for HR-MDS patients but is only limited to younger patients who are fit for
allogeneic HSCT with suitable donors [2].

Clonal evolution studies of MDS stem cells have shown that CD123+ MDS malignant
stem cells are more abundant in HR-MDS than LR-MDS patients and this stem population
is enriched for protein synthesis activity despite they are quiescent [3]. The clinical het-
erogeneity of MDS is attributed to multiple genetic and epigenetic aberrations resulting
in the dysplastic and proliferative features of MDS. In addition, MDS is characterized
by a heterogenous immunopathology involving both innate and adaptive immunity. In
general, cytopenia in LR-MDS is attributed to inflammation and apoptosis of progenitor
cells and clonal expansion of dominant cell lineage in HR-MDS is associated with evasion
of immune checkpoints [4].

2. Molecular Pathogenesis of MDS

Karyotypic abnormalities are seen in approximately 30–50% of patients with MDS
and correlated with prognosis [5–7]. On the other hand, mutations are detectable by
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next generation sequencing (NGS) in more than 80% of patients with MDS with distinct
mutation profiles observed in different MDS subtypes [8–12]. Multiple studies have
tried to incorporate mutation profiling by NGS into the IPSS-R or WHO classification
algorithm. Different demographic MDS datasets have been tested, and different studies
have proposed the integration of different genes into their prognostic algorithms. In a
European study done by Haferlach et al., 14 genes (ASXL1, CBL, ETV6, EZH2, KRAS,
LAMB4, NF1, NPM1, NRAS, PRPF8, RUNX1, STAG2, TET2 and TP53) were shortlisted to
stratify MDS patients into four risk groups (low, intermediate, high, and very high risk)
in combination with conventional scoring or as standalone scoring tools [13]. Similarly,
Nazha et al. incorporated four genes (EZH2, SF3B1, and TP53) into their modified IPSS-R
scoring system and achieved a significant improvement in the concordance index (C-index).
Regardless of patient initial or subsequent therapies, the integration of mutation data also
provides a dynamic platform for disease prediction [14]. For Asian MDS patients, Gu
et al. proposed the mutation combined with the revised IPSS-R, namely MIPSS-R, taking
into account the number of mutations and presence of SF3B1 mutations. Upon risk level
adjustment, 39% of patients achieved better clinical outcomes for receiving other treatment
regimens following MIPSS-R in comparison with following the conventional IPSS-R [15].
More recently, MDS has been classified into eight distinct genomic subgroups based on
their mutational and cytogenetic profiles, Group 0: MDS without specific genomic profiles;
Group 1: MDS with SF3B1 mutations and co-existing mutations (ASXL1 and RUNX1);
Group 2: MDS with TP53 mutations and/or complex karyotype; Group 3: MDS with
SRSF2 and concomitant TET2 mutations; Group 4: MDS with U2AF1 mutations associated
with deletion of chromosome 20q, and/or abnormalities of chromosome 7; Group 5: MDS
with SFSF2 mutations and co-existing mutations in other genes (ASXL1, RUNX1, IDH2,
and EZH2); Group 6: MDS with isolated SF3B1 mutations (or associated with mutations
of clonal hematopoiesis and/or JAK/STAT pathways genes); and Group 7: MDS with
AML-like mutation patterns (DNMT3A, NPM1, FLT3, IDH1, and RUNX1 genes) [16]. These
genomic groups correlated with the demographics, clinical, and hematological features,
pathological classification and the overall survival [16].

The functional impact of mutations affecting signal transduction, transcriptional
regulation, epigenetic regulation and RNA splicing molecules (Figure 1) will be discussed
in details [17,18].
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Figure 1. Molecular pathogenesis of MDS. Signal transduction molecules refer to gene mutations resulting in alteration to
proliferative or apoptotic effects. Transcription factors and epigenetic regulators exert effects at both transcriptional and
translational levels due to aberrations in RNA splicing, DNA methylation, and histone modification.

2.1. Signaling Molecules and Pathways
2.1.1. FLT3

The fms-like-tyrosine kinase III (FLT3) is a transmembrane tyrosine kinase, highly
expressed on hematopoietic progenitor cell surfaces and is crucial for the development
of hematopoietic stem cells (HSC) and progenitor cells [19]. This signaling pathway,
stimulated by FLT3, regulates cellular processes such as cell division, survival, and growth
in hematopoietic progenitor cells. FLT3 mutations reported in MDS are mostly internal
tandem repeat (FLT3-ITD) located on exon 14 or 15 of chromosome 13q12 encoding the
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juxtamembrane domain, or, less commonly, a single point mutation of the tyrosine kinase
domain (TKD) [20]. FLT3 mutations are well documented in AML with a prevalence of 30%
but FLT3 mutations occur at a much lower rate (~6%) in MDS [20–22]. Patients who carry
FLT3 mutations are usually presented with a more adverse clinical course with a high risk
of leukemic transformation [23]. FLT3 mutation is more common in younger patients and
MDS with excess blast-1 or excess blast-2 (MDS-EB-1 or MDS-EB-2) [24]. FLT3 mutations
lead to constitutive activation of FLT3 and downstream STAT5 signaling pathways. Exome
sequencing done by Kim et al. revealed that the acquisition of FLT3 mutations in HSCs
or hematopoietic progenitor cells (HPC) can drive the formation of leukemic stem cells
(LSC) [25]. It was proposed that mutation acquisition can originate from the immature
hematopoietic compartment, resulting in the accumulation of non-self-renewing blasts,
which inevitably promote the transformation into AML [26,27].

2.1.2. KIT

c-KIT proto-oncogene encodes a type III tyrosine kinase (KIT) is also known as CD117,
and it is a mast/stem cell growth factor receptor (SCFR) influencing HSC survival, prolif-
eration, and differentiation into the hematopoietic lineages [9,28]. There are three major
protein domains involved in activities of KIT and downstream activation of PI3Kinase, Ras,
and MAPK signaling. They are the extracellular membrane domain (EM) at exon 8, the
juxta-membrane domain at exon 11, and the tyrosine kinase domain (activation loop) at
exon 17. Gain-of-function mutations of these domains have been reported in other malig-
nancies and some are also found in MDS patients [28,29]. KIT mutations are predominantly
observed in patients with MDS-EB-1, MDS-EB-2, and secondary AML [29]. Among these
mutations, most are gain-of-function mutations leading to ligand-independent activation
of the KIT signaling, such as the D816V or D816Y of the tyrosine kinase domain.

These pathogenic mutations are likely associated with upregulation of KIT expression
at the transcript and protein levels, observed in MDS patients, and the overexpression
is more noticeable in patients with MDS-EB-1, MDS-EB-2, and secondary AML. In vitro
studies have further shown that KIT expression can be induced by interleukin-3 (IL-3) and
erythropoietin (EPO), with or without stem cell factor (SCF) expression on cell isolated
from MDS patients [30]. In fact, depletion of KIT with humanized monoclonal antibody
ablates the MDS HSCs in both LR- and HR-MDS xenograft models. Yet this also permits
the subsequent engraftment of healthy HSCs, which is evident by robust engraftment of
human B-cells and T-cells post-depletion of KIT. This confirms the stem cell’s regulative
property of KIT in MDS and AML, and hence the oncogenic property of KIT mutations [31].

2.1.3. RAS

RAS proteins are encoded by three proto-oncogenes (H-RAS, K-RAS, and N-RAS)
that regulate differentiation and growth of many cell types, including myeloid cells. RAS
proteins are membrane-associated GTPases that regulate serine or threonine kinases of
the MAP kinase cascade and mutations of RAS often constitutively activate RAS/MEK
and RAS/PI3K signaling by accumulating intercellular RAS GTP [32]. Large scale studies
have consistently reported RAS signaling deregulation due to mutations of RAS genes in
MDS. RAS mutations are detected at an overall rate of 3–5% with N-RAS genes being the
most frequently mutated and K-RAS accounting for the remaining RAS mutations [13,32].
N-RAS mutations at codon 12 account for 55% of all RAS mutations followed by N-RAS
mutations at codons 31 and 61 (12% each) and K-RAS mutation at codon 12 (21%) [33].
Patients with RAS mutations also show higher white cell count and bone marrow blast
percentage. Although the frequency of RAS mutations in MDS is much lower than that in
CMML or AML, mutations of RAS in MDS patients, in particular N-RAS, have been found
associated with shorter survival and higher risk of transformation into AML [33–35].
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2.1.4. CBL

CBL plays an important role in tyrosine kinase signaling. CBL can activate signaling
complexes and positively regulates downstream signal transduction components [36].
However, CBL can also negatively regulate tyrosine phosphorylation through controlling
the ring domain and tyrosine-kinase-binding (TKB) domain to induce ubiquitination. CBL
also promotes E3 ligase catalytic activity on lysine residue in substrate proteins. As a result,
lysine ubiquitination triggers proteasomal degradation and recycling in endosomes [37].
CBL controls protein degradation of several important proteins in myeloid neoplasms,
including c-Kit, FLT3, and STAT5, which STAT5 is a key downstream component of the
JAK2 signaling. Not surprisingly, CBL mutations have been reported in 10% of patients with
MDS/myeloproliferative neoplasm (MPN) overlap syndrome and these patients display
clinical features such as splenomegaly, monocytosis, and anemia [38,39]. In MDS/MPN
overlap syndrome, Sanada et al. also discovered a CBL gain-of-function mutation can
contribute to loss of the ubiquitin E3 ligase activity, thereby prohibiting ubiquitin-mediated
degradation of tyrosine kinases, resulting in constitutive activation of tyrosine kinase
signaling. Moreover, they have also reported CBL mutations as acquired uniparental
disomy (aUPD) in 31.5% of the patients studied, and it is more common in MDS/MPN than
MDS patients, where both copies of a chromosome pair or parts of chromosomes originated
from a single parent [36]. Conventionally, aUPD is a mechanism by which pathogenetic
mutations in cancer may be reduced to homozygosity. This process is typically described in
loss-of-function mutations but is rarely reported in gain-of-function mutations. Therefore,
this postulation provides novel insight on how the gain of oncoprotein resembles the loss
of tumor suppressive gene [37].

