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geospatial big data: Progress, challenges, and opportunities
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China; bMinistry of Education Key Laboratory for Earth System Modeling, Department of Earth System 
Science, Tsinghua University, Beijing, China; cTsinghua Shenzhen International Graduate School, Shenzhen, 
China; dDepartment of Geography, and Department of Earth Sciences, The University of Hong Kong, 
Hong Kong SAR, China

ABSTRACT
Urban land use information that reflects socio-economic functions 
and human activities is critically essential for urban planning, land-
scape design, environmental management, health promotion, and 
biodiversity conservation. Land-use maps outlining the distribution, 
pattern, and composition of essential urban land use categories 
(EULUC) have facilitated a wide spectrum of applications and 
further triggered new opportunities in urban studies. New and 
improved Earth observations, algorithms, and advanced products 
for extracting thematic urban information, in association with emer-
ging social sensing big data and auxiliary crowdsourcing datasets, 
all together offer great potentials to mapping fine-resolution 
EULUC from regional to global scales. Here we review the advances 
of EULUC mapping research and practices in terms of their data, 
methods, and applications. Based on the historical retrospect, we 
summarize the challenges and limitations of current EULUC studies 
regarding sample collection, mixed land use problem, data and 
model generalization, and large-scale mapping efforts. Finally, we 
propose and discuss future opportunities, including cross-scale 
mapping, optimal integration of multi-source features, global sam-
ple libraries from crowdsourcing approaches, advanced machine 
learning and ensembled classification strategy, open portals for 
data visualization and sharing, multi-temporal mapping of EULUC 
change, and implications in urban environmental studies, to facil-
itate multi-scale fine-resolution EULUC mapping research.
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1. Introduction

Land use/land cover (LULC) has been considered one of the most important factors that 
reflect the underlying natural and anthropogenic processes of global environmental 
change (Foody, 2002; Herold, Mayaux, Woodcock, Baccini, & Schmullius, 2008; Running, 
2008; Turner, Lambin, & Reenberg, 2007). It has been widely recognized that LULC pattern 
and changes affect and link with many aspects of ecosystem function and human health 
(Foley et al., 2005) and play a critical role in modulating climate change (Feddema et al., 
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2005; Findell et al., 2017; Pielke Sr et al., 2011), maintaining ecosystem (Verburg, Van De 
Steeg, Veldkamp, & Willemen, 2009), conserving biodiversity (Gámez-Virués et al., 2015), 
and promoting planetary health (Rockström et al., 2009; Whitmee et al., 2015). Accurate 
and timely classification, mapping, and monitoring of LULC and its changes are of great 
importance to a broad spectrum of research themes in Earth observation and global 
environmental change since they can provide essential knowledge for understanding the 
Earth’s dynamics.

Satellite and airborne remote sensing have greatly facilitated LULC monitoring by 
providing spatially explicit and temporally continuous information from regional to global 
scales (Gong et al., 2013; Hansen et al., 2013). In recent decades, with the development of 
new satellite sensors, improved classifiers, machine learning algorithms, and cloud com-
puting, many remote sensing based LULC classification products have been produced 
and publicly available at multiple spatial resolutions. Representative datasets include (i) 
coarse-resolution ones from 100 m to 1 km, e.g. the 1-km International Geosphere- 
Biosphere Programme data and information system cover (IGBP-DISCover) map 
(Loveland et al., 2000), the 1-km University of Maryland (UMD) land cover map (Hansen, 
DeFries, Townshend, & Sohlberg, 2000), the 1-km global land cover classification product 
(GLC2000) (Bartholome & Belward, 2005), the 1-km and 500-m Moderate Resolution 
Imaging Spectrometer (MODIS) land cover maps (Friedl et al., 2010; Tateishi et al., 2011), 
the 300-m global land cover map (GlobCover) derived from Medium Resolution Imaging 
Spectrometer (MERIS) dataset (Arino et al., 2012), the 300-m European Space Agency (ESA) 
Climate Change Initiative (CCI) land cover maps from 1992 to 2015 (UCL-Geomatics, 2017), 
the 100-m ESA Copernicus Global Land Service Land Cover Map (CGLS-LC100) (Buchhorn 
et al., 2020), and the 100-m global land cover fraction map (Masiliūnas et al., 2021); (ii) 
fine-resolution ones from 10 m to 30 m, e.g. the 30-m finer resolution observation and 
monitoring of global land cover (FROM-GLC30) (Gong et al., 2013), the 30-m global land 
cover data product (GlobeLand30) (Chen et al., 2015), the 30-m global land-cover product 
with fine classification system (GLC_FCS30) (Zhang et al., 2020a), the most recent 30-m 
intelligent mapping of global land cover (iMap World 1.0) (Liu et al., 2021), the 20-m ESA 
CCI Sentinel-2 prototype land cover map of Africa in 2016 (Lesiv et al., 2017), and the 10-m 
finer resolution observation and monitoring of global land cover (FROM-GLC10) (Gong 
et al., 2019); and (iii) high-resolution one less than 10 m, e.g. the recent 3-m national land 
cover map in China based on Planet Imagery (Dong et al., 2021).

Urban land use is the highest level of human modification on Earth (Gong et al., 2020a; 
Theobald et al., 2020). Despite their small proportion (<1%) covering the land surface 
(Schneider, Friedl, & Potere, 2010), urban areas have accommodated more than 50% of 
the global population (Nations, 2018) and exerted a disproportionate influence on their 
surroundings in terms of mass, energy, and resource fluxes (Cao, Chen, Imura, & Higashi, 
2009). In addition to the global LULC maps that outline the general distribution and 
pattern of urban extents, a group of global thematic products regarding impervious areas 
have been developed (Figure 1a), including Global Human Settlement Layer (Gong & 
Howarth, 1990, 1992; Pesaresi et al., 2013), Human Built-up and Settlement Extent (Wang, 
Huang, Brown De Colstoun, Tilton, & Tan, 2017), Global Man-made Impervious Surface 
(Brown De Colstoun et al., 2017), Global Artificial Impervious Area (Gong et al., 2020b), and 
other global impervious maps using Normalized Urban Areas Composite Index (NUACI) 
(Liu et al., 2018) and multi-source, multi-temporal random forest classification (MSMT_RF) 
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(Zhang et al., 2020b). The above-mentioned remote sensing based impervious area 
products are binary classification by grouping all impervious surface areas into one 
class. However, maps contain knowledge on the distribution, pattern, and composition 
of different land-use types in urban areas, are still limited by the data available from 
government agencies and the spatial coverage at city and regional levels (Gong et al., 
2020a). Moreover, the mapping standard on data sources, methods, land use classification 
units and schemes, and updating frequency varies across different cities and regions, due 
to extreme difficulties in (i) differentiating complex urban built-up areas to functional 
labels; (ii) coordinating financial input and skills of mapping personnel (Gong et al., 
2020a); and (iii) securing the availability of spatially and temporally explicit datasets 
with high to very high resolutions.

