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Adipose tissue (AT) is highly plastic and heterogeneous in response to environmental and nutritional changes. The development
of heat-dissipating beige adipocytes in white AT (WAT) through a process known as browning (or beiging) has garnered much at-
tention as a promising therapeutic strategy for obesity and its related metabolic complications. This is due to its inducibility in
response to thermogenic stimulation and its association with improved metabolic health. WAT consists of adipocytes, nerves,
vascular endothelial cells, various types of immune cells, adipocyte progenitor cells, and fibroblasts. These cells contribute to
the formation of beige adipocytes through the release of protein factors that significantly influence browning capacity. In addi-
tion, inter-organ crosstalk is also important for beige adipocyte biogenesis. Here, we summarize recent findings on fat depot-
specific differences, secretory factors participating in intercellular and inter-organ communications that regulate the recruitment
of thermogenic beige adipocytes, as well as challenges in targeting beige adipocytes as a potential anti-obese therapy.
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Introduction
Obesity is a global health concern due to its association with

noncommunicable diseases such as type 2 diabetes, cardio-
vascular diseases, and cancers. Despite there being a range of
interventions and intensive research efforts in the field, the
prevalence of obesity has reached epidemic proportions glob-
ally. Owing to the continuous increase in the number of individ-
uals adopting a sedentary lifestyle in both developed and
developing countries, over 107 million children and 603 million
adults are affected by obesity worldwide (Collaborators, 2017).

Obesity occurs when energy intake chronically exceeds energy
expenditure. Excess nutrients in the body get stored in AT in the
form of triglycerides. AT takes up �20% of the total body weight in
healthy adults as opposed to obese individuals, which can exceed
40% in order to facilitate the storage of excess energy (Ikeda et al.,
2018). As a metabolically active organ, AT can undergo structural

and cellular remodeling when exposed to different environmental
cues, such as dietary and temperature changes. Thus, most of the
currently available anti-obesity medications act through suppress-
ing appetite or the inhibition of intestinal lipid absorption in order
to limit energy intake. However, such medications are always asso-
ciated with adverse side effects, such as steatorrhea, depression,
and heart diseases (Cheung et al., 2013). In recent decades, a
growing body of evidence obtained from both animal and clinical
studies suggests that the activation of brown adipose tissue (BAT)-
mediated adaptive thermogenesis or non-shivering thermogenesis
is a plausible strategy to counteract body weight gain and maintain
glucose homeostasis (Lowell et al., 1993; Rossmeisl et al., 2002;
Stanford et al., 2013). In 2009, the presence of functional BAT in
adult humans was first reported by measuring 18F-fluorodeoxyglu-
cose (18F-FDG) uptake using positron-emission tomography and
computed tomography (PET/CT) imaging (Cypess et al., 2009),
which has long been believed to only exist in infants. Subsequent
studies demonstrated that the amount and activity of BAT were in-
versely correlated with body mass index (BMI), aging, and meta-
bolic risk (Cypess et al., 2009; Saito et al., 2009; Yoneshiro et al.,
2013), indicating the importance of BAT in regulating energy me-
tabolism and homeostasis in humans.
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Although results from early studies suggest the presence of
BAT in adult humans, recent transcriptional analyses of human
BAT biopsies have revealed a distinct type of adipocytes that
express a molecular signature specific to another cell type,
known as inducible beige/brown-like adipocytes (Sharp et al.,
2012). Other studies have reported the presence of beige adi-
pocytes in the supraclavicular region of adult humans who do
not possess detectable pre-existing BAT before cold exposure
(van der Lans et al., 2013; Yoneshiro et al., 2013). In addition,
cold exposure seems to promote a wider distribution of glucose
uptake in AT than previously identified BAT regions in adult
humans (Leitner et al., 2017). Furthermore, the importance of
beige adipocytes in energy homeostasis and thermoregulation
has been demonstrated with the finding that the genetically
modified mice that exhibit dysfunctional classical BAT but
show compensatory beiging/browning in subcutaneous WAT to
maintain whole-body temperature are protected against high-
fat diet (HFD)-induced obesity (Schulz et al., 2013). Therefore,
the formation of inducible beige adipocytes by converting WAT
into thermogenic active beige fat depots may be a promising
therapeutic approach given the excess amount of WAT in obese
individuals. However, the depot-specific browning capacity of
WAT may become a hurdle and limit its therapeutic value. For
instance, visceral fat is less susceptible than subcutaneous fat
to the browning process. Thus, it is crucial to understand the
switching capacity of WAT from energy storage to energy dissi-
pation. In this review, we aim to discuss the recent research
progress on beige adipocytes, factors that influence their de-
velopment, and unresolved questions in this field.

Basic features of beige adipocytes
Previously, AT was only thought to provide energy storage

and mechanical protection for multiple body sites. In the last
decade, researchers have discovered an additional role of WAT
as a thermogenic effector organ. To this end, at least in the
mouse model, three types of functionally distinct adipocytes
have been identified and well characterized, including white,
brown, and beige. Unilocular white adipocytes are primarily in-
volved in fat storage and utilization, whereas multilocular
brown adipocytes dissipate chemical energy as heat and have
a high basal level of thermogenic factor known as mitochon-
drial uncoupling protein 1 (UCP1). Beige adipocytes have been
found to exist in mouse inguinal subcutaneous fat and human
supraclavicular regions. They are inducible UCP1

þ cells that ap-
pear to intersperse in WAT but not bona fide brown adipocytes
(Sharp et al., 2012; Wu et al., 2012; Shinoda et al., 2015).

