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Abstract: Picobirnaviruses (PBVs) are small non-enveloped bisegmented double-stranded RNA
viruses found in humans, mammals, and birds. Increasing molecular epidemiology studies suggest a
high sequence diversity of PBVs in numerous hosts and the environment. In this study, using 229
fecal samples from dromedary camels in Dubai, 52.8% were positive for PBVs, of which 77.7% and
41.3% were positive for genogroup I and II, respectively, and 19.0% were positive for both genotypes.
Phylogenetic analysis showed high diversity among the sequences of genogroup I and II dromedary
PBVs. Marked nucleotide polymorphisms were observed in 75.5% and 46.0% of genogroup I and II
RNA-dependent RNA polymerase (RdRp) sequences, respectively, suggesting the co-existence of
multiple strains in the same specimen. Both high genetic diversity and prevalence of genogroup I and
II PBV in dromedaries were observed. In fact, the prevalence of genogroup II PBV in dromedaries is
the highest among all animals to date. The complete/near-complete core genomes of five genogroup
I and one genogroup II dromedary PBVs and partial segment 1 and 2 of both genotypes were also
sequenced. The dromedary PBV genome organizations were similar to those of other animals.
Genetic reassortment and mutation are both important in the ecology and evolution of PBVs.

Keywords: picobirnaviruses; dromedary; genogroup I; genogroup II; diversity

1. Introduction

Picobirnaviruses (PBVs) are small non-enveloped bisegmented double-stranded RNA
viruses found in humans and a wide variety of mammals and birds. Since its first discovery
in fecal samples of humans and rats in 1988 [1,2], PBVs have been reported in a variety
of other terrestrial mammals, birds, and environmental water samples [3–23]. In 2012,
we reported the first PBV reported in a marine animal with the discovery of an otarine PBV
in a California sea lion from an oceanarium in Hong Kong [20]. Recently, we also described
the first discovery of PBVs in fecal samples collected from dromedary camels in the Middle
East using a metagenomics study [21].

The genome of a PBV consists of two segments, segment 1 and segment 2. Segment 1
contains the capsid gene and another open reading frame (ORF), which encodes a putative
protein of unknown function, whereas segment 2 contains the RNA-dependent RNA
polymerase (RdRp) gene [20,24]. By sequence and phylogenetic analyses of RdRp genes,
PBVs were classified into genogroups I and II [24,25]. Recently, it was reported that a third
genogroup of PBV, genogroup III, may exist [23,26]. In the last few years, we and others
have described high prevalence and diversity of genogroup I PBV in marine and terrestrial
mammals [12,13,27]. However, no report has described a high prevalence of genogroup
II PBV in any mammals. Furthermore, there are far more genogroup I than genogroup II
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PBV genomes and gene sequences in GenBank. Based on the results of our metagenomic
study [21], we hypothesized that a high prevalence and diversity of both genogroup I and
genogroup II PBVs may be present in dromedaries. To test this hypothesis, we carried
out a molecular epidemiology study on both genogroup I and genogroup II PBVs using
fecal samples collected from dromedaries in Dubai, the United Arab Emirates, with two
pairs of highly sensitive PCR primers. The genomes of some of the PBV strains were also
sequenced and analyzed.

2. Materials and Methods
2.1. Sample Collection

All fecal samples of dromedaries were leftover specimens submitted for coprological
studies to Central Veterinary Research Laboratory in Dubai, the United Arab Emirates,
from January to July 2013. A total of 229 dromedaries, including 224 adult dromedaries
and 5 dromedary calves, were tested in this study.

2.2. RNA Extraction

Viral RNA was extracted from each of the 229 fecal samples using QIAamp viral RNA
minikit (Qiagen, Hilden, Germany). The RNA was eluted in 60 µL of AVE buffer (Qiagen,
Hilden, Germany) and was used as template for RT-PCR.