Detailed urban land use information that reflects socio-economic functions and 
human activities is critically important for urban planning, landscape design, environ-
mental management, disaster control, human health promotion, and biodiversity con-
servation (Chen et al., 2021b). To better inform high-level semantic information of urban 
components and uncover the spatially explicit distribution of various land use types, 
many previous studies have used multi-source and multi-scale remote sensing datasets 
and different classification algorithms to delve into urban land use classification 
(Figure 1a). Here we categorize them into three classes by the minimum size of their 
spatial representation as pixel, object, and parcel (Chen et al., 2021b). The pixel-based 
approaches mainly use spectral, texture, and auxiliary features to differentiate land-use 
types in direct classifications. For example, Gong, Marceau, and Howarth (1992) inte-
grated spatial and spectral features from Système Pour l’Observation de laTerre (SPOT) 
HRV multispectral data to classify two-level land uses at the rural-urban fringe of 
Metropolitan Toronto using a Gaussian maximum likelihood classifier. Since urban 
areas commonly comprise a complex spatial assemble of spectrally distinct land-cover 

Figure 1. Land use/land cover classification. (a) Global land cover map to thematic impervious area 
map and urban land use map; and (b) classification unit from pixel to object and parcel.
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types, per-pixel classification algorithms will not be suitable to quantify urban land uses 
without very high spatial resolution satellite sensors. Barnsley and Barr (1996) proposed 
to classify the image into broad land-cover types at the first stage and then group the 
classified pixels into different land-use categories based on their frequency and spatial 
arrangement within a square kernel at the second stage. However, these pioneering 
studies are largely limited to local scale experimental tests due to restrictions in data 
availability. Leveraging the medium spatial resolution Landsat dataset, Lu and Weng 
(2006) applied the spectral mixture analysis in classifying residential areas with different 
intensities and the integrated class of commercial, industrial, and transportation land 
uses. However, the classification scheme is too general without differentiating specific 
commercial, industrial, or transportation classes. Nevertheless, the complexity of the 
urban system makes it difficult for single-type remotely sensed data to identify different 
land use types and functional zones. A growing trend of recent studies is the integra-
tion of multi-source and multi-platform datasets to address this challenge. For example, 
Man, Dong, and Guo (2015a) aimed to derive pixel-based urban land-use classification 
with 15 classes by fusing structural and height information from Lidar and spectral and 
texture information of hyperspectral imagery. Theobald (2014) combined an expansive 
set of features from housing and employment census, infrastructure, and National Land 
Cover Dataset (NLCD) to produce a 30-m map of land use for the conterminous United 
States, including 79 land use types within five major categories: built-up, production, 
recreation, conservation, and water.

The new and improved satellite sensors that provide high-resolution (HR) and very- 
high-resolution (VHR) remote sensing imagery (e.g. IKNONS, Worldview, Quick Bird, etc.) 
have opened up new opportunities for detailed mapping and analysis of urban land use. It 
is now possible to identify the geometry, texture, size, location, and adjacent information 
of ground objects at a much finer scale (Zhang et al., 2018; Zhong et al., 2020). Object- 
based approaches are becoming more popular and widely used to classify urban land-use 
types with two general stages, including the object segmentation from VHR remote 
sensing imagery and object-based land use classification. Image segmentation techni-
ques aim at grouping pixels into homogeneous objects with consistent composition and 
continuous pattern, for instance, in spectrums, textures, and shapes. They generate 
a complete set of individual segmented “land-cover objects” that can be a tree, building, 
water body, road, etc. The subsequent stage is to use the classifier to identify their specific 
land-use types accurately. Generally, two types of information are usually included for 
consolidating the classification models, i.e. intra-object features (e.g. spectral, texture, and 
gradient features) and inter-object features (e.g. connectivity, contiguity, and adjacent 
alignment) (Zhang et al., 2018).

In addition to statistical machine learning algorithms such as support vector machine 
(SVM), random forest (RF), and neural network (NN) that digest low-level features for 
urban land use classification through the regular training and prediction protocol, 
recent advances in deep learning based convolutional neural networks (CNNs) make it 
more promising and cost-effective to transform the raw images and low-level features 
to classes at a higher and slightly abstract level (LeCun, Bengio, & Hinton, 2015; 
Schmidhuber, 2015). These advances have greatly facilitated a wide range of applica-
tions, including image segmentation, object recognition, and land-use classification. For 
example, Zhang et al. (2018) proposed an object-based CNN (OCNN) method for urban 
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land use classification using VHR images. Unlike the pixel-based convolutional process, 
the OCNN used the segmented objects as its functional units. The CNN structures are 
designed to assign semantic labels by partitioning within-object and between-object 
variations. Considering the challenges in understanding high-level semantics and spatial 
information through traditional CNN models in feature extraction, Bao et al. (2020) 
proposed the Deeper-Feature Convolutional Neural Network (DFCNN) to extract multi- 
dimensional and deeper features for classifying semantic labels. Although deep con-
volutional neural network (DCNN) techniques have achieved very impressive image 
classification performance, the potential of including multi-spectral remote sensing 
images rather than the true-color three channels is limitedly explored. Moreover, the 
traditional practice of DCNN methods uniformly crop large images into small processing 
units, thus leading to obvious block effects in the spatial pattern of the derived land-use 
classification. Huang, Zhao, and Song (2018) further proposed a semi-transfer deep 
convolutional neural network (STDCNN) approach including three steps of a transfer 
DCNN model, a small DCNN model with multispectral image layers, and a fully con-
nected layer that fuses the first two parts, which makes it feasible to derive accurate 
object-based urban land use classification as well as maintaining the integrity of land- 
use patterns.

The hierarchy of urban scenes represents the urban landscape as “land-use parcel”, 
“land-use objects”, and “land-cover pixels” (Figure 1b). Intuitively, land-use parcels are 
comprised of land-use objects, and land-use objects are grouped by land-cover pixels. 
The object-based approaches, but the segmented unit will be largely influenced by the 
spatial scale effect (Myint, Gober, Brazel, Grossman-Clarke, & Weng, 2011), in particular, 
driven by global models. This raised issue may hinder the consistency of intrinsic unit 
size across different landscape heterogeneities (Chen et al., 2021b). Moreover, the 
segmented unit is more spatially oriented, which cannot be flexibly applied in real- 
world practices of urban land use planning and management considering the potential 
“application gap” (Zhong et al., 2020). Addressing this shortcoming, recent studies 
proposed to use a more synthetic scale of parcels to classify urban land-use types. 
For example, a street block representing a relatively homogeneous urban function is 
more compatible with the basic unit for urban planning and land management (Hu, 
Yang, Li, & Gong, 2016; Liu & Long, 2016). The parcel-based approaches have been 
increasingly developed and applied in multi-scale urban land use classification 
(Blaschke, Hay, Weng, & Resch, 2011). In addition to remote sensing observations, social 
sensing big data recorded or collected in a crowdsourcing way has provided us new 
opportunities to quantify human activities and characterize urban structures (Chen 
et al., 2018; Hu et al., 2016). For example, Point of Interests (POIs) extracted from social 
media check-in records can represent places or locations with certain functions (Chen, 
Song, Huang, & Xu, 2020). People usually go to different POIs for different purposes, e.g. 
dining, shopping, working, and entertaining (Chen et al., 2020). Based on Point of 
Interests (POIs) statistics allocated within street blocks, Liu and Long (2016) estimated 
the parcel-based land uses for 297 cities in China. However, the quality and quantity of 
POIs will be certainly biased across different locations. Several follow-up studies further 
explored more features from medium-resolution remote sensing imagery, POIs, and 
other auxiliary geospatial information in parcel-based land use classification at city 
levels and reported much better classification performance (Su et al., 2020; Yao et al., 
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2017b). Zhong et al. (2020) proposed a data-driven point, line, and polygon semantic 
object mapping framework to integrate POIs, OpenStreetMap (OSM) data, and VHR 
Google Earth imagery for parcel-based urban land use classification in four cities in 
China. However, the high-resolution spatial details from Google Earth imagery are 
always spatially mosaicked using temporally irregular VHR satellite observations, 
which prevents spatially and temporally consistency for classifying land use types 
(Chen et al., 2021b). Moreover, this work is leveraged at the stage of experimental 
tests in specific regions without extending to larger spatial scales. Noticeably, Gong 
et al. (2020a) proposed a new concept of essential urban land use categories (EULUC) to 
define the urban land use classification scheme and reported a new map of EULUC for 
entire China (EULUC-China) in 2018 that uses 10-m Sentinel-2 imagery, nighttime lights, 
POIs, and Tencent location-based service (LBS) data. It marks the beginning of a new 
approach of collaborative urban land use mapping that can be replicable and transfer-
able across multiple spatial scales. Due to the incomplete coverage of OSM road 
networks in China, the segmented land parcels with certain big sizes are typically 
mixed with different land uses. This situation will be particularly serious for less 
urbanized cities. Addressing this challenge, Su et al. (2020) used the detailed road 
networks from a special road survey to generate land parcels, which represent the 
most accurate land parcel divisions. By further leveraging the complete set of survey- 
based land use samples in Shenzhen, they investigated the impact of training and 
validation samples on the accuracy in terms of different sizes and purities. Another 
promising approach is to integrate the object-based and parcel-based classifications, for 
example, Tu, Chen, Zhang, and Xu (2020) proposed a segmentation-based framework to 
complement the road network derived land parcels and further improve the mapping 
results of EULUC at the city scale. On the other hand, the exploration of feeding multi- 
source datasets and multi-dimensional features into urban land use classification con-
tinues to be an open topic. For example, Zong et al. (2020) integrated road network 
datasets of Gaode and OpenStreetMap (OSM) to divide urban parcels and integrated 
Sentinel-2A images, Sentinel-1A polarization data, night light data, point of interest 
(POI) data, and other data to derive final land use classifications. Huang, Yang, Li, and 
Wen (2021) fused the multi-view optical imagery and high-resolution nighttime light 
imagery to derive urban land use function for two megacities of Wuhan and Beijing in 
China.

