Journal of Medical Genetics

Neurogenetic fetal akinesia and arthrogryposis: genetics, expanding genotype-phenotypes and functional genomics

Journal:	Journal of Medical Genetics		
Manuscript ID	jmedgenet-2020-106901.R1		
Article Type:	Original research		
Date Submitted by the Author:	16-May-2020		
Complete List of Authors:	Ravenscroft , Gina; UWA, ; Harry Perkins Institute of Medical Research, Clayton, Joshua Faiz, Fathimath ; PathWest Laboratory Medicine Western Australia Sivadorai, Padma; PathWest Laboratory Medicine Western Australia Milnes, Di; Royal Brisbane and Women's Hospital Cincotta, Rob; Mater Mothers' Hospital Moon, Phillip; Redland Hospital Kamien, Benjamin; GSWA Edwards, Matt; Hunter New England Health Delatycki, Martin; Murdoch Childrens Research Institute, Bruce Lefroy Centre for Genetic Health Research Lamont, Phillipa Chan, Sophelia Hoi-Shan; The University of Hong Kong Queen Mary Hospital, Department of Pediatrics & Adolescent Medicine Colley, Alison; Liverpool Hospital, Clinical Genetics Department Ma, Alan; The Children's Hospital at Westmead, Department of Clinical Genetics Collins, Felicity; Western Syndney Genetics, Clinical Genetics, Children's Hospital Hennington, Lucinda; Alfred Health Zhao, Teresa; VCGS McGillivray, George; Murdoch Children's Research Institute, Victorian Clinical Genetics Services Ghedia, Sondhya; Royal North Shore Hospital Chao, Katherine; Broad Institute, Center for Mendelian Genomics O'Donnell-Luria, Anne; Massachusetts General Hospital, Analytic and Translational Genetics Iaing, Nigel G.; University of Western Australia, Centre for Medical Research Davis, Mark; Royal Perth Hospital, Neurogenetics, Dept of Anatomical Pathology		
Keywords:	Neuromuscular disease, Clinical genetics, Molecular genetics		

Title:

Neurogenetic fetal akinesia and arthrogryposis: genetics, expanding genotypephenotypes and functional genomics.

Gianina Ravenscroft^{1,2}, Joshua S Clayton^{1,2}, Fathimath Faiz³, Padma Sivadorai³, Di Milnes⁴, Rob Cincotta⁵, Phillip Moon⁶, Ben Kamien^{7,8}, Matt Edwards⁸, Martin Delatycki⁹, Phillipa J Lamont¹⁰, Sophelia HS Chan¹¹, Alison Colley¹², Alan Ma¹³, Felicity Collins¹⁴, Lucinda Hennington^{17,18,19}, Teresa Zhao⁹, George McGillivray⁹, Sondhya Ghedia¹⁵, Katherine Chao¹⁶, Anne O'Donnell-Luria¹⁶, Nigel G Laing^{1,2,3}, Mark R Davis³

¹Harry Perkins Institute of Medical Research, Nedlands, WA, Australia

²Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, Australia

³PathWest Diagnostic Genomics, Nedlands, WA, Australia

⁴Genetic Health Queensland, Royal Brisbane and Women's Hospital, QLD, Australia

⁵Maternal and Fetal Medicine, Mater Mothers' Hospital, Brisbane, QLD, Australia

⁶Department of Obstetrics, Redland Hospital, Redland City, QLD, Australia

⁷Genetic Services WA, Women and Newborn Heath Service, Subiaco, WA, Australia

⁸Hunter Genetics, Hunter New England Health, New Lambton, NSW, Australia

⁹Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, VIC, Australia

vio, nastrana

¹⁰Neurology, Royal Perth Hospital, Perth, WA, Australia

¹¹Paediatric Neurology Division, Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR

¹²Clinical Genetics Services SWSLHD, Liverpool Hospital, Liverpool, NSW, Australia

¹³Department of Clinical Genetics, Children's Hospital Westmead, Sydney, NSW, Australia

¹⁴Clinical Genetics Department, Western Sydney Genetics Program, Children's Hospital at Westmead, Westmead, NSW, Australia

 ¹⁵Department of Clinical Genetics, Royal North Shore Hospital, Sydney, NSW, Australia
 ¹⁶Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA

¹⁷Mercy Health, Mercy Hospital for Women, Heidelberg, VIC, Australia

 ¹⁸Austin Health, Melbourne, VIC, Australia ¹⁹Alfred Health, Melbourne, VIC, Australia

Corresponding Author

Dr Gianina Ravenscroft

Harry Perkins Institute of Medical Research

Centre for Medical Research, Faculty of Medicine, Dentistry and Health Sciences,

University of Western Australia

6 Verdun Street, Nedlands, 6009

WA, Australia

 .ins.uwa.edu.au

 Email: gina.ravenscroft@perkins.uwa.edu.au

Ph. +61 8 61510740

ABSTRACT (250 words)

Background: Fetal akinesia and arthrogryposis are clinically and genetically heterogeneous and have traditionally been refractive to genetic diagnosis. The widespread availability of affordable genome-wide sequencing has facilitated accurate genetic diagnosis and gene discovery in these conditions.

Methods: We performed next generation sequencing (NGS) in 190 probands with a diagnosis of arthrogryposis multiplex congenita, distal arthrogryposis, fetal akinesia deformation sequence or multiple pterygium syndrome. This sequencing was a combination of bespoke neurogenetic disease gene panels and whole exome sequencing. Only Class 4 and 5 variants were reported, except for two cases where the identified variants of unknown significance (VUS) are most likely to be causative for the observed phenotype. Co-segregation studies and confirmation of variants identified by NGS were performed where possible. Functional genomics was performed as required.

Results: Of the 190 probands, 81 received an accurate genetic diagnosis. All except two of these cases harboured Class 4 and/or 5 variants based on ACMG guidelines. We identified phenotypic expansions associated with *CACNA1S, CHRNB1, GMPPB* and *STAC3*. We describe a total of 50 novel variants, including a novel missense variant in the recently identified gene for arthrogryposis with brain malformations – *SMPD4*.

Conclusions: Comprehensive gene panels give a diagnosis for a substantial proportion (42%) of fetal akinesia and arthrogryposis cases, even in an unselected cohort. Recently identified genes account for a relatively large proportion, 32%, of the diagnoses. Diagnostic-research collaboration was critical to the diagnosis and variant interpretation in many cases, facilitated genotype-phenotype expansions and reclassified VUS through functional genomics.

Keywords: fetal akinesia, arthrogryposis, next generation sequencing, genotypephenotype, functional genomics, *SMPD4*, *STAC3*, *CHRNB1*, *GLDN*, *GMPPB*

INTRODUCTION

Fetal akinesia or hypokinesia can result in a range of clinical presentations, including; fetal akinesia deformation sequence (FADS),¹ arthrogryposis multiplex *congenita* (AMC), distal arthrogryposis (DA),² lethal congenital contracture syndromes (LCCS), and multiple pterygium syndrome (MPS). Many of these conditions have overlapping features including: joint contractures, pterygia, fetal hydrops, lung hypoplasia and dysmorphic features. While fetal akinesia is frequently diagnosed *in utero*, following abnormal indications on routine ultrasounds and/or maternal reporting of reduced fetal movements, many cases are not detected until birth, when they present with contractures and associated complications.³ For the purposes of this manuscript, the term fetal akinesia is used as an umbrella description for all entities described above.

Fetal akinesia can arise from gene defects or maternal/external factors. In recent years the contribution of variants in genes that encode critical neuromuscular system proteins has become increasingly recognised as a cause of fetal akinesia. Variants in >70 of these genes are now known to cause fetal akinesia.⁴⁻⁷

As was foreshadowed for rare diseases,⁸ many novel phenotypes have been attributed to variants in known disease genes – this is also true for the fetal akinesias. In particular, biallelic null variants in genes previously associated with autosomal dominant neuromuscular disease have now been associated with fetal akinesia, e.g. recessive *CACNA1S*,⁹ *DNM2*,¹⁰ *RYR1*,¹¹ *SCN4A*,¹² *TOR1A*,¹³ and *TTN*¹⁴ disease.

In this study we present our findings from massively parallel sequencing in a cohort of 190 probands presenting with fetal akinesia. We achieved an accurate genetic diagnosis in 81 of these cases, identified two then novel disease genes,^{15,16} described 50 novel variants and extended the phenotypes associated with known neuromuscular disease genes.

METHODS

Cohort details

This cohort includes 190 probands with a clinical diagnosis of arthrogryposis multiplex *congenita*, distal arthrogryposis, fetal akinesia deformation sequence, multiple pterygium syndrome (Escobar-variant or lethal) or Schwartz Jampel Syndrome [n=2]. Additional features included CNS involvement (lissencephaly [n=3], polymicrogyria [n=5]), neuropathy (n=2), and congenital myopathy (n=5).

Recruitment into this project was via two arms: (1) cases submitted for diagnostic testing via the PathWest neurogenetic gene panels (some of which were then enrolled in research testing, if no genetic diagnosis was provided in the diagnostic setting), and (2) cases consented for research that underwent testing via the PathWest neurogenetic gene panels and/or whole exome sequencing (WES). Of the 190 patients, 146 underwent diagnostic testing, 16 were studied in both the diagnostic and research setting, and 28 were analysed in the research setting only. Of the 190 probands, all except 15 were from Australia/NZ. These 15 cases were part of the research recruitment arm of this study.

Testing was performed via the PathWest neurogenetic gene panel alone for 150 probands. Combined panel and WES was performed in 29 probands whilst in the remaining 11 probands only WES was performed. The number of probands sequenced on each version of the panel were: 33 (v1), 37 (v2) and 109 (v3).

NGS: Neurogenetic disease gene panel sequencing, mapping and analysis

Next generation sequencing was performed on custom-designed neurogenetic disease gene panels (versions 1-3). Details of versions 1 and 2 of the panel are outlined in Beecroft *et al.*¹⁷ For design of the third iteration of the panel, the genes were split into two panels: a muscle disease gene panel (v3 muscle) and a neurogenic disease gene panel (v3 neuro), with some overlap as appropriate. Sequencing for v3 was performed using Illumina Nextera Rapid Capture Custom Enrichment Kit and sequenced on an Illumina Benchtop Sequencer. Average coverage was 309 fold for versions 1 and 2 of the panel and 350-fold for v3. The minimum accepted coverage cutoffs were as follows; average coverage> 150-fold (v1-3), and 92% (v1-2) or 95% (v3) of te target regions covered to >20x. Details of the genes included in each iteration of the panel are included in

Supplementary Table 1. During the iterative process, panels were spiked with probes to known low-coverage regions to facilitate deeper sequencing.¹⁷ Base calling, mapping, and variant calling were performed using Torrent Suite 3.6.2 or 4.2 with germline high stringency settings (GRCh37), with default values as outlined at:

https://github.com/iontorrent/TS/blob/master/plugin/variantCaller/pluginMedia/pa rameter_sets/4_4/ampliseqexome_germline_highstringency_p1_parameters.json. For v3 of the panel all mapping and calling was done by the BWA Enrichment App v2.1.2 on the Illumina Basespace Sequence Hub using our custom bed files.

In the diagnostic setting, Cartagenia BenchLab/Alissa software (Agilent Technologies) was used for annotation and analysis. Bioinformatic filters were used as a first pass to restrict analysis to a sub-panel of genes associated with each clinical phenotype. If no pathogenic variant was identified, rare coding variants across all genes on the panel were analysed. Variants with a minor allele frequency of >2% were filtered from the analysis. The diagnostic laboratory adopted the American College of Medical Genetics (ACMG) guidelines to classify variants when they became available in 2015.¹⁸

The research team was able to interpret variants on a research-only basis in Cartagenia/Alissa software, without analysis restricted to sub-panels of genes. If a likely reportable variant was found (Class 4 or 5), interpretation was referred to PathWest for validation in the Australian National Association of Testing Authorities (NATA) accredited laboratory or, in the case of overseas samples, the research findings were reported to the consenting clinician for confirmation by their corresponding diagnostic genomics laboratory. Class 3 variants were followed up with appropriate literature searchs, consultation with international experts, and functional genomics where possible.

This project was approved by the Human Research Ethics Committee of the University of Western Australia (approval number RA/4/20/1008) and participants provided informed consent.

NGS - Whole exome sequencing, mapping and analysis

Ampliseq whole exome sequencing was performed by the Lotterywest State Biomedical Facility Genomics (LSBFG) as previously described.^{5,16} Illumina whole exome sequencing

(WES) was performed at either the Australian Genomics Research Facility (AGRF) or the Center for Mendelian Genomics (CMG; The Broad). For AGRF and LSBFG exomes, processing from FASTQ to VCF was performed as per the GATK best practice guidelines version 3.6 (https://software.broadinstitute.org/gatk). VCFs and pedigree information were compiled in a GEMINI database for variant annotation and querying.¹⁹ Variant annotation was performed as described previously²⁰ with additional filtering: variants with a minor allele frequency of >1%, or which were seen in the homozygous state in ExAC and gnomAD were excluded from downstream analysis. Variants observed >10 times within the GEMINI database were also removed, which removed many sequencing artefacts. Scripts were used to extract variants compatible with the presumed modes of inheritance (autosomal recessive and *de novo* dominant).

CMG exomes were analysed in seqr (https://seqr.broadinstitute.org). CNV detection was performed using The Broad's GATK gCNV calling pipeline, as outlined (https://github.com/broadinstitute/gatk-protected/blob/master/docs/CNVs/CNV-methods.pdf).

Variant confirmation and interpretation

Bi-directional Sanger sequencing was used to confirm missense and indel variants and to determine co-segregation with disease where parental and sibling DNAs were available. CNVs were confirmed using multiplex ligation-dependent probe amplification (MLPA).

In the case of apparent *de novo* variants, samples from the parents and affected individual were sequenced across a panel of microsatellites to check that the samples were compatible with the provided family structure (i.e. to confirm paternity and rule out the possibility of sample mix-ups).

For missense variants, likely pathogenicity was explored using *in silico* tools including: CADD,²¹, MuPro,²² MutationAssessor, MutationTaster, PolyPhen-2²³ PROVEAN²⁴ and SIFT.²⁵

cDNA studies

For muscle cDNA studies, 10 µm frozen sections were cut on a Leica ultramicrotome and collected into a pre-chilled microfuge tube. RNA extraction was performed using the RNeasy (fibrous tissue) kit (QIAGEN). cDNA was generated using Superscript III reverse transcriptase (ThermoFisher Scientific). Sanger sequencing of regions of interest was performed using standard protocols. Primer details are available upon request.