2.3. RT-PCR for PBVs and DNA Sequencing

PBV screening was performed by PCR amplification of a 205-bp and a 207-bp fragment
of RdRp gene of genogroup I and genogroup II PBV, respectively, using degenerate primers
(genogroup I: 5′-CAAARTTYGACCARCACTT-3′ and 5′-TCRTCDGCRTTGGTACCACC-3′;
genogroup II: 5′-WTGGATGTTTCCGATGTC-3′ and 5′-TGYGCATCCATYTTMGTGGTGTC
TC-3′) designed by multiple alignments of the nucleotide sequences of available RdRp
genes of PBVs as previously described [27]. Reverse transcription was performed using
the SuperScript III kit (Invitrogen, USA) and the reaction mixture (10 µL) contained RNA,
first-strand buffer (50 mM Tris-HCl pH 8.3, 75 mM KCl, 3 mM MgCl2), 5 mM DTT, 50 ng
random hexamers, 500 µM of each dNTPs and 100 U Superscript III reverse transcriptase.
The mixtures were incubated at 25 ◦C for 5 min, followed by 50 ◦C for 60 min and 70 ◦C
for 15 min. The PCR mixture (25 µL) contained cDNA (1 µL), PCR buffer (10 mM Tris-HCl
pH 8.3, 50 mM KCl, 2 mM MgCl2), 200 µM of each dNTPs and 1.0 U Taq polymerase
(Applied Biosystems, USA). The mixtures were amplified in 60 cycles of 94 ◦C for 1 min, 50
◦C for 1 min and 72 ◦C for 1 min and a final extension at 72 ◦C for 10 min in an automated
thermal cycler (Applied Biosystems, USA). Standard precautions were taken to avoid PCR
contamination, and no false-positive was observed in negative controls.

All PCR products were gel-purified using the QIAquick gel extraction kit (Qiagen,
Germany). Both strands of the PCR products were sequenced twice with Prism 3730xl DNA
Analyzer (Applied Biosystems, Foster City, CA, USA) using the two PCR primers. Sequenc-
ing results displayed multiple nucleotide peaks suggesting more than one type of PBV was
present in the sample. Hence, the purified PCR products were subsequently cloned using
the pCR-II-TOPO TA cloning kit (Invitrogen, USA) according to manufacturer’s instruc-
tions. Ten clones were selected for each sample. Both strands of each clone were sequenced
using primers 5′-TAATACGACTCACTATAGGG-3′ and 5′-CGGCTCGTATGTTGTGTGGA-
3′. The sequences of the clones were compared with known sequences of the RdRp of PBVs
in the GenBank database.

2.4. Genome Sequencing of Genogroups I and II PBVs

Genome sequencing was performed for five fecal specimens positive for PBV (15C,
17C, 78C, 101C, and 103C). Both genogroup I and II PBVs were detected in samples 78C,
101C and 103C, while only genogroup I PBVs were detected in samples 15C and 17C.
Six segment 1 (15C, 17C, 78C, 101C, 103C Sequence Type 1 and 103C Sequence Type 2) and
five segment 2 (15C, 17C, 78C, 101C, and 103C) of genogroup I PBVs, and two segment 1
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(78C and 101C) and three segment 2 (78C, 101C, and 103C) of genogroup II PBVs detected
in dromedary fecal samples were amplified and sequenced using published strategies for
double-stranded RNA viruses [28]. RNA was extracted from the original fecal specimens
using the EZ1 virus mini kit (Qiagen, Hilden, Germany) and was used as the template for
RT-PCR and sequencing. Adaptor primer, with 3′ NH2 blocking group, was ligated to the
3′ termini of the viral RNA and subjected to reverse transcription using the complementary
primer. After RNA hydrolysis, reannealing and end-filling, single-primer amplification of
viral genomic segments was performed using complementary primer and genome-specific
primers. Additional primers were designed from the results of the first and subsequent
rounds of sequencing. The 5′ and 3′ ends of the viral genomes were confirmed by rapid
amplification of cDNA ends using the 5′/3′ RACE kit (Roche, Mannheim, Germany).
The PCR products were gel purified and sequenced using an ABI Prism 3700 DNA analyzer
(Applied Biosystems, USA). Sequences were assembled and manually edited to produce
the final sequences of the viral genomes. The nucleotide sequences were submitted to the
DNA Data Bank of Japan under the GenBank accession numbers LC337994 – LC338009.

