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Abstract: Assessing the characteristics and limiting factors of tree growth is of practical significance
for environmental studies and climatic reconstruction, especially in climate transition zones. In
this study, four sites of Pinus armandii Franeh are investigated to understand regional climate-tree
growth response in Mt. Yao, central China. Based on the high similarity of four residual chronologies
and high correlations between chronologies and climatic factors, we analyzed the correlations of
regional residual chronology with monthly climatic factors and the self-calibrating Palmer Drought
Severity Index (scPDSI) from 1961–2016. The results indicate that the hydrothermal combination
of prior August and current May and the scPDSI in May are main limiting factors of regional tree
growth in Mt. Yao. The results of stepwise regression models also show that temperature and scPDSI
in May are the main limiting factors of tree growth, but the limiting effect of scPDSI is more than
temperature in this month. Through the analysis of the number of tree growth years corresponding
to high temperature and high scPDSI, it was further confirmed that scPDSI in May is the main
limiting factor on the growth of P. armandii in Mt. Yao. However, the influence of scPDSI in May
has weakened, while temperature in May has increasingly significant influence on tree growth. The
above findings will help improve our understanding of forest dynamics in central China under global
climate change.

Keywords: tree-rings; Pinus armandii; adaptability; climatic response; Mt. Yao

1. Introduction

Tree-rings have become one of the most important means for studying global climate
change, with their precise dating, high (annual or season) resolution, extensive spatial
availability, and high sensitivity to hydroclimate at many locations [1,2]. Tree growth
is mainly affected by climate, physiological traits of tree species, and ecological micro-
environment, such as slope and altitude [1,3–7]. Therefore, a reliable climate reconstruction
based on tree-rings should be built on a clear understanding of tree growth under different
environmental conditions, and can only be achieved by incorporating the samples with
coherent growth patterns.

Tree-ring studies in China have witnessed a rapid development in recent decades, but
mostly concentrate in arid and semi-arid regions [8–15] and on the Tibetan Plateau [16–22].
More studies are emerging in central and eastern China in recent years [23–32].

To better understand climate change and help tree-ring-based climate reconstructions
in central and eastern China, the relationship between climate and tree growth in high
mountains needs to be assessed. This is because the plains are heavily affected by human
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activities and the forests are mostly preserved in high mountains, where temperatures
increase more than the surrounding lowlands experience them [33]. The rapid temperature
increase has imposed a critical impact on the tree growth and dynamics of high-elevation
forests [17,34,35]. In general, tree radial growth at high altitude is mostly temperature-
limited in the mountain environments [7,36–38], whereby it may respond in different ways
or to a different extent at different altitudes [39,40]. Besides that, different ecological factors
such as slope orientation will also make a difference [41].

Here, we report a case study in Mt.Yao of the eastern Funiu Mountains, Henan
Province. The study area is located in the transition zone of subtropical-warm temperature
in central eastern China, with abundant forest resources (mainly Pinus tabulaeformis Carr
and Pinus armandii Franeh in the high mountains). Thus far, there are only a few den-
droecological studies in Baotianman National Nature Reserve [42,43], and a few climate
reconstructions by using tree-ring isotope and ring-width or early wood width index of P.
tabulaeformis, respectively [30,44–47].

This paper aims to study the regional climate-growth response of P. armandii at differ-
ent mountain eco-environments in the climatic transition zones of central China. Specifi-
cally, we will assess whether there is altitude or slope orientation-related growth response,
and the adaptability of this species to mountain environments, and the main limiting factors
on the growth of P. armandii in this area for the sake of forest regeneration and management.

2. Materials and Methods
2.1. Study Region

Mt. Yao (112◦13′55′′–112◦42′31′′ E, 33◦47′01′′–33◦38′18′′ N; 1300 to 2153 m above sea
level (a.s.l.)) is located in the eastern Funiu Mountain, Henan Province (Figure 1). The
Funiu Mountain is an important geographical boundary of warm temperate and northern
subtropical zone in the eastern China. Mt. Yao is the source region of the Sha River
(a tributary of the Huai River), and it features a continental monsoon climate, with lower
temperatures but higher precipitation than the surrounding plains, due to the high altitude
of the mountains. Based on observations from a meteorological station near Mt. Yao, the
annual mean temperature is 14.8 ◦C. The monthly mean maximum temperature is 25.3 ◦C
in July, and the monthly mean minimum temperature is −1.9 ◦C in January. The annual
total precipitation is 820–860 mm, which is largely concentrated in summer (mainly in late
July and early August) and accounts for 70%~80% of the annual precipitation. Annual
mean relative humidity reached 64%–74%. The soil is typically brown mountain soil in
study area.