Minigene assays were performed as previously described,^{26,27} with slight modifications. This assay relies on the use of a minigene vector which contains a fragment of the SERPING1 gene, with two exonic regions separated by an intron, cloned into the mammalian expression vector pcDNA 3.1(-), downstream of the cytomegalovirus (CMV) promoter. Following transient transfection into human cells, chimeric transcripts can be analysed by reverse transcriptase PCR (RT-PCR) and sequencing. In brief, the exon of interest and approximately 150 bp of flanking intronic sequence either side, were PCR amplified from patient and control DNA using 2X SuperFi (ThermoFisher Scientific) and cloned into the pCas2.1 minigene construct (a kind gift from Dr. Alexandra Martins) using (ThermoFisher BamHI/MluI Scientific) to generate pCas2.1-STAC3_e3 (https://benchling.com/s/seq-MpmgmQUFtsZtWsXCHHS9). Wild-type and variantcontaining plasmids were purified using a QIAprep miniprep kit (QIAGEN) and sequences verified by Sanger sequencing. Expression constructs were then transfected into human HEK293FT cells using Lipofectamine 3000 (ThermoFisher Scientific), and RNA harvested after 24 hours using an RNeasy mini kit (QIAGEN). cDNA was generated using SuperScript III reverse transcriptase (ThermoFisher Scientific) and chimeric cDNA amplified by RT-PCR using 2X GoTaq G2 (Promega) using forward primer KO1F (5'-TGACGTCGCCGCCCATCAC) and primer pCAS2R (5'reverse ATTGGTTGTTGAGTTGGTTGTC) and 30 cycles of amplification. RT-PCR products were analysed on a 2% agarose gel stained with ethidium bromide ($0.5 \mu g/mL$), and gel extracted and purified using a QIAquick gel extraction kit (QIAGEN) for Sanger sequencing. Splicing differences were assessed by comparing RT-PCR and sequencing results for the wild-type and variant (c.312T>G) constructs. Sequence alignments were performed in benchling (benchling.com) using the MAFFT algorithm.

GLDN cell assay

The plasmid expressing human GLDN (hGLDN) with a myc-tag epitope at the extracellular C-terminus was obtained from Dr Jerome Devaux.²⁸ Site-directed mutagenesis was performed by Genscript to generate a construct containing the p.Leu20Pro substitution. HEK cells were grown in tissue culture plates as per standard conditions and transfected with either the WT or mutant hGLDN constructs using Lipofectamine 3000. After 48 hours the live cells were incubated for 2 hours with a c-myc (dylight 550) monoclonal antibody (Myc.A7, ThermoFisher Scientific) to label GLDN at the cell surface. Cells were washed 3 times for 5 minutes with PBS to remove unbound antibody and then fixed with 2% paraformaldehyde for 5 minutes. Cells were washed again 3x for 5 minutes in PBS and then blocked and permeabilised with 10% FCS and 0.1% saponin in PBS for 30 minutes. Cells were then incubated with a c-myc FITC-labeled monoclonal antibody (FITCR953-25, ThermoFisher Scientific) to label total GLDN and then washed in PBS containing Hoechst to label nuclei. Imaging was performed on a Nikon inverted microscope.

RESULTS AND DISCUSSION

Diagnostic yield

Through diagnostic and/or research testing (including bespoke targeted neurogenetic disease gene panels and whole exome sequencing) we investigated the genetics of a cohort of 190 Australasian cases with a primary diagnosis of arthrogryposis, fetal akinesia or multiple pterygium syndrome. A genetic diagnosis was obtained in 81 cases (42.6% diagnostic yield, Table 1, Supplementary Table 2). Fifty variants not previously associated with disease were identified (Supplementary Table 2).

TTN was the most frequently identified causative gene (n=8). Of the eight *TTN* cases, two showed striking amyoplasia – a feature which has previously been described in congenital titinopathy.¹⁴ Five patients harboured variants within the triplicate repeat region of *TTN*, which is frequently poorly sequenced on exome sequencing.²⁹ The most frequently observed pathogenic variant within the cohort is the common 1 bp duplication in *CHRNG* (rs774279192)³⁰ which was present on five alleles (allele frequency 0.0132). The allele frequency of this variant in gnomAD is 0.000343 (97 of 282,834 alleles).

Recently described genes represent a substantial proportion of diagnoses

Of the 81 cases, 26 harboured variants in genes which were added in v2 and v3 iterations of the targeted gene panel (*BICD2, ECEL1, MAGEL2, MYO18B, NALCN, PIEZO2, STAC3, ZC4H2*), or within genes not then or only recently associated with disease (*GLDN, MYL1, NUP88, SMPD4*), i.e. none were on v3 gene panel. Thus, within our cohort, the more recently identified genes for arthrogryposis and fetal akinesia made up a substantial proportion of the genetic diagnoses (32.1%, Table 1). To illustrate this point, the diagnostic yield has increased with each iteration of the comprehensive panel (v1 = 30.3%, v2 = 37.8% and v3 = 44.0%). The improved diagnostic yield in v3 of the panel is also in part due to improved coverage and uniformity of coverage thus facilitating calling of variants within the repetitive regions of *NEB* and *TTN* and the improved ability to detect CNVs due to greater and more even coverage. Three variants in *NEB* and four in *TTN* occurred within the repetitive regions which are typically refractory to mapping and sequencing with exome sequencing.

Genotype-phenotype expansions

BICD2: Interestingly, six cases harboured *de novo* variants in *BICD2*. This includes three novel variants not previously reported in the literature or in ClinVar (c.628C>A, p.His201Asn; c.1559T>C, p.Leu520Pro; c.2113G>A, pGlu705Lys). One patient with a *de novo* p.His210Asn substitution presented with arthrogryposis multiplex *congenita*, as did cases with the recurrent *de novo* p.Arg694Cys substitution.^{31,32} A series of papers originally described heterozygous *BICD2* variants in families with an SMA-LED phenotype;³³⁻³⁵ *BICD2*-opathies now account for cases with lethal arthrogryposis through to asymptomatic individuals with mild subclinical features (i.e. myopathic MRI).³² Over a similar period, the PathWest Diagnostic Genomics service has performed sequencing using v2 of the panel (which includes *BICD2*) on >1,100 neuromuscular disease patients. *BICD2* variants were not identified by the PathWest Diagnostic Genomics service in any other neuromuscular disease groups. Thus, at least in the Australasian setting *BICD2* variants seem to cause arthrogryposis more frequently than the SMA-LED phenotype for which *BICD2* variants were first described.

CACNA1S: In a Caucasian family (Figure 1A) that presented with recurrent fetal akinesia, panel sequencing identified two missense VUS in the *CACNA1S* gene (c.665T>A, p.Met222Lys and c.2365C>T, p.Arg789Cys) in the proband (II:4). Sanger sequencing

confirmed the variants and showed that the c.665T>A variant was paternally inherited and the c.2365C>T variant was maternally inherited. The affected sibling (II:1) was compound heterozygous for these variants, while both healthy siblings carried only the maternal variant. Both variants were predicted to be disease-causing by MutationAssessor, MutationTaster, PolyPhen-2, PROVEAN, and SIFT. MuPro predicted that both variants reduce protein stability. Both substitutions alter highly conserved amino acids (p.Met222 to D. rerio and p.Arg789 to C. elegans, Figure 1B) and return high CADD scores (p.Met222Lys = 27.1, p.Arg789Cys = 28.9). The p.Met222Lys and p.Arg789Cys substitutions occur within an ion transport domain and an intracellular loop domain of CACNA1S, respectively. The c.665T>A variant is absent from gnomAD and c.2365C>T is present on only 2 of 157,372 alleles. Heterozygous dominantly acting variants in the CACNA1S gene cause malignant hyperthermia, hypokalemic periodic paralysis and thyrotoxic periodic paralysis (OMIM 114208). More recently, Schartner et al. identified dominant and recessive CACNA1S variants associated with congenital myopathy.⁹ Ophthalmoplegia, ptosis and high-arched palate were common within this cohort. On muscle biopsy, central nuclei, cores and myofibre size variation were observed. Antenatal onset was detected in three of the seven families based on decreased fetal movements on ultrasound.⁹ Affected individuals in two of these families had biallelic null alleles, and the third had a single *de novo* missense variant.⁽⁹⁾ Hunter *et al.* described an isolated case with bi-allelic *CACNA1S* variants and a congenital myopathy with ophthalmoplegia.³⁶ The proband (II:4) in our family was a fetus in which polyhydramnios, scalp oedema, wrist contractures and talipes were detected on ultrasound. Fetal movements were reported to be reduced by the mother and the pregnancy was terminated at 26 weeks gestation (wg). Mild facial dysmorphic features were noted on autopsy, including low anterior hairline, mild hypertelorism, and moderate retrognathia. Muscle biopsy did not detect atrophy or myofibre disorganisation. A previously affected sibling (II:1) was delivered by emergency Caesarean section at week 32/40 due to placental abruption and died at 10 days of age. The pregnancy was complicated by unexplained polyhydramnios. In retrospect, reduced fetal movements (II:1) were noted compared subsequent pregnancies (II:2/II:3). Subjectively, this baby had ptosis (based on photographic review) and a broad nasal tip (II:1). Unfortunately, cell lines and/or muscle biopsy material was not available for either case for follow-up of the identified class 3 CACNA1S variants.

CHRNB1: In a non-consanguineous family of mixed European ancestry (Figure 2A) with recurrent lethal multiple pterygium syndrome, a novel homozygous deletion of CHRNB1 exon 8 was identified by WES and gCNV at the Broad Center for Mendelian Genomics (Figure 2B). Both parents were shown to be carriers. This deletion was also present in the NSES data; however it was not called due to variable coverage across neighbouring exons. The deletion was confirmed by MLPA. CHRNB1 variants are a rare cause of autosomal dominant congenital myasthenic syndrome (OMIM 616313) and have been identified to cause recessive CMS in one family (OMIM 616314). Affected individuals in this published recessive family harboured compound heterozygous variants: a 9bp inframe deletion and skipping of exon 8 on the other allele.³⁷ Skipping of exon 8 resulted in almost complete loss of pentameric AChR expression. The in-frame deletion resulted in \sim 70% reduced acetylcholine receptor (AChR) expression.³⁷ In 2016, a Danish group published the identification of a homozygous 1 bp deletion in exon 1 of *Chrnb1* in Red dairy cattle with arthrogryposis multiplex *congenita*.³⁸ Three related stillborn calves showed severe generalised contractures of the joints of the spine and limbs. In patients with CHRNB1-related CMS there is some residual AChR expression, however in the calves, complete loss of *CHRNB1* resulted in a lethal presentation. These data support the severe phenotype in our family with homozygous exon 8 deletion.

FLNC: A proband (Figure 3) presented at birth with hip dislocation, clenched hands, adducted thumbs, small mouth and high palate, and posteriorly rotated ears. On examination, she had mild arthrogryposis, reduced shoulder movement, elbow dimples and scoliosis. She remained undiagnosed after testing on a commercial arthrogryposis gene panel (143 genes). Trio whole exome sequencing identified a missense variant in *FLNC* (c.3557C>T, p. Ala1186Val). *FLNC* variants are associated with myofibrillar myopathy and distal myopathy³⁹ and increasingly with cardiomyopathies. Recently, Kiselev *et al.* described a series of four cases with early-onset restrictive cardiomyopathy (RCM) and congenital myopathy.⁴⁰ Three of these cases harboured the same *de novo* variant identified in our family and two of these also presented with arthrogryposis at birth. The RCM presented between 6 months and 15 years of age in our proband showed a mildly dilatated left atrium, with otherwise normal heart structure and function.

Cardiac surveillance in these cases is important and this work highlights the importance of an accurate genetic diagnosis for optimal clinical care.

GMPPB: In a case from the NICU, that was born after a history of reduced fetal movements, known biallelic GMPPB variants were identified (c.220C>T, p.Arg74* and c.1081G>A, p.Asp361Asn). In another family, 18 week gestation ultrasound detected hydrops, pterygia and talipes; the pregnancy was terminated at 20 wg. Post mortem reported facial dysmorphism with wide-set eyes, bilaterally low-set ears, retrognathia and a wide mouth. There was a cleft of the soft and hard palate. Multiple pterygia were noted, including the elbows, shoulders, knees and hips; there was also severe bilateral talipes. Palmar and finger creases were absent. There was thin muscle in all limbs and the psoas appeared similarly. CNS examination showed an overall small brain with a small hypoplastic cerebellum and suggestion of delayed sulcation. There was ambiguous genitalia. Babygram was normal. CGH array revealed a normal female karyotype. Biallelic missense variants were identified in GMPPB (c.95C>T, p.Pro32Leu and c.1069G>A, p.Val357Ile). Recessive variants in *GMPPB* were initially described in patients with congenital and limb-girdle muscular dystrophies.⁴¹ Bi-allelic *GMPPB* variants have since been described in patients with diverse phenotypes including congenital myasthenic syndrome and isolated episodic rhabdomyolysis.^{20,42} Our cases represent a substantial phenotypic expansion of *GMPPB* disease.

SCN4A: Two families within this cohort harboured bi-allelic variants in *SCN4A.* We previously described one of these families, that presented with recurrent lethal amyoplasia, in an autosomal recessive *SCN4A* cohort paper.¹² In the second family, bi-allelic novel missense variants were identified (c.2266C>T, p.Arg756Cys and c.4433C>T, p.Ser1478Leu) in a fetus with distal arthrogryposis. This case had contractures of all limbs and polyhydramnios. The pregnancy was terminated at 22 wg. Both substitutions alter highly conserved amino acids (conserved to *D. melanogaster*, Figure 1C) and are predicted to be deleterious by SIFT and probably-damaging by PolyPhen-2; CADD scores of 32 (p.R756C) and 27.4 (p.S1478L). The p.Ser1478 residue lies within the S4-5 loop of the fourth domain which is involved in channel inactivation. Previous work showed that substitution of p.Ser1478 to cysteine enhanced channel in-activation, i.e. partial loss of function.⁴³ It would be anticipated that the p.Ser1478Leu substitution would also

generate a channel with partial loss-of-function. Based on this, these variants are highly suspicious but remain Class 3 variants under ACMG guidelines; functional validation of these variants is required to substantiate causality. More recently, *SCN4A* variants were postulated to cause sudden infant death syndrome.⁴⁴

STAC3: In a consanguineous family (Figure 4A) with a history of recurrent fetal akinesia and limb contractures detected on first-trimester ultrasound, we identified a homozygous missense variant in *STAC3* (exon 3, c.312T>G, p.Asp104Glu) in the proband (II:3). Both parents were found to be carriers, and sequencing of DNA from formalin-fixed paraffin-embedded tissue of the first affected fetus (II:1) showed this case was also homozygous for the STAC3 variant. This variant is absent from gnomAD and affects a highly conserved amino acid. Splicing predictors in Alamut suggested the variant introduced a cryptic donor splice-site. To investigate this possibility, we generated minigene constructs containing the normal exon 3 or the variant exon 3. Studies of RNA (produced in HEK cells) showed that the variant resulted in skipping of the last 22 nucleotides of exon 3 from the mRNA (Figure 4B-C). The consequence of this variant is then (c.313_334del, p.Asp104Glufs*73) which is likely to lead to a loss of function. A homozygous missense variant (p.Trp284Ser) in STAC3 was originally identified as the cause of Native American myopathy.⁴⁵ This variant has since been identified in other populations. Zaharieva et al. identified 18 patients from 12 families presenting with a congenital myopathy with dysmorphic features and susceptibility to malignant hyperthermia.⁴⁶ Seventeen cases were homozygous for the p.Trp284Ser variant, and another proband was compound heterozygous for this variant and an essential splice site variant (c.997-1G>T). Functional analysis has shown reduced sarcoplasmic reticulum Ca²⁺ release in response to KCl depolarisation in patient myotubes.⁽⁴⁶⁾ Affected cases from our family are likely STAC3 nulls and thus the very early and severe presentation in our cases fit with the genotype. In support of this, *Stac3* null (*Stac3^{-/-}*) mice are born at near Mendelian ratios but are all found dead at birth, and show curved bodies and dropped forelimbs.⁴⁷ When dissected from the uterus, *Stac3^{-/-}* fetuses did not move or respond to touch but did have a heartbeat. Histologically, muscle from *Stac3^{-/-}* mice showed central nuclei, reduced myofibril number and size and deranged sarcomeres.⁴⁷ STAC3 appears to be critical to normal muscle development and function. Thus, bi-allelic loss-of-function

variants in genes critical to excitation-contraction coupling (*CACNA1S, SCN4A, STAC3, RYR1*)^{5,9,11,12,48} cause lethal early-onset disease.