Anatomical location
Beige adipocytes contain many small lipid droplets and

dense mitochondria, but have a comparatively low basal ex-
pression of UCP1. Nevertheless, UCP1 expression in beige adi-
pocytes can be induced to a level comparable to that in BAT

after appropriate stimulants such as cold exposure, exercise,
and beta 3-adrenergic receptor (b3-AR) or peroxisome
proliferator-activated receptor gamma (PPARc) agonists
(Boström et al., 2012; van der Lans et al., 2013; Cypess et al.,
2015; Merlin et al., 2018). Unlike BAT, which have defined ana-
tomical locations (e.g. intrascapular and perirenal regions) in
mice, beige adipocytes are scattered within WAT. In rodents,
beige adipocytes are mainly found in the posterior inguinal
WAT and become more prominent upon prolonged cold expo-
sure or in response to other stimulants. In humans, beige/
brown adipocytes have been observed in the upper body trunk
such as supraclavicular, paravertebral, cervical, axillary, and
perivascular regions (Cypess et al., 2009; Shinoda et al., 2015;
Ikeda et al., 2018). In addition, since beige adipocyte biogene-
sis utilizes glucose and fatty acids, additional active beige
depots have been observed in adult humans through CT scans
using the iodine-123-b-methyl-q-iodophenyl-pentadecanoic
acid (123I-BMIPP) fatty acid uptake approach, including anterior
subcutaneous and suprascapular regions (Zhang et al., 2018).
Although active UCP1

þ adipocytes in humans resemble both
brown and beige adipocytes, mounting evidence suggests that
they possess molecular features similar to the latter phenotype
(Wu et al., 2012; Jespersen et al., 2013; Lee et al., 2014b;
Shinoda et al., 2015). Yet, it is still difficult to distinguish be-
tween brown and beige adipocytes in adult humans using cur-
rent available approaches (e.g. PET/CT scanning) due to the
highly heterogenous population of UCP1

þ adipocytes, varia-
tions of molecular characteristics across different fat depots,
and obvious differences in anatomical location and distribution
of adipose depots between mice and humans (Figure 1).

Developmental origins
The thermogenic beige adipocytes have distinct cellular ori-

gins from brown and white adipocytes. It has been long pro-
posed that beige adipocytes emerge from pre-existing mature
white adipocytes through a transdifferentiation process.
Initially, this concept was supported by studies showing an in-
significant proliferation rate of adipocytes during the browning
process (Himms-Hagen et al., 2000; Barbatelli et al., 2010;
Vitali et al., 2012). Subsequently, a genetic lineage-tracing
study demonstrated that cold-induced UCP1

þ multilocular
beige adipocytes in inguinal WAT switched to the unilocular
white adipocyte phenotype during warm exposure. When these
adipocytes were subjected to cold exposure again, a conver-
sion to the beige phenotype was observed, indicating an in-
stant response of hypoactive or dormant beige adipocytes in
WAT during environmental changes (Rosenwald et al., 2013).
Furthermore, independent studies have revealed molecular
mechanisms that regulate the transition of beige-to-white phe-
notype after withdrawing stimuli, which have been shown to in-
volve autophagy-mediated mitochondrial clearance (Altshuler-
Keylin et al., 2016) and the transcription factor zinc-finger pro-
tein, ZFP423 (Shao et al., 2016; Roh et al., 2018).
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On the other hand, a growing number of studies suggest that
beige adipocytes originate from de novo differentiation of precur-
sor cells (Sanchez-Gurmaches et al., 2012; Wang et al., 2013;
Sanchez-Gurmaches and Guertin, 2014b). Scherer and colleagues
provided the first evidence for the existence of such precursor
cells by marking and tracking the fate of mature adipocytes during
cold exposure or treatment with the b3-AR agonist through a
pulse–chase lineage-tracing mouse model approach (Wang et al.,
2013). Subsequent studies also support the notion that beige adi-
pocytes arise from resident precursor cells. For instance, myogenic
factor 5-negative (Myf5–) or Myf5þ lineage precursor cells commit
and differentiate into beige adipocytes (Sanchez-Gurmaches et al.,
2012; Sanchez-Gurmaches and Guertin, 2014b). In addition, sub-
sets of beige adipocytes exhibit a smooth muscle-like gene molec-
ular signature (e.g. MYH11, ACTA2, PDGFRa, and PDGFRb) in
inguinal, axillary, and epididymal WAT after acute or chronic cold
adaptation, indicating that vascular smooth muscle or mural cells
are attributable to the beige adipocyte pool (Lee et al., 2012; Long
et al., 2014; Vishvanath et al., 2016). Furthermore, capillary
sprouts from explanted human subcutaneous WAT were able to
differentiate into beige adipocytes, and subsequent subcutaneous
transplantation of these ex vivo differentiated beige adipocytes
into dietary obese mice improved systemic glucose homeostasis
(Min et al., 2016). However, the precise origin of beige adipocytes
remains unclear and needs further investigation.

Despite numerous studies aiming to determine the predominant
developmental mechanism of beige adipocytes, it remains incon-
clusive. This is due to differences in mouse strains (Collins et al.,
1997; Xue et al., 2007), types of browning stimuli (Jiang et al.,
2017b), and lineage-tracing systems (Ye et al., 2015; Zhao et al.,
2020) used among studies, which may impact the outcomes and
interpretations of results. Recently, Gupta and colleagues shed

light on this issue by showing that different animal-housing tem-
peratures before treatment with b3-AR agonist (CL316,243) or cold
exposure led to differing modes of beige cell recruitment (Shao et
al., 2019). Both transdifferentiation and de novo differentiation
were apparent in inguinal WAT of AdipoChaser mice after direct an-
imal transition from room temperature (�22

�C) to a cold environ-
ment (�6

�C). Strikingly, over 80% of beige adipocytes emerged
from de novo differentiation after mice were exposed to thermo-
neutral condition (�30

�C) for 4 weeks prior to cold exposure.
However, animal-housing conditions did not influence beige adi-
pocyte biogenesis induced by CL316,243, which favored the direct
conversion of white-to-beige adipocytes. The authors suggested
that precursor-derived beige adipocytes dominate upon the first
cold exposure and rapidly respond by interconverting between
‘unilocular quiescent beige’ and ‘multilocular active beige’ states
following further environmental changes. Together, these findings
emphasize that the inducibility of beige adipocytes is highly de-
pendent on the type of thermogenic stimuli and temperature of
the exposure before cold adaptation.

Cellular heterogeneity of AT
Owing to technological advances such as in vivo lineage-

tracing models and single-cell RNA sequencing (scRNA-seq), it
has been well established that AT is a highly heterogenous or-
gan that may contribute to different browning capacities among
fat depots as well as within the same depot.