2.1.5. SETBP1

SETBP1 gene is localized to chromosome 18q21.1 which encodes SET binding protein 1
and binds with SET nuclear oncoprotein to form a heterodimer and this complex suppresses
SET from proteasomal degradation and downstream activity of tumor suppressor protein
phosphatase type 2A (PP2A) [40,41]. Makishima et al. showed that SETBP1 mutation
can affect tumor formation [40,42,43]. In MDS, multiple studies have reported SETBP1
mutations and the hotpot mutations localizes to codon 858–871. Changes like D868N,
E858K and G870S belong to the SKI homologous region are predicted to be responsible
for altering binding to SET [44]. While the mutation frequency varies from 2% to as
high as 50% and is more commonly observed in LR-MDS, meta-analysis has shown that
patients with SETBP1 mutation have significantly shorter survival. Thol et al. further
reported a significantly higher rate of relapse within one year, and Shou et al. further
showed that SETBP1 mutation is associated with poor prognosis in patients with MDS and
CMML [8,44–49]. These mutations are somatic gain-of-function mutations associated with
-7/del(7q) and are also enriched in patients with ASXL1 mutations as concurrent mutation,
conferring a higher risk of transformation into AML [48]. In terms of function, these
mutations, especially D868N and G870S, are proven to be pathogenic, as they suppress
self-ubiquitination, hence inhibiting self-degradation and eventually leading to impaired
apoptosis and differentiation.

In vitro studies have shown the increased clonal expansion can be further enhanced
with additional ASXL1 mutation, and ASXL1 mutation shows a significantly higher rate
of co-mutation with SETBP1 in patients [48,50]. This increases expression of mutant
SETBP1 oncoprotein that favors the transformation of MDS cells into AML. One of the
downstream targets of these mutants involved in MDS pathogenesis is the repression
of TGF-β signaling. Several lysine residues on histone H3 and H4 around the promoter
regions of multiple TGF-β pathway genes undergo aberrantly reduced acetylation. The
dysregulated TGF-β signaling in double mutant mice also shows higher engraftment,
dysfunctional differentiation and uncontrolled cell cycle. However, these abnormalities are
reversible using the HDAC inhibitor Vorinostat [51].
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2.1.6. NOTCH 1/2

NOTCH1/2 is a highly conserved cell surface signal transducer that regulates de-
velopmental and cell fate. In particular, NOTCH receptors are expressed by early HSC
whereas NOTCH ligands are expressed by bone marrow stromal cells. Collectively, this
forms a microenvironment providing the signal required for progenitor differentiation
and proliferation [52]. The involvement of NOTCH dysregulation in MDS involves the
dysplastic microenvironment with a suppressed NOTCH signaling activity followed by
downregulation of delta-like-1 (DLK-1), which is an early adipogenic cell fate inhibitor.
This causes an impaired colony-forming unit fibroblast in vitro, and this potentially con-
tributes to a biased adipogenic differentiation of bone marrow stromal cells, also observed
in bone marrow isolated from MDS patients [53].

In addition to impaired bone marrow microenvironment, NOTCH1-mediated sup-
pression also contribute to HSC inadequate differentiation into progenitor subpopulations
MPP3 (myeloid) and MPP4 (lymphoid), leading to dysplasia and selective clonal expansion
in a murine model. During leukemic transformation or under cellular stress, NOTCH1-
mediated signaling is suppressed and the differentiation capacity of lymphoid MPP4 into
mature lymphocytes is suppressed. MPP4 also diverges and contributes to myeloid cell
expansion alongside with activated myeloid MPP3, leading to the accumulation of myeloid
blast cells [54]. Therefore, it is not surprising that the loss-of-function mutation of NOTCH
signaling genes could contribute to MDS and AML transformation.

In fact, NOTCH1/2 mutations have been reported at a frequency of <5% in MDS and
12% in AML patients, but the direct evidence of NOTCH1/2 mutation implicated in MDS is
limited [8,55,56]. Despite there being no significant correlation of NOTCH1/2 mutation with
IPSS-R, NOTCH1 mutation is preferentially observed in HR-MDS [8]. With the postulation
that MDS cells are subjected to apoptosis hence cytopenia is at least partially attributed to
NOTCH signaling, Fu et al. performed in vitro studies by stimulating primary MDS cells
with recombinant NOTCH ligand, hypothesizing that NOTCH signaling activation would
suppress apoptosis. However, their results indicated that NOTCH ligands do not improve
cytopenia features. The forced activation of NOTCH in vitro further decreases the forma-
tion of neutrophil colonies and increases the proportion of granulocyte-macrophage (GM)
colonies and macrophage (M) colonies, proposing that NOTCH signaling is dysregulated
in dysplasia during MDS pathogenesis [57].

2.1.7. Other Signal Transducers

CSF3R is a transmembrane receptor for colony stimulating factor 3 (CSF3), medi-
ating normal growth in myeloid progenitors. Under normal conditions, G-CSF binds
to CSF3R for promoting growth and survival of myeloid precursor cells to neutrophils.
CSF3R mutation is rarely seen in MDS. CSF3R mutations fall into two types: (1) nonsense
or frameshift mutations resulting in premature truncation of cytoplasmic receptor and
(2) point mutations at the extracellular domain of CSF3R [58]. It is shown that CSF3R
is sensitive to JAK2 inhibitors, such as ruxolitinib [59]. Alternatively, truncated CSF3R
truncated mutations are sensitive to SRC kinase inhibitors, such as dasatinib. Nevertheless,
whether JAK2 or SRC inhibitors are of benefit to patients with CSF3R mutations remains
to be investigated, since the majority of studies conducted regarding CSF3R are related
to CML. The true incidence of this mutation appears to be much less in MDS, but it still
presents as a significant mutation for the disease benchmark [60].

Janus kinase 2 (JAK2) is a non-receptor tyrosine kinase that regulates signaling
pathways through MPL, TpoR, EpoR, etc. JAK2 is crucial for normal hematopoiesis and
JAK2V617F mutation is found in 2–5% of MDS cases. An increased incidence of thrombosis,
hemorrhage, and fibrotic transformations are associated with the presence of the mutant
allele in MDS. However, JAK2V617F mutation is less implicated in MDS in comparison with
other myeloid malignancies, especially MPN, where JAK2V617F mutation is considered to
be the driver mutation of MPN [61–63].
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2.2. Transcription Factors
2.2.1. TP53

TP53 is a tumor suppressor gene located at chromosome 17p13.1, containing 11 exons,
and is a transcription factor responsible for cell regulation and induction of apoptosis
upon exposure to UV. TP53 is one of the most studied genes in cancers [64,65]. Somatic
TP53 mutations are more frequently seen in HR-MDS, therapy related MDS, and MDS
transformed leukemia. Complex karyotypes with deletions of chromosome 5, 7, and 17
(i.e., TP53) show a strong correlation with poor risk IPSS with morphological features, such
as increased blast cell percentage and thrombocytopenia [66]. Deletion of chromosome
5q results in the loss of a “commonly deleted region” (CDR), which comprises 41 genes,
including RPS14, and haploinsufficiency of RPS14 is associated with erythroid failure in
MDS [67]. Another gene that is closely regulated with TP53 is the Murine Double Minute-2
(MDM2). Under normal conditions, MDM2 is free to bind p53 and the binding of MDM2
with p53 triggers p53 ubiquitination and subsequent degradation.

Cytotoxic stress can activate the phosphorylation of both MDM2 and p53 via the
ATM-Chk1 or ATM-Chk2 axes. This promotes a range of post-translational modifications
of MDM2, including acetylation, methylation, and SUMOylation, which in turn contribute
to p53 accumulation. The abnormal accumulation of p53 leads to cell cycle arrest, impaired
DNA repairs, senescence, and apoptosis [68,69]. TP53 defects adversely influence MDS
clinical outcome and the treatment response rate, such as resistances to HMA. Therefore,
new therapeutic approaches, such as immune checkpoint inhibitions, are being developed
for these patients, which will be reviewed in the later sections (Section 4) of this review [64].

Clonal evolution analysis of TP53 mutation in MDS has been described by da Silva
Coelho et al. and both linear and branching patterns of evolutions were detected in
the study [70]. In particular, TP53 mutation was found to be a branching clone as de
novo mutation during treatment with lenalidomide, and TP53 is responsible for the drug
resistance in these MDS patients [70]. Similarly, clonal evolution study done by Makishima
et al. also proposed TP53 mutant clone as a namely “type 2 mutations”. This group of
clonal mutations are enriched in HR-MDS patients and is predicted with limited impact
on AML transformation in comparison with “type 1 mutations”, including FLT3, RAS,
and IDH1/2, which harbor a significant impact on patient survival and AML progression.
However, TP53 is also reported as a unique mutation, being mutually exclusive with other
mutations, suggesting its potential role as a driver of mutation in MDS [71].