Identification of variants in novel human disease genes

Four cases harboured variants in disease genes that had not been described at the time of whole exome sequencing (*GLDN*,²⁸ *MYL1*,¹⁶ *NUP88*¹⁵ and *SMPD4*⁴⁹).

The identification of a proband within this cohort with a homozygous *MYL1* missense variant, and another with compound heterozygous variants in *NUP88*, were recently described in separate publications, which also combined additional cases from other research centres with bi-allelic variants in these genes.^{15,16}

GLDN: In a family from Hong Kong (Figure 5A) with a history of recurrent fetal akinesia, we identified two VUS in the gliomedin gene (GLDN). The first affected baby was born at 36/40 and died at 1 day of age. She had hypoplastic heart and lungs and a high-arched palate. In the second pregnancy, the fetus presented at 18/40 with decreased fetal movements and the pregnancy was terminated at 22 wg. In the third pregnancy, reduced fetal movements were reported at 20/40 and the pregnancy was terminated at 22 wg. This case had fetal hydrops, multiple joint contractures, pterygia and increased muscle bulk. All three affected cases harboured bi-allelic *GLDN* variants: a maternally inherited missense variant, c.59C>T [p.Leu20Pro], and a paternally-inherited essential splice site (ESS) change, c.363+1G>A (Figure 5A). Analysis of cDNA derived from muscle from the second case indicated that the missense variant was homozygous at the transcript level, suggesting loss of expression from the allele harbouring the ESS change (Figure 5B). Using the myc-GLDN reporter assay defined in Maluenda *et al.*²⁸ we showed that, unlike WT human GLDN (hGLDN), gliomedin containing the p.Leu20Pro substitution fails to localise at the surface membrane of HEK cells (Figure 5C). In comparison, Maluenda et al. found that gliomedin mutants failed to localise at the cell surface and also did not bind its axonal partner neurofascin-186. Thus, the *GLDN* variants identified in our family are likely functional nulls.

SMPD4: A consanguineous family, from Melbourne, presented with recurrent arthrogryposis multiplex *congenita* and complex brain malformations (Figure 6A). All

cases presented with AMC, were small for gestation age and displayed hypoplasia of the corpus callosum (Figure 6B). Additional features present in two of the three cases included: congenital encephalopathy and microcephaly, cerebellar malformation and hypoplasia (Figure 6B) and hypomyelination (Figure 6C). We performed panel sequencing on the proband (II:3) with the v3 muscle and v3 neuro panels but did not identify any causative variants. We subsequently performed trio whole exome sequencing and identified a novel homozygous missense variant in the SMPD4 gene (c.575C>T, p.Pro192Leu) in the proband. Each parent was a carrier. This variant was confirmed by bi-directional Sanger sequencing and we also showed that an affected sibling (II:1) was homozygous for this variant. The SMPD4 variant was also homozygous in a clinical exome (performed elsewhere) on the most recently affected baby (II:4). The variant is predicted to be damaging by MutationTaster, SIFT and PolyPhen-2 and has a CADD score of 22.8. The variant is present on three alleles in gnomAD and alters a highly conserved amino acid (up to *D. rerio*, Figure 6D). *SMPD4* was recently described as a likely disease gene for a syndrome presenting as a skeletal dysplasia with cortical malformations and epilepsy.⁵⁰ In a follow-up study, 12 families with bi-allelic *SMPD4* variants and a phenotype encompassing microcephaly, hypomyelination, cerebellar atrophy, congenital arthrogryposis and fetal/postnatal demise were described.⁴⁹ SMPD4 encodes the neutral sphingomyelinase-3; sphingomyelinases are important for the properties of cell membranes and the regulation of transmembrane and peripheral membrane proteins, they are also highly enriched in the nervous system. Magini et al.49 showed via over-expression studies that SMPD4 localises to the ER and nuclear envelope. Immunoprecipitation assays revealed that SMPD4 interacts with several nuclear pore proteins; highlighting a role for the nuclear pore in the disease pathogenesis. In support of this, the role of the nuclear pore in human disease is becoming increasingly recognised.51,52

Conclusions

 The utility of next generation sequencing in arthrogryposis and fetal akinesia is undeniable, yielding a genetic diagnosis in 42% of cases. In many instances, couples have gone on to have IVF and preimplantation genetic diagnosis or prenatal genetic diagnosis of subsequent pregnancies.

Of note is the substantial contribution of relatively recently identified disease genes and the large muscle genes (*NEB*, *RYR1* and *TTN*) to disease burden. Previously, most cases did not receive a genetic diagnosis. The clinical and genetic heterogeneity, along with the sporadic nature of the disease or small families, meant that genetic testing was difficult or unattainable beyond a handful of known genes or gene hotspots. The number of genes known to cause these diseases and the phenotypic expansions associated with known genes has been quite remarkable. In this report we show that homozygous null variants in *CHRNB1* or *STAC3* and known *GMPPB* variants cause lethal fetal akinesia, expanding the phenotypes associated with each of these genes.

Moving forward, it is critically important that interdisciplinary teams discuss interpretation of VUS in candidate genes and perform functional genomics to reclassify VUS as likely pathogenic or benign. Alternative splicing appears to be a particularly important mechanism underlying protein regulation in skeletal muscle.⁵³ Thus, splicing defects represent a substantial contribution to muscle disease burden.^{29,54}

Submission of variants into well-curated gene databases (e.g. the LOVD) is also critical to the reclassification of VUS and mapping of known phenotype-genotype associations. Identification of the same rare VUS in two unrelated patients with a similar clinical presentation will facilitate reclassification as likely-pathogenic. By way of illustration, we identified in the research laboratory a then novel, *de novo* missense variant in *BICD2* in a patient with arthrogryposis multiplex *congenita*. The diagnostic laboratory within PathWest had a similar case with the same *BICD2* variant. Follow-up revealed that the variant in this diagnostic case had also arisen *de novo*.³¹ In the words of Johan den Dunnen: many VUS may be "*variants of under sharing*" (International Congress of the World Muscle Society 2019, Copenhagen).

As the affordability of and availability of massively parallel sequencing has improved, variant interpretation has become the new bottleneck in accurate genetic diagnosis. Scalable, relatively robust and affordable assays (e.g. the cell-surface localisation assay for gliomedin) that can be utilised to assay VUS in multiple genes should be an ideal that the rare diseases community work towards. Saturation mutagenesis together with appropriate functional read-outs⁵⁵ have already been performed for some common

disease genes including *BRCA1* and *PTEN*.^{56,57} A historical mutagenesis study of a small region of the SCN4A protein to cysteines informed our interpretation of the likely pathogenicity of a Class 3 variant in this gene,⁴³ and highlights the clinical utility of such experimental work.

Based on studies in model organisms,^{58,59} it is likely that many more fetal akinesia and arthrogryposis genes await discovery. Exome and genome sequencing, along with RNA-seq in genetically unresolved cases, will likely identify additional novel disease genes.

ADDITIONAL RESOURCES

Benchling: https://www.benchling.com/ CADD: https://bio.tools/CADD_Phredh GEMINI: https://github.com/arq5x/gemini gnomAD: https://gnomad.broadinstitute.org/ MutationAssessor: http://mutationassessor.org/r3/ MuPro: https://omictools.com/mupro-tool MutationTaster: http://mutationtaster.org/ PolyPhen-2: http://genetics.bwh.harvard.edu/pph2/ PROVEAN: http://provean.jcvi.org/index.php Seqr: https://sift.bii.a-star.edu.sg/

ACKNOWLEDGEMENTS

We thank the patients and their families for participating in this study. This work was supported by the Australian National Health and Medical Research Council (NHMRC) Fellowships APP1122952 and APP1117510 to GR and NGL, NHMRC project grant APP1080587 to GR and NGL, the Association Francaise contre les Myopathies (18724) to GR. Sequencing and analysis were provided by the Broad Institute of MIT and Harvard Center for Mendelian Genomics (Broad CMG) and was funded by the National Human Genome Research Institute, the National Eye Institute, and the National Heart, Lung and Blood Institute grant UM1 HG008900 and in part by National Human Genome Research Institute grant R01 HG009141.

COMPETING INTERESTS

The authors do not have any competing interests to declare.

AUTHOR CONTRIBUTIONS

GR, NGL, MRD conceived the study. JSC, FF and PS performed experiments. TZ, KC, AO-L, GR, MRD, JSC, FF and PS analysed data. DM, RC, PM, BK, ME, MD, PJL, SHSC, AM, AC, FC, LH, GG and SG contributed clinical data. GR wrote the manuscript. All authors approved the final manuscript.

REFERENCES

- 1. Hall, J. G. (2009) Pena-Shokeir phenotype (fetal akinesia deformation sequence) revisited. *Birth Defects Res A Clin Mol Teratol* **85**, 677-694
- 2. Hall, J. G. (2014) Arthrogryposis (multiple congenital contractures): diagnostic approach to etiology, classification, genetics, and general principles. *Eur J Med Genet* **57**, 464-472
- 3. Filges, I., and Hall, J. G. (2013) Failure to identify antenatal multiple congenital contractures and fetal akinesia--proposal of guidelines to improve diagnosis. *Prenat Diagn* **33**, 61-74
- 4. Ravenscroft, G., Sollis, E., Charles, A. K., North, K. N., Baynam, G., and Laing, N. G. (2011) Fetal akinesia: review of the genetics of the neuromuscular causes. *J Med Genet* 48, 793-801
- 5. Todd, E. J., Yau, K. S., Ong, R., Slee, J., McGillivray, G., Barnett, C. P., Haliloglu, G., Talim, B., Akcoren, Z., Kariminejad, A., Cairns, A., Clarke, N. F., Freckmann, M. L., Romero, N. B., Williams, D., Sewry, C. A., Colley, A., Ryan, M. M., Kiraly-Borri, C., Sivadorai, P., Allcock, R. J., Beeson, D., Maxwell, S., Davis, M. R., Laing, N. G., and Ravenscroft, G. (2015) Next generation sequencing in a large cohort of patients presenting with neuromuscular disease before or at birth. *Orphanet J Rare Dis* 10,
- 6. Beecroft, S. J., Lombard, M., Mowat, D., McLean, C., Cairns, A., Davis, M., Laing, N. G., and Ravenscroft, G. (2018) Genetics of neuromuscular fetal akinesia in the genomics era. *J Med Genet* **55**, 505-514
- 7. Pehlivan, D., Bayram, Y., Gunes, N., Coban Akdemir, Z., Shukla, A., Bierhals, T., Tabakci, B., Sahin, Y., Gezdirici, A., Fatih, J. M., Gulec, E. Y., Yesil, G., Punetha, J., Ocak,

Z., Grochowski, C. M., Karaca, E., Albayrak, H. M., Radhakrishnan, P., Erdem, H. B., Sahin, I., Yildirim, T., Bayhan, I. A., Bursali, A., Elmas, M., Yuksel, Z., Ozdemir, O., Silan, F., Yildiz, O., Yesilbas, O., Isikay, S., Balta, B., Gu, S., Jhangiani, S. N., Doddapaneni, H., Hu, J., Muzny, D. M., Baylor-Hopkins Center for Mendelian, G., Boerwinkle, E., Gibbs, R. A., Tsiakas, K., Hempel, M., Girisha, K. M., Gul, D., Posey, J. E., Elcioglu, N. H., Tuysuz, B., and Lupski, J. R. (2019) The Genomics of Arthrogryposis, a Complex Trait: Candidate Genes and Further Evidence for Oligogenic Inheritance. *Am J Hum Genet* **105**, 132-150

- 8. Boycott, K. M., Vanstone, M. R., Bulman, D. E., and MacKenzie, A. E. (2013) Raredisease genetics in the era of next-generation sequencing: discovery to translation. *Nat Rev Genet* **14**, 681-691
- Schartner, V., Romero, N. B., Donkervoort, S., Treves, S., Munot, P., Pierson, T. M., Dabaj, I., Malfatti, E., Zaharieva, I. T., Zorzato, F., Abath Neto, O., Brochier, G., Lornage, X., Eymard, B., Taratuto, A. L., Bohm, J., Gonorazky, H., Ramos-Platt, L., Feng, L., Phadke, R., Bharucha-Goebel, D. X., Sumner, C. J., Bui, M. T., Lacene, E., Beuvin, M., Labasse, C., Dondaine, N., Schneider, R., Thompson, J., Boland, A., Deleuze, J. F., Matthews, E., Pakleza, A. N., Sewry, C. A., Biancalana, V., Quijano-Roy, S., Muntoni, F., Fardeau, M., Bonnemann, C. G., and Laporte, J. (2017) Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy. *Acta Neuropathol* 133, 517-533
- Koutsopoulos, O. S., Kretz, C., Weller, C. M., Roux, A., Mojzisova, H., Bohm, J., Koch, C., Toussaint, A., Heckel, E., Stemkens, D., Ter Horst, S. A., Thibault, C., Koch, M., Mehdi, S. Q., Bijlsma, E. K., Mandel, J. L., Vermot, J., and Laporte, J. (2013) Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome. *Eur J Hum Genet* 21, 637-642
- Bharucha-Goebel, D. X., Santi, M., Medne, L., Zukosky, K., Dastgir, J., Shieh, P. B., Winder, T., Tennekoon, G., Finkel, R. S., Dowling, J. J., Monnier, N., and Bonnemann, C. G. (2013) Severe congenital RYR1-associated myopathy: the expanding clinicopathologic and genetic spectrum. *Neurology* 80, 1584-1589
- Zaharieva, I. T., Thor, M. G., Oates, E. C., van Karnebeek, C., Hendson, G., Blom, E., Witting, N., Rasmussen, M., Gabbett, M. T., Ravenscroft, G., Sframeli, M., Suetterlin, K., Sarkozy, A., D'Argenzio, L., Hartley, L., Matthews, E., Pitt, M., Vissing, J., Ballegaard, M., Krarup, C., Slordahl, A., Halvorsen, H., Ye, X. C., Zhang, L. H., Lokken,

N., Werlauff, U., Abdelsayed, M., Davis, M. R., Feng, L., Phadke, R., Sewry, C. A., Morgan, J. E., Laing, N. G., Vallance, H., Ruben, P., Hanna, M. G., Lewis, S., Kamsteeg, E. J., Mannikko, R., and Muntoni, F. (2016) Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or 'classical' congenital myopathy. *Brain* **139**, 674-691