Inter-depot difference
It is widely accepted that subcutaneous WAT, but not visceral

WAT, can undergo extensive browning in response to cold

Figure 1 Distribution of fat tissues in the human and mouse. In human, adipose depots are divided into upper body subcutaneous (cervi-
cal, supraclavicular, axillary, paravertebral, and abdominal subcutaneous), abdominal viscera, and lower body subcutaneous (gluteal-fem-
oral subcutaneous). In mouse, adipose depots are generally distributed into anterior subcutaneous (axillary and BAT), visceral, and
posterior subcutaneous (dorsolumbar, inguinal, and gluteal).
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exposure in mice. These differences in browning capacity of
discrete adipose sites have triggered considerable interest in
uncovering the fundamental properties of WAT, especially vis-
ceral/epididymal and subcutaneous WAT. WAT is a heteroge-
nous endocrine organ consisting of adipocytes and numerous
cell types such as nerve fibers, immune cells, stromal cells,
and blood vessels (Thiagarajan and Reizes, 2016). The hetero-
geneous cell types in WAT may explain in part different degrees
of beiging capacity among and within different fat depots. First,
different capacities of sympathetic nervous system (SNS) inner-
vation in different adipose depots may lead to significant differ-
ences in the browning ability of WAT. This has been clearly
demonstrated by several recent publications showing that
dense SNS directly innervates subcutaneous WAT, but not epi-
didymal WAT, following cold exposure, as indicated by immu-
nolabelling of tyrosine hydroxylase (TH, marker of SNS
neurons) and UCP1 using whole-mount tissue clearing
(AdipoClear) with a light-sheet microscopy (Jiang et al., 2017a;
Chi et al., 2018). Likewise, sympathetic denervation of subcu-
taneous WAT impairs the browning process (Contreras et al.,
2014). Second, the subcutaneous depot displays higher vascu-
lar density than visceral fat in response to cold exposure or
adrenergic receptor activation (Xue et al., 2009). A previous
study has demonstrated blood vessel walls to be a source of
beige adipocyte progenitors, which are able to differentiate
into mature beige cells in conjunction with pro-angiogenic fac-
tor-stimulated capillary network expansion in an ex vivo system
(Min et al., 2016). These findings are further supported by the
discovery of platelet-derived growth factor receptor (PDGF-CC)-
secreting endothelial cells during angiogenesis in WAT.
PDGF-CC regulates the differentiation of platelet-derived growth
factor receptor alpha-positive (PDGFRaþ) bi-potential progeni-
tor cells into beige adipocytes in subcutaneous WAT (Seki et
al., 2016). Third, adipocytes do not share a common develop-
mental origin. Lineage tracing in vivo has revealed that the
Wilms tumor (Wt1) gene, an important regulator of mesenchy-
mal progenitor cell activity, is expressed in different depots of
visceral fat but not in subcutaneous fat and BAT in mice (Chau
et al., 2014). Moreover, >95% of brown adipocytes arise from
Myf5þ lineage precursors, while most white adipocytes origi-
nate from Myf5– precursors in WAT (Sanchez-Gurmaches and
Guertin, 2014a, b). Consistently, large-scale transcriptomic
analysis of human WAT also revealed inter-WAT depot differen-
ces (Tchkonia et al., 2007; Vijay et al., 2020). In addition, dis-
tinct cellular compositions in various fat depots have been
identified in mice and human adipose samples (Schwalie et
al., 2018). For instance, significant differences in immune cell
populations have been observed between human visceral and
subcutaneous fat. In particular, T/natural killer (NK) cells,
monocytes, and macrophages were shown to be remarkably
higher in subcutaneous WAT than in visceral WAT (Vijay et al.,
2020). Finally, the recruitment mechanism of beige adipocytes
may vary in different WAT depots. A recent study demonstrated
that beige adipocytes are transdifferentiated from resident
white adipocytes in subcutaneous WAT (Rosenwald et al.,

2013), whilst the majority of beige adipocytes derive from de
novo biogenesis from bipotential progenitors in epididymal
WAT (Lee et al., 2012). However, to date, no definitive conclu-
sion has been reached on this matter due to the complex fac-
tors influencing the development of beige adipocytes.

Intra-depot variation
Recent technology advances in high-throughput sequencing

have revealed distinct types of adipocytes and various cellular
compositions within an adipose depot. For instance, 14 clus-
ters of adipocytes within a subcutaneous fat were found to ex-
press different gene markers involved in different functional
processes including thermogenesis (Rajbhandari et al., 2019),
highlighting heterogenous distribution within a fat depot. In ad-
dition to transcriptomic profiling, cold-induced beige adipocyte
biogenesis occurs in the core region of subcutaneous WAT
close to the lymph node and gradually shifts to other regions
after chronic cold exposure, as visualized by high-resolution
images (Barreau et al., 2016; Chi et al., 2018). However, to
date, no follow-up studies have been reported to find out the
reasons for this regional variation in the browning process,
which happens in rodents. Further investigation on this inter-
esting observation may yield additional valuable information
on the browning capacity of WAT.

Microenvironment in WAT for the development of beige
adipocytes

In adult humans, BAT rarely exists as it does in mice, possibly
due to the long-term exposure to a thermoneutral environment.
The thermogenic cells in adult humans are believed to be induc-
ible beige adipocytes as they share similar molecular signatures
with mouse beige adipocytes. It is also well-established that ac-
tive beige adipocytes can be recruited in fat depots of both mice
and humans following the appropriate thermogenic signals/
stimuli. Thus, the microenvironment in the fat depots is an im-
portant determinant in their browning capacity.

Beige adipogenesis is generally a two-step process: commit-
ment and differentiation. Committed beige preadipocytes arise
from multipotent mesenchymal stem cells (MSCs) and termi-
nally differentiate into mature adipocytes in response to certain
transcription factors. Apart from gene control mechanisms, the
local microenvironment in WAT plays a vital role in the develop-
ment of beige adipocytes. The recruitment, activation, and
maintenance of beige adipocytes are regulated by a tight coor-
dination and synchronization among various cellular compo-
nents in WAT, for example, endothelial, nerve, immune, and
adipocyte cells (Figure 2).

AT vascularization
AT is highly vascularized during the development of beige

adipocytes. In addition to providing a constant supply of
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oxygen and nutrients, substantial evidence suggests that the
vascular cell walls in AT are the niche of adipocyte progenitors.
Notably, the identification of Zfp423

þ committed preadipocytes
that exist in mice and humans are shown to originate from mu-
ral cells lining the adipose capillary endothelium, which can
undergo bipotential differentiation into white or brown adipo-
cytes (Gupta et al., 2012; Tran et al., 2012). Furthermore, it has
been proven that beige adipocytes derived from capillary net-
works in human subcutaneous WAT express thermogenic-
related genes. Transplantation of these in vitro differentiated
beige adipocytes further enhances systemic glucose tolerance
in dietary obese mice (Min et al., 2016). Apart from serving as
a reservoir of stem cells, angiogenic endothelial cells also pro-
duce PDGF-CC that acts on PDGFRaþ progenitors to promote
WAT browning upon cold challenge or stimulation with b3-AR
agonists (Seki et al., 2016). In addition, cold-induced angio-
genesis occurs in subcutaneous WAT and this is accompanied
by increased mRNA expression of vascular endothelial growth
factor A (VEGFA), protein expression of UCP1, and beige ap-
pearance with multilocular lipid structure (Xue et al., 2009).