2.2.2. RUNX1

RUNX1 is a transcription factor that regulates HSC maturation into mature blood
cells. RUNX1 is located on chromosome 21q22.12 and encodes an alpha subunit of the
core-binding factor (CBE) complex [72]. This regulates transcription activities for key genes
in differentiation, growth, and survival pathways. RUNX1 is commonly reported with
somatic mutations and a majority of RUNX1 mutations found in MDS are small SNV or
INDEL [73]. The mutation frequency of RUNX1 in MDS is 10% and patients with RUNX1
mutations have higher neutrophil counts, a higher frequency of -7/7q deletion, and shorter
overall survival [74].

This is concordant with the clonal sweeping model proposed by Makishima et al.
regarding the disease progression of MDS from LR-MDS to HR-MDS, with RUNX1 mu-
tation being one of the “type 2 mutations” [71]. Furthermore, RUNX1 mutant clones can
be gradually replaced by the acquisition of another group of mutations, namely “type 1
mutations”, as patients develop AML during the process of clonal evolution, in which
“type 1 mutations” are associated with poorer survival and a faster rate of AML transforma-
tion [71]. In this study, two models of clonal evolution can be responsible for the mutation
dynamics in different patients. They are clonal sweeping or linear evolution, of which
linear evolution is the most common model and is characterized by the stepwise arising of
a small subclone under the presence of a pre-existing dominant mutant clone and further
expands during disease progression [71]. On the other hand, clonal sweeping refers to
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the pre-existence of multiple mutation clones, but one clone with the highest fitness (e.g.,
driver mutations) is selectively swept and dominates over other passenger mutations with
less or no effects inside the tumor [75]. Regarding large genetic lesions involving ASXL1
mutation in MDS, some studies have proposed -7/7q deletion as a secondary event to
ASXL1 mutation, which can cause activation of the RTK-RAS pathway, promoting leukemic
transformation [74,76].

2.2.3. WT1

Wilms tumor 1 (WT1) is a tumor-suppressor gene coding for a zinc finger transcription
factor located on chromosome 11p13, and was originally identified in Wilms’ tumor [77,78].
WT1 mutations have been reported in 3–4% of MDS cases and sequencing studies have
also shown that the presence of WT1 mutations favors MDS transformation into AML [79].
WT1 shows exceptionally low to absent expression in normal tissues while it is highly
expressed in a wide range of malignant neoplasms with its key role being in regulating
tumor cell proliferation. Around 60% of patients with MDS with single lineage dysplasia
(MDS-SLD) overexpress WT1 in both bone marrow and peripheral blood samples, and
WT1 expression level shows a good correlation with WHO clinical classifications and IPSS
scores [80,81]. An in vivo study characterizing the hematologic phenotype of WT1 mutation
demonstrated that, in the presence of the WT1 mutation, hematopoietic progenitor cells
in mice significantly expand with an aggressive MDS/MPN phenotype, manifesting into
anemia and erythroid dysplasia with a decreased survival [81].

2.2.4. CEBPA

CEBPA, which encodes C/EBPα, is a CCAAT enhancer-binding protein that plays
an important role in myelopoiesis, especially the differentiation from common myeloid
progenitors (CMPs) into granulocyte-monocyte progenitors (GMPs) and eventually into
mature granulocytes and monocytes. It possesses 14 enhancer regions and distinct enhancer
combinations are active in different CEBPA-expressing tissues. Conformational studies of
3D genomic have shown that CEBPA localizes to a 170-kb conserved topological-associated
domain (TAD) on chromosome 19 and two enhancers located +21kb region located 3′ of
the CEBPA are myeloid specific with the highest promoter interaction in CEBPA+ myeloid
cell lines in comparison with CEBPA− lymphoid cell lines. This myeloid-specific chromatin
conformation is also exclusively marked with active histone H3K27ac in differentiated
neutrophils and monocytes. Moreover, the enhancers are occupied by the HSC specific
transcription factors, including GATA, RUNX1, and PU1, evident by positive detection
of these motifs on this specific region. Deleting one of the two enhancers in vivo thereby
indirectly suppresses myeloid specific CEBPA and has a severe impact [82]. This causes
demolished myelopoiesis and hence severe neutropenia and insensitivity to stimulation by
G-CSF and GM-CSF, illustrating the functional importance of CEBPA in neutropenia, and
hence infections in MDS [82,83]. In addition to distant enhancer dysregulation that causes
suppressed CEBPA activity, in-frame but loss-of-function mutations of the CEBPA gene body
itself are reported in MDS or MDS transformed AML. At a much lower rate than de novo
AML (~5.4% vs. 17.2%), and unlike AML which can have double mutations at both N- and
C-terminus of C/EBPα, MDS patients only have one of the mutations [84,85]. Mutations at
N-terminus suppress the activation capacity of C/EBPα by its direct binding to the target
promoter or by its heterodimerization with C/EBPα. On the other hand, mutations at
the C-terminus disrupt the basic zipper structure and part of the DNA binding domain,
likely suppressing C/EBPα activity indirectly through disrupted interaction with other
transcription factors, such as PU1 [84].

2.2.5. Other Transcription Factors

NPM1 (Nucleophosmin 1) is located on chromosome 5 (q35.1) and is associated with
nucleolar ribonucleoprotein, which is responsible for the biogenesis of ribosomes, mRNA
processing, and chromatin remodeling [86,87]. Mutations of NPM1 are detected in 20–30%
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of AML cases, but are less frequent in MDS (9%) [88,89]. NPM1 mutations are rare in
MDS/MPN [90]. Bains et al. documented NPM1 mutations from a large cohort study in
which the results were strongly associated with normal karyotypes and HR-MDS [88]. Due
to the rarity of NPM1 mutation in MDS, there are no robust molecular or clinical data to
further understand disease evolution in NPM1-mutated MDS.

2.3. RNA Splicing

In studies applying exome sequencing and targeted sequencing in MDS, it has been
revealed that multiple RNA splicing mutations are implicated in its pathogenesis [91]. In
normal cells, RNA splicing machinery begins with the pre-messenger RNA (pre-mRNA)
intron removal and fusion of exons to form a mature mRNA. Spliceosomes are used to
fuse 5′-mRNA splice site upstream exon to 3′-mRNA splice sites. They consist of the
assembly of five small nuclear ribonucleoproteins (snRNPs) via their sequential binding to
the pre-mRNA; hence, leading to the initiation of RNA splicing. This is achieved through
the recognition of the 5′-mRNA splice site by U1 snRNP while the 3′ site is recognized by
the U2-auxiliary factor (U2AF) [92,93]. The U2AF protein consists of a U2AF35 (U2AF1)
subunit and a U2AF65 (U2AF2) subunit. U2AF protein binds to SF3B1 through a splicing
factor (SF1) to form a heterodimer complex [94]. The U2AF35/U2AF65 heterodimer has a
high affinity for ZRSR2 (Zinc finger RNA binding motif and serine/arginine rich 2) and
SRSF2 (serine/arginine rich splicing factor), which binds to the polypyrimidine tract located
at the 3′ splice site. SRSF2 involves the removal of introns from the primary transcript
and is responsible for influencing patterns for alternate splicing. Any alterations to the
spliceosome complex can result in a change in splicing specificity, leading to alternative
splicing outcomes (Figure 2) [95,96].
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In MDS, concurrent spliceosome gene mutations, such as SRSF2 and SF3B1, are
associated with HR-MDS, higher marrow blast percentage, and dysregulations of RNA
splicing and DNA methylation pathways [13]. Splicing factor mutations at 3′ mRNA splice
sites are common in MDS and around 60% of MDS cases harbor mutations related to
splicing factors. Frequently mutated splicing genes amongst MDS patients include SRSF2
(~12.4%). Another 20% of MDS patients carry multiple mutations, such as U2AF35, U2AF65,
SF3B1, and ZRSF2 [97,98]. In particular, functional studies of U2AF35 mutation with other
splicing factors have shown that splicing impairment, including intron retentions, induces
mRNA splicing pathways and eventually growth impairment [99]. The SRSF2 mutation
clusters around hotspot residue Pro95 are associated with epigenetic TET2 mutations [97].
SF3B1 mutations have been reported as a potential initiating event in defining sideroblastic
anemia [11,100]. Computational analysis shows recurrent driver mutations, such as SF3B1,
are associated with 5q deletion (del(5q)) in patients with MDS-RARS [100]. SF3B1 mutations
are found in 68% and 81% in patients with MDS with ring sideroblasts and MDS/MPN
with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T), respectively. In vitro and
in vivo experiments have also demonstrated the association of SF3B1 mutations with
altered iron distribution in MDS patients ring sideroblasts and haploinsufficiency of SF3B1
is sufficient to cause ring sideroblasts transformation [98]. Woll et al. identified a high
mean variant allele frequency (VAF) of SF3B1 (30.8%), showing that the SF3B1 mutation is
present in dominant MDS clones. Hence, this suggests the mutation itself originates from
cells actively propagating in the MDS clones [101]. Moreover, SF3B1 mutation in MDS
patients is often associated with alternative splicing of SLC25A37, a crucial importer for
iron in mitochondria [102]. Based on single cell clonogenic data, it has been proposed that
a sequential acquisition of genetic lesions with SF3B1 in one of the mutated major clones at
the early stages of MDS is implicated for subsequent AML transformation [103].