- Kariminejad, A., Dahl-Halvarsson, M., Ravenscroft, G., Afroozan, F., Keshavarz, E., Goullee, H., Davis, M. R., Faraji Zonooz, M., Najmabadi, H., Laing, N. G., and Tajsharghi, H. (2017) TOR1A variants cause a severe arthrogryposis with developmental delay, strabismus and tremor. *Brain* 140, 2851-2859
- Oates, E. C., Jones, K. J., Donkervoort, S., Charlton, A., Brammah, S., Smith, J. E., 3rd, 14. Ware, J. S., Yau, K. S., Swanson, L. C., Whiffin, N., Peduto, A. J., Bournazos, A., Waddell, L. B., Farrar, M. A., Sampaio, H. A., Teoh, H. L., Lamont, P. J., Mowat, D., Fitzsimons, R. B., Corbett, A. J., Ryan, M. M., O'Grady, G. L., Sandaradura, S. A., Ghaoui, R., Joshi, H., Marshall, J. L., Nolan, M. A., Kaur, S., Punetha, J., Topf, A., Harris, E., Bakshi, M., Genetti, C. A., Marttila, M., Werlauff, U., Streichenberger, N., Pestronk, A., Mazanti, I., Pinner, J. R., Vuillerot, C., Grosmann, C., Camacho, A., Mohassel, P., Leach, M. E., Foley, A. R., Bharucha-Goebel, D., Collins, J., Connolly, A. M., Gilbreath, H. R., Iannaccone, S. T., Castro, D., Cummings, B. B., Webster, R. I., Lazaro, L., Vissing, J., Coppens, S., Deconinck, N., Luk, H. M., Thomas, N. H., Foulds, N. C., Illingworth, M. A., Ellard, S., McLean, C. A., Phadke, R., Ravenscroft, G., Witting, N., Hackman, P., Richard, I., Cooper, S. T., Kamsteeg, E. J., Hoffman, E. P., Bushby, K., Straub, V., Udd, B., Ferreiro, A., North, K. N., Clarke, N. F., Lek, M., Beggs, A. H., Bonnemann, C. G., MacArthur, D. G., Granzier, H., Davis, M. R., and Laing, N. G. (2018) Congenital Titinopathy: Comprehensive characterization and pathogenic insights. *Ann Neurol* , 1105-1124
- 15. Bonnin, E., Cabochette, P., Filosa, A., Juhlen, R., Komatsuzaki, S., Hezwani, M., Dickmanns, A., Martinelli, V., Vermeersch, M., Supply, L., Martins, N., Pirenne, L., Ravenscroft, G., Lombard, M., Port, S., Spillner, C., Janssens, S., Roets, E., Van Dorpe, J., Lammens, M., Kehlenbach, R. H., Ficner, R., Laing, N. G., Hoffmann, K., Vanhollebeke, B., and Fahrenkrog, B. (2018) Biallelic mutations in nucleoporin NUP88 cause lethal fetal akinesia deformation sequence. *PLoS Genet* 14, e1007845

- Ravenscroft, G., Zaharieva, I. T., Bortolotti, C. A., Lambrughi, M., Pignataro, M., Borsari, M., Sewry, C. A., Phadke, R., Haliloglu, G., Ong, R., Goullee, H., Whyte, T., Consortium, U. K., Manzur, A., Talim, B., Kaya, U., Osborn, D. P. S., Forrest, A. R. R., Laing, N. G., and Muntoni, F. (2018) Bi-allelic mutations in MYL1 cause a severe congenital myopathy. *Hum Mol Genet* 27, 4263-4272
 - 17. Beecroft, S. J., Yau, K. S., Allcock, R. J. N., Mina, K., Gooding, R., Faiz, F., Atkinson, V. J., Wise, C., Sivadorai, P., Trajanoski, D., Kresoje, N., Ong, R., Duff, R. M., Cabrera-Serrano, M., Nowak, K. J., Pachter, N., Ravenscroft, G., Lamont, P. J., Davis, M. R., and Laing, N. G. (2020) Targeted gene panel use in 2249 neuromuscular patients: the Australasian referral center experience. *Ann Clin Transl Neurol*
 - 18. Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., and Rehm, H. L. (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med* **17**, 405-424
 - 19. Paila, U., Chapman, B. A., Kirchner, R., and Quinlan, A. R. (2013) GEMINI: integrative exploration of genetic variation and genome annotations. *PLoS Comput Biol* **9**, e1003153
 - Cabrera-Serrano, M., Ghaoui, R., Ravenscroft, G., Johnsen, R. D., Davis, M. R., Corbett, A., Reddel, S., Sue, C. M., Liang, C., Waddell, L. B., Kaur, S., Lek, M., North, K. N., MacArthur, D. G., Lamont, P. J., Clarke, N. F., and Laing, N. G. (2015) Expanding the phenotype of GMPPB mutations. *Brain* 138, 836-844
 - 21. Kircher, M., Witten, D. M., Jain, P., O'Roak, B. J., Cooper, G. M., and Shendure, J. (2014) A general framework for estimating the relative pathogenicity of human genetic variants. *Nat Genet* 46, 310-315
- 22. Cheng, J., Randall, A., and Baldi, P. (2006) Prediction of protein stability changes for single-site mutations using support vector machines. *Proteins* **62**, 1125-1132
- Grimm, D. G., Azencott, C. A., Aicheler, F., Gieraths, U., MacArthur, D. G., Samocha, K. E., Cooper, D. N., Stenson, P. D., Daly, M. J., Smoller, J. W., Duncan, L. E., and Borgwardt, K. M. (2015) The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity. *Hum Mutat* 36, 513-523

- 24. Choi, Y., and Chan, A. P. (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. *Bioinformatics* **31**, 2745-2747
- Ng, P. C., and Henikoff, S. (2001) Predicting deleterious amino acid substitutions.
 Genome Res 11, 863-874
- Gaildrat, P., Killian, A., Martins, A., Tournier, I., Frebourg, T., and Tosi, M. (2010)
 Use of splicing reporter minigene assay to evaluate the effect on splicing of unclassified genetic variants. *Methods Mol Biol* 653, 249-257
- Gaildrat, P., Krieger, S., Di Giacomo, D., Abdat, J., Revillion, F., Caputo, S., Vaur, D., Jamard, E., Bohers, E., Ledemeney, D., Peyrat, J. P., Houdayer, C., Rouleau, E., Lidereau, R., Frebourg, T., Hardouin, A., Tosi, M., and Martins, A. (2012) Multiple sequence variants of BRCA2 exon 7 alter splicing regulation. *J Med Genet* 49, 609-617
- 28. Maluenda, J., Manso, C., Quevarec, L., Vivanti, A., Marguet, F., Gonzales, M., Guimiot, F., Petit, F., Toutain, A., Whalen, S., Grigorescu, R., Coeslier, A. D., Gut, M., Gut, I., Laquerriere, A., Devaux, J., and Melki, J. (2016) Mutations in GLDN, Encoding Gliomedin, a Critical Component of the Nodes of Ranvier, Are Responsible for Lethal Arthrogryposis. *Am J Hum Genet* **99**, 928-933
- Cummings, B. B., Marshall, J. L., Tukiainen, T., Lek, M., Donkervoort, S., Foley, A. R., Bolduc, V., Waddell, L. B., Sandaradura, S. A., O'Grady, G. L., Estrella, E., Reddy, H. M., Zhao, F., Weisburd, B., Karczewski, K. J., O'Donnell-Luria, A. H., Birnbaum, D., Sarkozy, A., Hu, Y., Gonorazky, H., Claeys, K., Joshi, H., Bournazos, A., Oates, E. C., Ghaoui, R., Davis, M. R., Laing, N. G., Topf, A., Genotype-Tissue Expression, C., Kang, P. B., Beggs, A. H., North, K. N., Straub, V., Dowling, J. J., Muntoni, F., Clarke, N. F., Cooper, S. T., Bonnemann, C. G., and MacArthur, D. G. (2017) Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. *Sci Transl Med* 9
- 30. Hall, J. G. (2013) Pretibial linear vertical creases or indentations (shin dimples) associated with arthrogryposis. *Am J Med Genet A* **161A**, 737-744
- 31. Ravenscroft, G., Di Donato, N., Hahn, G., Davis, M. R., Craven, P. D., Poke, G., Neas, K. R., Neuhann, T. M., Dobyns, W. B., and Laing, N. G. (2016) Recurrent de novo BICD2 mutation associated with arthrogryposis multiplex congenita and bilateral perisylvian polymicrogyria. *Neuromuscul Disord* 26, 744-748

- 32. Storbeck, M., Horsberg Eriksen, B., Unger, A., Holker, I., Aukrust, I., Martinez-Carrera, L. A., Linke, W. A., Ferbert, A., Heller, R., Vorgerd, M., Houge, G., and Wirth, B. (2017) Phenotypic extremes of BICD2-opathies: from lethal, congenital muscular atrophy with arthrogryposis to asymptomatic with subclinical features. *Eur J Hum Genet* 25, 1040-1048
 - 33. Neveling, K., Martinez-Carrera, L. A., Holker, I., Heister, A., Verrips, A., Hosseini-Barkooie, S. M., Gilissen, C., Vermeer, S., Pennings, M., Meijer, R., te Riele, M., Frijns, C. J., Suchowersky, O., MacLaren, L., Rudnik-Schoneborn, S., Sinke, R. J., Zerres, K., Lowry, R. B., Lemmink, H. H., Garbes, L., Veltman, J. A., Schelhaas, H. J., Scheffer, H., and Wirth, B. (2013) Mutations in BICD2, which encodes a golgin and important motor adaptor, cause congenital autosomal-dominant spinal muscular atrophy. *Am J Hum Genet* **92**, 946-954
 - Oates, E. C., Rossor, A. M., Hafezparast, M., Gonzalez, M., Speziani, F., MacArthur, D. G., Lek, M., Cottenie, E., Scoto, M., Foley, A. R., Hurles, M., Houlden, H., Greensmith, L., Auer-Grumbach, M., Pieber, T. R., Strom, T. M., Schule, R., Herrmann, D. N., Sowden, J. E., Acsadi, G., Menezes, M. P., Clarke, N. F., Zuchner, S., Muntoni, F., North, K. N., and Reilly, M. M. (2013) Mutations in BICD2 cause dominant congenital spinal muscular atrophy and hereditary spastic paraplegia. *Am J Hum Genet* 92, 965-973
 - 35. Peeters, K., Litvinenko, I., Asselbergh, B., Almeida-Souza, L., Chamova, T., Geuens, T., Ydens, E., Zimon, M., Irobi, J., De Vriendt, E., De Winter, V., Ooms, T., Timmerman, V., Tournev, I., and Jordanova, A. (2013) Molecular defects in the motor adaptor BICD2 cause proximal spinal muscular atrophy with autosomal-dominant inheritance. *Am J Hum Genet* 92, 955-964
- 36. Hunter, J. M., Ahearn, M. E., Balak, C. D., Liang, W. S., Kurdoglu, A., Corneveaux, J. J., Russell, M., Huentelman, M. J., Craig, D. W., Carpten, J., Coons, S. W., DeMello, D. E., Hall, J. G., Bernes, S. M., and Baumbach-Reardon, L. (2015) Novel pathogenic variants and genes for myopathies identified by whole exome sequencing. *Mol Genet Genomic Med* 3, 283-301
- 37. Quiram, P. A., Ohno, K., Milone, M., Patterson, M. C., Pruitt, N. J., Brengman, J. M., Sine, S. M., and Engel, A. G. (1999) Mutation causing congenital myasthenia reveals acetylcholine receptor beta/delta subunit interaction essential for assembly. *J Clin Invest* 104, 1403-1410

2	
3	
4	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
20	
27	
20	
29	
30 21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
22	

60

 Agerholm, J. S., McEvoy, F. J., Menzi, F., Jagannathan, V., and Drogemuller, C. (2016)
 A CHRNB1 frameshift mutation is associated with familial arthrogryposis multiplex congenita in Red dairy cattle. *BMC Genomics* 17, 479

- Duff, R. M., Tay, V., Hackman, P., Ravenscroft, G., McLean, C., Kennedy, P., Steinbach, A., Schoffler, W., van der Ven, P. F., Furst, D. O., Song, J., Djinovic-Carugo, K., Penttila, S., Raheem, O., Reardon, K., Malandrini, A., Gambelli, S., Villanova, M., Nowak, K. J., Williams, D. R., Landers, J. E., Brown, R. H., Jr., Udd, B., and Laing, N. G. (2011) Mutations in the N-terminal actin-binding domain of filamin C cause a distal myopathy. *Am J Hum Genet* 88, 729-740
- 40. Kiselev, A., Vaz, R., Knyazeva, A., Khudiakov, A., Tarnovskaya, S., Liu, J., Sergushichev, A., Kazakov, S., Frishman, D., Smolina, N., Pervunina, T., Jorholt, J., Sjoberg, G., Vershinina, T., Rudenko, D., Arner, A., Sejersen, T., Lindstrand, A., and Kostareva, A. (2018) De novo mutations in FLNC leading to early-onset restrictive cardiomyopathy and congenital myopathy. *Hum Mutat* **39**, 1161-1172
- 41. Carss, K. J., Stevens, E., Foley, A. R., Cirak, S., Riemersma, M., Torelli, S., Hoischen, A., Willer, T., van Scherpenzeel, M., Moore, S. A., Messina, S., Bertini, E., Bonnemann, C. G., Abdenur, J. E., Grosmann, C. M., Kesari, A., Punetha, J., Quinlivan, R., Waddell, L. B., Young, H. K., Wraige, E., Yau, S., Brodd, L., Feng, L., Sewry, C., MacArthur, D. G., North, K. N., Hoffman, E., Stemple, D. L., Hurles, M. E., van Bokhoven, H., Campbell, K. P., Lefeber, D. J., Lin, Y. Y., and Muntoni, F. (2013) Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of alpha-dystroglycan. *Am J Hum Genet* 93, 29-41
- Belaya, K., Rodriguez Cruz, P. M., Liu, W. W., Maxwell, S., McGowan, S., Farrugia, M. E., Petty, R., Walls, T. J., Sedghi, M., Basiri, K., Yue, W. W., Sarkozy, A., Bertoli, M., Pitt, M., Kennett, R., Schaefer, A., Bushby, K., Parton, M., Lochmuller, H., Palace, J., Muntoni, F., and Beeson, D. (2015) Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. *Brain* 138, 2493-2504
- 43. Lerche, H., Peter, W., Fleischhauer, R., Pika-Hartlaub, U., Malina, T., Mitrovic, N., and Lehmann-Horn, F. (1997) Role in fast inactivation of the IV/S4-S5 loop of the human muscle Na+ channel probed by cysteine mutagenesis. *J Physiol* **505 (Pt 2)**, 345-352