The structure of this review is organized as below. We first summarize the evolution of 
EULUC mappings in Introduction. We review the advances of EULUC mapping research 
and practices regarding their data, methods, and applications in Section 2. Based on the 
historical retrospect, we conclude the challenges and limitations of current EULUC studies 
in Section 3. Finally, we discuss future opportunities to better facilitate multi-scale EULUC 
mapping in Section 4.

2. An overview of data, methods, and applications

New and improved data and methods have been continuously involved in urban land use 
classification, which witnessed an accelerated pace of innovations and practices in this 
field due to the rapid development of remote sensing and artificial intelligence over the 
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recent decades. Here we dive in from three primary perspectives to provide an overview 
of data, methods, and applications that have been progressively contributed to the 
knowledge of urban land use classification.

2.1. Remote sensing observations

2.1.1. Multispectral remote sensing
Multispectral remote sensing provides image information in the spectral domain as well 
as in the spatial domain. Ideally, different land cover objects and land use parcels 
represent distinct spectral responses recorded from the multispectral remote sensing 
observations. This is the fundamental assumption that we take advantage of the indivi-
dual spectral band and the combination of spectral bands to separate different land-use 
types. Many remote sensing indicators have been devised to enhance thematic LULC 
features by diagnosing and analyzing spectral profiles. For example, we now have 
representative remote sensing indicators of (i) vegetation: Normalized Difference 
Vegetation Index (NDVI) (Tucker, 1979), Enhanced Vegetation Index (EVI) (Huete et al., 
2002), etc.; (ii) soil: Normalized Difference Soil Index (NDSI) (Rogers & Kearney, 2004), Ratio 
Normalized Difference Built-up Index (RNDBI) (Deng, Wu, Li, & Chen, 2015), etc.; (iii) water: 
Normalized Difference Water Index (NDWI) (Gao, 1996; Xu, 2006), and (iv) built-up area: 
Normalized Difference Built-up Index (NDBI) (Zha, Gao, & Ni, 2003), Index-based Built-up 
Index (IBI) (Xu, 2008), Normalized Urban Areas Composite Index (NUACI) (Liu et al., 2018), 
etc. However, the spatial details vary a lot across different multispectral remote sensing 
images. The coarse spatial resolution images with large pixel sizes (e.g. MODIS with 250– 
1000 m and VIIRS with 500 m) are bound to have multiple land cover categories within 
a single pixel, especially for urbanized areas. The mixed land use problems can be 
eliminated dramatically at the scale of medium spatial resolution remote sensing images 
such as Landsat with 30 m and Sentinel-2 with 10–60 m. However, the capabilities for 
extracting the geometry, texture and adjacent information within and between objects 
are still limited. In contrast, HR and VHR images such as SPOT, IKONOS, Quick Bird, and 
Worldview definitely provide more detailed spatial information of the land surface, 
making it feasible to quantify distinct spatial/spectral/geometric characteristics for differ-
ent land use types. However, their high expanses barricade the data accessibility for large- 
scale applications (Chen, Huang, & Xu, 2017b).

2.1.2. Hyperspectral remote sensing
Hyperspectral imaging has continuous narrow wavelength bands (around 10 nm per 
band). It is able to capture much more variations of spectral signatures than the multi-
spectral ones (about 100 nm per band) (Xu & Gong, 2008). It has been demonstrated that 
the advantage of spectral sensitivity can improve the accuracy in discriminating similar 
land-use types (Zhang & Ma, 2009). For example, EO-1 Hyperion hyperspectral images 
were used for LULC mapping (Xu & Gong, 2007). The Chinese HJ Hyperspectral Imager 
(HSI) with 110 bands at 100 m was fused with 30-m multispectral images to derive 
detailed wetland species mapping (Chen, Chen, Lu, & Xu, 2017a). However, the spatial 
coverage of such data is limited for large-scale applications.
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2.1.3. Multi-angular remote sensing
Multi-angular imaging is designed to provide remote sensing observations from different 
views. Previous studies have suggested bidirectional reflectance distribution function 
(BRDF) information can be used to complement spectral signatures to improve land 
cover classification accuracy (De Colstoun & Walthall, 2006). Following this direction, 
Huang, Zhang, and Yu (2012) proposed to fuse multi-angle observation from Multi- 
angle Imaging SpectroRadiometer (MISR) data with Landsat observations to improve 
urban land cover mapping. Chen et al. (2017b) blended the Landsat data and the 
retrieved multi-angular MODIS observations from the RossThick-LiSparse-Reciprocal 
(RTLSR) kernel-driven BRDF model (Lucht, Schaaf, & Strahler, 2000) to consolidate urban 
land cover classification in Beijing. However, these multi-view observations are still limited 
by their spatial resolution less than or equivalent to 30 m, which makes it challenging to 
quantify urban structures at fine scales, especially for those dense and high-rise cities. The 
Chinese launched Ziyuan3-01 (ZY3-01) satellite can simultaneously acquire multi-view 
images in nadir, forward, and backward modes, but its spatial resolution is much higher at 
2.1 m. Recently, Huang et al. (2021) integrated the multispectral and multi-view ZY3-01 
images to capture urban vertical information, which can be helpful and cost-effective in 
urban land use classification.