Mian et al. demonstrated that SF3B1 mutations in MDS with ring sideroblast can
arise from HSCs during subclonal evolutions during disease pathogenesis [103]. Clonal
analysis reveals the MDS mutational architecture displays an overall dominance of the
SF3B1 mutation in primary CD34+ bone marrow, hemogenic endothelial cells (HEC),
and Long Term culture initiating cells (LTC) [103]. For the functional impact of SRSF2
mutation in MDS, Kim et al. reported that SRSF2 mutation is associated with alternative
splicing of epigenetic regulator EZH2. This induces a nonsense-mediated decay of EZH2
transcript, eventually impairing HSC differentiation. In vitro experiments rescuing intact
EZH2, on the other hand, can restore the hematopoietic defects induced by mutant SRSF2,
suggesting the crosstalk of compound mutations of different groups of genes in MDS
pathogenesis [104]. Moreover, patients with splicing factor mutations alone have been
reported to have better overall survival than those with additional mutations, such as cell
signaling/transcriptional regulator, epigenetic modifiers, or other members of the splicing
machinery [105].

2.4. Epigenetic Dysregulation-DNA Methylation

Demethylation of the cancer genome is the principal rationale of using HMA in
myeloid malignancies. CpG methylation within gene promoters is a major epigenetic tran-
scriptional silencing mechanism that is frequently dysregulated. In particular, transcrip-
tional inactivation involving DNA methylation is primarily attributed to the methylation
of CpG dinucleotides at the promoter region and gene bodies. This regulatory machinery
is strictly regulated by DNA-methyltransferases (DNMTs), ten eleven translocations (TET)
enzymes, and isocitrate dehydrogenases (IDHs) [106,107]. DNMT3A enzymatically adds
a methyl group to 5′ cytosine at the CpG dinucleotide resulting in DNA methylation
while the removal of the methyl group can be mediated by TET family proteins during
demethylation [108]. TET2 plays a pivotal role in the oxidation of 5-methylcytosine (5mC)
to 5-hydroxymethylcytosine (5hmC). In the citric acid cycle, IDH1/2 normally catalyzes
isocitrate to α-ketoglutarate (α-kg) while TET2 relies on α-kg to function normally. When
IDH mutation occurs, it gains an additional function to produce 2-hydroxyglutrate (2-HG)
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which inhibits the TET family proteins directly. IDHs mutations (e.g., at arginine 132
amino acid) are associated with elevated serum levels of 2-HG enantiomers (D-2-HG) in
MDS patients, resulting in a reduction of 5hmC levels, and eventually hypermethylation
(Figure 3) [109,110]. IDH1/2 mutations are present in approximately 5–12% of MDS patients
with IDH2 mutations occurring at a higher frequency than IDH1 [111]. Despite IDH1/2
has a lower incidence in MDS compared to AML, its occurrence increases over time with
disease progression [111]. Other studies have shown early driver mutations in epigenetic
modifiers can have co-mutation with spliceosomes genes, e.g., mutation of IDH2, EZH2 can
couple with mutations of SF3B1, U2AF1, RUNX1, and STAG2, to dictate disease evolution
with distinct clinical phenotypes in MDS [62,112].
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Figure 3. Mechanisms of DNA methylation under epigenetic dysregulation in MDS. Under normal
circumstances, IDH1/2 promotes the TET2 genes to perform the conversion of 5-mC to 5-hMC,
triggering DNA methylation. However, IDH1/2 mutations are often seen in MDS causing the
inhibition of TET2, resulting in global hypomethylation but loci-specific hypermethylation.

In MDS, mutations of these epigenetic modifiers and spliceosomes are found to be
associated with inflammasome signaling activation. This is evidenced by the finding
that epigenetic dysregulation is associated with activation of NOD-like receptor protein 3
(NLRP3) inflammasomes, followed by increasing levels of damage-associated molecular
patterns (DAMPs) in MDS. DAMPs are high mobility group proteins, such as B1 and
alarmin S100 proteins, which are responsible for sensing the presence of Toll-like receptors
(TLRs). Increased levels of DAMPs and NLRP3 inflammasomes activation are enriched in
LR-MDS patients [113–116]. MDS stem cells are specifically susceptible to DAMPs because
they overexpress TLRs, as well as signal transducers, such as IRAK1 and TRAF6 [117,118].
These mutations increase the production of pro-inflammatory cytokines, such as IL-6 and
Type 1 IFN-α. The dysregulated inflammasome with S100A9 and NLRP3 having a role to
play activates β-catenin signaling, eventually resulting in pyroptosis [113,119,120]. Ligation
of S100A9 with TLR4 induces NF-κB-mediated transcription of pro-inflammatory cytokines,
including pro-interleukins IL-1β, IL-18, and other inflammasome components [112]. The
active NLRP3 inflammasome directs caspase-1-dependent conversion of pro-IL-1β/IL-18
into active forms resulting in pyroptosis [112,113].

2.5. Epigenetic Dysregulation—Histone Modification
2.5.1. EZH2, EED and SUZ12

Alterations in epigenetic processes, including DNA methylation and histone modifica-
tions, are well-known pathological events in MDS that self-renewal of HSC compartment
is often dysregulated. Enhancer of the Zeste Homolog 2 (EZH2) is a protein subunit of
the poly-comb repressive complex 2 (PRC2). PRC2 catalyzes methylation of histone H3



Int. J. Mol. Sci. 2021, 22, 10232 11 of 34

lysine 27 methyltransferases (H3K27me), hence maintaining transcriptional repression of
genes involved with cell fate decisions. In MDS, EZH2 mutations can result in a malformed
PCR2 complex hence loss-of-function of H3K27me and impede normal function of the
other two subunits EED and SUZ1 (Figure 4). While mutation of EED and SUZ12 in MDS
are rare (<1%), EZH2 mutation is common and is associated with poor prognosis in MDS.
In addition to male predominance of EZH2 mutation in MDS, both EZH2 mutation and
loss of EZH2 protein expression independently correlate with inferior survival and R-IPSS
score [121,122]. Despite the fact that survival is not affected in vivo, murine models with
EZH2 double knockout develops myelodysplastic phenotypes evident by morphologic
dysplasia of HSC, cytopenia with occasional thrombocytosis that resembles MDS/MPN
overlap syndrome [123].
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plex promotes methylation by regulating H3K27me resulting in transcriptional activation. However,
loss-of-function mutation of EZH2 causes PCR2 to malfunction resulting in HSC disorders.

2.5.2. ASXL1 and TET2

ASXL1 plays a role in deubiquitinating histone H2A lysine 119 (H2AK119) through
the recruitment of the PRC2 complex. ASXL1 mutations result in loss of protein func-
tion to promote myeloid transformation due to the absence of PRC2 mediated gene
repression [124,125]. Approximately 80% of patients with MDS have one or more onco-
genic mutations. These mutations include ASXL1 and TET2 at mutation frequencies of
~15% and ~22%, respectively, and both are considered as representative mutations found
in MDS [62,126,127]. The ASXL1 gene is localized on chromosome 20q11 and it is one
of the frequently mutated genes with prognostic significance [128–130]. Some studies
have reported ASXL1 mutation as a gain-of-function mutation that enhances acetylation
of H3K122, and this triggers transcriptional activation of Fos and Prdm16 [9,131–133]. In
contrast, multiple NGS and meta-analysis studies have reported that TET2 mutations do
not possess any prognostic value [134,135]. TET2 promotes O-GlcNAc transferase (OGT)
activity by forming the TET2-OGT complex to promote enrichment of H3K4me3, contribut-
ing to increased transcriptional activity. Therefore, TET2 mutation causes suppression of
OGT activity which directly blocks H3K4me3, resulting in decrease transcriptional activ-
ity [134]. Moreover, loss-of-function mutation of TET2 results in a predominance of 5mC in
DNA [134]. The accumulation of 5mC can promote B-cell development and function result-
ing in activation of innate immune systems, as well as the disruption of DNA methylation
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homeostasis [136,137]. Despite there being controversies in the functional impact of TET2
mutations in MDS, it remains as an important epigenetic enzyme [10,134,135].

3. Immune Dysregulation

In MDS, a pro-tumor growth microenvironment and the pro-inflammatory signals pro-
vided by the immune cells are essential for its pathogenesis. Aberrant signaling pathways
like TLR signaling are involved. In the following section, the interactions of adaptive and
innate immunity in MDS pathogenesis will be outlined; in particular, immune checkpoint
evasions and inflicted inflammation.

3.1. Adaptive Immune Dysregulation

The function of immune checkpoints is to regulate antigenic activities and self-
tolerance through co-stimulation or direct immune cell inhibition, but tumor cells can
evade the tumor surveillance by overexpression of inhibitory proteins. In MDS, immune
dysregulation causes autoimmune disease-like features. LR-MDS is characterized by
autoimmune-mediated apoptosis, while HR-MDS is characterized by a clonal expansion
of selected progenitor lineage [138]. The co-existence of selective cell proliferation and
apoptosis of alternative clones complicates the disease pathogenesis. In LR-MDS or early
MDS patients, apoptosis signaling is associated with multiple mechanisms: (1) activation
of Fas signaling as a result of an increased level of pro-apoptotic cytokines (e.g., TGF-β,
IFN-γ and TNF-α); (2) elevation of T-helper (Th) type 17; (3) dysfunctional B-cells; and
(4) cytopenic regulatory T-cells (Treg) [139]. Kotsianidis et al. discovered that autoim-
munity regulated by Treg is distinct between two MDS risk groups. In comparison with
HR-MDS and normal hematopoiesis, CD4+ CD25+ FOXP3+ Treg cells are found dysfunc-
tional and failed to home to bone marrow microenvironment due to downregulation of
CXCR4. This leads to decreased self-tolerance hence autoimmunity by T-cells in the bone
marrow [140]. This is supported by the additional study from Zou et al. which showed
that CD4+ Th-cells are deficient rather than CD8+ cytotoxic cells. An increased percentage
of quiescent memory CD4+ and CD8+ cells in the peripheral blood of MDS patients is
also observed. Hence, a lower age-corrected ratio of CD4+:CD8+ cells and a significant
drop in proliferative index in both T-cell subpopulations have been observed in patients
responding to immunosuppressive therapy [141].