Adipocyte-specific overexpression of VEGFA using doxycycline-
inducible mouse model robustly enhanced beiging of subcuta-
neous WAT (Park et al., 2017). Consistently, VEGFA or vascular
endothelial growth factor receptor 2 (VEGFR2) blockade abol-
ishes the browning effect and impairs adaptive thermogenesis
(Xue et al., 2009). In contrast, endothelial cell-specific ablation
or pharmacological inhibition of VEGFR1 resulted in robust WAT
angiogenesis and browning effect. The enhanced angiogenesis
and browning effects in AT of VEGFR1-deficient mice could be
explained by the role of VEGFR1 as a decoy receptor of VEGFA
(Cao, 2009), and thus it may indirectly inhibit the proangio-
genic activity of VEGFA. It is also possible that the ablation of
VEGFR1 could have switched VEGFA to VEGFR2 signaling and
enhanced the effect of VEGFR2-mediated angiogenesis, thereby
increasing the biogenesis of beige adipocytes (Seki et al.,
2018). Therefore, these findings support the notion that the
growth of capillaries and proangiogenic factors play pivotal
roles in modulating the recruitment of beige adipocytes in WAT.

AT innervation
Like BAT, SNS is a potent activator in the formation of beige

adipocytes. During cold exposure, the amount of sympathetic
nerve endings increases in subcutaneous WAT, as evidenced
by a higher expression level of TH, which leads to the release
of catecholamines, especially norepinephrine (NE), to the sur-
rounding WAT (Morrison, 2016). Subsequently, NE acts on the
b3-AR to activate the cyclic adenosine 3

0,50-monophosphate/
protein kinase A (cAMP/PKA) signaling cascade pathway, which
in turn drives lipolysis and thermogenic processes (Fedorenko
et al., 2012; Zeng et al., 2015). Surgical or chemical denerva-
tion of subcutaneous WAT in mice using neurotoxin 6-hydroxy-
dopamine caused a dramatic reduction in UCP1 expression and
NE levels in the subcutaneous fat of mice (Contreras et al.,
2014; Ding et al., 2016). One early study showed that genetic
ablation of b3-AR in mice led to an impairment in WAT browning
(Jimenez et al., 2003). In contrast, two other studies found that
b3-AR knockout (KO) mice or mice lacking all b-ARs exhibit in-
tact formation of beige cells in subcutaneous WAT upon cold
acclimation (de Jong et al., 2017; Chen et al., 2019). The differ-
ent outcomes of cold-induced browning in b3-AR KO mice could
be possibly attributed to the different genetic backgrounds in
mouse models. The mice used by Jimenez et al. (2003) were on
C57BL/6J background whereas the mice generated by de Jong
et al. (2017) were on FVB/N background. It has been reported
that different mouse strains exhibit significant differences in
several metabolic parameters including cold-induced changes
in BAT and WAT (Ferrannini et al., 2016). In addition, different
cold exposure regime can also lead to different outcomes (Cui
et al., 2016). In the mouse model lacking all the three forms of
b-ARs, a compensatory pathway of beige fat biogenesis has
been identified, which enables the mice to survive during grad-
ual cold acclimation (Chen et al., 2019). Recently, several stud-
ies have demonstrated an interaction between SNS and

Figure 2 Heterogeneity, cell–cell communications, and microenvi-
ronment within WAT in the development of beige adipocytes. The
crosstalk amongst different cell populations is essential for the for-
mation and activation of beige adipocytes. In response to thermo-
genic stimuli (such as cold exposure), sympathetic innervation
releases NE to promote b3-AR-expressing adipocytes for lipolysis
and thermogenic programs. On the other hand, adipocytes produce
neurotrophic factors to stimulate neurite branching. Similarly, adi-
pocytes also secrete VEGFA to promote angiogenesis for increased
supply of nutrition and oxygen during thermogenesis, as well as for
creating a niche favorable for adipocyte progenitors. Endothelial
cells release PDGF-CC to act on PDGFRaþ progenitors for adipogen-
esis of beige adipocytes. Furthermore, infiltration and activation of
type 2 immunity signaling (e.g. ILC2s, eosinophils, and M2 macro-
phages) also drive the beige fat biogenesis.
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adipocytes by identifying adipocyte-derived neurotrophic fac-
tors such as calsyntenin-3b/S100b (Zeng et al., 2019), bone
morphogenetic proteins (BMPs) (Schulz et al., 2013;
Pellegrinelli et al., 2018), and neuregulin-4 (NRG4) (Rosell et
al., 2014) that promote the growth and branching of sympa-
thetic nerves during cold-induced browning in subcutaneous
fat. In addition, a mouse model with adipocyte-specific dele-
tion of PR-domain containing 16 (Prdm16), a major transcrip-
tional regulator of beige adipogenesis, displayed an impaired
browning phenotype and a drastic reduction in sympathetic
neurite density (Chi et al., 2018), suggesting that beige adipo-
cytes interact with neurons via secreted factors to activate and
maintain the function of thermogenic cells. Taken together,
these findings support the notion that the dialogue between
SNS and adipocytes is essential to modulate beige biogenesis
and thermogenic activation in WAT.

Immune cells in WAT
Immune cells present in the stromal vascular fraction (SVF)

of WAT have long been known to be involved in the homeosta-
sis of WAT. Similar to other organs, WAT is subjected to im-
mune surveillance in response to environmental cues. Obesity
provokes type 1 immune response and gradually leads to the
development of low-grade, chronic inflammation, whereas in
healthy lean individuals, type 2 immunity is predominantly re-
sponsible for restraining inflammation and maintaining meta-
bolic homeostasis. Transcriptomics profiling and pathway
enrichment analysis of progenitor-derived beige adipocytes
from human WAT explant revealed the expression of cytokines
suggestive of type 2 immunity (e.g. IL-11 and CXCL8), which
may be important for the intercellular crosstalk between im-
mune and mesenchymal progenitor cells in WAT (Min et al.,
2019). Thus, immune cells play important roles in the regula-
tion of beige adipogenesis (Figure 3).