2.5. Genome Analysis

The G+C content of segment 1 and segment 2 sequences and the UTR regions were
calculated using BioEdit (v.7.0.9.1) [29]. The open reading frames (ORFs) in each segment
were predicted by ORFfinder [30]. The identities of predicted proteins were verified by
BLASTP [31]. The conserved motif (ExxRxNxxxE) located in the hypothetical protein of
segment 1 was determined by Weblogo 3 [32]. The conserved motifs (D-T/S-D, SG-T,
and GDD) located in the RdRp protein of segment 2 were determined by comparing deter-
mined amino acid sequences to those of other PBVs. Phylogenetic trees were constructed in
MEGA X [33] using the maximum likelihood method based on the Jones-Taylor-Thornton
model with uniform rates and bootstrap values calculated from 1000 replicates.

Sequenced genomes were defined as complete if the entire gene was identified, i.e.,
start and stop codons were located, and conserved bases were identified in both the 5′

and 3′ UTRs. Genomes were defined as near-complete if the entire gene was identified,
but conserved bases were not present in either or both 5′ and 3′ UTRs. Genomes were
defined as partial if the entire gene was not identified, i.e., the start and/or stop codons were
not located.

3. Results
3.1. Detection of PBVs in Dromedary Fecal Samples and Phylogenetic Analysis

Fecal samples from a total of 229 dromedaries were collected and determined for the
presence of PBVs. Overall, 52.8% (121/229) of the fecal samples were positive for PBVs.
Of these 121 positive samples, 77.7% (94/121) and 41.3% (50/121) were positive for
genogroup I and genogroup II PBVs, respectively (Table 1). Genogroup I and genogroup
II PBVs were both detected in 19.0% (23/121) of the positive samples. Of note, PBV was
detected only in the adult dromedary samples and not in the dromedary calf samples.
Phylogenetic analysis showed that the sequences of both genogroup I and genogroup II
PBVs from dromedaries were highly diverse (Figure 1).

Table 1. Prevalence of genotype I and genotype II picobirnaviruses (PBVs) in 121 dromedaries
positive for the presence of PBV as detected by RT-PCR of partial fragments of RNA-dependent RNA
polymerase (RdRp) gene, and the number of positive PBV samples with and without the presence of
nucleotide polymorphism.

Presence/Absence of Polymorphism
Number (%) of Samples Positive for:

Genogroup I PBV Genogroup II PBV

94/121 (77.7) 50/121 (41.3)

With polymorphism 71/94 (75.5) 23/50 (46.0)
Without polymorphism 23/94 (24.5) 27/50 (54.0)
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Figure 1. Phylogenetic analysis of the RdRp of genogroup I and genogroup II PBVs and their rela-
tionship with other genogroup I, II, and III PBV sequences. Sequences that did not display nucleo-
tide polymorphisms (50 out of 121 PBV-positive samples detected from a screening of 229 drome-
dary fecal samples) were selected for phylogenetic analysis. The tree was constructed using the 
maximum likelihood method and is based on the nucleotide of a 205 bp RdRp fragment of seg-
ment 2. Numbers at nodes indicated level of bootstrap support calculated from 1000 replicates; 
bootstrap values below 70% are not shown, and the scale bar indicates the number of nucleotide 

Figure 1. Phylogenetic analysis of the RdRp of genogroup I and genogroup II PBVs and their
relationship with other genogroup I, II, and III PBV sequences. Sequences that did not display
nucleotide polymorphisms (50 out of 121 PBV-positive samples detected from a screening of 229
dromedary fecal samples) were selected for phylogenetic analysis. The tree was constructed using
the maximum likelihood method and is based on the nucleotide of a 205 bp RdRp fragment of
segment 2. Numbers at nodes indicated level of bootstrap support calculated from 1000 replicates;
bootstrap values below 70% are not shown, and the scale bar indicates the number of nucleotide
substitutions
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per site. Sequences of dromedary samples included in the present study are shown in bold.
Sequences of dromedary samples that were further selected for genome sequencing are indicated
by a triangle. Reference sequences were selected and classified into their associated genogroups
based on phylogenetic analysis of the RdRp by the International Committee on Taxonomy of Viruses
(ICTV) [34]. Blue, genogroup I; red, genogroup II; green, genogroup III.