While the major effector immune cells in the adaptive immune system lie with CD8+

cytotoxic T-cells, major receptors involved in T-cell activation and suppression are grouped
into co-stimulatory receptors and co-inhibitory receptors respectively. Co-stimulatory
receptors include CD28, 4-1BB, C1D27, ICOS expressed on T-cells, and CD80 and CD86
expressed on antigen presenting cells [142]. On the other hand, co-inhibitory receptors
include cytotoxic T-lymphocyte-associated-protein 4 (CTLA4) and programmed cell-death
protein (PD1, also known as CD279) are predominantly expressed by T-cells [143,144].
Programmed cell death ligand 1 (PD-L1/CD274) and B7 are ligands of PD-1 and CTLA-4
respectively, which are expressed on antigen-presenting cells (APCs) [143]. The molecular
interactions of PD-1/PD-L1 and CTLA-4/B7 axes suppress the immune response. This
suppression of T-cell activity serves as an escape mechanism from immune surveillance in
several hematological malignancies, including myeloid neoplasms [145,146].

In MDS, studies have shown that PD-1, PD-L1, and CTLA-4 are aberrantly upregulated
in MDS patients [146,147]. Yang et al. reported the overexpression of PD-1 in MDS
patients. Higher levels of PD-1 have been demonstrated in HR-MDS in comparison with
LR-MDS patients [146]. Myeloid cells take advantage of these immune checkpoints by
upregulating inhibitory ligands CD47, B7-1, B7-2, and PD-L1 [145,148]. MDS cells have
demonstrated the ability to harness some immunosuppressive effects to facilitate their
survival and proliferation. For example, T-cells have increased expression of immuno-
inhibitory receptors ligands CTLA4, ICOS, PD-1, and T-cell immunoglobulin mucin 3
(TIM-3, also known as CD366) found on MDS patients with treatment-refractory compared
with healthy donors [149]. PD-1 and PD-L1 levels are also elevated in patients after
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treatment of HMAs or upon HMA failure, albeit discovering no significant association
between the level of PD-1 expression in response to HMA [146].

In the context of TIM-3 dysregulation which is a distinct AML marker present predom-
inantly on leukemic stem cells (LSCs), TIM3 is absent on normal HSCs [150–152]. However,
its presence on MDS blasts cells is associated with disease progression and leukemic trans-
formation, and this is evident by the upregulation of pro-proliferative or anti-apoptotic
genes [151]. Galectin 9 (Gal-9), one of the ligands of TIM-3 receptor is found excessively
expressed on myeloid-derived suppressor cells (MDSCs), exerting an inhibitory effect
on immune and inflammatory reactions [153]. The TIM-3/Gal-9 pathway takes part in
MDSC-induced T cell exhaustion [150–153]. It also activates NF-κB and β-catenin signaling
and promotes self-renewal in TIM-3+ LSCs [154].

3.2. Innate Immune Dysregulation

Abnormal innate immunity associated inflammation also contribute to the physio-
pathogenesis of MDS. This is evident by overexpression of upregulation of immune related
genes in hematopoietic stem or progenitor cells, including TLRs, CD14, and signaling
proteins of the NF-κB and MAPK pathways [120,155,156]. As a result, these MDS stem
cells increase the production of pro-inflammatory cytokines TNF-α, IL-1, IL-8, and IL-6,
contributing to inflammation in MDS. Despite there being a mild discrepancy in dominant
TLR responsible for the autoimmune mediated inflammation, TLRs are elevated in CD34+

MDS cells. TLR2 is likely responsible for the constitutive apoptosis, and LR-MDS is more
prone to this phenomenon in comparison with HR-MDS [117,118,157].

In terms of immune cell, NK cells functions in both innate and adaptive immune
response. Unlike early MDS, advanced MDS is characterized by dysfunctional natural
killer (NK) cells, immune evasion coupled with increased Treg, therefore, expansion of
anti-apoptotic neoplastic cell lineage [139,158–160]. The key receptors controlling self-
recognition by human NK cells are HLA class I-binding receptors, including the killer
immunoglobulin-like receptor (KIR) family as well as the natural killer Group 2A (NKG2A)
and leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1, also known
as LIR-1) [160]. Especially among HR-MDS patients, multiple reports have shown NK
cells decreased expression of NKG2D and DNAM-1 [159,161,162]. Carlsten et al. further
reported the loss of the potent anti-tumor property of NK cells in vitro and that these
NK cells display impaired cytotoxicity towards CD34+ MDS blast cells, hence evading
tumor surveillance.

For dendritic cells (DCs) and macrophages, which are both the major players in
innate immunity, the tumor microenvironment is further complicated in response to the
upregulation of proliferative cytokines. While DC is normally responsible for tumor
recognition and antigen presentation, cytopenic DC in MDS patients has been reported and
is predicted to be defective in activating Treg cells [163]. This finding is supported by recent
in vitro studies of DCs isolated from MDS patients (MDS-RA and MDS-RARS) showing
significantly lowered levels of both mature and immature DCs coupled with deprived
antigen presenting ability to Treg [164]. Moreover, macrophages are found suppressed in
MDS and this phenomenon is more profound in HR-MDS than LR-MDS [139]. In general,
the macrophage is crucial for phagocytosing, hence clearing cellular debris from aborted
differentiation of hematopoietic cells. However, TLR signaling is found to be activated
in macrophages via TLR4 overexpression, contributing to inflammasome activation in
MDS [155,165]. Han et al. also reported that monocyte-derived macrophages in LR-MDS
or intermediate risk MDS patients are found to be reduced despite monocyte counts being
higher than in normal individuals. Such suppressed macrophage populations are also
inefficient in phagocytosis of abnormal MDS cell clones, producing a pro-tumor growth
microenvironment in bone marrow [166].

Most notably, signal regulatory protein alpha (SIRPα), the ligand of CD47, is present
on DC and macrophages [167]. With CD47 being a transmembrane protein expressed on
the surface of tissue cells and myeloid leukemia cells, CD47 serves as a self-marker for host
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tissue recognition and evasion of immune response [168–170]. During a normal immune
response to foreign antigens, expression of the inhibitory ligand CD47 modulates cells
into anti-apoptosis and enhances the function of immune suppressor Treg, resulting in
antigen-specific T-cell cytotoxicity. When inhibitory ligand expression is low, tumor cell
apoptosis can occur and T-cell receptor (TCR) mediates cytolysis, induced by T-cells [171].
With CD47 expression being high in MDS LSCs of HR-MDS compared to those of LR-MDS,
binding of CD47 to SIRPα prevents MDS cells from phagocytosis and hence promotes
selected clonal expansion, contributing to a HR-MDS phenotype [168–170].

4. Treatment of MDS
4.1. Hypomethylating Agents (HMA)

The first generation of HMA was developed as conventional cytostatic therapy back
in the 1960s [172]. The use of HMA drugs in MDS aims to restore the expression of
tumor suppressive genes silenced by promotor hypermethylation [173,174]. The current
generation of HMA drugs are AZA (5-azacytidine) and DEC (5-aza-2′-deoxycytidine). AZA
is administered subcutaneously at a dose of 75 mg/m2 for 7 days every 28 days, and DEC
is given intravenously at a dosage of 15 mg/m2 every 8 h for 3 days with repetition every
6 weeks. Both drugs have shown beneficial effects in MDS and have been approved by the
US Food and Drug Administration (FDA) since 2004 and 2006, respectively [175,176]. A 5-
day regimen of DEC at 20 mg/m2 at a 28-days interval that allows easier administration was
later approved by the FDA in 2010 as the clinical standard [173,174]. DEC has been reported
to stimulate NK cell responsiveness to IL-2 stimulus while AZA can impair NK cell activities
through IFN-γ modulation [177]. Allogeneic immune reactions of donor lymphocyte
infusions by DC have also been reported to increase through HMA treatment [178]. In
contrast, the bone marrow microenvironment, such as mesenchymal stromal cells (MSC),
was found suppressed upon HMA treatment in MDS patients [179].

There are studies that have demonstrated the immunomodulatory effects of HMA
in MDS. Gomez et al. evaluated the hematopoietic architectures of MDS cells before and
after HMA treatments and discovered distinct sub-populations, being CD34+ and CD38+,
upon disease progression [180]. CD38 expression on CD8+ T-cells was found to have a
negative correlation with IFN-γ and abundance of CD8+ T-cells after the introduction of
HMA indicated decreased T-cell activity [181]. Another study demonstrated that a decrease
in CD8+ cells is associated with the introduction of DEC with anti-PD1 treatment [182].
Early research has also shown the induction of Tregs via demethylation of FOXP3 promoter
by HMA, this led to investigation of how HMA affects the functions of NK cells [183,184].

The molecular mechanism of HMA comprises of cellular uptake, intracellular activa-
tion, nucleic acids incorporation, and DNMT inhibition resulting in DNA hypomethylation
(Figure 5). The cellular uptake is regulated by two different transporters: (1) human
concentrative nucleoside transporter (hCNT) for AZA intake, and (2) human equilibra-
tive transporter (hENT) for DEC intake [185]. Enzymes catalyzing the rate limiting step
are 1-uridine-cytidine kinase (UCK) and deoxycytidine kinase (DCK), which produce 5-
azacitidine-triphosphate (5-aza-CTP) from AZA and 5-aza-2′-deoxycytidine-triphosphate
(5-aza-dCTP) from DEC, respectively. HMA is considered as an S-phase specific drugs due
to its nature of incorporation into DNA during cell replication.