2.1.4. Nighttime light remote sensing
As a measure of the lighting brightness observed at night from space, remote sensing 
based nighttime light (NTL) observations have emerged to be a unique measure of human 
activities and socio-economic attributes at different spatial and temporal scales (Elvidge, 
Baugh, Kihn, Kroehl, & Davis, 1997; Li & Zhou, 2017). For example, the long-term NTL 
products (1992–2013) from the Defense Meteorological Satellite Program’s Operational 
Line-scan System (DMSP/OLS) have triggered a wide range of applications such as 
urbanization (Ma, Zhou, Pei, Haynie, & Fan, 2012; Song, Chen, & Kwan, 2020), socio-
economic development (Xie & Weng, 2016; Yu et al., 2015), LULC classification (Cao 
et al., 2009; Zhang & Seto, 2011), and evaluation of light pollution (Chalkias, Petrakis, 
Psiloglou, & Lianou, 2006) and conflict crisis (Li & Li, 2014). The Visible Infrared Imaging 
Radiometer Suite (VIIRS) instrument onboard the Suomi National Polar Partnership (NPP) 
satellite launched in 2011 was equipped with a Day/Night Band (DNB) to provide high- 
quality night observations (Elvidge, Baugh, Zhizhin, Hsu, & Ghosh, 2017). Launched on 
June 2, 2018, by China, Luojia-1 has delivered dramatic improvements over the above two 
predecessors, in terms of increased spatial resolution (~130 m), high radiometric quanti-
zation (14 bits) with a swath of 250 km (Li, Zhao, Li, & Xu, 2018). Some recent studies have 
taken advantage of the finer-resolution nighttime information from Luojia-1 to map urban 
land use classification in China (Gong et al., 2020a; Tu et al., 2020). However, these existing 
nighttime light observations are still at relatively coarse and medium spatial resolutions 
from 130 m to 1000 m, preventing characterizing between- and within-object features in 
urban areas. Given the advantage of nighttime light observations in characterizing human 
activities and socioeconomics, some recent satellite initiatives and missions have delved 
into the exploration of fine-scale nighttime light sensors. For example, the Jilin1-07 
satellite can provide high-resolution nighttime light images at 0.92 m (Huang et al., 
2021). All these efforts will potentially contribute to better measures and approaches 
for depicting fine-scale urban structures and functions.
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2.1.5. Microwave remote sensing
Although less often applied than optical remote sensing, microwave-based imaging has 
already become popular in characterizing urban structures and features, particularly for 
the emerging concept of multi-dimensional urban studies (Gamba, Aldrighi, & Stasolla, 
2010; Li, Zhou, Gong, Seto, & Clinton, 2020b; Pelizari et al., 2018). Over the past few 
decades, we have witnessed a growing number of HR and VHR synthetic aperture radar 
(SAR) sensors, including Envisat ASAR, ALOS PALSAR, RADASAT-1, TerraSAR-X, Cosmo/ 
Skymed, and Sentinel-1. Additionally, the superiority of microwave-based remote sensing 
in penetrating cloud cover, eliminating weather condition impacts, and capturing texture 
and height information has further accelerated its broader application in urban studies 
(Chen et al., 2020). For example, the height information of building structure is one of the 
important explanatory variables accounting for different land-use types. It has been 
included as a feature in the EULUC classification (Chen et al., 2021b; Tu et al., 2020).

2.1.6. Lidar remote sensing
As an emerging new type of active remote sensing, Light detection and ranging (Lidar) is 
a method for determining variable distance by targeting an object with a laser and 
measuring the time for the reflected light back to the receiver (Liu, 2008). Unlike optical 
data, Lidar data has the natural advantage of capturing high-accuracy structural informa-
tion that can be used to differentiate land-use types with other structures, components, 
and compositions. For example, Antonarakis, Richards, and Brasington (2008) used air-
borne Lidar data to map land-cover classification based on object-based classification 
methods. Zhou (2013) investigated the integrated use of Lidar height and intensity data 
for urban land-cover classification and found that Lidar-derived parameters such as 
height, height variation, intensity, height texture, and skewness or kurtosis can be 
beneficial in land-use classification. However, the application of Lidar data for land-use 
classification is limited by spatial coverage, data availability and observational costs, 
which makes it very difficult to extend to large-scale applications with fine-resolution 
Lidar footprints. Additionally, updating temporal frequency will be another concern 
because of the limited availability of airborne Lidar data collected by commercial com-
panies and government agencies.

2.1.7. Emerging new types of remote sensing datasets
The rapidly evolving CubeSat society has opened a new era for Earth observations 
(Poghosyan & Golkar, 2017; Puig-Suari, Turner, & Ahlgren, 2001). For example, as one of the 
most representative companies, Planet has launched a series of satellites, including RapidEye, 
PlanetScope, and Skysat (Cooley, Smith, Stepan, & Mascaro, 2017), with the aims to realize the 
spatial, temporal, and spectral observations with simultaneous fine resolutions through this 
ambitious satellite network. Street-view imagery from Google, Baidu, and Tencent provides 
street-level or eye-level observations along the road networks, which has been widely used to 
serve as the ground reference of urban land uses or the on-site lens to quantify the urban 
environment (Cao et al., 2018; Yu, Zhao, Chang, Yuan, & Heng, 2019; Zhang et al., 2017a). 
Unmanned aerial vehicle (UAV) sensors and platforms nowadays have been extensively used 
in urban studies to deliver high-resolution remote sensing observations (Akar, 2018; Al-Najjar 
et al., 2019; Li, Levin, Xie, & Li, 2020a; Zhang, Chen, Wang, Wang, & Dai, 2017b).

418 B. CHEN ET AL.



2.2. Social sensing big data

Although remote sensing observations from multiple types, platforms, and scales have 
greatly supported the mapping, monitoring, and modeling of the dynamic urbanization 
and land-use changes, existing remote sensing based approaches have one major short-
coming that they mainly study the physical (e.g. spectrum, texture, geometry, and land 
surface temperature) and indirect anthropogenic (e.g. nighttime light) difference 
between different land-use classes (Chen et al., 2020). The emerging social sensing big 
data have provided novel insights, datasets, and approaches to quantify spatiotemporal 
patterns of human activities and uncover thematic information in urban contexts 
(Figure 2).

2.2.1. Social media data
Social media is a set of Internet-based applications grounded by the idea of Web 2.0 to 
empower contents and applications that can be continuously modified and altered by 
users in participative and collaborative ways (Gilbert & Karahalios, 2009; Kaplan & 
Haenlein, 2010). The development of Mobile Internet technologies further connects 
human beings through social networks in very diverse aspects. As a result, we now 
witnessed many geotagged information from Twitter, Facebook, Instagram, LinkedIn, 
Flickers, WeChat, Weibo, etc. For example, Twitter is one of the most popular social 
media platforms globally, which allows users to post messages and record real-time 
positions. In this way, geotagged Tweets’ spatial and temporal features are considered 
a good measure of dynamic human movements. Several previous studies have analyzed 
the changes in the number of Tweets sent from different geographic locations to 
characterize urban land uses (Abbasi, Rashidi, Maghrebi, & Waller, 2015; Frias-Martinez & 
Frias-Martinez, 2014; Wakamiya, Lee, & Sumiya, 2011).

2.2.2. Mobile device data
Mobile devices such as mobile phones carried by persons can record the relative 
locations of their daily movements to the access points (e.g. cellular towers or WiFi 
access points). Based on the locations of those access points and their accessible radius, 
we can infer the spatiotemporal trajectories of human mobility. For example, Pei et al. 
(2014) constructed a synthesized vector of mobile phone activity to identify land-use 
types using mobile phone data and a semi-supervised clustering method. Louail et al. 