Macrophages. Adipose tissue macrophages (ATMs) are the
main leukocyte population in WAT (Nishimura et al., 2009),
which are typically classified as ‘classically activated’ M1 or ‘al-
ternatively activated’ M2. The M2 macrophages predominantly
possess anti-inflammatory phenotype in lean subjects whereas
in obese individuals, macrophages preferentially polarize into
pro-inflammatory M1 macrophages in WAT (Lumeng et al.,
2007). A recent study has shown the communication between
classical BAT and WAT during cold acclimation, whereby
CXCL14 secreted by brown adipocytes targets peripheral WAT
depots to promote the recruitment of M2 macrophages and
subsequently lead to WAT browning (Cereijo et al., 2018).
Furthermore, the increased abundance of M2 macrophages in
AT during cold-induced beige adipogenesis has been consis-
tently observed (Hui et al., 2015; Huang et al., 2017; Qian et
al., 2018). However, the mechanism whereby M2 macrophages
regulate the formation of beige adipocytes is still controversial.
An early study demonstrated that IL-4/IL-13 signaling induces
the polarization of M2 macrophages to release catecholamines

and ultimately favors the browning of WAT during acclimation
to cold (Nguyen et al., 2011). In contrast, another recent study
argued that M2 macrophages do not express TH, a rate-limiting
enzyme required for NE production, and thus excluding M2

macrophages as a potential source of NE during cold-induced
browning of WAT (Fischer et al., 2017). Instead, this study pro-
posed that M2 macrophages may regulate cold-induced brow-
ning of WAT by uptaking and releasing NE (Fischer et al., 2017).
Therefore, further investigations are needed to find out the pre-
cise mechanism(s) whereby M2 macrophages promote the for-
mation of beige adipocytes.

Eosinophils. The IL-4 signaling pathway is well known to be a
key player in the polarization and proliferation of tissue-
resident M2 macrophages (Rückerl et al., 2012; Jenkins et al.,
2013). The major IL-4-secreting cells has been reported to be
eosinophils, which constitute �4%–5% of the SVF of lean sub-
cutaneous WAT and appear to modulate systemic glucose (Wu
et al., 2011). Two independent studies discovered the impor-
tance of eosinophils in the recruitment and activation of beige

Figure 3 Immune cells and their secreted cytokines in the biogene-
sis of thermogenic beige adipocytes in WAT. In response to thermo-
genic stimuli such as cold exposure and high-intensity exercise,
type 2 immune responses characterized by ILC2s, eosinophils, and
alternatively activated (M2) macrophages are activated to secrete
type 2 cytokines and other factors for induction of the beiging pro-
gram. Furthermore, different T cell subsets (cd T cells, iNKT cells,
and Treg cells), mast cells, and CD45

þ cells also secrete respective
factors to modulate biogenesis of beige adipocytes. Question mark
(?) represents unknown factors. TNFa, tumor necrosis factor alpha.
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adipocytes in WAT by using an eosinophil-deficient mouse
model (DdblGATA) (Qiu et al., 2014; Rao et al., 2014). Cold expo-
sure not only increases the number of eosinophils and expres-
sion of type 2 cytokines (e.g. IL-4 and IL-13), but also induces
the infiltration of macrophages expressing the chemokine recep-
tor CCR2 into subcutaneous WAT (Qiu et al., 2014). A circulating
factor known as meteorin-like (METRNL), which is mainly se-
creted from skeletal muscle and AT, was found to stimulate the
recruitment of eosinophils into subcutaneous WAT, which in turn
leads to the polarization of M2 macrophages and eventually
browning of WAT in response to exercise or cold acclimation
(Rao et al., 2014). Moreover, it has been reported that cold-
induced recruitment of eosinophils into WAT is mediated by
adipocyte-secreted FGF21, which acts in an autocrine or para-
crine manner to induce the production of C–C motif chemokine
11 (CCL11), a key chemokine responsible for eosinophil recruit-
ment (Huang et al., 2017). Apart from the activation of M2 mac-
rophages, IL-4-producing eosinophils can directly act on IL-4Ra-
expressing PDGFRaþ adipocyte progenitors that commit to the
beige cell lineage (Lee et al., 2015a).

Group 2 innate lymphoid cells (ILC2s). Two independent re-
search groups discovered the involvement of ILC2s in regulat-
ing thermogenic activation of beige adipocytes (Brestoff et al.,
2015; Lee et al., 2015a). ILC2s originate from common lym-
phoid progenitors and lack the conventional B or T cell recep-
tors. In response to the cytokine IL-33 (Neill et al., 2010), ILC2s
secrete IL-5 and IL-13 and coordinate with eosinophils to elicit
type 2 immune response during lung and gastrointestinal nem-
atode infections (Yasuda et al., 2012; Wojno et al., 2015).
Notably, the number of ILC2s in WAT was reduced in both
humans and mice with obesity (Brestoff et al., 2015).
Administration of IL-33 increased the abundance of ILC2s and
promoted the browning of WAT in mice (Brestoff et al., 2015;
Lee et al., 2015a). Vice versa, IL-33-deficient mice exhibited a
decreased abundance of ILC2s and were associated with the
impairment of browning capacity in WAT (Brestoff et al., 2015).
In addition to the secretion of type 2 cytokines, ILC2s also pro-
duce an opioid-like peptide called methionine–enkephalin
(MetEnk), which bypasses the type 2 cytokine signaling path-
way and directly acts on adipocytes to promote the formation
of functional beige adipocytes (Brestoff et al., 2015).
Furthermore, it has been suggested that this pathway occurs
selectively in subcutaneous WAT that expresses higher levels
of the MetEnk receptor (known as opioid receptor d1, Oprd1)
compared to classical BAT (Brestoff et al., 2015). Although IL-
33 is known to be produced by epithelial cells (Moussion et al.,
2008; Pichery et al., 2012), podoplanin (PDPN) fibroblasts
(Pichery et al., 2012), and cadherin-11 cells (Chang et al.,
2017), the source of endogenous IL-33 during beige adipogen-
esis in WAT remains largely unknown.