The average canopy coverage rate of the forests is 95%, with major tree species,
including P. armandii, P. tabulaeformis, Quercus var. acutesserrata, Toxicodendron vernicifluum,
and Carpinus turczaninowii Hance. Forest type and structure in Mt. Yao are complex, rich
and diversified, making it a relatively rare region with distinct vertical forest distribution
zones in central China. P. armandii, endemic to China, and it is one of the main afforestation
conifer species in the high mountain areas of the Funiu Mountains, mainly distributed
within an elevation of 1400–1900 m a.s.l.

2.2. Chronology Development

In July 2017, we collected tree-ring samples of P. armandii from 4 sampling sites in
Mt. Yao. In general, 1 or 2 cores were taken at breast height from each tree using 5.15 mm
increment borers. In total, 165 cores from 101 trees were retrieved from 4 sampling sites
and were marked as YS01, YS02, YS03 and YS04, respectively (Figure 1 and Table 1).



Forests 2021, 12, 780 3 of 13
Forests 2021, 12, x FOR PEER REVIEW 3 of 13 
 

 

 

Figure 1. Locations of the sampling region (square) and sampling sites (triangle) in Mt. Yao and the nearby meteorological 

stations (dots) in the Funiu Mountains, central China. 

Following standard methods of dendrochronology [48], all the samples were brought 

back to the lab, mounted, air-dried and sanded until the annual rings could be distin-

guished. After that, the samples were cross-dated and measured using a Velmex measur-

ing system (0.001 mm precision). The quality of visual cross-dating was checked with 

COFECHA [49] program to ensure exact dating for each annual ring.  

To study the climate-growth response, biological growth trend in tree-rings needs to 

be removed to preserve the ring-width variability caused by climate factors alone. The 

ARSTAN program [50] was used to detrend raw ring-width measurements conservatively 

by fitting negative exponential curves or linear regression curves of any slope, and to pro-

duce three types of chronologies (standard, residual and autoregressive) by calculating 

the biweight robust means that can decrease the effect of outliers [51]. We developed ring-

width residual chronology for each group of samples, and the common period of the three 

chronologies was set to 1980–2015 (Figure 2). Statistical values of the four chronologies 

are shown in Table 1. 

Figure 1. Locations of the sampling region (square) and sampling sites (triangle) in Mt. Yao and the nearby meteorological
stations (dots) in the Funiu Mountains, central China.

Table 1. Statistical characteristics of the chronologies from the four sampling sites at Mt. Yao, central China.

Statistics YS01 YS02 YS03 YS04

Samplings cores (Trees) 38(20) 53(36) 40(26) 34(19)
Latitude

Longitude
Elevation(M)

33◦43′34” 33◦43′21” 33◦42′51” 33◦42′57”
112◦14′42” 112◦14′36” 112◦14′56” 112◦14′53”

1851 2070 2016 2050
Slope N SW S NW

Mean Sensitivity(M.S.) 0.245 0.213 0.265 0.283
Standard Deviation (S.D.) 0.226 0.187 0.222 0.24

First year 1785 1831 1920 1855
Begin year of SSS > 0.80(year) 1913 1868 1961 1872

Common period (period) 1980–2015
Mean correlation between all series(r1) 0.274 0.299 0.434 0.281

Mean correlation within a tree(r2) 0.743 0.6 0.740 0.646
Mean correlation between trees(r3) 0.261 0.294 0.428 0.271

Signal-to-noise ratio(SNR) 12.469 18.355 25.297 11.699
Expressed population signal(EPS) 0.926 0.948 0.962 0.921

Following standard methods of dendrochronology [48], all the samples were brought
back to the lab, mounted, air-dried and sanded until the annual rings could be distin-
guished. After that, the samples were cross-dated and measured using a Velmex measur-
ing system (0.001 mm precision). The quality of visual cross-dating was checked with
COFECHA [49] program to ensure exact dating for each annual ring.
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To study the climate-growth response, biological growth trend in tree-rings needs to
be removed to preserve the ring-width variability caused by climate factors alone. The
ARSTAN program [50] was used to detrend raw ring-width measurements conservatively
by fitting negative exponential curves or linear regression curves of any slope, and to
produce three types of chronologies (standard, residual and autoregressive) by calculating
the biweight robust means that can decrease the effect of outliers [51]. We developed ring-
width residual chronology for each group of samples, and the common period of the three
chronologies was set to 1980–2015 (Figure 2). Statistical values of the four chronologies are
shown in Table 1.
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Figure 2. Residual chronologies and the sample depths of the four groups of samples at Mt. Yao, 
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Figure 2. Residual chronologies and the sample depths of the four groups of samples at Mt. Yao,
central China.