- Mannikko, R., Wong, L., Tester, D. J., Thor, M. G., Sud, R., Kullmann, D. M., Sweeney, M. G., Leu, C., Sisodiya, S. M., FitzPatrick, D. R., Evans, M. J., Jeffrey, I. J. M., Tfelt-Hansen, J., Cohen, M. C., Fleming, P. J., Jaye, A., Simpson, M. A., Ackerman, M. J., Hanna, M. G., Behr, E. R., and Matthews, E. (2018) Dysfunction of NaV1.4, a skeletal muscle voltage-gated sodium channel, in sudden infant death syndrome: a case-control study. *Lancet* 391, 1483-1492
 - Horstick, E. J., Linsley, J. W., Dowling, J. J., Hauser, M. A., McDonald, K. K., Ashley-Koch, A., Saint-Amant, L., Satish, A., Cui, W. W., Zhou, W., Sprague, S. M., Stamm, D. S., Powell, C. M., Speer, M. C., Franzini-Armstrong, C., Hirata, H., and Kuwada, J. Y. (2013) Stac3 is a component of the excitation-contraction coupling machinery and mutated in Native American myopathy. *Nat Commun* 4, 1952
 - 46. Zaharieva, I. T., Sarkozy, A., Munot, P., Manzur, A., O'Grady, G., Rendu, J., Malfatti, E., Amthor, H., Servais, L., Urtizberea, J. A., Neto, O. A., Zanoteli, E., Donkervoort, S., Taylor, J., Dixon, J., Poke, G., Foley, A. R., Holmes, C., Williams, G., Holder, M., Yum, S., Medne, L., Quijano-Roy, S., Romero, N. B., Faure, J., Feng, L., Bastaki, L., Davis, M. R., Phadke, R., Sewry, C. A., Bonnemann, C. G., Jungbluth, H., Bachmann, C., Treves, S., and Muntoni, F. (2018) STAC3 variants cause a congenital myopathy with distinctive dysmorphic features and malignant hyperthermia susceptibility. *Hum Mutat* **39**, 1980-1994
 - 47. Reinholt, B. M., Ge, X., Cong, X., Gerrard, D. E., and Jiang, H. (2013) Stac3 is a novel regulator of skeletal muscle development in mice. *PLoS One* **8**, e62760
 - Amburgey, K., Bailey, A., Hwang, J. H., Tarnopolsky, M. A., Bonnemann, C. G., Medne, L., Mathews, K. D., Collins, J., Daube, J. R., Wellman, G. P., Callaghan, B., Clarke, N. F., and Dowling, J. J. (2013) Genotype-phenotype correlations in recessive RYR1related myopathies. *Orphanet J Rare Dis* 8, 117
 - Magini, P., Smits, D. J., Vandervore, L., Schot, R., Columbaro, M., Kasteleijn, E., van der Ent, M., Palombo, F., Lequin, M. H., Dremmen, M., de Wit, M. C. Y., Severino, M., Divizia, M. T., Striano, P., Ordonez-Herrera, N., Alhashem, A., Al Fares, A., Al Ghamdi, M., Rolfs, A., Bauer, P., Demmers, J., Verheijen, F. W., Wilke, M., van Slegtenhorst, M., van der Spek, P. J., Seri, M., Jansen, A. C., Stottmann, R. W., Hufnagel, R. B., Hopkin, R. J., Aljeaid, D., Wiszniewski, W., Gawlinski, P., Laure-Kamionowska, M., Alkuraya, F. S., Akleh, H., Stanley, V., Musaev, D., Gleeson, J. G., Zaki, M. S., Brunetti-Pierri, N., Cappuccio, G., Davidov, B., Basel-Salmon, L., Bazak,

L., Shahar, N. R., Bertoli-Avella, A., Mirzaa, G. M., Dobyns, W. B., Pippucci, T., Fornerod, M., and Mancini, G. M. S. (2019) Loss of SMPD4 Causes a Developmental Disorder Characterized by Microcephaly and Congenital Arthrogryposis. *Am J Hum Genet* **105**, 689-705

- 50. Monies, D., Abouelhoda, M., Assoum, M., Moghrabi, N., Rafiullah, R., Almontashiri, N., Alowain, M., Alzaidan, H., Alsayed, M., Subhani, S., Cupler, E., Faden, M., Alhashem, A., Qari, A., Chedrawi, A., Aldhalaan, H., Kurdi, W., Khan, S., Rahbeeni, Z., Alotaibi, M., Goljan, E., Elbardisy, H., ElKalioby, M., Shah, Z., Alruwaili, H., Jaafar, A., Albar, R., Akilan, A., Tayeb, H., Tahir, A., Fawzy, M., Nasr, M., Makki, S., Alfaifi, A., Akleh, H., Yamani, S., Bubshait, D., Mahnashi, M., Basha, T., Alsagheir, A., Abu Khaled, M., Alsaleem, K., Almugbel, M., Badawi, M., Bashiri, F., Bohlega, S., Sulaiman, R., Tous, E., Ahmed, S., Algoufi, T., Al-Mousa, H., Alaki, E., Alhumaidi, S., Alghamdi, H., Alghamdi, M., Sahly, A., Nahrir, S., Al-Ahmari, A., Alkuraya, H., Almehaidib, A., Abanemai, M., Alsohaibaini, F., Alsaud, B., Arnaout, R., Abdel-Salam, G. M. H., Aldhekri, H., AlKhater, S., Algadi, K., Alsabban, E., Alshareef, T., Awartani, K., Banjar, H., Alsahan, N., Abosoudah, I., Alashwal, A., Aldekhail, W., Alhajjar, S., Al-Mayouf, S., Alsemari, A., Alshuaibi, W., Altala, S., Altalhi, A., Baz, S., Hamad, M., Abalkhail, T., Alenazi, B., Alkaff, A., Almohareb, F., Al Mutairi, F., Alsaleh, M., Alsonbul, A., Alzelaye, S., Bahzad, S., Manee, A. B., Jarrad, O., Meriki, N., Albeirouti, B., Algasmi, A., AlBalwi, M., Makhseed, N., Hassan, S., Salih, I., Salih, M. A., Shaheen, M., Sermin, S., Shahrukh, S., Hashmi, S., Shawli, A., Tajuddin, A., Tamim, A., Alnahari, A., Ghemlas, I., Hussein, M., Wali, S., Murad, H., Meyer, B. F., and Alkuraya, F. S. (2019) Lessons Learned from Large-Scale, First-Tier Clinical Exome Sequencing in a Highly Consanguineous Population. *Am J Hum Genet* **104**, 1182-1201
- 51. Juhlen, R., and Fahrenkrog, B. (2018) Moonlighting nuclear pore proteins: tissue-specific nucleoporin function in health and disease. *Histochem Cell Biol* 150, 593-605
- 52. Fichtman, B., Harel, T., Biran, N., Zagairy, F., Applegate, C. D., Salzberg, Y., Gilboa, T., Salah, S., Shaag, A., Simanovsky, N., Ayoubieh, H., Sobreira, N., Punzi, G., Pierri, C. L., Hamosh, A., Elpeleg, O., Harel, A., and Edvardson, S. (2019) Pathogenic Variants in NUP214 Cause "Plugged" Nuclear Pore Channels and Acute Febrile Encephalopathy. *Am J Hum Genet* 105, 48-64

- 53. Nakka, K., Ghigna, C., Gabellini, D., and Dilworth, F. J. (2018) Diversification of the muscle proteome through alternative splicing. *Skelet Muscle* **8**, 8
- Gonorazky, H. D., Naumenko, S., Ramani, A. K., Nelakuditi, V., Mashouri, P., Wang, P., Kao, D., Ohri, K., Viththiyapaskaran, S., Tarnopolsky, M. A., Mathews, K. D., Moore, S. A., Osorio, A. N., Villanova, D., Kemaladewi, D. U., Cohn, R. D., Brudno, M., and Dowling, J. J. (2019) Expanding the Boundaries of RNA Sequencing as a Diagnostic Tool for Rare Mendelian Disease. *Am J Hum Genet* **104**, 466-483
- 55. Gasperini, M., Starita, L., and Shendure, J. (2016) The power of multiplexed functional analysis of genetic variants. *Nat Protoc* **11**, 1782-1787
- 56. Mighell, T. L., Evans-Dutson, S., and O'Roak, B. J. (2018) A Saturation Mutagenesis Approach to Understanding PTEN Lipid Phosphatase Activity and Genotype-Phenotype Relationships. *Am J Hum Genet* **102**, 943-955
- 57. Findlay, G. M., Daza, R. M., Martin, B., Zhang, M. D., Leith, A. P., Gasperini, M., Janizek,
 J. D., Huang, X., Starita, L. M., and Shendure, J. (2018) Accurate classification of
 BRCA1 variants with saturation genome editing. *Nature* 562, 217-222
- Dickinson, M. E., Flenniken, A. M., Ji, X., Teboul, L., Wong, M. D., White, J. K., Meehan, 58. T. F., Weninger, W. J., Westerberg, H., Adissu, H., Baker, C. N., Bower, L., Brown, J. M., Caddle, L. B., Chiani, F., Clary, D., Cleak, J., Daly, M. J., Denegre, J. M., Doe, B., Dolan, M. E., Edie, S. M., Fuchs, H., Gailus-Durner, V., Galli, A., Gambadoro, A., Gallegos, J., Guo, S., Horner, N. R., Hsu, C. W., Johnson, S. J., Kalaga, S., Keith, L. C., Lanoue, L., Lawson, T. N., Lek, M., Mark, M., Marschall, S., Mason, J., McElwee, M. L., Newbigging, S., Nutter, L. M., Peterson, K. A., Ramirez-Solis, R., Rowland, D. J., Ryder, E., Samocha, K. E., Seavitt, J. R., Selloum, M., Szoke-Kovacs, Z., Tamura, M., Trainor, A. G., Tudose, I., Wakana, S., Warren, J., Wendling, O., West, D. B., Wong, L., Yoshiki, A., International Mouse Phenotyping, C., Jackson, L., Infrastructure Nationale Phenomin, I. C. d. l. S., Charles River, L., Harwell, M. R. C., Toronto Centre for, P., Wellcome Trust Sanger, I., Center, R. B., MacArthur, D. G., Tocchini-Valentini, G. P., Gao, X., Flicek, P., Bradley, A., Skarnes, W. C., Justice, M. J., Parkinson, H. E., Moore, M., Wells, S., Braun, R. E., Svenson, K. L., de Angelis, M. H., Herault, Y., Mohun, T., Mallon, A. M., Henkelman, R. M., Brown, S. D., Adams, D. J., Lloyd, K. C., McKerlie, C., Beaudet, A. L., Bucan, M., and Murray, S. A. (2016) High-throughput discovery of novel developmental phenotypes. Nature 537, 508-514

 ididate genes it

 J. NPJ Genom Med 4, 3

TABLE

Table 1: Causative genes identified within the 81 genetically diagnosed probands

Gene	Cases (n)	Gene	Cases (n)
TTN	8	CACNA1S	1
TNNI2	7	CHANB1	1
BICD2	6	FBN2	1
NEB	5	FLNC1	1
CHRNG	4	GBE1	1
COL6A1	4	GLDN*	1
МҮНЗ	4	KLHL40	1
ECEL1	3	MYL1*	1
MAGEL2	3	MYO18B	1
PIEZO2	3	NUP88*	1
TPM2	3	RAPSN	1
TRPV4	3	RYR1	1
ZC4H2	3	SMPD4*	1
ACTA1	2	STAC3	1
DYNC1H1	2	TNNT3	1
GMPPB	2		
NALCN	2		
SCN4A	2		
Genes in bo	old denote ger	nes that were	added into v2
or v3 of the p	oanel. Genes	tagged with an	n "*" represent
then novel h	numan diseas	e genes ident	tified by WES
(i.e. not on v	/1-3 of the pai	nel)	

FIGURE LEGENDS

Figure 1: Bi-allelic class 3 variants in CACNA1S and SCN4A associated with fetal akinesia. (A) A pedigree co-segregating bi-allelic missense variants in *CACNA1S* with fetal akinesia and (B) conservation across species at the observed substitutions: p.Met222 and p.Arg789. (C) Evolutionarily conservation at two SCN4A residues substituted, bi-allelically, in another case of fetal akinesia. Importantly, previous work substituting p.Ser1478 to cysteine showed enhanced inactivation of the Na⁺ channel. Abbreviations: d. 10 d = died at 10 days of age, TOP 26wg = termination of pregnancy at 26 weeks gestation.

Figure 2: Homozygous deletion within CHRNB1 causes lethal multiple pterygia syndrome. (A) A nonconsanguineous family with recurrent lethal multiple pterygia syndrome; IUFD: *in utero* fetal demise and TOP: termination of pregnancy . (B) Visualisation of the *CHRNB1* exon 8 deletion in the exome sequencing data from the proband (blue trace) and both parents (purple traces). The grey lines represent other samples in the same batch of CNV calling and show the average amount of noise across the region. The y-axis denotes the copy number as inferred by gCNV, and the x-axis shows the position along the gene in kilobases. The dots on the plot represent a probe for exon capture, which roughly represent exons. The copy number estimation is expected to hover around 2.0 for autosomes. For the X chromosome, the copy number estimation should hover around 2.0 for females and 1.0 for males.

Figure 3: Clinical presentation in a case with mild distal arthrogryposis due to a de novo missense variant in FLNC. Images A and B were taken at age 8 months and image C was taken at age 2 months. The images demonstrate reduced elbow extension with dimples, excessive ankle hypermobility, and subtle facial findings including plagiocephaly and micrognathia.

Figure 4: Homozygous variant in STAC3. (A) Pedigree showing segregation of a homozygous variant in *STAC3.* (B) 2% agarose gel of RT-PCR products from the *STAC3* minigene assay. WT – normal exon 3 of *STAC3,* MUT – exon 3 containing the c.312T>G variant. +P or -P indicates the cells were grown in the presence (+) or absence (-) of puromycin (to inhibit potential nonsense-mediated decay). NTC = no template control.

The red arrowhead indicates the smaller product in the samples containing the variant. Sanger sequencing of the RT-PCR product shows that this smaller product corresponds to loss of the 22 nucleotides following the variant in the cDNA (C).

Figure 5: Novel GLDN variants identified in a family with recurrent fetal akinesia. (A) Pedigree showing segregation of bi-allelic VUS in *GLDN.* (B) Sanger sequencing showed that the heterozygous c.59T>C on gDNA (in A) appeared homozygous in muscle cDNA, suggesting loss of expression from the allele containing the essential-splice site change. (C) Detection of hGLDN and mutant hGLDN fused to an extracellular myc-tag in HEK cells in culture (red) and post-fixation and permeabilization (green). Nuclei are stained with Hoechst.

Figure 6: A family with recurrent arthrogryposis and central involvement due to a homozygous missense variant in *SMPD4*. (A) Pedigree, (B) T1 midline sagittal image (Individual II:2, neonatal MRI brain scan) showing absence of the genu and rostrum, thinning and elongation of the callosal body. Microcephaly, hypoplasia of the inferior cerebellar vermis and prominent venous sinuses are also evident. (C) T2 axial image (Individual II:2) showing simplified gyration, compensatory ventriculomegaly and absent myelination. (D) Alignment showing evolutionary conservation of the p.Pro192 residue.