Marked nucleotide polymorphisms were observed in 75.5% (71/94) of the genogroup
I RdRp sequences, suggesting the possible existence of multiple strains in the same spec-
imen. Sequencing and phylogenetic analysis of the 23 RdRp sequences without poly-
morphisms revealed that these sequences encompass 45.4% to 98.0% nucleotide identity
(2–53 nucleotide difference) to other genogroup I PBV sequences and was most closely
related to otarine PBV/GpI (GenBank KU729759), otarine PBV/GpI (GenBank KU729767),
human PBV/GpI (GenBank KJ663816), fox PBV/GpI (GenBank KC692366), and horse
PBV/GpI (GenBank KR902505) (Supplementary Tables S1 and S2). Similar to genogroup
I RdRp, nucleotide polymorphisms were observed in 46.0% (23/50) of the genogroup II
RdRp sequences. Sequencing and phylogenetic analysis of the 27 RdRp sequences with-
out polymorphisms revealed that these sequences encompass 15.4% to 55.7% nucleotide
identity (37–78 nucleotide difference) to other genogroup II PBV sequences and was most
closely related to marmot PBV/GpII (GenBank KY855429) (Supplementary Tables S3 and
S4).

3.2. Sequence Analysis of Genogroup I Dromedary PBVs Segments 1 and 2

Genogroup I segment 1 and segment 2 sequences were amplified and sequenced from
five dromedary fecal samples (15C, 17C, 78C, 101C, 103C) positive for genogroup I PBV.

3.2.1. Analysis of Six Genogroup I Segment 1 Sequences (One Complete, One
Near-Complete, and Four Partial Sequences)

A total of six segment 1 sequences were determined, including one complete seg-
ment 1 from 78C, one near-complete segment 1 from 17C, and two partial segment 1
sequences from 15C and 101C, and two partial segment 1 sequences from 103C (Figure 2).
The two different partial segment 1 sequences amplified from 103C had 43.0% nucleotide
similarity and were designated as Sequence Type 1 and Sequence Type 2. Analysis of the
complete and near-complete segment 1 showed that these sequences ranged from 2209 to
2442 bases in length with an overall G+C content of 40.8% to 45.5% (Table 2). All the six
amplified segment 1 sequences were found to encompass one long ORF, which encoded
for a capsid protein, with complete capsid proteins of 530 and 552 amino acids sequenced
from 17C and 78C, respectively. These capsid proteins shared low (13.5% to 41.6%) amino
acid identities with those of other genogroup I PBV strains and was most closely related
to human PBV/GpI (GenBank number KJ663815), horse PBV/GpI (GenBank number
KR902506), and otarine PBV/GpI (GenBank number KU729746) (Supplementary Table
S5). Consistent with the organization of segment 1 of other genogroup I PBVs [18,35,36],
a short ORF was observed upstream of the capsid protein, with complete sequences of
136 to 225 amino acids determined from 15C, 17C, and 78C (Table 2). This short ORF
encodes a hypothetical protein with unknown function and has been shown to harbor a
variable number of repeated ExxRxNxxxE motifs [37]. Alignment of the three complete hy-
pothetical protein sequences indicated the presence of 2 to 10 repeated motifs with lengths
between the repeats ranging from 1–33 amino acids (Table 3 and Supplementary Figure S1).
These findings were comparable to that of segment 1 hypothetical protein sequences ob-
served in other PBVs. Moreover, the 5′ non-coding region (38 bases) of the complete
segment 1 (78C) was observed to be AU-rich (G+C content of 26.3%), with five conserved
bases GUAAA located at the 5′ end (Table 2). These conserved bases were also found in
the partial segment 1 sequence of 15C. The 3′ non-coding region (61 bases) of the complete
segment 1 (78C) had a G+C content of 44.3%, with five conserved bases GGAUC located at
the 3′ end.
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Figure 2. Schematic representation of the gene arrangement of segment 1 and segment 2 of 
genogroup I (blue box) and II (red box) PBVs sequenced from dromedary fecal samples. Reference 
sequences are displayed at the top of the corresponding box. The segment 1 sequences in this 
study encode a capsid protein (light grey box) and an upstream ORF, which encodes a hypothet-
ical protein with unknown function (hyp; dark grey box). The segment 2 sequences encode an 
RNA-dependent RNA polymerase (RdRp; white box). Stars indicate the presence of conserved 
bases in the 5′ and/or 3′ UTRs. Partial sequences have dashed lines at the end, indicating the ab-
sence of a stop codon. Numbers indicate the position and lengths of the ORFs. 