There are higher correlations among the four residual chronologies from 1961–2016
(Table 2), which are all significant at 0.01 levels, except for that between YS01 and YS03.
We extracted the first principal component (PC1, 58.7% variance) of the four residual
chronologies as the regional residual chronology in order to analyze the relationship
between regional tree growth and climatic factors.

Table 2. Correlations among four residual chronologies from 1961–2016.

YS01 YS02 YS03 YS04

YS01 1
YS02 0.437 ** 1
YS03 0.293 * 0.370 ** 1
YS04 0.418 ** 0.621 ** 0.531 ** 1

** Significant at the 0.01 level * Significant at the 0.05 level.

2.3. Meteorological Data

Monthly climate data from 1961–2016 were calculated from the average of four meteo-
rological stations (Figures 1 and 3), including Luanchuan (33◦47′ N, 111◦36′ E, 750 m a.s.l.),
Xixia (33◦18′ N, 111◦30′ E, 250 m a.s.l.), Nanyang (33◦2′ N, 112◦35′ E, 129 m a.s.l.) and Baofeng
(33◦53′N, 113◦3′E, 136 m a.s.l.). In addition, we obtained the self-calibrating Palmer Drought
Severity Index [52] data from 1961–2016 (http://climexp.knmi.nl, 1 December 2020), which
were averaged within 33–34◦ N and 111–112◦ E around the sampling sites. The scPDSI was

http://climexp.knmi.nl
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calculated from temperature and precipitation data sets, together with fixed parameters
related to soil/surface characteristics at each location [52]. Climate variables used for
correlation analyses include monthly mean temperature (T), monthly total precipitation (P)
and the scPDSI.
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Figure 3. Monthly mean temperature (T) (SD: 0.9–1.91) and monthly total precipitation (P) (SD: 10.46–80.06)
averaged from four meteorological stations near Mt. Yao during 1961–2016.

2.4. Methods

Based on tree growth consistency in Table 1, we extracted the PC1 of the four residual
chronologies by SPSS software [53]. DendroClim2002 program [54] was used to perform
Pearson’s correlation analysis of chronologies (including four site chronologies and PC1
chronology) with climate factors and scPDSI from March 1961–November 2016. Regression
model was also established based on the relationship between regional chronology and
climate factors. Finally, the stepwise regression models between tree growth and climate
factors and the significant limiting factor were established by using the SPSS software [53].

3. Results
3.1. Growth Features of P. Armandii in Different Environments

As shown in Table 1, mean sensitivities (M.S.) of all residual chronologies are over 0.2
and standard deviations (S.D.) of all chronologies are lower than 0.25. These indicated that
tree growth is in good consistency among the four sampling sites of different environments
in this study area. High correlations for all-cores, within-tree and between-trees (r1, r2 and
r3) of all chronologies showed that all trees had good growth consistency. High signal-
to-noise ratio (SNR; 11.699~25.297) and expressed population signal (EPS; 0.921~0.962)
demonstrate a high level of accuracy for these chronologies [55] and more climatic in-
formation is possibly retained in these chronologies, especially YS03 on the south slope
(SNR, 25.297; EPS, 0.962).

3.2. Regional Climate-Growth Response
3.2.1. Correlation between Chronologies and Regional Climate Factors

Correlation results with regional T indicate that the majority of trees show negative
correlations with T from the prior March to current June, and positive correlations are
concentrated in July to November, except for YS04 chronology that showed significant
positive correlation with T in current October (Figure 4a). Significant negative correlations
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with T are found in current May at YS01, YS02 and YS03 sites, in prior August at YS01 and
YS04 sites, in prior March at YS03, and in current June at YS04 site, respectively.
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Correlation results with regional P indicate different significant correlations with four
residual chronologies (Figure 4b). Significant negative correlations with P are found in
prior May and current July at YS04 site and in current August at YS02, YS03 and YS04
sites. Significant positive correlations are found in prior August at YS01 and YS04 sites,
current May at YS03 and YS04 sites, current April at YS01 site, and current January at YS02
site, respectively.

3.2.2. Correlation between PC1 and Regional Climate Factors

Correlation results indicate that regional tree growth shows significant negative corre-
lations with T in prior August and current May, and significant positive correlations with P
in prior August and current May (Figure 5). Obviously, the hydrothermal combination of
prior August and current May are the main limiting factors on tree growth in Mt. Yao.