T cells. Different T cell subsets are present in AT. An unconven-
tional innate T cell subpopulation, type 1 or invariant natural
killer T (iNKT) cell, is enriched specifically in human and murine

AT and produces anti-inflammatory cytokines, for example,
IL-10 and IL-4 (Lynch et al., 2012). The abundance of adipose
iNKT cells is reduced in obesity but restored after weight loss in
humans and mice (Lynch et al., 2012). It has been demon-
strated that iNKT cells regulate the formation of thermogenic
beige adipocytes in WAT partially through the iNKT–FGF21 axis
(Lynch et al., 2016). However, the exact mediator(s) secreted
from iNKT cells that promote beige biogenesis have yet to be
identified. Nevertheless, it is important to note that the lipid li-
gand a-galactosylceramide-mediated activation of iNKT cells
enhances polarization of M2 macrophages via the IL-4/STAT6

signaling pathway, thus improving systemic glucose homeosta-
sis in dietary obese mice (Ji et al., 2012). Another type of innate
lymphocyte, cd T cell, is also highly enriched in WAT of both
mice and humans and negatively correlated with BMI
(Costanzo et al., 2015; Kohlgruber et al., 2018). Because cd T
cells are the main source of IL-17A during cold acclimation, ge-
netic deficiency of IL-17A altered cold-induced thermogenic
responses in subcutaneous WAT by increasing the abundance
of adipose PDPNþ stromal cells that can differentiate into beige
adipocytes (Kohlgruber et al., 2018). A recent study further
highlighted the role of cd T cells in adaptive thermogenesis by
discovering its function in promoting sympathetic innervation
through IL-17F-driven transforming growth factor beta 1 (TGFb1)
signaling via the adipocyte-expressed IL-17 receptor C
(IL-17RC) (Hu et al., 2020). In addition, the expansion of differ-
entiated regulatory T (Treg) cells from CD4

þ T cells also regu-
lates thermogenesis in subcutaneous WAT through the STAT6/
PTEN signaling axis after cold or b3-AR stimulation, as evi-
denced by increased lipolysis, b-oxidation, and thermogenic
gene expression (Kälin et al., 2017). In contrast, CD4

þFoxpþ

Treg cells have been shown to produce a significant amount of
IL-10 to suppress beiging of WAT (Beppu et al., 2020). A follow-
up study also demonstrated that the ablation of IL-10 or
adipose-specific depletion of IL-10Ra in mice led to greater in-
duction of browning in subcutaneous WAT than their wild-type
littermates (Rajbhandari et al., 2018). Further studies are nec-
essary to investigate the regulator(s) of Treg cells in modulating
beige biogenesis as IL-10 production can be produced by many
types of immune cells in the adaptive immune system (Saraiva
and O’Garra, 2010).

Mast cells (MCs). Although MCs are known for their role in aller-
gic reactions, their abundance in WAT has been found to be in-
creased in obese mice and humans (Liu et al., 2009). In
addition, the number of MCs was elevated in thigh subcutane-
ous fat of human subjects during the winter season (Finlin et
al., 2017). By contrast, a scRNA-seq revealed a decreased
abundance of MCs in subcutaneous fat of mice after treatment
with the b3-AR agonist, CL316,243 (Rajbhandari et al., 2019).
Intriguingly, functional inactivation or genetic deficiency of
MCs promoted adipocyte browning and increased systemic
thermogenesis in mice (Zhang et al., 2019). Mechanistically,
MC-derived serotonin inhibits the proliferation of PDGFRaþ adi-
pocyte precursors that can be differentiated into beige
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adipocytes. An in vitro study also demonstrated that histamine

degranulation in MCs triggers UCP1 expression in 3T3-L1 adipo-
cytes (Finlin et al., 2019).

CD45
1 hematopoietic cells. Interestingly, Jun et al. (2018) dis-

covered that immune cells modulate thermogenic beige adipo-
cytes through the peripheral cholinergic circuit in mice. During
cold acclimation, acetylcholine (ACh)-secreting CD45

þ hemato-

poietic cells (e.g. B cells, ab T cells, and M2 macrophages) acti-
vated beige adipocytes via cholinergic receptor nicotinic alpha

2 subunit (Chrna2) (Jun et al., 2018). Taken in conjugation,
these findings have reinforced the important role of adipose

immune system in the regulation of beige adipocytes and en-
ergy metabolism.

Endocrine factors for the formation of beige adipocytes
Apart from the local microenvironment, circulating factors

can also act as endocrine signals to regulate the development

of beige adipocytes in WAT (Figure 4).

Peptide hormones
Upon cold exposure, shivering thermogenesis and non-

shivering thermogenesis are involuntarily executed to counter-
act hypothermia. It has been suggested that cold-induced shiv-

ering stimulates the release of irisin into the circulation and
also mimics exercise to induce the release of irisin during mus-

cle contraction (Lee et al., 2014a). Irisin is known as an
exercise-stimulated myokine that can induce the browning of

WAT and improve parameters of metabolic complications
in vivo (Boström et al., 2012). Nevertheless, the secretion of iri-
sin from skeletal muscle is still controversial as some studies

could not find the correlation between exercise and irisin level

(Pekkala et al., 2013; Raschke et al., 2013). In addition,
METRNL has been identified to be another PGC-1a-dependent
myokine that drives the browning of WAT after exercise (Rao et
al., 2014), suggesting crosstalk between muscle and fat in pro-
moting the browning of WAT.

Besides myokines, the stress-responsive hormone FGF21 is
selectively elevated in thermogenic adipose depots (BAT and
subcutaneous WAT) during cold exposure and induces brow-
ning and adaptive thermogenesis of WAT (Fisher et al., 2012;
Huang et al., 2017). FGF21 not only acts locally in an auto-
crine/paracrine manner but also exerts its actions as an endo-
crine signal to increase adaptive thermogenesis in WAT. BAT-
secreted FGF21 can release into the bloodstream and travel to
distal WAT to promote beige adipocyte formation (Hondares et
al., 2011; Hanssen et al., 2015). However, cold exposure does
not cause any significant change of circulating FGF21 (Fisher et
al., 2012; Huang et al., 2017) or even leads to a decrease in
the level of circulating FGF21 (Sepa-Kishi and Ceddia, 2018). It
is possible that circulating FGF21 may be involved in beige adi-
pocyte formation induced by other types of metabolic stresses
but not by cold exposure. In addition, one of the most abun-
dant adipokines, adiponectin, has been reported to be induced
specifically in subcutaneous WAT but not BAT and epididymal
WAT during cold exposure, which in turn activates the thermo-
genic program of beige adipocytes through the proliferation of
M2 macrophages (Hui et al., 2015). However, why the circulat-
ing level of adiponectin is reduced during cold exposure
remains obscure (Dong et al., 2013; Hui et al., 2015).