  

Figure 2. Schematic representation of the gene arrangement of segment 1 and segment 2 of genogroup I (blue box) and II
(red box) PBVs sequenced from dromedary fecal samples. Reference sequences are displayed at the top of the corresponding
box. The segment 1 sequences in this study encode a capsid protein (light grey box) and an upstream ORF, which
encodes a hypothetical protein with unknown function (hyp; dark grey box). The segment 2 sequences encode an RNA-
dependent RNA polymerase (RdRp; white box). Stars indicate the presence of conserved bases in the 5′ and/or 3′ UTRs.
Partial sequences have dashed lines at the end, indicating the absence of a stop codon. Numbers indicate the position and
lengths of the ORFs.
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Table 2. Genomic features of segment 1 sequences of genogroup I and genogroup II PBVs from dromedary fecal samples.

PBV Strain ORF Features 5′ UTR Features 3′ UTR Features

Length
(nt)

G+C Content
(%) Protein Location

(nt)
Length

(nt)
Length

(aa) Frame Length
(nt)

G+C Content
(%)

5′

Bases
Length

(nt)
G+C Content

(%)
3′

Bases

Genogroup I PBV
a 15C/GpI 2156 44.3

hypothetical 204–614 411 136 3
203 41.4 GUAAA - - -

capsid 627–2156 1530 509 3

b 17C/GpI 2209 45.5
hypothetical 6–533 528 175 3 - - - 61 45.9 CCUGCcapsid 556–2148 1593 530 1

c 78C/GpI 2442 40.8
hypothetical 39–716 678 225 3

38 26.3 GUAAA 61 44.3 GGAUCcapsid 723–2381 1659 552 3
a 101C/GpI 1778 43.6

hypothetical 1–270 270 89 1 - - - - - -
capsid 276–1778 1503 500 3

a 103C/GpI (ST1) 1259 39.8
hypothetical - - - - - - - - - -

capsid 429–1259 831 276 3
a 103C/GpI (ST2) 1130 38.9

hypothetical 2–82 81 26 2 - - - - - -
capsid 110–1129 1020 339 2

Genogroup II PBV
a 78C/GpII 1866 30.4

hypothetical 190–450 261 86 1 - - - - - -
capsid 485–1864 1380 459 2

a 101C/GpII 662 36.9
hypothetical - - - - - - - - - -

capsid 1–660 660 219 1
a partial sequence; b near-complete sequence; c complete sequence; GpI: genogroup I; GpII: genogroup II; ST: sequence type; -: data not available.
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Table 3. Number of repeated ExxRxNxxxE motifs and the lengths between the repeats in segment 1 hypothetical protein
sequences of genogroup I and genogroup II PBVs detected from dromedary fecal samples compared to other PBV strains.

PBV Genome Length (aa) Number of Repeated Motifs Length between Repeats (aa)
a LC337994/Dromedary/15C/GpI 136 7 1–8
a LC337995/Dromedary/17C/GpI 175 2 1
a LC337996/Dromedary/78c/GpI 225 10 1–33

a,b LC337997/Dromedary/101C/GpI 89 1 0
a,b LC338000/Dromedary/78C/GpII 86 2 8
KU729746/Otarine/PF080915/GpI 194 5 1–44
KU729754/Otarine/PF080910/GpI 223 9 1–22
NC007026/Human/Hy005102/GpI 224 5 1–19

KY855431/Marmot/HT4/GpI 190 2 8
KY855430/Marmot/HT3/GpI 184 2 8

LC110352/Mouse/504/GpI 241 7 1–44
KR902502/Horse/Equ4/GpI 212 3 8
KC692367/Fox/Fox_5/GpI 201 7 1–15

KF861772/Porcine/221/04–16/GpI 199 4 8–22
KR902506/Horse/Equ2/GpI 222 6 1–45

KJ663813/Human/CDC23/GpII 116 5 1–12
KR902504/Horse/Equ1/GpII 151 3 8–15
KR902508/Horse/Equ3/GpII 251 4 1–26

KY855429/Marmot/HT2/GpII 311 2 8
a genomes sequenced in this study; b partial sequence; GpI: genogroup I; GpII: genogroup I.