2		
3		
4		
5		
6		
0	-	
/	Α	-
8		
9		
10	11	12
11		7900
12		1090
12		
13		
14		
15		
16		
17		
18		1-3 — 11-4
10	d 10 d	TOP 26wg
19	+/+ +/-	+/- +/+
20		
21	В	
22	- CACNA1S: n Mot2221 vs	$C\Delta CN\Delta 15$ n $\Delta rg789Cvs$
23	CACINALS. p. Net 222Lys	
24	Human LFKGK <mark>M</mark> HKTCY	Human RNQKI <mark>R</mark> VLCHR
25	D16-0750 LFKGK <mark>K</mark> HKTCY	D16-0750 RNQKI <mark>C</mark> VLCHR
25		
20	Mouse LFRGRMHRTCH	
27	Chicken LFKGK <mark>M</mark> HKICY	CHICKEN RNQKF <mark>R</mark> MLCHR
28	Frog LFKGK <mark>M</mark> HKTCY	Frog RNQKF <mark>R</mark> KLCYK
29	Zehrafish EKCKMHKTCV	7ehrafish RNKKF <mark>R</mark> KI CHR
30		
31	Fruittly LFSGK <mark>L</mark> HKACR	Fruittiy LNKRF <mark>R</mark> VFCHW
32	Worm LFCGK <mark>L</mark> HSTCI	Worm RNMSF <mark>R</mark> VFCNM
22	^	
33		
34	SCN4A: p.Ser1478Leu	SCN4A: p.Arg756Cys
35	Human FALMM <mark>S</mark> LPALF	Human FLIVF <mark>R</mark> ILCGE
36	D16-1073 EALMM	
37		DIG-10/3 FLIVF <mark>G</mark> ILCGE
38	Mouse FALMM <mark>S</mark> LPALF	Mouse FLIVF <mark>R</mark> ILCGE
39	Chicken FALMM <mark>S</mark> LPALF	Chicken FLIVF <mark>R</mark> ILCGE
40	Erog EALMM <mark>S</mark> IPALE	
40		
41	Zebratish FALMM <mark>S</mark> LPALF	ZebrafishFLIIF <mark>R</mark> VLCGE
42	Fruitfly FALAM <mark>S</mark> LPALF	Fruitflv FMIVF <mark>R</mark> VLCGE
43	• <mark>-</mark>	,
44		
45	Figu	re 1
46	5	
17	124x191mm (3	300 x 300 DPI)
47		
48		
49		
50		
51		
52		
55		
54		
55		
56		
57		
58		
59		
60	https://mc.manuscriptc	entral.com/imedgenet
00		

158x142mm (600 x 600 DPI)

Figure 4

108x91mm (600 x 600 DPI)

Figure 5

222x141mm (600 x 600 DPI)

CACNB4

CAPN3

ATP6AP2

ATP7A

1				
2	Supplementary	, Table 1: Genes	included on each	iteration of the
3	PathWest gene	e panel		
4	v1	v2	v3 neuro	v3 muscle
5	AARS	AARS	AARS	AARS2
6				
7				
8				
9	ABHDIZ	ABHDIZ	ABHDIZ	
10 11	ABHD5	ABHD5	ACTB	ACTA1
12	ACADVL	ACAD9	ACTG1	ACTC1
13	ACADVL	ACADVL	ADAR	ACTN2
14	ACTA1	ACTA1	ADCK3	ADCY6
15	ACTC1	ACTB	ADGRG1	ADGRG6
16	ACTN2	ADCK3	AFG3L2	ADSSL1
17	ACVR1	ADCY6	AIFM1	AGK
18	ADCK3	AFG3L2	AIMP1	AGI
19	AFG3L2	AGK	AKT1	AGRN
20				
21				
22	AGRIN	AGRIN		
23	AHNAK	AIFINI	ALDH3AZ	ALG14
24 25	AIFM1	AIMP1	ALS2	ALG2
25	ALDH3A2	ALDH3A2	AMPD2	AMPD1
20	ALS2	ALG14	ANG	ANKRD1
28	ANG	ALG2	ANO10	ANKRD2
29	ANK2	ALS2	ANO3	ANO5
30	ANKRD1	AMPD1	AP4B1	APOD
31	ANO10	AMPD2	AP4E1	ASCC1
32	ANO5	ANG	AP4M1	ATP1A2
33	AP571	ANO10	AP4S1	ATP2A1
34			ΔΡ571	
35				
36 27				B3GALNIZ B2CALTC
3/ 20	AR ADUCEE10		ARFGEFZ	B3GALIO D4CAT1
30	ARHGEF10	AP4E1	ARHGEF10	B4GATI
40	ARSA	AP4M1	ARL6IP1	BAG3
41	ARX	AP4S1	ARSA	BIN1
42	ASAH1	AP5Z1	ARSI	BVES
43	ATL1	APTX	ARX	C10orf2
44	ATM	ARHGEF10	ASAH1	C12orf65
45	ATP2A1	ARL6IP1	ASCC1	C8orf22
46	ATP2B3	ARSA	ASPA	CA3
47	ATP7A	ARSI	ASPM	CACNA1S
48	B3GALNT2	ASAH1	ATCAY	CAPN3
49 50	BAG3	ΔςρΔ	ΔΤΙ 1	CASO1
5U 51				
52				
53	DINT	AILS	ATIVI	
54	BSCL2	ATIVI	ATP1A3	CD99
55	C10ort2	ATP1A3	ATP2B3	CEP89
56	CACNA1A	ATP2A1	ATP2B4	CFL2
57	CACNA1C	ATP2B3	ATP6AP2	CHAT
58	CACNA1S	ATP2B4	ATP7A	CHCHD10
59	CACNB2	ATP5A1	ATR	CHD7

СНКА

CHKB

B3GALNT2

B4GALNT1

1				
2	CASQ2	B3GALNT2	BCAP31	CHRNA1
3	CAV3	B3GALT6	BEAN1	CHRNB1
4	CCT5	B3GNT1	BICD2	CHRND
5	CFL2	B4GALNT1	BSCL2	CHRNE
6	CHAT	BAG3	C12orf65	CHRNG
/	CHRNA1	BCAP31	C19orf12	CHST14
0 0	CHRNB1	BEAN1	CACNA1A	СКМ
10	CHRND	BICD2	CACNA1B	CKMT2
11	CHRNE	BIN1	CACNA1G	CI CN1
12	CHRNG	BSCI 2		CLON11
13		C10orf2	CCTS	CMVA5
14		C100HZ		
15		C120/105		
16				
1/	COLGAI	CACNAIA	CEP152	COLIZAT
18 10	COL6A2	CACNA1S	CHCHD10	COLIJAI
20	COL6A3	CACNB4	CHMP2B	COL1A1
20	COLQ	CAPN3	CLCN2	COL3A1
22	COX15	CASQ1	CLPP	COL6A1
23	CPT1B	CAV3	COASY	COL6A2
24	CPT2	CCDC78	COL4A1	COL6A3
25	CRYAB	CCT5	COL4A2	COLQ
26	CSRP3	CEP89	COX6A1	COX14
27	CTDP1	CFL2	CPT1C	COX6A2
28	CYP7B1	СНАТ	CSF1R	COX6B1
29 30	DAG1	CHCHD10	CTDP1	CPT2
31	DCTN1	CHD7	CUIS	CRYAB
32	DCX	CHKB	CWF19L1	CYC1
33	DES			
34				
35				DES
36				DES
37	DIVIPK	CHRIND	DCAF8	
38	DNAJB2	CHRINE	DCINI	
39 40	DNAJB6	CHRNG	DCX	DNA2
40	DNM2	CLCN1	DDHD1	DNAJB6
42	DNMT1	CLCN2	DDHD2	DNM2
43	DOCK3	CLPP	DENR	DOK7
44	DOK7	CNTN1	DHTKD1	DPAGT1
45	DPAGT1	CNTNAP1	DNAJB2	DPM1
46	DPM2	COASY	DNAJB5	DPM2
47	DSC2	COL12A1	DNM2	DPM3
48	DSG2	COL1A1	DNMT1	DYSF
49 50	DSP	COL6A1	DRD2	ECEL1
50	DTNA	COL6A2	DRP2	EDN3
52	DYNC1H1	COL6A3	DST	EGR2
53	DYSE	010	DYNC1H1	FMD
54	EGR2	COX14	EDN3	ENO3
55	FMD	COX6R1	EGR2	ERBB3
56	ENO3	CPT2	FIF2R1	FTEDH
57				
58 50	ETEA			
59 60				
00				
	EIFDH	CYCI	EIF2B2	FUXIL

1				
2	EYA4	CYP2U1	ELOVL4	FGF7
3	FA2H	CYP7B1	ELOVL5	FHL1
4	FAM134B	DAG1	ENTPD1	FHL3
5	FBLN5	DARS2	EOMES	FKBP14
6	FGD4	DCAF8	ERLIN1	FKRP
/	FGF14	DCST2	ERLIN2	FKTN
8 0	FGFR2	DCTN1	FXOSC3	FINA
9 10	FHI1		EXOSC8	FINC
10	FIG4		ЕЛОВСО FΔ2H	GAA
12	FKRD	DES	FΔM126Δ	GAPDH
13				GRE1
14				GEDT1
15				
16	FLINC		FAI3	GGPSI
/ 10	FUS	DNAJBZ	FAI4	GLEI
10	FXN	DNAJB6	FBLN5	GMPPB
20	GAA	DNM2	FBXO38	GNE
21	GAN	DNMT1	FGD4	GOLGA2
22	GARS	DOK7	FGF14	GREM1
23	GATAD1	DPAGT1	FIG4	GYG1
24	GBE1	DPM2	FKRP	GYS1
25	GDAP1	DPM3	FKTN	HACD1
26	GFPT1	DRD2	FLNA	HADHA
2/ วง	GJA5	DST	FLRT1	HADHB
20 29	GJB1	DYNC1H1	FLVCR1	HBB
30	GJB3	DYSF	FTL	HIST1H3H
31	GLE1	ECEL1	FUS	HNRNPA1
32	GMPPB	EGR2	FXN	HNRNPA2B1
33	GNE	EIF2B1	GAD1	HNRNPDL
34	GPD1L	EIF2B2	GALC	HRAS
35	GTDC2	FIF2B3	GAN	HSPB6
30 27	GYG1	FIF2R4	GARS	HSPB7
38	GVS1	FIF2B5	GRA2	HSPB8
39	HARS		GCH1	HSPG2
40				
41			GEAD	
42				
43				
44			G1B3	
45 46			GJCZ	
40	HSPB3		GNAL	KBTBD13
48	HSPB8	ERLIN2	GNB4	KCNA1
49	HSPD1	EIFDH	GOSR2	KCNJ2
50	HSPG2	EXOSC3	GRID2	KIF21A
51	IFRD1	EXOSC8	GRM1	KLHL31
52	IGHMBP2	FA2H	HACE1	KLHL40
53	ΙΚΒΚΑΡ	FAM126A	HARS	KLHL41
54 55	ILK	FAM134B	HEPACAM	KLHL9
55 56	INF2	FBLN5	HINT1	КҮ
57	ISCU	FBXL4	HK1	L1CAM
58	ISPD	FBXO38	HNRNPA1	LAMA2
59	ITGA7	FDX1L	HNRNPA2B1	LAMB2
60	ITPR1	FGD4	HNRNPUL1	LAMP2
	JPH2	FGF14	HNRNPUL2	LARGE1

1				
2	JUP	FHL1	HOXD10	LDB3
3	KARS	FIG4	HPCA	LDHA
4	KBTBD10	FKRP	HSPB1	LIMS2
5	KBTBD13	FKTN	HSPB3	LMNA
6	KBTBD5	FINA	HSPB8	
7	KCNA1	FINC	HSPD1	
8	KCNA5	FIRT1		
9 10				
10	KCNE1	ETI		
12	KCNE2	ELIS		
13	KCNE2	FUS		
14				
15		GAA GAD1		
16	KCNJ12	GADI		
1/	KCNJ18	GALC	KARS	MICU1
10	KCNJ2	GAN	KCNA1	MMP1
20	KCNQ1	GARS	КСИСЗ	MMP28
21	KIAA0196	GBA2	KCND3	MPZ
22	KIF1A	GBE1	KCTD13	MRPL3
23	KIF1B	GCH1	KIAA0196	MSTN
24	KIF21A	GDAP1	KIF1A	MTM1
25	KIF5A	GFAP	KIF1B	MTMR14
26	KLHL9	GFPT1	KIF1C	MUSK
27	L1CAM	GJB1	KIF21A	MUSTN1
20	LAMA2	GJB3	KIF2A	MYBPC1
30	LAMA4	GJC2	KIF5A	МҮВРСЗ
31	LAMB2	GLE1	KIF5C	MYF6
32	LAMP2	GMPPB	KLC2	MYH13
33	LARGE	GNAL	KLC4	MYH14
34	LDB3	GNB4	KTN1	MYH2
35	LDHA	GNE	L1CAM	MYH3
30 37	LITAF	GOSR2	LARGE1	MYH7
38	LMNA	GRID2	LAS1L	MYH8
39	LMOD3	GYG1	LITAF	MYI 1
40	I PIN1	GYS1	IMNA	MYI 12A
41				MYL2
42	MATR3	HARS		MYL3
43	MED25	ΗΕΡΔΟΔΜ		MYL4
44 45	MEGE10		MAG	MVIDE
46	MEN2		MARS	MYO18B
47				MYOD1
48				MYOT
49				NITOT NIVO71
50				
51				
52 52		HSPB3		
54				
55		HSPDI		
56		HSPG2		
57	MUSK	IBA57	MPZ	
58	MYBPC1	IGHMBP2	MR1	NNAT
59	MYBPC3	ΙΚΒΚΑΡ	MRE11A	NRAP
60	MYH2	INF2	MTMR2	NUP88
	MYH3	ISCU	MTPAP	OBSCN

1				
2	MYH6	ISPD	MYH14	OPA1
3	MYH7	ITGA7	MYH7	ORAI1
4	MYH8	ITPR1	NAGLU	P4HA1
5	MYL2	KARS	NDE1	PABPN1
6	MYL3	KBTBD13	NDRG1	PBLD
/	MYLK2	KCNA1	NEFL	PDE4DIP
0 0	MYOT	KCNC3	NGF	PDK4
10	MYOZ2	KCNJ2	NIPA1	PDLIM3
11	MYPN	KIAA0196	NOP56	PEKM
12	NDRG1	KIF1A	NOTCH3	PGAM2
13		KIF1B	NT5C2	PGK1
14	NER		NTRK1	PGM1
15	NEEL			
16 17				
17 18		KIF5A		
10		KLHL40		PHUXZA
20	NIPA1	KLHL41	PAFAH1B1	PIEZOZ
21	NOTCH3	KLHL9	PANK2	PIGY
22	NPPA	L1CAM	PARK2	PIP5K1C
23	NTRK1	LAMA2	PAX6	PLEC
24	OPA1	LAMB2	PBLD	PLOD1
25	PABPN1	LAMP2	PCNT	PMP22
26 27	PAFAH1B1	LARGE	PDK3	PNPLA2
27	PDK3	LAS1L	PDYN	POGLUT1
20	PEX7	LDB3	PEX10	POLG
30	PFKM	LDHA	PFN1	POLG2
31	PFN1	LIMS2	PGAP1	POMGNT1
32	PGAM2	LITAF	PIK3R5	POMGNT2
33	PGK1	LMNA	PLA2G6	РОМК
34	PGM1	LMNB1	PLEKHG5	POMT1
35	PHKA1	LMOD3	PLOD1	POMT2
30 27	ΡΗΟΧ2Α	I PIN1	PI P1	POSTN
38	РНҮН	IRP4	PMP2	PPP1R27
39			PMP22	PRFLP
40			ΡΜΡΟΔ	PREDI
41		MAG		
42		MAGEL2		
43				
44 45				
45				
47			PULR3B	RAPSIN
48		MED25		RBCKI
49	PNPLA6	MEGF10	POMGN12	RMIND1
50	POLG	MFN2	POMK	RRM2B
51	POLG2	MGME1	POMT1	RYR1
52	POMGNT1	MICU1	POMT2	SCN4A
53 54	POMT1	MLC1	PPP2R2B	SDHA
54 55	POMT2	MPZ	PRDM12	SEPN1
55	PRKAG2	MR1	PRKCG	SGCA
57	PRKCG	MRE11A	PRKRA	SGCB
58	PRPS1	MRPL3	PRNP	SGCD
59	PRRT2	MSTN	PRPH	SGCG
60	PRX	MTM1	PRPS1	SLC18A3
	PSEN1	MTMR2	PRRT2	SLC19A3

