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Abstract: MotionSense HRV is a wrist-worn accelerometery-based sensor that is paired with a
smartphone and is thus capable of measuring the intensity, duration, and frequency of physical
activity (PA). However, little information is available on the validity of the MotionSense HRV.
Therefore, the purpose of this study was to assess the concurrent validity of the MotionSense HRV in
estimating sedentary behavior (SED) and PA. A total of 20 healthy adults (age: 32.5 ± 15.1 years)
wore the MotionSense HRV and ActiGraph GT9X accelerometer (GT9X) on their non-dominant
wrist for seven consecutive days during free-living conditions. Raw acceleration data from the
devices were summarized into average time (min/day) spent in SED and moderate-to-vigorous PA
(MVPA). Additionally, using the Cosemed K5 indirect calorimetry system (K5) as a criterion measure,
the validity of the MotionSense HRV was examined in simulated free-living conditions. Pearson
correlations, mean absolute percent errors (MAPE), Bland–Altman (BA) plots, and equivalence
tests were used to examine the validity of the MotionSense HRV against criterion measures. The
correlations between the MotionSense HRV and GT9X were high and the MAPE were low for both
the SED (r = 0.99, MAPE = 2.4%) and MVPA (r = 0.97, MAPE = 9.1%) estimates under free-living
conditions. BA plots illustrated that there was no systematic bias between the MotionSense HRV and
criterion measures. The estimates of SED and MVPA from the MotionSense HRV were significantly
equivalent to those from the GT9X; the equivalence zones were set at 16.5% for SED and 29% for
MVPA. The estimates of SED and PA from the MotionSense HRV were less comparable when
compared with those from the K5. The MotionSense HRV yielded comparable estimates for SED
and PA when compared with the GT9X accelerometer under free-living conditions. We confirmed
the promising application of the MotionSense HRV for monitoring PA patterns for practical and
research purposes.

Keywords: mobile health; sedentary behavior; physical activity; validity; MotionSense HRV;
accelerometer
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1. Introduction

With advances in mobile technology, the field of mobile health (mHealth) has attracted
the attention of healthcare providers interested in efficient patient care. The World Health
Organization defines mHealth as the practice of public health and medicine supported
by mobile devices such as smartphones. mHealth embodies a healthcare system that
capitalizes on mobile devices’ voice and text messaging service, wireless telecommunica-
tions (e.g., LTE network), Bluetooth®technology, and global positioning system (GPS) [1].
mHealth technology allows for more people to connect with innovative health care ser-
vices, including health care management, health care information on demand, and the
real-time monitoring of behavior and chronic conditions. For instance, mHealth technology
can efficiently and quickly support healthcare providers’ remote clinical care through the
periodical or real-time monitoring of patients’ physiological factors (e.g., heart rate) and
health-related behaviors (e.g., physical activity (PA)) [2–4]. Thus, advances in mHealth
technology are expected to significantly improve the clinical and wellness care for various
populations by reducing the cost and burden of the evaluation of risk factors of potential
chronic disorders.

The National Center of Excellence for Mobile Sensor Data-to-Knowledge (MD2K) is a
part of the Big Data-to-Knowledge program funded by the National Institutes of Health.
An overarching goal of the MD2K is to use mobile sensor technologies to detect and predict
behavioral, psychological, and environmental risk factors of specific diseases [5,6]. The abil-
ity to detect risk factors and prevent the emergence of adverse clinical events is an essential
strategy in preventive medicine and can help to reduce health care costs [5–7]. Recently, the
MD2K developed an innovative multi-sensor approach named puffMaker to objectively
track smoking episodes using two wearable sensors called AutoSense and MotionSense [8].
AutoSense is a chest-worn sensor suite that could measure breathing patterns [9,10]. Mo-
tionSense is a wrist-worn inertial sensor equipped with a 3-axis accelerometer and a 3-axis
gyroscope for detecting accelerations and movements of the arms [11]. The acceleration
and angular motion data collected at wrists can be translated into the intensity and amount
of wrist movements. In fact, the use of wrist-worn accelerometers for assessing PA is now
widespread [12,13]. This suggests that the MotionSense has tremendous potential to be a
device for monitoring PA if its concurrent validity is confirmed.