3.2.2. Analysis of Five Genogroup I Segment 2 Sequences (One Complete and Four
Near-Complete Sequences)

A total of five segment 2 sequences were determined, including one complete segment
2 from 78C and four near-complete segment 2 from 15C, 17C, 101C, and 103C (Figure 2).
Analysis of these segment 2 showed that these sequences ranged from 1611 to 1704 bases in
length with an overall G+C content of 41.8 to 45.5% (Table 4). All the five amplified segment
2 sequences were found to encompass one long ORF of 1326 to 1659 bases which encoded
RdRps of 441 to 552 amino acids, with complete RdRp sequences determined from 15C,
17C, 78C, 101C, and 103C. These RdRps shared 33.1% to 62.6% amino acid identities with
those of other genogroup I PBV strains and was most closely related to otarine PBV/GpI
(GenBank number KU729759), horse PBV/GpI (GenBank number KR902505), and otarine
PBV/GpI (GenBank number KU729767) (Supplementary Table S6). Three conserved motifs
(SG-T, D-T/S-D, and GDD) are commonly located in the RdRp sequences of other dsRNA
viruses (Ghosh et al., 2009). These motifs were found in all the five sequenced segment
2 as SGSPYFT, DFSKFD, and GDD, respectively (Supplementary Figure S2). Conserved
cysteine and proline residues present in other genogroup I PBV segment 2 sequences [38]
were also observed in the five sequenced segment 2 (Supplementary Figure S2). Moreover,
the 5′ non-coding region (11 bases) of the complete segment 1 (78C) was observed to be
AU-rich (G+C content of 18.2%) with five conserved bases GUAAA located at the 5′ end
(Table 4). The 3′ non-coding region (24 bases) of the complete segment 2 (78C) had a G+C
content of 45.8% with the bases CCAUU located at the 3′ end.
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Table 4. Genomic features of segment 2 sequences of genogroup I and genogroup II PBVs from dromedary fecal samples.

PBV Strain ORFs Features 5′ UTR Features 3′ UTR Features

Length
(nt)

G+C Content
(%) Protein Location

(nt)
Length

(nt)
Length

(aa) Frame Length
(nt)

G+C Content
(%) 5′ Bases Length

(nt)
G+C Content

(%) 3′ Bases

Genogroup I PBV
a 15C/GpI 1646 44.4 RdRp 1–1599 1599 532 1 - - - - - -
a 17C/GpI 1704 45.5 RdRp 1–1659 1659 552 1 - - - 45.0 46.7 CUGC
b 78C/GpI 1694 41.8 RdRp 12–1670 1659 552 3 11.0 18.2 GUAAA 24.0 45.8 CCAUU

a 101C/GpI 1644 44.3 RdRp 6–1598 1593 530 3 - - - 46.0 47.8 CUGC
a 103C/GpI 1611 43.4 RdRp 253–1578 1326 441 1 - - - 33.0 48.5 CUCA

Genogroup II PBV
a 78C/GpII 1466 40.4 RdRp 215–1438 1224 407 2 - - - 28.0 57.1 UUUC

c 101C/GpII 1471 42.0 RdRp 9–1469 1461 486 3 - - - - - -
c 103C/GpII 953 45.2 RdRp 1–951 951 316 1 - - - - - -

a near-complete sequence; b complete sequence; c partial sequence; GpI: genogroup I; GpII: genogroup II; -: data not available.
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3.3. Sequence Analysis of Genogroup II Dromedary PBVs Segments 1 and 2

Genogroup II segment 1 and segment 2 sequences were amplified and sequenced
from three dromedary fecal samples (78C, 101C, 103C) positive for genogroup II PBVs.

3.3.1. Analysis of Two Partial Genogroup II Segment 1 Sequences

Two partial segment 1 sequences were determined from 78C and 101C (Figure 2).
Analysis of these partial segment 1 showed that these sequences were 1866 and 662 bases
in length with a G+C content of 30.4% and 36.9%, respectively (Table 2). The segment 1
sequences were found to encompass one long ORF of 1380 and 660 bases which encoded a
partial capsid protein of 459 and 219 amino acids, respectively. The capsid proteins of 78C
and 101C shared low (15.2% to 27.1%) amino acid identities with those of other genogroup II
PBV strains and was most closely related to horse PBV/GpII (GenBank number KR902504),
human PBV/GpII (GenBank number KJ663813) (Supplementary Table S5).