1					
2	PSEN2	MTPAP	PRX	SLC22A5	
3	PTRF	MUSK	PSAP	SLC25A20	
4	PYGM	MYBPC1	PTEN	SLC25A4	
5	RAB7A	MYH14	RAB3GAP2	SLC25A42	
6	RAPSN	MYH2	RAR7A	SI C25A6	
7	RBM20	MVH3	REED1	SI C28A2	
8	REED1		REED?	SIN	
9 10					
10					
12				SNAP25	
13	RIRI		RNASEIZ	SUXIO	
14	RYR2	NDRG1	RNF170	SPEG	
15	SACS	NDUFAF1	RNF216	SQSTM1	
16	SBF2	NDUFAF2	RPIA	SRPK3	
17	SCN4A	NEB	RTN2	STAC3	
18	SCN5A	NEFL	RTTN	STIM1	
19	SDHA	NFU1	RUBCN	STMN2	
20	SEPN1	NGF	SACS	SUCLA2	
22	SEPT9	NIPA1	SAMHD1	SURF1	
23	SETX	NOP56	SBF1	SYNE1	
24	SGCA	NT5C2	SBF2	SYNE2	
25	SGCB	NTRK1	SCN11A	SYNPO2	
26	SGCD	OPA1	SCN1A	SYT2	
27	SGCE	OPTN	SCN9A	TANGO2	
28	SGCG	OTUD4	SCYL1	TAZ	
29 30	SH3TC2	PABPN1	SEPT9	ТВСК	
31	SIL1	PANK2	SETX	TCAP	
32	SI C12A6	PARK2	SGCE	TGFB3	
33	SIC1A3			TIA1	
34	SI C22A5	PEKM	SIGMAR1	тк2	
35	SI C25A20	PFN1		TMEM43	
36	SI C25A/	PGAM2	SIC12A6		
37	SI C33A1				
39			SIC1745		
40			SLC19A2		
41	SOV10		SLCIAS		
42	SUXIU		SLCIAS		
43	SPASI	PHKB	SLCZUAZ		
44	SPG11	PHOXZA	SLC25A46		
45	SPG20	PIEZO2	SLC2A1	INNI3	
40 47	SPG21	PIGY	SLC33A1	INPO3	
48	SPG7	PIP5K1C	SLC52A1	ТМХВ	
49	SPTBN2	PLA2G6	SLC52A2	TOR1AIP1	
50	SPTLC1	PLEC1	SLC52A3	TP63	
51	SPTLC2	PLEKHG5	SLC5A7	TPM2	
52	STIM1	PLP1	SLC6A3	TPM3	
53	SUCLA2	PMP22	SLC9A1	TRAPPC11	
54 55	SYNE1	PNPLA2	SNX14	TRIM32	
55 56	SYNE2	PNPLA6	SOD1	TRIM63	
57	TARDBP	POGLUT1	SOX10	TRIP4	
58	TAZ	POLG	SPAST	TRPV4	
59	TCAP	POLG2	SPG11	TTN	
60	TDP1	POLR3A	SPG20	UBA1	
	TFG	POLR3B	SPG21	UNC79	

1				
2	TGFB3	POMGNT1	SPG7	UNC80
3	TIA1	POMGNT2	SPR	UQCRC2
4	TK2	РОМК	SPTBN2	VCP
5	TMEM43	POMT1	SPTLC1	VMA21
6 7	ТМРО	POMT2	SPTLC2	XIRP1
/ 8	TNNC1	PPP2R2B	SPTLC3	XIRP2
9	TNNI2	PRKCG	SQSTM1	ZBTB42
10	TNNI3	PRKRA	STUB1	ZC4H2
11	TNNT1	PRNP	SYNE1	
12	TNNT2	PRPH	SYT14	
13	TNNT3	PRPS1	ΤΔF1	
14		PRRT2		
15				
16 17				
17				
19		HACDI		
20			TBRI	
21	TRIIVI32			
22	TRPV4	PYROXD1	TECPR2	
23	TTBK2	RAB3GAP2	TFG	
24	TTN	RAB7A	ТН	
25	TTPA	RAPSN	THAP1	
26 27	TTR	RBCK1	TNFAIP1	
27 28	TUBA1A	REEP1	TOR1A	
20	TUBB3	REEP2	TOR1AIP1	
30	UBA1	RMND1	тр63	
31	UTRN	RNF170	TPP1	
32	VAPB	RNF216	TREX1	
33	VCL	RPIA	TRIM2	
34	VCP	RRM2B	TRIP4	
35	VMA21	RTN2	TRPV4	
30 27	VRK1	RYR1	TSEN2	
38	WNK1	SACS	TSEN34	
39	YARS	SBF1	TSEN54	
40		SBF2		
41	ZFYVEZ/	SCN11A		
42		SCN4A	TTR	
43		SCN9A	TUBA1A	
44		SDHA	TUBB	
45 46		SEPN1	TUBB2B	
40 47		SEPT9	TUBB3	
48		SETX	TUBB4A	
49		SGCA		
50		SCCP		
51		SGCB	UDAI	
52		SGCD	UBA5	
53		SGCE	UBQLN2	
54 55		SGCG	UNC79	
55 56		SH3TC2	UNC80	
57		SIGMAR1	USP8	
58		SIL1	VAMP1	
59		SI C12A6	VAPR	
60			VCP	
		SICIUAZ		
		SLCI/A5	VLULK	

1		
2	SLC19A3	VPS13A
3	SLC1A3	VPS37A
4	SLC20A2	VRK1
5	SLC22A5	WDR45
6 7	SI C25A20	W/DR48
8	SLC2EAA	WDR62
9	SLCZ5A4	WDR62
10	SLC2A1	WNK1
11	SLC33A1	WWOX
12	SLC52A2	YARS
13	SLC52A3	YWHAE
14	SLC5A7	ZBTB18
15	SI C6A3	ZER
16		757//526
17		
10	SODI	ZFYVE27
20	SOX10	
21	SPAST	
22	SPEG	
23	SPG11	
24	SPG20	
25	50 620	
26	SPGZI	
27	SPG /	
28	SPR	
29	SPTBN2	
31	SPTLC1	
32	SPTLC2	
33	STAC3	
34	STIM1	
35		
36	STORT	
37	SUCLA2	
38	SURF1	
39	SYNE1	
40 41	SYNE2	
42	TAF1	
43		
44		
45		
46	IBP	
47	ТСАР	
48	TDP1	
49	TECPR2	
50	TFG	
52	TGFB3	
53	TH	
54	тил D1	
55		
56		
57	TK2	
58	TMEM43	
59	TMEM5	
00	TNNI2	

TNNT1 TNNT3 TNPO3 TNXB TOR1A TOR1AIP1 TPM2 TPM3 TPP1 TRAPPC11 TREX1 TRIM2 TRIM32 TRV4 TTBK2 TTN TTPA TTR TUBB4A UBA1 UBQLN2 UQCRC2 USP8 VAMP1 VAPB VCP VMA21 VPS13A VPS37A VRK1 WDR45 WDR45 WNK1 YARS ZC4H2	
VMA21 VPS13A VPS37A VRK1 WDR45 WDR48 WNK1 YARS ZC4H2 ZFR ZFYVE26 ZFYVE27	

Supplementary	Table 2: Genetic diagnoses	made in each of the	genetically-resolved 81 cases.
---------------	----------------------------	---------------------	--------------------------------

Clinical Diagnosis	D-number	Setting	Gene	Variant/s	Inheritance mode	HPO terms
DA	D18-0172	D	ACTA1	c.220G>A (p.Glu74Lys)	de novo	Abnormality of prenatal development or birth Arthrogryposis multiplex congenita Amyoplasia
FADS	D16-1596	D	ACTA1	c.440C>A (p.Ser147Tyr)	de novo	Antenatal onset Fetal akinesia sequence Neonatal hypotonia Macrocephaly at birth Frontal bossing Cryptorchidism Congenital finger flexion contractures Contractures of the joints of the upper limbs Contractures of the joints of the lower limbs Aplasia/Hypoplasia of the palmar creases
AMC	D14-1209	D	BICD2	c.628C>A (p.His210Asn)	de novo	Arthrogryposis multiplex congenita Muscle weakness
DA	D16-0307	D	BICD2	c.1559T>C (p.Leu520Pro)	de novo	Arthrogryposis multiplex congenita Bulbar signs Restrictive ventilatory defect Kyphoscoliosis
LMPS	D16-0032	D	BICD2	c.1604C>T (p.Ala535Val)	de novo	Bilateral congenital talipes Congenital hip dislocation Knee flexion contracture Cryptorchidism
AMC	D11-949 ¹	D	BICD2	c.2080C>T (p.Arg694Cys)	de novo	Arthrogryposis multiplex congenita Neonatal hypotonia Respiratory distress Bilateral perisylvian polymicrogyria Hand clenching Talipes Micrognathia
AMC	D13-094 ¹	R	BICD2	c.2080C>T (p.Arg694Cys)	de novo	Reduced fetal movements Arthrogryposis multiplex congenita Bilateral perisylvian polymicrogyria Cerebellar hypoplasia Hypoplasia of the corpus callosum Femur fracture Central apnea Talipes Ulnar deviation of finger Single transverse palmian crease
DA	D13-090	R	BICD2	c.2113G>A (p.Glu705Lys)	de novo	Hydrops fetalis Arthrogryposis multiplex congenita Pterygium

1							Rocker bottom foot Hand clenching Talipes
2 3 4	FADS	D16-0750	D/R	CACNA1S	c.665T>A (p.Met222Lys) c.2365C>T (p.Arg789Cys)	AR	Antenatal onset Talipes Polyhydramnios
5	LMPS	D15-1251	D/R	CHRNB1	c.[(820+1_821-1)_(1044+1_1045-1)del] - hmz	AR	Multiple pterygia
6 7	DA	D16-0492	D	CHRNG	c.136C>T (p.Arg46*) - hmz	AR	Distal arthrogryposis Autosomal recessive inheritance
8 9	FADS	D13-1032	D	CHRNG	c.459dupA (p.Val154Ser <i>fs</i> *24) - hmz	AR	Arthrogryposis multiplex congenita Pretibial dimple
10	DA	D16- 0928	R	CHRNG	c.459dupA (p.Val154Ser <i>fs</i> *24) - hmz	AR	Distal arthrogryposis
11 12 13	FADS	D18-0294	D	CHRNG	c.56-1G>A c.459dupA (p.Val154Ser <i>f</i> s*24)	AR	Antenatal onset Distal arthrogryposis
14 15 16	DA	D14-0923	D	COL6A1	c.850G>A (p.Gly284Arg)	de novo	Hip dislocation Peripheral neuropathy Arthrogryposis multiplex congenita
17 18 19	DA	D17-0991	D	COL6A1	c.906_920dup (p.Glu303_Arg307dup)	NI	Hip dislocation Bilateral congenital talipes Knee flexion contracture Elbow flexion contracture
20 21 22 23 24	DA	D19-1254	D	COL6A1	c.987_995del (p.Asp331_Val333del)	de novo	Elbow flexion contracture Knee flexion contracture Hyperextensibility at wrists Long fingers Long toe
25 26 27 28 29	DA	D19-1391	D	COL6A1	c.6248G>A (p.Gly2083Asp)	NI	Distal arthrogryposis Myopathy Abnormal facial shape Short stature Bilateral congenital talipes Limb-girdle muscle weakness (proximal)
30	DA	D08-745 ²	D	DYNC1H1	c.1792C>T (p.Arg598Cys)	NI	Distal arthrogryposis
31 32	DA	D14-1028 ²	D	DYNC1H1	c.2327C>T (p.Pro776Leu)	de novo 🖉	Distal arthrogryposis
33 34 35 36	DA	D16-0968	D	ECEL1	c.1339C>T (p.Arg447Cys) - hmz	AR	Antenatal onset Arthrogryposis multiplex congenita Unilateral ptosis Nonprogressive Muscle weakness
37 38 39 40	DA	D16-1653	D	ECEL1	c.110_155del (p.Phe37Cys <i>f</i> s*151) c.589G>A (p.Gly197Ser)	AR	Flexion contracture (multiple) Aortic root aneurysm Progressive sensorineural hearing impairment Midface retrusion Micrognathia
41 42	1	1		11			

DA	D18-0102	D	ECEL1	c.1408-1G>T - hmz	AR	Progressive distal muscle weakness Lower limb muscle weakness Onset (assymetric L>R) Elevated serum creatine kinase Myopathy
DA	D17-1980	D	FBN2	c.3968G>C (p.Cys1323Ser)	AD	Distal arthrogryposis
DA	D15-1576	R	FLNC	c.3557C>T (p.Ala1186Val)	de novo	Hand clenching Hip dislocation Hitchhiker thumb Distal arthrogryposis Scoliosis High palate Posteriorly rotated ears
DA	D18-0978	D	GBE1	c.708G>C (p.GIn236His) 691+2T>C	AR	Arthrogryposis multiplex congenita
FADS	D12-950	R	GLDN	c.59T>C (p.Leu20Pro) c.363+1G>A	AR	Fetal akinesia sequence Decreased fetal movement Arthrogryposis multiplex congenita Hydrops fetalis Pterygium Hypoplastic heart Pulmonary hypoplasia Skeletal muscle hypertrophy High palate
DA	D19-0998	D	GMPPB	c.220C>T (p.Arg74*) c.1081G>A (p.Asp361Asn)	AR	Arthrogryposis multiplex congenita Knee flexion contracture Hip contracture Flexion contracture of finger Wrist flexion contracture Stiff shoulders Overlapping fingers Talipes Limited elbow extension Amyoplasia (not typical) Decreased fetal movement (antenatal) Diaphragmatic paralysis Elevated serum creatine kinase Hirsutism
DA	D18-0741	D	GMPPB	c.95C>T (p.Pro32Leu) c.1069G>A (p.Val357lle)	AR	Antenatal onset Hydrops fetalis Abnormal facial shape Small anterior fontanelle Sagittal craniosynostosis Hypertelorism Wide mouth Retrognathia Cleft palate