3.2.3. Correlation between PC1 and Regional scPDSI

To better understand regional climate-growth response, we calculated the correlations
between PC1 and regional mean scPDSI. There are significant positive correlations between
the scPDSI of prior March–April and prior July to current June and the PC1 of four residual
chronologies in Mt. Yao (Figure 6). The highest correlation (0.51) is found between regional
PC1 and scPDSI in current May, which shows that the latter is the main limiting factor on
regional tree growth in Mt. Yao. Meanwhile, the correlation with annual scPDSI from prior
July to current June is lower (0.36) than that in May (Figure 6).

3.3. Regional Regression Models of Climate-Growth

In order to better understand the relationships between regional tree growth (PC1)
and climate factors, linear stepwise regressions based on bidirectional elimination are used
to extract the main limiting factors on tree growth.
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Firstly, we developed different climate-growth models using following linear stepwise
regression equation, with temperature and precipitation from current January to December
from 1960–2016.

Wt = −0.333 *T5 − 0.004*P8 + 7.285 (1)

(N = 55, r = 0.438, R2 = 0.192, R2adj = 0.161, F = 5.025 (p = 0.029), D−W = 2.251),

Wt = −0.283 *T5 + 5.711 (2)

(N = 55, r = 0.340, R2 = 0.115, R2adj = 0.099, F = 7.036 (p = 0.01), D−W = 2.251),
where (1) and (2), Wt is the index of regional tree-ring chronology for year t; T5 and P8
represent temperature in current May and precipitation in current August, respectively.

The two outcomes of stepwise regression are developed—one is a multiple growth
model of temperature in May and precipitation in August, the dominant factors of tree
growth (Equation (1)), and the other is a simple regression growth model, where the
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temperature in May is the main limiting factor of tree growth (Equation (2)). The F and
D−W values are positive, and the p values are below 0.05 in both equations, indicating
that these models are valid. These results are highly consistent with previous correlation
results, verifying the limiting effect of temperature in May.

Secondly, linear stepwise regression equations with the scPDSI were established:

Wt = 0.332 *scPDSI5 − 0.15 *PDSI9 − 0.013 (3)

(N = 55, r = 0.539, R2 = 0.291, R2adj = 0.264, F = 5.65 (p = 0.021), D−W = 2.307),

Wt = 0.263 *scPDSI5 − 0.018 (4)

(N = 55, r = 0.464, R2 = 0.215, R2adj = 0.201, F = 14.827 (p = 0.000), D−W = 2.307),
where (3) and (4), Wt is the index of regional chronology for year t, and scPDSI5 and
scPDSI9 are the scPDSI values in May and September, respectively.

Similarly, Equation (3) is multiple growth models on scPDSI5 and scPDSI9 for tree
growth, and (4) is a simple regression model on scPDSI5. Both indicate that the scPDSI5
is the main limiting factor on tree growth. Likewise, the results are very consistent with
previous correlation results, verifying the limiting effect of hydrothermal combination
in May.

4. Discussion
4.1. Climate-Growth Response of Trees in Different Environments

Previous studies found that there were large discrepancies among trees of different
slopes and altitudes [1,5,7,24,56–58]. In this study, all four sampling sites are located in
a high altitude of Mt. Yao, whereby temperature is generally the main limiting factor on
tree growth.

The above results prove that temperature is the main limiting factor on tree growth in
this area, while there are different results in various environmental sampling points. Tree
growth at YS02 (SW slope, 2070 m), YS03 (S slope, 2016 m) and YS01 (N, 1851 m) is limited
by May T. Monsoon precipitation, which has not yet arrived in the region in May, and thus
high temperature in May induces soil-effective water loss by increasing land evaporation
and plant transpiration, resulting in tree dehydration on high temperature in the sunny
slope, while YS01 in shady slope in low altitude compensates for the heat to some extent.
However, it is more complicated in the case of the YS04 site, due to the lack of heat in the
high altitude (2050 m) and the deficient of heat and water in the northwest shady slope.

Correlation results with regional P indicate different significant correlations with
four residual chronologies (Figure 4b). Therefore, there are different responses from four
sampling sites of different altitude and slope to precipitation, but tree growth in high
altitude at YS02, YS03 and YS04 was all limited by P in current August. This is because
much rainfall in August decreased temperature or less rainfall in August resulted in
drought to limit tree growth. The above results show that altitude may be a dominant
factor that leads to a difference in the influence of precipitation on tree growth, and slope
orientation complicates the influence of precipitation.