Figure 2. Examples of social sensing big data in Beijing, China. (a) Point of Interests (POIs) for Weibo 
check-in records; (b) Tencent mobile-phone location-based service (LBS) active population density; 
and (c) OpenStreetMap based road networks.
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(2014) used the recorded phone data to define an urban dilatation index for measuring 
spatial structure in 31 Spanish cities. Instead of logging the relative locations to access 
points, individual human mobility can be recorded by GPS mobile devices. This is 
usually the best dataset to quantify human mobility with the highest spatial and 
temporal accuracies. For example, the pick-up/set-down dynamics from taxi GPS traces 
were used to recognize the function of urban land uses (Liu, Wang, Xiao, & Gao, 2012; 
Pan, Qi, Wu, Zhang, & Li, 2012). However, given the concern about privacy and cost 
issues, the collection of GPS-based trajectory dataset is always limited to local regions 
and short-term sampling periods.

2.2.3. Volunteered geographic information
Volunteered geographic information (VGI) is an emerging phenomenon and trend of 
crowdsourcing in which members of the general public create, collect, and contribute 
georeferenced facts about the Earth’s surface and near-surface to synthesized databases 
(Goodchild, 2007; Goodchild & Li, 2012). For example, initiated in 2004 as a volunteer 
effort, OpenStreetMap (OSM) has become the best-known and most successful VGI 
database with substantial global spatial information that maps various points, lines, and 
polygon features (www.openstreetmap.org). The rich geographic information from OSM 
has been widely employed to classify land-use types and uncover urban land-use patterns 
(Gong et al., 2020a; Hagenauer & Helbich, 2012; Hu et al., 2016; Tu et al., 2020; Zhong et al., 
2020; Zong et al., 2020).

2.2.4. Auxiliary data sources
In addition to the remote sensing and social sensing data sources, many auxiliary datasets 
have also been used in EULUC mappings. For example, census data that includes demo-
graphy, education, employment, income, and housing can reveal the spatial difference of 
socioeconomic status across different land use types (Theobald, 2014). Topographic 
features such as elevation, slope and aspect can be used in urban land use classification 
(Chen et al., 2017b). Given the advantage of more complete population coverage and 
longer temporal spans, municipal data such as water consumption data has been used to 
identify the socioeconomic functions of urban lands (Pan et al., 2020) and analyze mixed 
patterns of land use (Guan, Cheng, Pan, Yao, & Zeng, 2021), because the land use types 
and composition can be estimated by the classification of spatiotemporal patterns in 
water consumption from individual end-users (Guan et al., 2021).

2.3. Methods

Although many advances have been made in data and method development for urban 
land use classification, fine-resolution and accurate EULUC mapping remain a challenge, 
given that many factors such as landscape heterogeneity, data processing, classification 
algorithms, mixed land use, and post-classification process may affect the success of 
a complete classification (Chen et al., 2017b; Gong et al., 2013). Therefore, the design of 
classification strategy is critically important to the performance of classification outcomes. 
Generally, the classification strategies can be divided into supervised, unsupervised, and 
hybrid classifications. The classification may seek to group land use types by their relative 
spectral similarity (unsupervised) or allocate land-use types based on their similarity to 
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a set of predefined classes that have been characterized spectrally (supervised) (Foody, 
2002). Nevertheless, the hybrid classification aims to combine the advantages of both 
supervised and unsupervised ones, which has been demonstrated that it can produce 
more accurate classification than that from the supervised and unsupervised classification 
alone (Lo & Choi, 2004; Malinverni et al., 2011). Moreover, the integration of multi-source 
data features and multi-function models has been another mainstream in promoting 
classification strategies for better classification performance (Gong et al., 2020a, 2019).

The basic unit of land use classification is the fundamental attribute for land use 
classification maps and products, which determines the finest spatial scale that end 
users can dive into (Chen et al., 2021b). Based on the minimum size of spatial representa-
tion, the classification unit can be generally categorized into three levels of pixel, object, 
and parcel. Therefore, the choice of classification unit should be determined after desig-
nating the classification strategy. Research progress on the division of different unit-based 
EULUC classification has been described in the Introduction. Here we mainly summarized 
the progress of classification algorithms that have evolved over the past few decades in 
machine learning, natural language processing (NPL), and deep learning based 
approaches.

With the development of data and method in the field of land use science, we have 
witnessed many classification efforts and practices at different scales using machine 
learning algorithms, including Maximum likelihood (ML) (Gong et al., 1992; Man, Dong, 
& Guo, 2015b; Özkan & Sunar Erbek, 2005; Paola & Schowengerdt, 1995), K-means (Chen 
et al., 2017d; Wang et al., 2016), Neural Network (NN) (Pacifici, Chini, & Emery, 2009; Paola 
& Schowengerdt, 1995), Support Vector Machine (SVM) (Man et al., 2015b), Decision Tree 
(DT) (Hu & Wang, 2013), Random Forest (RF) (Gong et al., 2020a; Grippa et al., 2018; Ruiz 
Hernandez & Shi, 2018; Sun et al., 2020; Zhang et al., 2017c, 2017a), etc. Among these 
algorithms, RF that consists of a large ensemble of regression trees has proven its 
efficiency and robustness in computational cost and model performance when proces-
sing high dimensional data, which has been extensively used.

Similar to the concept of understanding the contents of natural language data, NLP- 
based approaches have been increasingly used to fuse the geospatial latent semantic 
information extracted from remote sensing observations and multisource social sensing 
information as patterns for urban land use classification. For example, the Google 
Word2Vec model (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) was adopted to 
measure the contextual relationships between POIs and urban land-use types (Yao 
et al., 2017a). Some of the Word2Vec-based extension models, such as Traj2Vec (Zhang 
et al., 2021) and Place2Vec (Zhai et al., 2019) were subsequently developed to better 
retrieve the potential semantic information of locations and trajectories to characterize 
urban land-use types. A variety of probabilistic topic models in the NLP field such as latent 
Dirichlet allocation (LDA), latent semantic analysis (LSA), probabilistic latent semantic 
analysis (pLSA), and term frequency–inverse document frequency (TF-IDF) have been 
used for different semantic analysis of urban land use classification (Liu et al., 2017a; 
Yan, Schultz, & Zipf, 2019; Yao et al., 2017a; Yuan, Zheng, & Xie, 2012; Zhang et al., 2021).

With the growing popularity of CNN models, deep learning based approaches have 
also rapidly developed in the field of EULUC classification because of their capability of 
transforming the raw input imagery and low-level features to classes at a higher and 
abstract level. For example, the conventional CNN models have been employed to derive 

BIG EARTH DATA 421



multi-intention land use classification maps at different spatial scales (Cao et al., 2018; Liu, 
Qi, Li, & Yeh, 2019; Liu & Shi, 2020; Srivastava, Vargas-Munoz, & Tuia, 2019). To better 
integrate spatial and temporal features from adjacent contexts, some deeper CNN models 
have been proposed to refine EULUC classification (Bao et al., 2020; Feng, Zhu, Yang, & Li, 
2019; Huang et al., 2018). Additionally, social sensing data and methods have also been 
integrated with deep learning approaches to derive more accurate EULUC classification 
(Du, Du, Liu, Zhang, & Zheng, 2020; Jia et al., 2018; Zhong et al., 2020).