3.3.2. Analysis of Three Genogroup II Segment 2 Sequences (One Near-Complete and Two
Partial Sequences)

A total of three segment 2 sequences were determined, including one near-complete
segment 2 from 78C and two partial segment 2 from 101C and 103C (Figure 2). Analysis of
the near-complete segment 2 showed that the sequence was 1466 bases in length with an
overall G+C content of 40.4% (Table 4). The 3′ non-coding region (28 bases) of the near-
complete segment 2 from 78C had a G+C content of 57.1% with the non-conserved bases
UUUC located at the 3′ end. All the three segment 2 sequences were found to encompass
one long ORF of 951 to 1461 bases which encoded a partial RdRp of 316 to 486 amino
acids. These partial RdRp shared 30.5% to 69.9% amino acid identities with those of other
genogroup II PBV strains and was most closely related to human PBV/GpII (GenBank
number AF246940) and marmot PBV/GpII (GenBank number KY855429) (Supplementary
Table S6). The conserved motifs DTTKMD and SGYPRFRR were found in all the three
sequenced segment 2 and GDD was located only in 78C and 101C as the partial sequence
of 103C did not cover this region (Supplementary Figure S2). However, in contrast to the
segment 2 of genogroup I PBVs, only conserved proline residues but not cysteine residues,
were observed in all the three sequenced genogroup II PBV segment 2. This coincides with
the absence of conserved cysteine residues in other genogroup II PBV segment 2 sequences.

3.4. Phylogenetic Analysis of Capsid and RdRp Sequences of Dromedary PBVs

Phylogenetic analysis of the RdRp and capsid sequences showed different topologies.
The RdRp sequences were the basis for genogroup classification and therefore fell into
three distinct clusters, genogroups I, II, and III (Figure 3A). However, a corresponding
clustering into the three genogroups was not observed in the phylogenetic tree constructed
using the capsid sequences (Figure 3B). Instead, the capsid sequences from the different
genogroups were all inter-mixed.
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4. Discussion

In this study, we presented a comprehensive analysis on the molecular epidemiology
and genomics of PBVs in dromedaries. In our previous metagenomic study on pooled
dromedary fecal samples, we observed an exceptionally higher number of PBV compared
to other viral sequences [21]. In the present study, we used two pairs of primers based
on conserved regions of the RdRp gene to detect genogroup I and genogroup II PBVs
separately in 229 dromedary fecal samples from Dubai. It was observed that genogroup I
and genogroup II PBVs were present in 41% and 22% of the samples, respectively, while
both genogroup I and II PBVs were present in 10% of the samples. In the literature,
the prevalence of genogroup I PBVs in the fecal samples from a wide range of animal
species, such as roe deer, pigs, rats, sheep, cattle, chickens, and mongooses, have been
studied [9,10,12]. The highest prevalence was in roe deer (62%) and monkeys (48%) [12,19].
However, comprehensive studies on genogroup II PBVs are relatively few compared to
genogroup I PBVs and the reported prevalence of genogroup II PBVs in fecal samples
of pigs, cattle, and sheep were all <10% [3,4,14,22]. The present study is the first one
that described such an unprecedentedly high prevalence of 22% for genogroup II PBVs
in animals. We speculate that the relatively higher prevalence of genogroup II PBVs in
the present study, as compared to those described in the literature, may be due to the
screening primers that we used. This highly sensitive primer set will be used for molecular
epidemiology studies of other animals to see if a higher prevalence of genogroup II PBV
will also be observed.
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In addition to the high prevalence, a high genetic diversity of genogroup II PBV in
dromedaries was also observed. In contrast to genogroup I PBVs of which the genomics
and phylogenies have been quite well studied, our knowledge on genogroup II PBVs are rel-
atively scarce due to the small number of genogroup II PBV sequences available. Although
there are >2400 PBV nucleotide sequences available in GenBank, there is significantly less
literature relating to genogroup II PBV. In this study, after determining the prevalence,
we used the RdRp gene sequences to examine the phylogenetic relationships of dromedary
PBVs with other PBVs. Similar to genogroup I dromedary PBVs, genogroup II dromedary
PBV strains were also highly diverse (Figure 1). This indicated that there are many strains
of both genogroup I and II PBVs circulating in dromedaries. This phenomenon of high
diversity has also been observed in most of our previous studies on cattle, horses, pigs,
and California sea lions [22,27]. This is different, however, from what we found in mon-
keys in Hong Kong, in which a few clusters of PBVs were observed [22]. We speculate
that this is because most monkeys in Hong Kong live as geographically separated troops,
with minimal direct contact among the different troops, and the samples collected in that
study was from two separated troops, therefore giving rise to the apparently distinct phy-
logeny in PBVs from monkeys in Hong Kong [22]. Nevertheless, the high diversity and
high prevalence of PBV in numerous hosts suggest a high potential for the virus to further
spread and cause disease in other animal species or for more virulent forms of the virus to
transmit into natural hosts such as humans [39,40].