Upon intracellular activation, DEC exclusively incorporates into DNA only and AZA
primarily incorporates into RNA. Meanwhile, 15–20% of AZA intake can be converted
from 5-aza-CDP to 5-aza-dCDP through ribonecleotide reductase (RNR), which then can be
integrated into the DNA. After a series of phosphorylation events give rise to the 5-aza-CTP
and 5-aza-dCTP for AZA and DEC, respectively, which leads to incorporation of RNA and
DNA resulting in irreversibly bind to maintenance DNMT1 resulting in degradation of
DNMT1 and DNA de-methylation [179]. DNA demethylation can lead to the reactivation
of abnormal silenced genes, involving multiple pathways, such as angiogenesis, apoptosis,
differentiation, and DNA repair [179].
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4.2. Mechanisms of Resistance to Hypomethylating Agents

In spite of the good initial treatment responses to HMA, 40% of MDS patients will
develop resistance to HMA [179,186]. There are two types of HMA resistance: primary
resistance, which refers to a patient with no improvement after 4–6 cycles of treatment,
and secondary resistance that refers to disease relapses after long-term treatment. Various
studies have been performed to study primary and secondary HMA resistance. Qin et al.
demonstrated that resistance to DEC in most cancer cell lines has downregulated genes
involving in the uptake and activation of DEC, while they also noticed a high expression of
cytidine deaminase (CDA) [186,187]. The loss of DCK and mutations of UCK2 can cause
resistance to DEC and AZA, respectively. Unfortunately, pre-clinical evidence of HMA
resistance in MDS is relatively unclear. For DEC resistance, MDS patients with primary
resistance present a high CDA to DCK ratio resulting in the inactivation and decrease of
5-aza-dCTP. In MDS patients with secondary resistance, upregulation of mutated DCK
mRNA with suppressed activities of DEC. For AZA, a downregulation of UCK1 in MDS
AZA resistant patients is reported but not UCK2, postulating the two enzymes do not have
identical relevance to AZA resistance [188–190].

In terms of immunomodulation during HMA resistance, there are studies that have
demonstrated failed immune response being correlated with high expression of PD-1,
PD-L1, PD-L2 and CTLA-4 in MDS. Treatment with DEC results in a dosage-dependent
upregulation for these genes, and partial demethylation of PD-1 [146]. Ørskov et al. also
demonstrated that demethylation of PD-1 promoter correlates with significantly inferior
response rates during HMA treatment in MDS. They also reported that HMAs induce
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PD-1 expression on T cells in the MDS microenvironment, thereby impeding the immune
response against the MDS blasts [191].

4.3. Next Generation HMA—Strategies to Overcome HMA Resistance

Although AZA and DEC currently remain standards of care in MDS, their short half-
life and poor oral availability prompted persistent efforts for the development of novel
HMAs and combinations [187]. CC-486, an oral formulation of AZA, was developed to
enhance the ease of administration and dose adjustment [187]. In a study, MDS patients
presented a reduction in DNA methylation induced by the current 7-day AZA regimens
that was subsequently reversed towards the end of the cycle [192]. In contrast, persistent
reduction of methylation was achieved by extended dosing of CC-486 for either 14 or
21 days [193]. The use of the 14- and 21-day regimens in patients with LR-MDS produced
an encouraging overall response rate (ORR) of 38% alongside a tolerable safety profile.
The most frequent grade 3–4 adverse events were neutropenia, anemia, and gastroin-
testinal disturbances [194]. In a placebo-controlled randomized phase III trial, CC-486
significantly enhanced red cells and platelet improvement rates at the cost of increased
incidence of adverse events compared to placebo (90% vs. 73%) [195]. In spite of the higher
infection-related mortality rate in the CC-486 arm in the first 56 days, the overall mortality
rates remained similar between the two arms [196]. Alternative treatment may overcome
adaptive responses due to repetitive use of HMA. Recent clinical trials have also explored
novel HMAs along with combination therapy as potential strategies to overcome HMA
resistance [195].

4.3.1. Guadecitabine (SGI-110)

Guadecitabine (SGI-110) is a dinucleotide of DEC and deoxyguanosine that is admin-
istered via subcutaneous injections [187]. A DEC analog is resistant to deamination by
CDA, and is hence more effective with easier administration given the less-frequent dosing
requirements compared to AZA and DEC [197]. The prolonged duration of action of this
agent can be accounted for by its resistance towards CDA mediated degradation [187].
A multicenter phase I study among relapse/refractory (R/R) AML and MDS patients
highlighted its clinical efficacy, where 22% (2 out of 9) of MDS patients showed marrow
complete responses [198]. A phase II study of guadecitabine in HR-MDS patients with AZA
resistance demonstrated an ORR of 14.3% with significant improvement in survival among
responders [199]. However, in the randomized phase III ASTRAL-3 trial, guadecitabine
failed to improve the survival of previously treated MDS patients when compared to
standard treatments [200]. This agent was generally well tolerated, with the most com-
mon grade 3 or above adverse events being febrile neutropenia, myelosuppression, and
infections [198,199].

4.3.2. ASTX727

ASTX727 is an orally available combination of DEC and CDA inhibitor cedazuridine.
Its impressive activity is first elucidated in a multicenter phase I/II study among MDS
and CMML patients, where non-inferiority of ASTX727 towards IV DEC is established,
along with a CR rate of 18% and transfusion independence rate of 49% [201,202]. In the
randomized phase III ASCERTAIN study among MDS patients, comparable demethylation
activity and safety profiles between ASTX727 and IV DEC were demonstrated [195]. These
satisfactory results have prompted FDA-approval of ASTX727 for previously treated and
untreated, de novo and secondary MDS with specific FAB subtypes (RA, MDS-RARS,
MDS-RAEB, and CMML) and IPSS scores (intermediate-1, intermediate-2, and high-risk)
in 2020. ASTX727 has a favorable safety profile, with febrile neutropenia and infections
being the most common serious adverse events [201–203].
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4.4. Targeted Therapy in Combination with Hypomethylating Agents

Although HMA treatments have survival benefits and are the current standard of
care, many MDS patients will not garner a response from therapy. For those who do
respond, most responses are not durable, and the only hope for treatment is allo-HSCT.
New therapies to combat HMA resistances are urgently needed. Several of these small
molecules have demonstrated the ability to augment the response rates of HMA, including
complete remission (CR) rates, in both the front line and refractory settings. Clinical
trials of targeted therapy for MDS patients are mainly based on the safety and efficacy
data demonstrated in AML patients. This section focuses on discussing the rationale and
application of co-administration of targeted therapy and HMAs in MDS patients.

4.4.1. BCL-2 Inhibitors

Venetoclax, approved by the FDA, is a BCL-2 inhibitor that can be used in combination
with HMAs in HR-MDS patients and has been reported to have a good therapeutic response
in a case study as a monotherapy (ClinicalTrials.gov (accessed on 21 September 2021)
Identifier: NCT02966782) [204]. It acts as a BH3 mimetic that impedes the binding of
BH3 proteins to BCL-2, hence releasing pro-apoptotic BAK and BAX proteins [205,206].
This results in mitochondrial outer membrane permeabilization (MOMP) with the release
of cytochrome C into the cytoplasm, leading to the formation of cytosolic apoptosome
complex, caspase activation, and subsequent cellular apoptosis [207].

More importantly, dose optimization co-treatment of venetoclax and AZA could
effectively spare hematopoiesis without affecting its ability to target malignant cells [208].
Encouraging results have been observed in clinical trials. A phase 1b trial on treatment-
naïve HR-MDS patients demonstrated an ORR of 74% and progression-free survival (PFS)
of 59% [209,210]. This finding was further validated in another study that showed a
compatible ORR with a majority of patients being bridged to allo-HSCT [211]. The phase 3
VERONA trial is currently underway to further assess the safety and efficacy of combination
therapy (ClinicalTrials.gov Identifier: NCT04401748) [212]; however, it should be noted
that cytotoxic effects might be aggravated by concomitant CYP3A4 inhibitors [206,208].
For instance, dose-adjustment of venetoclax is required with concomitant use of triazole,
a frequently used CYP3A4-inhibiting anti-fungal in MDS patients [206]. In addition,
granulopoiesis is particularly suppressed in combination therapy, febrile neutropenia is,
therefore, a commonly exhibited adverse effect [208,209,211].

Pollyea et al. reported that the use of ventoclax with AZA disrupts energy metabolism
in LSC, resulting in more durable remissions by inhibiting amino acid metabolism, leading
to cell death. The effects of combinational therapy yielded much better results in com-
parison with conventional treatments [213]. Two years later, the second part of this study
demonstrated resistance forming from a combinational therapy of venetoclax/AZA, which
failed to eradicate LSCs in R/R patients caused by elevated nicotinamide metabolism.
Metabolomic analysis reveals elevated nicotinamide causes in the activation of both amino
acid metabolism and fatty acid oxidation resulting in oxidative phosphorylation. This
provides means for LSCs to evade the cytotoxic effects of venetoclax/AZA therapy [214].