2.4. Applications and implications

Built environment factors have become a significant focus on the field of physical activity 
and public health, which typically consists of urban design (arrangement of physical 
elements within a city), land use patterns (the distribution and composition of land 
functions across space), and transportation system infrastructure (roads, railway, side-
walks, etc.) (Handy, Boarnet, Ewing, & Killingsworth, 2002). Therefore, land-use maps 
outlining the distribution, pattern, and composition of essential urban land use categories 
(EULUC) have triggered a wide spectrum of applications and implications in the field of 
urban environmental health science.

2.4.1. Urban planning and land management
The fundamental data required by urban planners and policy makers is accurate informa-
tion on current land use, how it has changed over the past, and how it will change in the 
future for practicing various urban planning and land management activities (Malarvizhi, 
Kumar, & Porchelvan, 2016). For example, over the past decades, the land use data 
collected from survey-based approaches have been the primary baseline for urban 
planners and researchers in preparation for the master plan, landscape, and functional 
design from a community to a town, a city, and the city cluster (Liu, Zhang, Zhang, & 
Borthwick, 2014; Malarvizhi et al., 2016). In recent decades, remote sensing data avail-
ability, especially for the VHR satellite imagery, has facilitated the spatiotemporal map-
ping and monitoring of urban land-use changes from local to regional scales (Sakieh et al., 
2015; Treitz & Rogan, 2004).

2.4.2. Urban environment
The distribution of different land-use categories has been closely related to a variety of 
environmental problems such as air pollution, water pollution, noise pollution, heat 
island, and greenspace inequity. Therefore, EULUC maps and the derived land-use vari-
ables have been widely used in urban environmental studies. For example, the urban 
LULC changes and urban thermal landscape were integrated to account for the spatial 
pattern of local air pollution (Weng & Yang, 2006). Due to the high correlation between 
land use pattern and air pollution (Hoek et al., 2008), a group of land-use regression 
models has been developed to estimate spatial pattern and temporal variability of 
nitrogen dioxide concentrations (Beelen et al., 2013; Henderson, Beckerman, Jerrett, & 
Brauer, 2007) and fine particulate matter concentrations (Eeftens et al., 2012; Shi, Ren, Lau, 
& Ng, 2019). In addition to the choice of different regression models with linear and 
nonlinear forms, the quality of land-use baseline maps plays a critical role in modulating 
the performance of the air pollution retrieval. In a similar context, the influence of urban 
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land use on land surface temperature and urban heat islands has been widely investi-
gated (Dugord, Lauf, Schuster, & Kleinschmit, 2014; Heusinkveld, Steeneveld, Van Hove, 
Jacobs, & Holtslag, 2014; Jusuf, Wong, Hagen, Anggoro, & Hong, 2007; Stone & Norman, 
2006). As for water pollution, it is recognized that strong ties exist between land uses and 
the water quality characteristics of adjacent aquatic systems in terms of spatial config-
uration (Bu, Meng, Zhang, & Wan, 2014; Lee, Hwang, Lee, Hwang, & Sung, 2009; Uriarte, 
Yackulic, Lim, & Arce-Nazario, 2011). Land use also significantly affects the distribution of 
urban green space regarding its configuration and composition (Chen, Nie, Chen, & Xu, 
2017c; Li, Bai, Zhou, Han, & Han, 2015), thus leading to the spatial difference in greenspace 
exposure for urban citizens (Song et al., 2020; Song, Huang, Cai, & Chen, 2018).

2.4.3. Urban morphology change
The irregularity of land uses and land parcels that constitute the urban morphology (Batty 
& Longley, 1988) is mainly defined by the shape of land use and the density of different 
land uses filled in the spatial context (Mesev, Longley, Batty, & Xie, 1995). Due to the LULC 
changes, urban morphology is continuously evolving at micro- and macro-scales. 
Schneider and Woodcock (2008) used remote sensing data, pattern metrics, and census 
information to compare the urban growth in 25 global cities. In terms of their evolutionary 
morphologies, they aimed to categorize the urbanization process into compact, dis-
persed, fragmented, and extensive modes. Liu et al. (2010) proposed a landscape expan-
sion index to generalize the spatio-temporal dynamics of landscape patterns. By applying 
this proposed index in measuring morphological changes of urban expansion, the urban 
growth types can be categorized into three major groups of infilling, edge-expansion, and 
outlying (Liu et al., 2010; Tu et al., 2021). As the outcome of urban development, urban 
morphology changes have been closely associated with demographic structures (van de 
Coevering & Schwanen, 2006), transportation modes (Zhou & Gao, 2020), building energy 
consumption (Wong et al., 2011), urban air quality (Yuan, Ng, & Norford, 2014), and heat 
environment (Zhou and Chen 2018).

2.4.4. Urbanization process from observation and simulation
Time-series LULC observations have greatly supported the historical reconstruction and 
future prediction of the urbanization process. Numerous maps and products that 
document spatially and temporally explicit information of LULC changes have 
advanced our understanding of the process of urbanization and their impacts on the 
environment and ecology from local to regional and global scales. For example, by 
quantifying the annual urban land-use changes, Seto and Fragkias (2005) used the 
derived spatiotemporal landscape metrics to infer underlying social, economic, and 
political processes that drive the observed urbanization difference. Gong et al. (2020b) 
mapped the annual artificial impervious area dynamics at a 30-m resolution from 1985 
to 2018 using the full Landsat archive. The derived results revealed a considerable 
urbanization process at the global scale over the past three decades. Specifically, Asia 
has the most significant growth. China and the US are the top two nations of total 
artificial impervious areas accounting for around 50% of the global total in 2018 (Gong 
et al., 2020b). From the perspective of simulations, a wide range of urban simulation 
models has been developed to predict urban land-use changes driven by natural and 
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socioeconomic factors. Given the difference of simulation targets in socioeconomic 
activities, the spatial configuration of urban land uses, or modeling units/scales, these 
models can be categorized into three classes of the land use/transportation (LUT) 
model, the cellular automata (CA) model, and the agent-based (AB) model (Li & 
Gong, 2016). Specifically, the LUT models are focused on mimicking socio-economic 
activities by considering relatively complex relationships among variables and sectors 
(Li & Gong, 2016). The CA models are more focused on simulating specific land-use 
types in spatial allocation, which have been regarded as very useful tools to analyze 
the causes and effects of the urbanization process and have been extensively modified 
for addressing different urban simulation issues, for example, the constrained CA 
model (Li & Yeh, 2000; White, Uljee, & Engelen, 2012), logistic CA model (Wu, 2002), 
SLEUTH model (Silva & Clarke, 2002), LUSD model (He et al., 2005), and FLUS model 
(Liu et al., 2017b). The AB models, treated as an intermediary between these two 
objectives, have been extensively investigated and utilized due to their capability of 
modeling behaviors and processes through individual agents (Groeneveld et al., 2017; 
Matthews, Gilbert, Roach, Polhill, & Gotts, 2007; Parker, Manson, Janssen, Hoffmann, & 
Deadman, 2003). There are also a set of AB model systems such as Swarm, MASON, 
Repast, StarLogo, NetLogo, OBEUS, AgentSheets, and AnyLogic for geospatial simula-
tions (Castle & Crooks, 2006). Although most of the existing studies from remote 
sensing analysis treat urban land uses as the combination of major types, including 
built-up land, cropland, vegetated land, and water body (Du & Huang, 2017; Guan 
et al., 2011; Schneider & Woodcock, 2008; Seto & Fragkias, 2005), EULUC changes 
within the built-up land that depict the micro-scale dynamics of urban land functions 
have aroused growing attention in urban science community (Banzhaf et al., 2017; 
Wang, Lin, Glendinning, & Xu, 2018; Yao et al., 2017b).