Thyroid hormones
The thyroid gland releases two types of thyroid hormones,

namely 3,30,5,50-tetraiodothyroxyne (T4) and 3,30,5-triiodothy-
ronine (T3). Thyroid hormones are key regulators of BAT-
mediated adaptive thermogenesis in mammals. T4 is the major
form of thyroid hormone in circulation and has to be converted
to its activated form, T3, by type 2 iodothyronine deiodinase
(Dio2). T3 can then bind to nuclear thyroid receptor alpha (TRa)
or beta (TRb) to exert its biological functions. A study has sug-
gested that TRb is involved in the regulation of adaptive ther-
mogenesis through modulating UCP1 gene expression, while
TRa appears to play a role in adrenergic sensitivity (Ribeiro et
al., 2001). Accordingly, administration of GC-1, a TRb-specific
agonist, to ob/ob mouse model promoted significant browning
of subcutaneous WAT, which led to an increase in body temper-
ature and energy expenditure (Lin et al., 2015). This effect was
also observed by chronic subcutaneous treatment with T4 or
intracerebroventricular infusion of T3 in rodents (Martı́nez-
Sánchez et al., 2017). However, this concept was challenged
by another study reporting that systemic T3 induced hyperther-
mia in mice through actions in TRa-expressing skeletal muscle
with central body temperature setpoint, but not the consequen-
ces of browning of WAT (Johann et al., 2019). Therefore, further
studies are required to clarify the role of thyroid hormones in

Figure 4 Circulating factors released from other metabolic organs
modulate browning and thermogenesis of WAT through inter-organ
communications. Question mark (?) represents other unknown fac-
tors and that the role of irisin in the browning of WAT is still
controversial.
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the browning of WAT in addition to its well-established central
effect on BAT.

Lipokines
It is increasingly appreciated that lipokines or bioactive lip-

ids are important mediators for inter-organ communication
(Cao et al., 2008). There is substantial evidence demonstrating
the involvement of lipid breakdown in promoting brown and
beige adipocyte-mediated adaptive thermogenesis, as this pro-
cess utilizes fatty acids as fuels for heat generation (Lynes et
al., 2018; Leiria et al., 2019). Metabolic organs such as AT (Cao
et al., 2008; Yore et al., 2014) and the liver (Simcox et al.,
2017) have been reported to release lipokines associated with
improved metabolic health. For instance, through a global lipi-
domic analysis, a novel circulating lipid known as 12,13-dihy-
droxy-9Z-octadecenoic acid (12,13-diHOME) was found to
increase in both mice and humans when exposed to cold or ex-
ercise, facilitating fatty acid uptake and thermogenesis in
brown and beige adipocytes (Lynes et al., 2017; Stanford et al.,
2018). Moreover, a cold-activated circulating mitochondrial
phospholipid, cardiolipin, has been shown to bind to and in-
crease the stability of UCP1 in the mitochondrial inner-
membrane (Lee et al., 2015b; Lynes et al., 2018). Interestingly,
AT macrophages have been shown to convert breast-milk alkyl-
glycerol (AKG) into platelet-activating factor (PAF), which trig-
gers and maintains beige adipocytes in infants. However, it
remains unclear whether AKG promotes browning of WAT in
adult humans and mice (Yu et al., 2019). A considerable effort
has been made to identify lipokines involved in regulating the
activity of classical BAT activation for thermogenesis, but fur-
ther investigation is needed to clarify their roles in the recruit-
ment and/or activation of beige adipocytes in WAT.

Exosomes
Exosomes, also known as extracellular nanovesicles, contain

microRNAs (miRNAs), non-coding RNAs, proteins, or bioactive
lipids that are secreted by cells to mediate inter/intracellular
communication for physiological and pathological conditions
(Huang and Xu, 2021). In this regard, exosomes derived from
adipose-derived stem cells (ADSCs) have been shown to pro-
mote the polarization of M2 macrophages, which in turn leads
to WAT browning and subsequently improves metabolic disor-
ders in dietary obese mice (Zhao et al., 2018). This finding was
further supported by another study showing that exosomes iso-
lated from human ADSCs enhanced the differentiation of beige
adipocytes, suggesting that exosomes derived from beige adi-
pocytes can stimulate the development of other beige cells in
WAT (Jung et al., 2020). However, the exact exosomal compo-
nents that mediate WAT browning and thermogenesis remain
unknown. Notably, the level of a circulating exosomal miR-92a
is found to be inversely correlated with brown/beige cells
in humans and mice exposed to cold or mice treated with the

b3-AR agonist CL316,243, suggesting that it can be used as a
potential biomarker for brown/beige adipocytes in humans
(Chen et al., 2016). Nevertheless, the role of miR-92a in ther-
moregulation has not yet been identified. Several previous
studies have highlighted the role of endogenous miRNAs in
WAT browning, including miR-155 and miR-196a (Mori et al.,
2012; Chen et al., 2013). However, there is currently no evi-
dence showing that these microRNAs exist in the circulating
exosomes and act in an endocrine manner to modulate the
browning of WAT. Therefore, further studies are needed to iden-
tify the precise exosomal components involved in the regula-
tion of biogenesis of beige adipocytes.