4.4.2. IDH1/2 Inhibitors

Ivosidenib is a potent orally available IDH1 inhibitor. It suppresses mutant IDH1 and
hampers the synthesis of oncometabolite 2-HG, resulting in aberrant DNA and histone
hypermethylation, differentiation arrest of the myeloid lineage, and initiation of leuke-
mogenesis [215–217]. A phase 1 dose escalation and expansion trial was conducted on
IDH1-mutated R/R MDS patients [215,218,219]. An ORR of 91.7% was entailed and 60% of
patients remained in CR at 12 months, revealing the favorable response of ivosidenib in
R/R MDS patients [215,218,219]. Olatusidenib (FT-2102) is another potent IDH1 inhibitor
that restores cellular differentiation in MDS patients [210,220]. Clinical responses were seen
in 33% and 73% with olatusidenib monotherapy and combination therapy, respectively, in
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a phase 1/2 trial [220]. Safety and tolerability were depicted [220,221]. More clinical trials
are currently underway (ClinicalTrials.gov Identifier: NCT02719574).

Enasidenib specifically targets IDH2 and could be used in MDS patients harboring
IDH2 mutations. The effectiveness of enasidenib was recognized in the AG221-C-001 trial,
where it not only gained FDA approval in 2017, but also evoked further investigations in
IDH2-mutated R/R MDS patients [222–224]. OS was extended by around 3 times from 5
months to 16.9 months [222]. A phase 2 clinical trial was performed to further evaluate the
tolerability and efficacy of enasidenib as a monotherapy or as a combination therapy with
AZA [225,226]. Hopeful results as manifested with 100% HMA-naïve HR-MDS patients
responding to concurrent AZA-enasidenib therapy. Fifty percent of patients who were
previously HMA-resistant were responsive to enasidenib monotherapy. In addition, most
adverse effects were manageable, implying enasidenib is a tolerable novel agent in HR-
MDS patients [225,226]. Further clinical results are anticipated (ClinicalTrials.gov Identifier:
NCT03744390; NCT03383575; NCT03839771).

4.4.3. FLT3 Inhibitors

Midostaurin is a first-generation type 1 FLT3 inhibitor that targets both FLT3-ITD and
FLT3-TKD mutations. Concomitant use of midostaurin and AZA only showed an ORR
of 26% in a phase 1/2 study in FLT3-positive HR-MDS and AML patients [227]. As FLT3
mutation is associated with leukemogenesis, it is suggested that blast reduction is the
most significant observation. Clinical response remains limited and was neither profound
nor sustained enough to achieve CR [228]. Gilteritinib, a second-generation type 1 FLT3
inhibitor, was also investigated in MDS-EB-2 patients although the results have yet to be
published (ClinicalTrials.gov Identifier: NCT04027309). Its use with venetoclax and AZA is
also warranted (ClinicalTrials.gov Identifier: NCT04140487).

In contrast to midostaurin and gilteritinib, sorafenib is a first-generation type 2 FLT3
inhibitor with explicit FLT3-ITD inhibition. To date, the clinical efficacy of sorafenib
has been limited and the results have been disappointing [118,229,230]. Co-treatment of
sorafenib and a low dose cytarabine only demonstrated 10% ORR. The discouraging results
might be explained by the use of low-dose cytarabine instead of HMAs, which is efficacious
in MDS patients [118,230]. In addition, the off-targeting effect of sorafenib on vascular
endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor
(PDGFR) give rise to unwanted adverse effects, such as hand–foot skin reaction [118].
Quizartinib is a second-generation type 2 FLT3 inhibitor. Multiple clinical trials with
HMAs and/or FLT3 inhibitors are underway (ClinicalTrials.gov Identifier: NCT01892371;
NCT03661307; NCT04493138). An interim report of the phase 1/2 trial showed that
quizartinib exhibits an ORR of 67% in FLT3-ITD-mutated patients, which is higher than
that of monotherapy [231]. Hence, this provides hope for FLT3-mutated MDS patients,
especially those who are not candidates for allo-HSCT.

4.5. Splicing Inhibition and TP53 Modulation

The SF3b subcomplex is a component commonly targeted by splicing inhibitors [232,233].
They prevent the binding of SF3b subcomplex to pre-mRNA, leading to the blockade of
spliceosome assembly [232,233]. Among the numerous splicing inhibitors, E1707 and
H3B-8800 are the only two spliceosome inhibitors being tested in clinical settings [234].
E1707 is a pladienolide derivative targeting SF3B1 and was first evaluated in a phase 1 trial
for advanced solid tumors [235,236]. However, further clinical investigation is discouraged
as a patient developed optic neuritis. Nevertheless, its association with splicing inhibitors
has not yet been corroborated [235]. H3B-8800 is a recently developed orally available
splicing modulator that also binds to SF3b complexes, altering mRNA splicing and hence
lethality [232–234,237]. A phase 1 clinical trial has been conducted, showing safety and a
predictable pharmacokinetic profile in MDS, CMML, and AML patients [238]. Decreased
transfusion independence has been also observed in 14% of patients [238]. Due to the
investigation into the use of splicing inhibitors being early, the exciting results prompt
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further exploration. Inhibition of spliceosome mutations might be a potential therapeutic
option in MDS patients in the future.

Eprenetapopt (APR-246) is a novel small molecule that spares normal cells, while it
covalently binds to mutant and wild-type p53 to thermodynamically stabilize p53 mutants
for reactivation of its functions and restoring the conformation of misfolded p53 wild-
type proteins to ultimately eradicate leukemic cells [239–242]. In a phase Ib/II study,
combination of eprenetapopt with azacitidine resulted in an ORR of 73% in MDS with 50%
achieving CR and 58% achieving a cytogenetic response [243].

4.6. Immune Checkpoint Inhibition in Combination with HMA
4.6.1. Anti-PD-1, Anti-PD-L1, Anti-CTLA-4

The elevated levels of PD-1 and PD-L1 have been found in patients after treatment
of HMAs or in the case of HMA failure, albeit discovering no significant association
between level of PD-1 expression with response to HMA [146]. This sheds light on immune
checkpoint molecules as therapeutic targets for the development of immune checkpoint
inhibitors and as potential agents in refractory disease. Pembrolizumab (MK-3475) and
nivolumab are both humanized monoclonal antibodies (mAbs) that serve as anti-PD-1
inhibitors. Durvalumab (MEDI4736) and atezolizumab, on the other hand, act as anti-PD-L1
inhibitors. Ipilimumab is an anti-CTLA-4 inhibitor (Table 1).

Table 1. List of clinical trials on novel agents and combinatorial treatment for MDS.

Drug Phase Disease Subtype Regimen Status Clinical Trial
Identifier

Immune Checkpoint Inhibitors

Pembrolizumab

Anti-PD1

1 Hematologic
malignancies Pembrolizumab Completed NCT01953692

1 MDS Pembrolizumab +
Entinostat

Active, not
recruiting NCT02936752

2 MDS Pembrolizumab + AZA Recruiting NCT03094637

1 ND/RR AML/MDS Pembrolizumab + DEC Recruiting NCT03969446

Nivolumab

2 MDS, R/R MDS Nivolumab + AZA,
Ipilimumab + AZA Recruiting NCT02530463

2/3 AML, MDS
AZA +

Nivolumab/Midostaurin,
DEC + Cytarabine

Active, not
recruiting NCT03092674

Durvalumab
(MEDI4736) Anti-PD-L1

1 MDS
Durvalumab,

Durvalumab +
Tremelimumab

Completed NCT02117219

2 MDS Durvalumab + AZA Active, not
recruiting NCT02281084

2 AML, MDS AZA, AZA +
Durvalumab

Active, not
recruiting NCT02775903

Ipilimumab Anti-CTLA-4 1 R/R MDS, AML Ipilimumab + DEC Recruiting NCT02890329

Sabatolimab
(MBG453) Anti-TIM-3

1 AML, HR-MDS
MBG453, or in

combination with
PDR001/DEC/AZA

Active, not
recruiting NCT03066648

2 HR-MDS MBG453 + HMA Active, not
recruiting NCT03946670

3 HR-MDS, CMML-2 MBG453 + AZA Recruiting NCT04266301

2 HR-MDS Sabatolimab + AZA +
Venetoclax Not yet recruiting NCT04812548

2 HR-MDS Sabatolimab +
AZA/DEC Not yet recruiting NCT04878432

TTI-621 (SIRPαFc)

Anti-CD47

1
Hematologic

malignancies, solid
tumors

TTI-621 for MDS Recruiting NCT02663518

Magrolimab 1 Hematologic
malignancies

Magrolimab,
Magrolimab + AZA Recruiting NCT03248479

3 MDS AZA, AZA +
Magrolimab Recruiting NCT04313881

AK117 1/2 MDS AK117 + AZA Recruiting NCT04900350

Abbreviations: ND, newly diagnosed.
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Monotherapy with pembrolizumab or ipilimumab exhibited suboptimal responses in
HMA-resistant patients with ORRs of 4% and 3.4%, respectively (NCT01953692) [244,245].
Nevertheless, a phase 2 trial done by Chien et al. showed the potential anti-leukemic effect
of pembrolizumab with AZA in HMA-resistant patients (NCT03094637) [246]. Another
phase 2 trial conducted by Garcia-Manero et al. also preliminarily observed superior
therapeutic effects for nivolumab or ipilimumab as a combination therapy with AZA, with
ORRs of 75% and 71%, and median survivals of 12 months and not reached, respectively.
A better synergistic response was observed in ipilimumab than with nivolumab with
AZA [247]. However, they both performed poorly as single agents (both with median
survivals of 8 months), which was supported by another phase 2 study showing ORRs of 0%
and 22% in nivolumab and ipilimumab, respectively [247,248]. The use of nivolumab with
AZA also displays anti-leukemic effect in de novo MDS patients with an ORR of 69% [248].
Notably, the addition of the anti-PD-L1, durvalumab, to AZA also augmented the ORR in
HR-MDS, as demonstrated in a study performed by Zeidan et al. (ORRs: 61.9% vs. 47.6%)
(NCT02775903) [249]. Atezolizumab, on the other hand, has demonstrated limited efficacy
with unfavorable safety when engaged with AZA [250]. Clinical trials on the combination
of pembrolizumab with entinostat, a HDAC inhibitor, or DEC are underway (NCT02936752,
NCT03969446). Other trials combining nivolumab, ipilimuma or durvalumab with HMA
are also being evaluated (NCT02117219, NCT02281084, NCT02530463, NCT02890329,
NCT03092674).