2.4.5. Human behaviors and public health
The distribution of urban land use types impacts human activities. A growing literature 
investigates the potential for causal links between land use patterns and travel behavior 
(Boarnet & Crane, 2001). For example, results revealed that the pattern of mixed land use 
had significant associations with the frequency of walking for transportation, and the 
area-correlated mixed land use was significantly related to the duration of walking for 
transportation (Duncan et al., 2010). A comparative study between Boston and 
Hong Kong further confirmed the role of land use in influencing travel behaviors, which 
was independent from travel time and monetary costs (Zhang, 2004). They revealed that 
land use strategies influenced travel more effectively when complemented by pricing 
policies (Zhang, 2004). Urbanization in the form of dramatic land-use changes and 
conversions has also led to a major public health challenge with the growing disease 
burden in urban areas (Gong et al., 2012), for example, asthma (Son, Kim, & Bell, 2015), 
infectious disease (Patz et al., 2004), obesity (Jia et al., 2021). As a proxy of urban physical 
contexts, EULUC maps provide multi-scale baseline maps for linking physical activity, 
urban environment and human behaviors, thus providing opportunities for informing 
environment and policy initiatives to promote healthy and sustainable urban 
development.
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3. Challenges and limitations of existing EULUC studies

3.1. Sample collection

Training data are critical components to urban land use classification because different 
classifiers and machine learning algorithms highly depend on the input reference with 
varying qualities and quantities. Generally, the increase in the number and variability of 
training samples leads to robust urban land use classification (Gong et al., 2019; Su et al., 
2020). However, sample collection is the most time-consuming step. Existing samples are 
mainly derived from the following approaches: (i) manual or semi-manual inspection, for 
example, on-site survey, or visual inspections of VHR Google Earth imagery, Google Street 
Views, Google POIs, and 3-D modeled imagery; (ii) open data portal with LULC labels, for 
example, OSM has included polygon-based land use labels; and (iii) land use reference 
from government agencies. Two major weaknesses are noticeable. First, the crowdsour-
cing protocol of interpreting land use labels is still labor-intensive. The number of samples 
collected highly depends on coordinated efforts from both participatory popularity and 
financial input. Moreover, the quality of samples collected cannot be systematically 
controlled due to the inconsistent sampling criteria caused by the subjectivity of sample 
collectors among different places. Second, the temporal consistency of available geor-
eferenced samples is another concern. For example, the Google Earth imagery at regional 
scales is always spatially mosaicked using temporally irregular VHR satellite observations, 
preventing spatially and temporally consistent information for interpreting land-use 
types. The crowdsourcing effort such as OSM will be an integration of sample collections 
spanning different years. Although the land use references from government agencies 
can be regarded as the most accurate ground truth for selecting samples, they are always 
limited by the updating frequency without revealing the temporal dynamics.

3.2. Mixed land-use problem

The mixed land use has been a big challenge in mapping EULUC, especially for highly 
dense urbanized contexts. Mixed land uses describe urban aggregation and development 
that integrate multiple functional uses, including residential, commercial, educational, 
medical, recreational, or even industrial land use, in a small neighborhood area (e.g. land 
parcel) or in high-rise buildings. Consequently, mixed land uses attract a diversity of user 
groups throughout different times of the day (Zahnow, 2018). However, the differentiation 
from these mixed land uses will be quite difficult if the spatial resolution of input data 
sources and features is not equivalent to or much coarser than the targeted objects. 
Conventional approaches tend to adopt the protocol of “dominant land use” rather than 
“proportional land uses”, eliminating a lot of useful information to describe the micro- 
structure of land use composition. Recent studies from two major directions have been 
working on addressing this shortcoming. First, the fine-resolution land parcel generation 
with detailed road networks and multi-scale image segmentation. With the increase in road 
network density, the derived land parcels have much higher purity in land uses (Su et al., 
2020; Sun et al., 2020). For areas with highly mixed land uses, the objects derived from 
image segmentations and the parcels derived from road network divisions are comple-
mented to refine urban land use classification (Tu et al., 2020). Second, the emerging new 
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datasets such as traffic data, mobile phone data, social media data, and municipal data (e.g. 
water and electrical consumption data) provide new insights for estimating mixed urban 
land use patterns. For example, Liu and Long (2016) computed the degree of mixed land 
use based on the proportional POI types within each land parcel. Dovey and Pafka (2017) 
proposed a live/work/visit triangle framework focusing on the interconnections between 
land use functions to measure land-use mix. Considering the biased spatiotemporal cover-
age of social sensing data, Guan et al. (2021) proposed to identify individual socioeconomic 
functions by the water consumption patterns of municipal services and measure the mixed 
land-use patterns using the information entropy index. However, the data availability of 
municipal services will barricade large-scale implementations and practices of this type of 
approach. Additionally, the vertical mixed land uses continue to be a challenge because of 
the limited approaches to partition different land-use types within building groups.

3.3. Generalization of data and models

The capability of data and model generalization across different spatial and temporal scales 
will be of great significance to multi-scale EULUC mappings. However, systematic testing of 
samples, features, and models on classification performance across different spatial and 
temporal contexts is limited. Knowledge about the impact of sample size, feature combina-
tions, and model selection on classification performance is required to better support the 
practical implementation of multi-scale EULUC mapping (Gong et al., 2020a). Additionally, the 
transferability of data and models is another major concern. For example, the data availability, 
especially for some social sensing big data, will be largely different across countries, which 
prevents the flexible function of the mapping framework from one place to another. Although 
medium-resolution satellite imagery such as Landsat and Sentinel-2 are globally open access, 
some VHR remote sensing imagery is limited to specific regions and countries. For example, 
the National Agriculture Imagery Program (NAIP) imagery at a spatial resolution of 1 to 2 m 
can provide much higher spatial details for improving the EULUC classification performance 
(Chen et al., 2021b). Still, this dataset is only available in the United States. Similarly, different 
classification models have been employed in EULUC mapping practices, but their robustness 
to other feature inputs and the associated adaptation to different study areas remains 
uncertain.

3.4. Large-scale EULUC mapping

Given the advance of data and methods in the field of urban land use classification, 
existing EULUC research and practices are still limited to local to regional levels. To 
address pressing environmental challenges caused by urbanization, it is important to 
have urban land uses at the national and global scales that are derived from the same or 
consistent data sources with the same or compatible classification systems and map-
ping methods (Gong et al., 2020a). This is because only with urban land use maps 
produced with similar criteria, consistent environmental policies can be made, and 
action efforts can be compared and assessed for large-scale environmental contexts 
(Gong et al., 2020a). However, more detailed urban land use maps do not exist at the 
scope of global coverage.
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4. Discussion and future opportunities

To improve the current EULUC mapping results and advance further research, we pro-
posed that future efforts could be devoted to the following seven aspects.

4.1. Cross-scale mapping strategy

A cross-scale mapping strategy that can be compatible across pixel-, object-, and parcel- 
scale is highly demanded. It can well solve the mixed land use problem because of (i) the 
logic reliability of scaling representation of urban land surface from pixels to objects and 
parcels; and (ii) the diverse outputs of urban land use classification maps that can 
generate the combination and proportion of mixed land uses, as well as the ratio of 
mixed land uses and dominant land use. Additionally, the cross-scale mapping strategy 
will remove potential obstacles for multi-disciplinary practical applications. For example, 
land use modelers may be interested in using pixel-based land use classification maps; 
urban planners and landscape architects may prefer parcel-based land use classification 
maps; and urban climate modelers may prefer object-based classification maps that can 
be accurately aggregated to flexible units of different land-use combinations.