These results indicate that there are similar responses of tree growth to climatic factors
in the region, but different responses were due to the different altitude and slope of each
sampling site. The results were consistent with previous studies [7,24,57,58].

4.2. Correlation between PC1 and Regional Climate

Based on the common characteristics of the chronologies and high similarity between
each chronology and regional climate factors, the PC1 was extracted to carry out the
correlation analysis of regional tree growth (PC1) and regional climate.
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4.2.1. Correlation between PC1 and Regional Climate Factors

Regional climate-growth responses found that the hydrothermal combination of prior
August and current May was the main limiting factor on regional tree growth in Mt. Yao.
The study region features a continental monsoon climate, but it shows low temperature
and high rainfall compared to the surrounding plains. It is observed that precipitation in
July and August is the main source of water for tree growth in the late growing season
and the next year; in particular, a lot of rainfall in August helps the soil to hold water and
promote tree growth next spring. More rainfall in August also decreases temperature and
limits the tree growth of the late growing season in the current year. High temperature in
August may reduce water storage in soils in winter, which may inhibit tree growth in the
following year and the formation of narrow rings. Of course, high temperatures in August
will help trees grow in the current year. The East Asian Monsoon has not yet arrived in May
at Mt. Yao, and thus high temperature-induced soil effective water loss by increasing land
evaporation and plant transpiration would lead to narrow ring formation [24]. However,
the precipitation in May of the pre-monsoon rainy season is conducive to tree growth and
wide ring formation. These results are consistent with many previous studies [7,24,56–58].

4.2.2. Correlation between PC1 and Regional scPDSI

The scPDSI originates from the PDSI [59], with the aim to make the values more
comparable from different climate regimes. The scPDSI is calculated from precipitation
and temperature, together with fixed parameters related to the soil/surface characteristics
at each location, so it may represent tree growth response to moisture conditions.

The results show significant positive correlations between PC1 and regional scPDSI of
the prior July to the current June in Mt. Yao (Figure 6). The highest correlation is found
in the current May rather than annual scPDSI from prior July to current June. On the one
hand, the significant negative correlation with temperature and the significant positive
correlation with precipitation in May are understood. On the other hand, it shows that
the scPDSI has no strong cumulative effect on tree growth in the study area. Tree growth
is mainly limited by moisture in current May, which suggests that precipitation and soil
moisture in the early growing season may benefit tree-growth, and high temperature may
induce drought in May that can inhibit tree grow to form narrow rings [7].

4.3. Comparison of Major Limiting Factors on Tree Growth

The results of correlation analysis and stepwise-regression analysis showed that
temperature and scPDSI in May were the limiting factors on tree growth, and the regression
results showed that the limiting effect of May scPDSI (R2 = 0.215) is more than May’s
temperature (R2 = 0.115). Therefore, scPDSI in May is the main limiting factor in Mt. Yao.
A similar result was reported by using early wood width (EWW) of P. tabulaeformis in Mt.
Funiu by Zhao et al. [30].

Figure 7 shows that increasing T and decreasing scPDSI trends were obvious in May,
but regional tree growth (PC1) trend did not change much from 1961–2016. This indicated
that regional tree growth was affected by multiple factors, while T and scPDSI in May are
the only main limiting factors. We found that there are six years with high scPDSI values
from 1961–2016 (i.e., 1964, 1972, 1985, 1990, 1998 and 2006); all of them feature high tree
growth, while low growths are found in high temperature in May in 1994, 2000 and 2007,
but high growth in 2013. This affirms that scPDSI in May is the main limiting factor of
regional tree growth.
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5. Conclusions

In this study, we investigated regional climate-growth response of P. armandii from
four sampling sites in Mt. Yao, central China. We come to the following conclusions:
(1) There are strong common features among the four residual chronologies, and thus a
regional residual chronology can be developed by using their PC1; (2) Correlations of the
PC1 with regional climatic factors and scPDSI indicate that the hydrothermal combination
of prior August and current May and scPDSI in May were the main limiting factors of tree
growth in Mt. Yao; (3) Climate-growth models using stepwise regressions also showed
that temperature and scPDSI in May are the main limiting factors of tree growth, but
the limiting effect of scPDSI is stronger than temperature. In a word, the hydrothermal
combination in May is the main limiting factor when it comes to the growth of P. armandii
in Mt. Yao. The above findings will help improve our understanding of forest dynamics in
central China under global climate change.
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