1 2 3 4							Webbed neck Low-set ears Multiple pterygia Bilateral talipes equinovarus (severe) Abnormality of the musculature of the limbs Abnormality of brain morphology
5	DA	D16-1428	D	KLHL40	c.602G>A (p.Trp201*) - hmz	AR	Antenatal onset Arthrogryposis multiplex congenita
7 8 9	DA	D18-2007	D	MAGEL2	c.1869dup (p.Thr624His <i>f</i> s*89)	NI	Elbow flexion contracture Flexion contracture of fingers and thumbs Hand clenching Torticollis
10 11 12 13	DA	D16-1250	D	MAGEL2	c.1880G>A (p.Trp627*)	de novo	Antenatal onset Arthrogryposis multiplex congenita Flexion contracture (all major joints) Hypertonia Elevated serum creatine kinase
14 15 16 17	DA	D18-1694	D	MAGEL2	c.2895G>A p.(Trp965*)	paternal (imprinted gene)	Distal arthrogryposis Obstructive sleep apnea Bulbar signs Feeding difficulties
18	DA	D16-1217	D	МҮНЗ	c.725C>G (p.Ser242Cys)	de novo	Distal arthrogryposis
19 20 21 22	DA	D19-0178	D	МҮНЗ^	c.1539C>G (p.Asp513Glu) c.2036C>T (p.Thr679lle) c.2113A>C (p.Ile705Leu)	AD	Distal arthrogryposis Micrognathia Chin with H-shaped crease
23 24	DA	D14-0774	D	МҮН3	c.2014C>T (p.Arg672Cys)	NI	Antenatal onset Abnormal facial shape
25 26 27 28 29	DA	D19-0489	D	МҮНЗ	c.2474T>G (p.Val825Gly)	NI	Distal arthrogryposis Adducted thumb Bilateral talipes equinovarus Micrognathia Respiratory infections in early life
30 31 32 33 34 35 36	DA/CM	D14-1355 ³	R	MYL1	c.488T>G (p.Met163Arg) - hmz	AR	Decreased fetal movement Apnea Respiratory insufficiency due to muscle weakness Generalized hypotonia Myopathic facies Axial muscle weakness High palate
37 38 39 40 41	FADS	D17-0045	D	MYO18B	c.193C>T (p.Arg65*) c.1537G>C (p.Ala513Pro)	AR	Antenatal onset Hypoplasia of the musculature Elbow flexion contracture Knee flexion contracture Hip contracture Pterygium

						Cystic hygroma Dextrotransposition of the great arteries Ventricular septal defect Hypoplastic left heart Abnormal cerebral morphology
DA/CM	D18-0198	D	NALCN	c.1745A>G (p.Tyr582Cys)	de novo	Distal arthrogryposis
DA	D16-1913	D	NALCN	c.3542G>A (p.Arg1181Gln)	de novo	Antenatal onset
FADS	D17-1855	D	NEB	c.739del (p.Ala247Leu <i>fs</i> *16) c.13476+1G>A~	AR	Stillbirth Multiple pterygia Fetal akinesia sequence Aplasia/Hypoplasia involving the skeletal musculature Talipes equinovarus Flexion contracture Cerebral palsy Abnormal lung lobation
LMPS	D14-17864	R	NEB	c.10872+1G>T - hmz	AR	Multiple pterygia Fetal akinesia sequence Arthrogryposis multiplex congenita Cystic hygroma Hydrops fetalis Polyhydramnios Intaruterine growth restriction Camptodactyly Ulnar deviation of finger Long philtrum Downslanted palpebral fissures Hypertelorism Low-set ears
LMPS	D15-1283	D	NEB	c.11610C>A (p.Tyr3870*) c.18024_18027del (p.Val6009Trp <i>f</i> s*67)	AR	Antenatal onset Fetal akinesia sequence
DA	D17-0450	D	NEB	c.12361del (p.Arg4121Val <i>f</i> s*13) [~] c.13788+2dup [~]	AR	Generalized hypotonia Distal arthrogryposis Myopathy
FADS	D14-0067	R	NEB	c.3987+1_3987+2delinsTG c.24543dup (p.Thr8182His<i>fs</i>*15)	AR	Reduced fetal movements Polyhydramnios Distal arthrogryposis Talipes Generalized hypotonia Myopathic facies Short chin Cleft palate
FADS	D15-1176⁵	R	NUP88	c.1525C>T (p.Arg509*) c.1889_1901del (p.Glu634del)	AR	Decreased fetal movements Polyhydramnios Arthrogryposis multiplex congenita Hypoplasia of the musculature

1							Posteriorly rotated ears Microretrognathia
2 3	DA	D15-1255	D	PIEZO2	c.7067C>T (p.Thr2356Met)	AD	Distal arthrogryposis
4 5 6 7 8	DA	D16-0479	D	PIEZO2	c.8057G>A (p.Arg2686His)	NI	Talipes (severe) Joint contracture of the hand Down-sloping shoulders Limited elbow movement Short hallux Distal arthrogryposis
9 10 11 12 13 14 15 16	DA	D15-1298	D	PIEZO2	c.8057G>A (p.Arg2686His)	NI	Skeletal muscle atrophy Shoulder flexion contracture Elbow flexion contracture Knee flexion contracture Hip contracture Bilateral talipes equinovarus Absent palmar crease Stiff fingers Interphalangeal joint contracture of finger
17 18 19 20 21 22	DA	D17-1198	D	RAPSN	c.264C>A (p.Asn88Lys) c.712C>T (p.GIn238*)	AR	Arthrogryposis multiplex congenita Bilateral talipes equinovarus Contractures of the joints of the lower limbs (knee, hip) Elbow flexion contracture (mild) Respiratory insufficiency Sleep disturbance
23 24 25 26 27 28	DA	D17-1678	D	RYR1	c.2255C>T (p.Pro752Leu) c.14804-1G>T	AR	Neonatal respiratory distress Shoulder flexion contracture Aplasia/Hypoplasia of the palmar creases Hip contracture Knee flexion contracture Bilateral talipes equinovarus (mild) Severe intrauterine growth retardation
29 30 31	FADS	D16-1073	D	SCN4A	c.2266C>T (p.Arg756Cys) c.4433C>T (p.Ser1478Leu)	AR	Distal arthrogryposis Polyhydramnios
32 33 34	DA	D14-0912 ⁶	D/R	SCN4A	c.608T>A (p.Met203Lys) c.4779C>A (p.Tyr1593*)	AR	Amyoplasia (lethal) Arthrogryposis multiplex congenita
35 36 37 38 39	DA	D18-0398	D/R	SMPD4	c.575C>T (p.Pro192Leu) - hmz	AR	Arthrogryposis multiplex congenita Small for gestational age Lissencephaly Hypoplasia of the corpus callosum Congenital encephalopathy Cerebellar hypoplasia
40 41 42	LMPS	D17-0476	D/R	STAC3	c.312T>G (p.Asp104Glu) - hmz	AR	Multiple pterygia Fetal akinesia sequence Arthrogryposis multiplex congenita

-

DA	D16-0627	D	TNNI2	c.521G>A (p.Arg174Gln)	de novo	Antenatal onset Wrist flexion contracture Abnormality of the ankles Decreased fetal movement (Knees/elbows)
DA	D16-0481	D	TNNI2	c.466C>T (p.Arg156*)	AD	Distal arthrogryposis Autosomal dominant inheritance
DA	D18-2142	D	TNNI2	c.499_501delGAG (p.Glu167del)	NI	Distal arthrogryposis
DA	D19-0904	D	TNNI2	c.521G>A (p.Arg174Gln)	AD	Distal arthrogryposis Hydronephrosis (left) Feeding difficulties
DA	D19-1111	D	TNNI2	c.521G>A (p.Arg174Gln)	NI	Distal arthrogryposis Shoulder flexion contracture Limb joint contracture
DA	D18-1716	D	TNNI2	c.527_529delAGA (p.Lys176del)	NI	Distal arthrogryposis
DA	D19-0754	D	TNNI2	c.527_529delAGA (p.Lys176del)	NI	Congenital onset Distal arthrogryposis Laryngomalacia Micrognathia
DA	D14-1680 ⁷	D	TNNT3	c.681+1G>A - hmz	AR	Distal arthrogryposis Abnormal facial shape Scoliosis Respiratory insufficiency Contractures of the joints of the upper limbs Contractures of the joints of the lower limbs
DA	D13-1137	D	TPM2	c.20-22del (p.Lys7del)	AD	Arthrogryposis multiplex congenita Autosomal dominant inheritance
DA	D17-2016	D	TPM2	c.463G>A (p.Ala155Thr)	AD	Congenital onset Wrist flexion contracture Elbow flexion contracture Knee flexion contracture Rocker bottom foot
DA	D17-1613	D	TPM2	c.541G>A (p.Glu181Lys)	NI	Distal arthrogryposis
DA	D17-1807	D	TRPV4	c.1058G>A (p.Cys353Tyr)	de novo	Arthrogryposis multiplex congenita Limb muscle weakness Myopathic facies Bulbar palsy Hypoventilation Skeletal dysplasia
DA	D16-1146	D	TRPV4	c.557G>A (p.Arg186Gln)	AD	Distal arthrogryposis Bilateral talipes equinovarus Micrognathia Rocker bottom foot Ventricular septal defect Knee flexion contracture
DA	D15-1019	D	TRPV4	c.806G>A (p.Arg269His)	NI	Arthrogryposis multiplex congenita

 Journal of Medical Genetics

1	DA	D16-1830	D	TTN	c.10303+2T>C c.37193del (p.Pro12398Leu<i>f</i>s*549) ~	AR	Distal arthrogryposis
2 3 4 5 6	DA	D12-502 ⁸	R	TTN	c.16621+1G>T c.28561C>T (p.Gln9521*)	AR	Distal arthrogryposis Pterygium Webbed neck Cleft palate Bilateral ptosis
7 8 9	DA	D17-1146	R	TTN	c.31208-2A>C c.38660delA (p.Lys12887Arg <i>fs</i> *60)~	AR	Amyoplasia Arthrogryposis multiplex congenita Scoliosis Nevus flammeus of the forehead
10 11 12	DA	D15-0954	D	ΤΤΝ	c.35756del (p.Pro11919Leu <i>fs</i> *51) c.93110G>A (p.Trp31037*)	AR	Distal arthrogryposis
13 14 15	DA	D19-0564	D	TTN	c.37154del (p.Lys12385Arg <i>fs</i> *562)~ c.58034_58035del p.(Thr19345Ser <i>fs</i> *2)	AR	Distal arthrogryposis Horseshoe kidney
16 17 18 19 20 21	EV-MPS	D17-0237 ⁹	D	TTN	c.37228delC (p.Glu12411Lys <i>f</i> s*536)~ c.39974-11T>G	AR	Distal arthrogryposis Multiple pterygia Low-set ears Narrow mouth Short nose Depressed nasal ridge Anteverted nares
22 23 24 25	AMC	D09-079	R	TTN	c.38660delA (p.Lys12887Arg <i>fs</i> *60) [~] c.56329A>G (p.Met18777Val) - alters splicing	AR	Decreased fetal movement Polyhydramnios Amyoplasia
26 27 28 29	FADS	D18-0091	D	TTN	c.39974-11T>G c.44815+1G>A	AR	Arthrogryposis multiplex congenita Central hypotonia Feeding difficulties Bilateral cryptorchidism
30 31 32	DA	D15-0320	D	ZC4H2	c.399-1G>A	de novo	Distal arthrogryposis Rocker bottom foot Hip contracture Amyoplasia
33 34 35 36 37 38 30	DA	D17-0639	D	ZC4H2	c.53+1G>A	NI	Distal arthrogryposis Weakness of facial musculature Ptosis Keratosis pilaris Sleep apnea Atrial septal defect Dilatation of the renal pelvis
40 41	DA	D17-0141	D	ZC4H2	c.601C>A (p.Pro201Thr)	NI	Distal arthrogryposis Abnormality of the extraocular muscles

Journal of Medical Genetics

Numbers in superscript denote reference pertaining to the case where cases were published previously as case reports, as part of gene-specific cohort studies or novel disease gene discoveries. Setting describes whether the case was sequenced and analysed in a diagnostic (D) or research (R) laboratory or both (D/R). Variants in bold represent variants, that to the best of our knowledge have not been previously described as disease-causing. ~denotes variants within the triplicate repeat region of NEB and TTN. AMC = arthrogryposis multiplex congenita, CM = congenital myopathy, DA = distal arthrogryposis, EV = Escobar variant, FADS = fetal akinesia deformation sequence, hmz = homozygous, LMPS = lethal multiple pterygium syndrome. MYH3^ represents a variant allele present in the proband, affected father and affected paternal uncle. NI = no information.

2 3

4

5

6 7

8

9

44 45 46

- 1. Ravenscroft, G., Di Donato, N., Hahn, G., Davis, M.R., Craven, P.D., Poke, G., Neas, K.R., Neuhann, T.M., Dobyns, W.B., and Laing, N.G. (2016). Recurrent de novo BICD2 mutation associated with arthrogryposis multiplex congenita and bilateral perisylvian polymicrogyria. Neuromuscul Disord 26, 744-748.
- Beecroft, S.J., McLean, C.A., Delatycki, M.B., Koshy, K., Yiu, E., Haliloglu, G., Orhan, D., Lamont, P.J., Davis, M.R., Laing, N.G., et al. (2017). Expanding the phenotypic spectrum associated with mutations of DYNC1H1. Neuromuscul Disord 27, 607-615.
- 3. Ravenscroft, G., Zaharieva, I.T., Bortolotti, C.A., Lambrughi, M., Pignataro, M., Borsari, M., Sewry, C.A., Phadke, R., Haliloglu, G., Ong, R., et al. (2018). Bi-allelic
 mutations in MYL1 cause a severe congenital myopathy. Hum Mol Genet 27, 4263-4272.
- 4. Abdalla, E., Ravenscroft, G., Zayed, L., Beecroft, S.J., and Laing, N.G. (2017). Lethal multiple pterygium syndrome: A severe phenotype associated with a novel
 mutation in the nebulin gene. Neuromuscul Disord 27, 537-541.
- 5. Bonnin, E., Cabochette, P., Filosa, A., Juhlen, R., Komatsuzaki, S., Hezwani, M., Dickmanns, A., Martinelli, V., Vermeersch, M., Supply, L., et al. (2018). Biallelic
 mutations in nucleoporin NUP88 cause lethal fetal akinesia deformation sequence. PLoS Genet 14, e1007845.
- 6. Zaharieva, I.T., Thor, M.G., Oates, E.C., van Karnebeek, C., Hendson, G., Blom, E., Witting, N., Rasmussen, M., Gabbett, M.T., Ravenscroft, G., et al. (2016). Lossof-function mutations in SCN4A cause severe foetal hypokinesia or 'classical' congenital myopathy. Brain 139, 674-691.
- 7. Sandaradura, S.A., Bournazos, A., Mallawaarachchi, A., Cummings, B.B., Waddell, L.B., Jones, K.J., Troedson, C., Sudarsanam, A., Nash, B.M., Peters, G.B., et al.
 (2018). Nemaline myopathy and distal arthrogryposis associated with an autosomal recessive TNNT3 splice variant. Hum Mutat 39, 383-388.
- 8. Oates, E.C., Jones, K.J., Donkervoort, S., Charlton, A., Brammah, S., Smith, J.E., 3rd, Ware, J.S., Yau, K.S., Swanson, L.C., Whiffin, N., et al. (2018). Congenital
 Titinopathy: Comprehensive characterization and pathogenic insights. Ann Neurol 83, 1105-1124.
- 9. Bryen, S.J., Ewans, L.J., Pinner, J., MacLennan, S.C., Donkervoort, S., Castro, D., Topf, A., O'Grady, G., Cummings, B., Chao, K.R., et al. (2019). Recurrent TTN metatranscript-only c.39974-11T>G splice variant associated with autosomal recessive arthrogryposis multiplex congenita and myopathy. Hum Mutat.

https://mc.manuscriptcentral.com/jmedgenet