Gut microbiota-derived factors
Host–microbiota interactions involve the production of

metabolites that subsequently impacts metabolism and immune
system function in the host. Recently, it has been reported that
exposure to a cold environment altered the gut microbiota com-
position of mice. Transplantation of gut microbiota collected
from mice exposed to a cold environment into germ-free (GF)
mice increased the browning of WAT, cold tolerance, as well as
energy expenditure (Chevalier et al., 2015). Furthermore, deple-
tion of gut microbiota in mice by using GF and antibiotics treat-
ment led to a browning phenotype in subcutaneous and
epididymal WAT at 22

�C and 30
�C. They provided evidence

showing that upon depleting the gut microbiota, the activation
of type 2 immune response in WAT drives browning capacity, but
the exact microbial-secreted factor(s) that mediate type 2 signal-
ing pathway is currently unknown (Suárez-Zamorano et al.,
2015). Furthermore, caloric restriction-induced gut microbiota
remodeling leads to type 2 immunity-mediated browning of WAT
via lipopolysaccharides–Toll-like receptor 4 axis in mice
(Fabbiano et al., 2018), which may explain the formation of
beige adipocytes observed in the microbiota-depleted mice. In
contrast, Li et al. (2019) demonstrated an opposite finding that
the elimination of microbiota impaired the browning process of
WAT and thermogenic capacity of BAT in mice. Recolonization of
microbiota or replenishment with butyrate partially restored the
impaired thermoregulatory response in microbiota-depleted
mice, suggesting a potential role of microbiota-derived metabo-
lites such as short-chain fatty acids (SCFAs, e.g. butyrate, ace-
tate, and propionate) in thermogenesis (Li et al., 2019). Indeed,
gut microbiota-derived acetate and lactate have been shown to
promote the browning of WAT but not thermogenic BAT following
intermittent fasting (Li et al., 2017). Further studies are neces-
sary to evaluate and clarify the impact of gut microbiota compo-
sition in modulating the host thermogenic program of WAT.

Challenges in the clinical translation
The discovery of brown/beige adipocytes in adult humans

has triggered massive research interest because of its thera-
peutic potential to combat obesity and obesity-related
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abnormalities. However, most of the pre-clinical research out-
comes have been heavily relying on the use of mouse models,
which may not represent the exact phenomenon in humans.
Although there are similarities between humans and mice, no-
table differences do exist. For instance, posterior subcutaneous
WAT (from dorsolumbar to gluteal region), the most susceptible
depot to beige fat biogenesis in mice is anatomically equiva-
lent to the gluteal-femoral subcutaneous region in humans that
does not have detectable brown/beige adipocytes (Chusyd et
al., 2016; Leitner et al., 2017). Moreover, omental fat biopsy
was found to express higher levels of browning and beige adi-
pocyte gene markers than abdominal subcutaneous fat in
humans, as compared to what was observed in mice (Zuriaga
et al., 2017), suggesting that the depot-specific browning ca-
pacities of mice and humans are not comparable. Furthermore,
information on the browning susceptibility of human WAT in
different anatomical sites is still lacking.

Another critical difference between humans and mice is the ther-
moneutrality condition when studying the browning process.
Unlike humans who live in a comfortable environment that is
close to thermoneutrality, laboratory mice are constantly
housed at ambient temperature (�22

�C), which is below their
thermoneutral zone (�30

�C), consequently affecting many bio-
logical processes (Cannon and Nedergaard, 2011). It has been
reported that mice housed at �22

�C displayed energy expendi-
ture (EE) 3.1-fold higher than the resting metabolic rate (RER),
significantly exceeding EE/RER ratio in humans (�1.6) (Fischer
et al., 2018). Therefore, this chronic thermal stress in mice has
contributed significantly to the outcomes of earlier metabolic
studies (Feldmann et al., 2009; Overton, 2010), which may lead
to unreliable results in subsequent metabolic change or overes-
timation of non-shivering thermogenic capacity in humans.

Activation of b3-AR and its downstream cAMP signaling cas-
cade through chronic cold exposure or pharmacological inter-
vention has been identified as potent thermogenic inducers of
beige adipocytes in mouse models. However, the use of b3-AR
agonists as anti-obesity medication in clinical trials has led to
mixed outcomes (Arch, 2011). Pharmacological agents (e.g.
repositioning of the b3-AR agonist mirabegron) have led to unde-
sirable cardiovascular side effects in humans despite stimula-
tion of brown fat and improved glucose homeostasis. It is also
uncomfortable and time-consuming to expose individuals to a
cold environment as a therapeutic approach. A recent study
even showed that human brown/beige fat in the deep neck re-
gion is stimulated through b2-AR, but not b3-AR (Blondin et al.,
2020). Finally, it has yet to be clarified whether the induction of
the browning of WAT is sufficient enough to increase energy ex-
penditure and decrease adiposity in humans (Schiffelers et al.,
2000; van Baak et al., 2002). Therefore, results from animals
should be extrapolated to humans with cautions.

Concluding remarks and future perspectives
Despite enormous efforts, there are very few pharmacological

interventions available to treat obesity and its related medical

complications. Most of the anti-obese mediations, especially
those acting centrally to suppress food intake, were withdrawn
from the market due to their severe side effects after long-term
administration. Given the existence of excess amounts of white
fat in obese humans, browning of WAT represents a promising al-
ternative strategy to combat obesity, as a high volume of thermo-
genic beige adipocytes can be readily achievable. Indeed,
CRISPR-engineered brown-like adipocytes have been tested to
treat obesity and its related metabolic syndromes (Tran et al.,
2008; Stanford et al., 2013; Blumenfeld et al., 2018; Wang et al.,
2020). However, this approach poses significant technology chal-
lenges in the manufacturing process. In addition, lack of cell–cell
communication between different cell types including nerves, en-
dothelial cells, and immune cells may further influence the func-
tion and viability of the transplanted tissues/cells. Therefore, the
identification of secreted factor/soluble molecules to induce/acti-
vate beige adipocytes to create a microenvironment favorable for
biogenesis and thermogenesis of beige adipocytes may help to
develop biopharmacological strategies to combat obesity by the
browning of WAT. However, additional investigations are needed
to explore novel delivery systems such as AT-targeted nanopar-
ticles and lipid nanocarriers to specifically deliver the ‘browning’
molecules to WAT. This will provide not only an efficient and pre-
cise delivery of bioactive substances but also a marked reduction
of side effects in other non-adipose organs.

Another important issue that needs to be addressed is to de-
velop a high-sensitivity and high-resolution quantitative method
for the measurement of brown/beige adipocyte mass/activities in
humans. The current imaging technology such as PET/CT is too ex-
pensive and not suitable for routine assessment of brown/beige
activity. In this connection, identification and characterization of
circulating biomarkers specifically related to beige/brown adipo-
cytes will be extremely useful for dynamic, non-invasive monitor-
ing of brown/beige activities. To translate the findings from bench
to clinic, further investigation is needed to dissect the similarities
and differences between rodents and humans in the recruitment,
activation, and maintenance of functional beige adipocytes.
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