The genome organizations of both genogroup I and II PBVs in dromedaries are
similar to those of other animals. In this study, after the initial molecular epidemiology
and phylogenetic analysis, we attempted to sequence the core genomes (segment 1 and
segment 2) for a number of dromedary PBV strains using the chromosomal walking
approach for subsequent in-depth genome analysis. The complete or almost complete core
genomes of five strains of genogroup I dromedary PBV, but only one strain of genogroup
II PBV, were sequenced. In addition, four partial segment 1 of genogroup I dromedary
PBV and two partial segment 1 and two partial segment 2 of genogroup II dromedary PBV,
respectively were successfully obtained. We speculate that the difficulty in sequencing
genogroup II PBV genomes is due to the high genetic diversity of PBVs as well as the
relatively small number of genogroup II genomes and sequence fragments in GenBank; and
therefore, difficult to design degenerate primers for chromosomal walking. This is similar
to the difficulty in designing screening primers for the detection of genogroup II PBVs
as we mentioned above. In fact, only four complete/near-complete segment 1 and five
complete segment 2 sequences of genogroup II PBV sequences were available. The genetic
content of both genogroup I and II dromedary PBVs were observed to be consistent with
previously described PBV genomes, i.e., a capsid protein and an upstream ORF encoding
a putative protein of unknown function on segment 1, and an RdRp gene in segment 2.
The putative protein of unknown function shows no homology with any other proteins
in GenBank and does not possess any known protein domain or functional site. Further
experiments will be needed to examine whether it is expressed and its function in PBV.

Genetic reassortment and mutation are both important in the evolution of PBVs.
The phylogenetic trees constructed using RdRp and capsid sequences showed completely
different topologies (Figure 3A,B). This indicates that similar to influenza viruses, in which
reassortment of the different segments is important in the generation of new strains,
reassortment of the two segments in PBVs has also played a significant role in its evo-
lution. This is supported by the observation that the same dromedary may be infected
with more than one PBV, as noted by the presence of nucleotide polymorphisms, and even
two different genogroups of PBV, which is a prerequisite for reassortment to take place.
In addition to reassortment, the high number of nucleotide polymorphism in both genogroup
I and II PBV sequences found in the same dromedary showed that PBVs, in general,
have high frequencies of mutation. These indicate that both reassortment of the two gene
segments, as well as mutation, are both crucial in shaping the PBV genomes and their
phylogenies that we now observe.
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Supplementary Materials: The following are available online at https://www.mdpi.com/1999-491
5/13/3/430/s1, Figure S1. Multiple alignment of amino acid sequences of the hypothetical protein
from segment 1 of genogroup I and genogroup II PBVs detected in dromedary fecal samples and other
representative PBV sequences with the repeated ExxRxNxxxE motif highlighted in grey. Figure S2.
Multiple alignment of amino acid sequences of RdRp from segment 2 of genogroup I and genogroup
II PBVs detected in dromedary fecal samples and other representative PBV sequences with the
conserved motifs D-T/S-D, SG-T, and GDD shown in red boxes (genogroup I), blue boxes (genogroup
II) and green boxes (genogroup III), and conserved proline and cysteine residues highlighted in yellow.
Table S1. Comparison of pairwise nucleotide identity between genogroup I PBVs identified from
dromedaries with known PBV sequences. Table S2. Comparison of pairwise nucleotide difference
between genogroup I PBVs identified from dromedaries with known PBV sequences. Table S3.
Comparison of pairwise nucleotide identity between genogroup II PBVs identified from dromedaries
with known PBV sequences. Table S4. Comparison of pairwise nucleotide difference between
genogroup II PBVs identified from dromedaries with known PBV sequences. Table S5. Comparison
of pairwise amino acid identity of capsid protein between genogroup I and II PBVs identified from
dromedaries with known PBV sequences using 166 aa of the protein. Table S6. Comparison of
pairwise amino acid identity of RdRp between genogroup I and II PBVs identified from dromedaries
with known PBV.
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