4.6.2. Anti-TIM-3

The introduction of anti-TIM-3 antibodies put an end to the proliferation of leukemic
blasts. This finding eventually led to the development of mAb antagonizing TIM-3 recep-
tors as a possible novel treatment for HR-MDS [251]. A phase 1b study carried out by
Borate et al. demonstrated that the use of DEC with sabatolimab in HR-MDS can achieve
50% CR and molecular CR (mCR) [252]. In addition, another phase 1b trial conducted by
Brunner et al. showed an ORR of 62.9% with superior response in very high risk IPSS-R
than high risk IPSS-R patients (84.6% vs. 50%) [251]. A phase 1 trial is currently in progress,
studying the safety and tolerability of sabatolimab alone and in combination with AZA or
DEC (NCT03066648). Phase 2, STIMULUS-MDS1 (NCT03946670), and phase 3, STIMULUS-
MDS2 (NCT04266301), trials are also underway, evaluating the efficacy of the combination
of sabatolimab with HMAs [153]. This prompts further development of several impending
phases 2 trials, STIMULUS-MDS3 and STIMULUS MDS-US, evaluating the efficacy of
sabatolimab in conjunction with HMAs in HR-MDS (NCT04812548, NCT04878432).

4.6.3. Anti-CD47

With CD47 overexpressed in MDS and the binding of CD47 to SIRPα prevents MDS
cells from phagocytosis, the blockade of such interactions promotes antibody-dependent
cytotoxic phagocytosis of the tumor cells opsonized with antibodies [253]. This has led to
the introduction of magrolimab, TTI-621, and CC-90002 as anti-47 mAbs for therapeutic
advancement in MDS [168–170]. Magrolimab (Hu5F9-G4) is a mAb targeting malignant
cells via macrophage phagocytosis. It serves as a checkpoint inhibitor of macrophages that
exhibits anti-phagocytic properties [253]. Despite the limited efficacy of magrolimab as a
monotherapy, its use as a combinatory drug exhibits potential synergistic effects. Sallman
et al. conducted a phase 1b trial on the use of magrolimab with AZA and evaluated its
efficacy in MDS and AML patients. Objective response was seen in all de novo MDS patients
in the study. The combination significantly shortened the time to response by a median of
1.9 months when compared with AZA alone [254]. This led to the expansion of the trial,
which has demonstrated a pronounced objective response of 91% in HR-MDS patients,
suggesting that magroliumab is a promising therapeutic candidate for the development of
future novel drugs (NCT03248479) [255]. TTI-621, also known as signal regulatory protein
α-Fc (SIRPαFc), also entered a phase 1 trial, evaluating its effectiveness as a single agent in
MDS (NCT02663518). Currently, a phase 3 trial, ENHANCE, is underway, comparing the
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efficacy of the synergy between magrolimab and AZA and AZA alone (NCT04313881) [196].
Other ongoing trials are also under investigation (NCT03248479). AK117, a novel IgG4 mAb
antagonizing CD47, was also tested in a phase 1/2 trial for safety and efficacy assessment
in HR-MDS (NCT04900350).

4.7. Adoptive T-Cell Therapy with HMA or as Monotherapy

Adoptive T-cell therapy is the infusion of T-lymphocytes into a patient’s body to
directly target an antigen, resulting in an increase of cytotoxicity for the target cell. T-
cell transfers can be autologous or allogeneic, which can be an unmanipulated transfer
(donor lymphocyte infusion) or a manipulated transfer, such as ex-vivo priming with
onco-antigens, chimeric antigen receptor (CAR) T-cell constructs and modified T-cell
receptors. For example, by immunizing with antigens, there are in vitro studies conducted
to find ways to manipulate lymphocytes and target myeloid antigens for patients with
MDS. There are only two phase 1 clinical trials of CAR T-cell therapy on intermediate to
HR-MDS patients or patients failing HMA (ClinicalTrials.gov Identifier: NCT-03258359;
NCT02203825); results have not yet been published.

4.7.1. Anti-CD123

Steven et al. demonstrated that cell surface antigen CD123 is overexpressed on MDS
stem cells [256], with a gradual increase of CD123 expression from LR-MDS, intermediate to
HR-MDS [257]. CD123 CAR-T cells eradicated CD123+ MDS stem cells in vitro as a proof-
of-concept for a valid treatment for high risk MDS patients. While eradicating CD123+

MDS stem cells may substantially reduce disease burden residuals of CD123negative/low

the MDS stem cells that were left behind are still of concern. Li et al. demonstrated that
CD34+CD123+ stem population is not as abundant in LR-MDS and intermediate risk MDS
in comparison with HR-MDS patients, postulating that MDS stem cells in these patients
will not be effectively targeted by CD123 CAR T-cells [257].

4.7.2. Anti-NKG2D

The natural killer group 2 receptors (NKG2D) are positive immunomodulatory pro-
teins found on NK and CD8+ T cells. When there is a presence of intracellular stress, such as
DNA damage, infections, inflammation, and toxins, cancer cells express high levels of the
MHC I chain-related protein A/B (MICA/B), which are ligands for NK2GD hence inducing
tumor elimination by NK-mediated or CD8+ T-cell [258,259]. In ~30% of MDS patients,
protein expression of both MICA and MICB is found in CD34+ cells. At the same time,
NKG2D is downregulated in MDS patients and is correlated with impaired NK-mediated
cytotoxicity. Moreover, impaired NK function in MDS has been reported with significant
associations to higher IPSS risk, abnormal karyotype, excess blasts percentage, and marrow
hypercellularity [260]. Other pre-clinical models have also been reported on the extended
potential of NKG2D CAR T-cells, such as in the overexpression of the receptor to overcome
natural inhibition mediated by MICA [261–263] and the co-stimulation of CD28 for T
cell activation and survival through the activation of DNAX-activating protein of 10 kDa
(DAP10) [264,265]. These data collectively confirm the evasion of NK surveillance by MDS
cells, prompting the development of CAR T-cell therapy targeting this axis [266].

Genetically engineered T-cells to express NKG2D have demonstrated the potential to
specifically target, not just cancer cells, but also Tregs and myeloid-derived suppressor cells
within the tumor microenvironment [267]. Clinical trials of NKG2D CAR T-cells in MDS
patients showed the overexpression of the ligands for NKG2D [267,268]. Ongoing phase
I trials (ClinicalTrials.gov Identifier: NCT02203825) are now underway but preliminary
reports have demonstrated NKG2D CAR T-cells with transient hematologic improvement
against autologous tumor cells in vitro of MDS patients [265].

ClinicalTrials.gov
ClinicalTrials.gov


Int. J. Mol. Sci. 2021, 22, 10232 22 of 34

4.8. Donor-Derived Lymphocytes against Tumor-Associated Antigens

Relapse following allogeneic HSCT is associated with a dismal outcome [269]. Un-
manipulated donor cell infusion (DLI) or second allogeneic HSCT may be considered but
responses are often unpredictable [270,271]. Patient-specific DLI with tumor-associated
antigen (TAA) stimulation ex vivo selects for an enriched, polyclonal CD4+ and CD8+

specifically target myeloid malignancies have shown promises in aiding advanced treat-
ment in MDS. Lulla et al. were able to mitigate GVHD with non-manipulated DLI by
selecting T-cells with specific MDS antigens that are not typically present on normal host
cells, such as NYESO1, PRAME, Survivin, and WT1. Twelve patients who received TAA-
cell prophylaxis (n = 12) had 4 relapses within 1 year of infusion, of which the 11 patients
that received tailored DLI TAA-T cells remain alive. Respondents to the treatment had
a measurable expansion of leukemia antigen specific T-cells which persisted for over
9 months with no experience of any infusion related GVHD [272].

TAA-DLI has shown potential in disease control compared with unselected donor T
cell infusion in post-transplant settings; however, its limitations lie with the productivity of
the T-cells as its highly dependent on donor availability. The utilization of autologous CAR
T therapy in MDS remains uncertain. There are many problems that must be overcome such
as the inability to persist with T cell response memories problematic for this to be a make a
valid therapy option for HR-MDS. Through CAR T cell expansion processes, problems, such
as the immunosuppressive and impair immune effects, can be rectified and reinforce the
central dogma of the bone marrow microenvironment in MDS [273,274]. NK cell therapy
has also been reported to be a well-tolerated therapy for HR-MDS or patients refractory
to chemotherapy [158]. Although tested in only a very few MDS patients, Björklund et al.
reported that infusion of haploid identical NK cells from a healthy donors can reduce the
allelic burden of tumor cell clones with high risk ASXL1 and RUNX1 mutations. MDS
patients responding to this treatment also shows undetectable mutations upon therapy.

5. Conclusions

MDS is a clonal hematological disease with substantial genetic and epigenetic complex-
ity and heterogeneity. The genomic profile should be incorporated into the personalized
prognostic assessment of MDS and therapeutic targeting with novel agents. To overcome
HMA resistance, combinatorial approaches involving novel agents and HMA are required.
These include molecular targeted therapy and immune checkpoint inhibition.
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