4.2. Optimal integration of multi-source features

An increasing number of different data sources have been successfully used in urban 
land use classification. However, the higher volume of input data does not ensure 
better classification performance (Chen et al., 2017b, 2021b). Although a large group 
of explanatory variables is not necessarily an obstacle to the reliable function of 
machine learning based classifiers, the presence of highly correlated variables may 
nonetheless hinder model interpretations (Chen et al., 2021a). Recent land cover 
classification studies also revealed that the feature redundancy might even degrade 
the classification performance (Chen et al., 2017b). Moreover, the contribution of 
different data features to the classification performance is not the universe, which 
will have distinct characteristics across different locations and different combinations 
of datasets. Therefore, the localized function of optimal features should be carefully 
tuned to achieve robust classification results. Additionally, information compression 
and feature transformation techniques such as principal component analysis (PCA) 
(Abdi and Williams, 2010) and maximum noise fraction (MNF) (Gao, Du, Zhang, Yang, 
& Wu, 2013) can be taken into consideration to better preserve useful information 
while reducing the computational costs. In the meantime, geometric registration is 
another issue when integrating multi-source geospatial data. Although the geometric 
mismatch does not impact much on block-level land use classification since all the 
inclusive features are aggregated into block-level statistics, the same issue will be 
challenging towards pixel-level urban land-use classification that geometric mismatch 
leads to be the main driver of misclassification over the adjacent areas. For this case, 
geometric registration and correction should be conducted before stacking inclusive 
features from different geospatial data layers.
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4.3. Global sample library from crowdsourcing approaches

A global sample library that consists of different land-use types across different cities and 
countries will be highly needed for the research campaign of large-scale EULUC mapping. 
However, sample collection is time-consuming and labor-intensive. To promote a cost- 
effective global sample library, we call for future efforts devoted to the following aspects. 
First, the collection of samples can be facilitated in a crowdsourcing approach, including 
the VGI-based OSM land use labels, self-organized sampling campaigns of on-site survey 
and visual inspection, and available land-use references from government agencies and 
related institutions. Second, the temporal consistency of collected samples can be 
improved by inter-calibration and change detection techniques. As for samples collected 
in earlier years, LULC change detection algorithms such as continuous change detection 
and classification (CCDC) (Zhu & Woodcock, 2014), Landsat-based detection of trends in 
disturbance and recovery (LandTrendr) (Kennedy, Yang, & Cohen, 2010), and breaks for 
additive season and trend (BFAST) (Verbesselt, Hyndman, Newnham, & Culvenor, 2010) 
can be used to include those stable ones to the sample library in more recent years. Third, 
the structure of the sample library should be systematically designed by including 
hierarchical land use categories, harmonizing the spatial distribution and sample size 
across different locations (e.g. continents, countries, cities, and climate zones), and con-
sidering the similarity and heterogeneity within and between classes.

4.4. Advanced machine learning and ensembled classification

Traditional machine learning algorithms such as SVMs and RF have been widely and 
successfully applied in EULUC mapping at different scales. However, this sort of model 
using low-level features has been difficult to adapt to the emerging big data era with tons 
of data sources and features, especially for the cost-effective and intelligent mapping of 
large-scale EULUC dynamics. The unique deep hierarchical structure of recent deep 
learning algorithms has proven its powerful capability of learning and generalization 
using deep convolutional neural networks, which is suitable for big data processing and 
analysis (LeCun et al., 2015). Two major opportunities from deep learning technologies 
can be explored in the field of large-scale EULUC mapping. First, transfer learning that 
makes use of pre-trained neural networks has proven to be quite helpful and efficient to 
solve a different but related problem (Pan & Yang, 2009). This concept is quite suitable to 
large-scale EULUC mapping. Because of the similarity and difference in landscape char-
acteristics and land use compositions across regions and countries, the training samples 
collected in local sites may or may not be appropriate for EULUC classification in different 
regions. Similarly, it will be unrealistic to apply a global model in universal EULUC 
mapping for different regions. The idea here is to build categorized groups in the sense 
of “similar cities” that share similar characteristics in landscape and land use patterns. 
Within each group of cities, we probably may apply local features and models in classify-
ing nonlocal EULUC. Moreover, how to calibrate nonlocal similarity among different 
regions and develop spatially adjusted transferring models will be another open topic 
in this direction of the model and feature transferability from local to regional and global 
scales. Second, ensemble learning is a promising strategy that can bring together a group 

428 B. CHEN ET AL.



of algorithms and models. The ensembled strategy can reduce the variance of predictions 
and result in predictions that are better than any single model.

4.5. Open portal for data visualization and sharing

Efforts should be devoted to promoting data usages and sharing through open portals for 
visualization and download. We believe such a data portal can facilitate the distribution of 
multi-scale EULUC data by providing an easy-to-access, searchable hub for a variety of end- 
users from different fields and applications. First, the online open portal makes it possible 
for broader users to dive into any areas of their interests. On the one hand, it could facilitate 
multi-scale data usages based on the requirement of different spatial extents. On the other 
hand, users can in turn provide feedbacks on data quality assessment and other data 
attributes. Second, the entire procedure of EULUC mapping from raw datasets, training 
samples, high-level features, classification methods, and final mapping products can be 
integrated through the open data portal. It will facilitate the replication and extension of 
EULUC mapping practices and promote the interpretability of EULUC mapping results.

4.6. Historical reconstruction and future prediction of EULUC changes

Many studies have worked in the pipelines of historical reconstruction and future prediction 
of the urban sprawl process (Gao & O’Neill, 2020; Gong et al., 2020b). Yet, limited research 
has delved into the internal dynamic of urbanized regions in terms of land use changes at 
fine spatial and temporal resolutions. The knowledge about the historical process and 
future development of EULUC will be insightful and supportive to city managers and 
relevant stakeholders for strategic urban planning on healthy and sustainable develop-
ment, especially for those rapidly urbanized areas where land use is changing dramatically. 
Therefore, we call for potential efforts to develop a relatively long-term annual urban land 
use classification dataset that is temporally consistent and spatially explicit, which will be of 
great importance to various applications in the field of urban environmental science.

4.7. Implications in urban environmental studies

Intuitively, the EULUC maps that outline the composition, distribution, and pattern of 
varying land-use types represent the “identify cards” for different cities. In addition to the 
widely used fields of urban planning, landscape architecture, land management, and 
biodiversity conservation, EULUC maps and the derived spatiotemporal information 
could be very useful in urban environmental studies such as air pollution, heat stress, 
noise pollution, and green/blue space protection; economic geography studies such as 
urban vibrancy, innovation ecosystem, and housing market; urban energy applications 
such as anthropogenic heat, carbon footprint, and energy supplies. Moreover, the multi- 
temporal mapping and monitoring of urban land-use changes and evolutions will sig-
nificantly advance our understanding of the mechanism of urbanization in the evolu-
tionary loop from emergence to development, transformation (growth or shrinkage), and 
stability. This knowledge can be leveraged in urban models for the historical reconstruc-
tion of the urbanization process and the future projection of urban development. 
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Additionally, another consciousness that should be addressed is to promote the philoso-
phy of “from users, and back to users” in the field of urban science between the research 
and application communities. Only if we get fully understood the demands from end- 
users, the knowledge exchange gaps could be closed progressively.
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