Recently, the MD2K team released MotionSense HRV, an upgraded version of the
MotionSense that additionally includes a multispectral photoplethysmography (PPG)
sensor [14,15]. With the additional sensors, the MotionSense HRV is capable of measuring
various physiological and behavioral variables, including smoking events, heart rates,
eating episodes, cocaine use, and brushing teeth [5,8,14,15]. The MotionSense HRV is
paired with a smartphone via Bluetooth Low Energy. It transfers raw data to the mCerbrum
mobile application, an open-source mobile software platform developed by MD2K that
stores and processes the raw data to make real-time inferences about the user’s state using
machine learning models that can be used to trigger interventions on the mobile phone [16]
The mCerebrum application allows the MotionSense HRV to collect data at a high sampling
frequency (i.e., ≥70 million samples/day) and compute the data in real time. The use of
the MotionSense HRV and mCerebrum enables researchers to monitor users’ physiological
(e.g., heart rate) and behavioral changes (e.g., levels of PA) [5,17].

PA plays a critical role in reducing the risks of obesity, diabetes, cancer, and cardiovas-
cular diseases [18], thus, the study of PA is becoming a top-priority area in public health
and clinical research. However, due to the complexity and intermittent patterns of PA
performed in daily life, accurately assessing an individual’s PA level through subjective
measures (i.e., self-reported questionnaires) is particularly challenging as the methods are
vulnerable to recall and social-desirable biases [19]. Accelerometry-based activity monitors
have been widely accepted as devices that can objectively assess an individual’s PA levels
in free-living conditions [20]. An accelerometer is a sensor that measures the acceleration
of an object’s movement along its reference axes, thus the data it captures reflects the inten-
sity and frequency of movement [21]. MotionSense HRV’s built-in accelerometer records
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accelerations relative to the input force oriented to multi-orthogonal planes of motion
within distinct time intervals (i.e., epochs). Thus, it can be used to estimate the intensity,
duration, and frequency of bodily movements. This suggests that the MotionSense HRV
can potentially be utilized to monitor users’ PA and other behavioral and clinical measures
concurrently. This device can also provide such information to healthcare providers for
enhanced counseling. Despite the great potential of MotionSense HRV in PA monitoring,
the concurrent validity of MotionSense HRV in estimating a user’s PA has not been sys-
tematically evaluated against previously established criterion measures. Establishing the
validity of PA estimates is an essential step toward ensuring that MotionSense HRV can
be used to monitor users’ PA patterns. Therefore, the purpose of this study was to assess
the validity of MotionSense HRV for estimating time spent in sedentary behavior and PA
against indirect calorimetry and a research-grade accelerometer.

2. Materials and Methods
2.1. Design

This cross-sectional study was conducted in both free-living and laboratory-based
simulated free-living settings. Sedentary behavior commonly refers to activities that require
very low energy expenditure (≤1.5 metabolic equivalents), and PA is defined as any bodily
movement produced by the contraction of skeletal muscles that substantially increases
energy expenditure (>1.5 metabolic equivalents). The estimated time spent in sedentary
behavior and physical activities from MotionSense HRV was compared to two criterion
measures: (1) the ActiGraph GT9X accelerometer for a free-living condition; and (2) the
Cosmed K5 portable indirect calorimetry system for simulated free-living conditions.

2.2. Participants

A convenient sample of 20 Pacific Islanders (10 Tongan Americans and 10 Samoan
Americans; age range: 18–65 years) participated in this study. Pacific Islanders are a
population group that suffers from disproportionately high burdens of obesity and its
related health consequences, such as cardiovascular diseases, diabetes, and cancers [22–25].
Considering the potential utilization of the MotionSense HRV for obesity and cancer
patients, we chose Pacific Islanders as our study participants. Participants were recruited
via word of mouth, email, and flyers at the National Tongan American Society and the
Queen Center in Salt Lake City in Utah. The directors and community leaders at those
centers collaborated on recruiting the eligible participants and the follow-up with the
participants of this study. Participants who were able to (1) participate in PA without
any functional impairment, (2) use a smartphone, and (3) communicate in English (speak,
read, and write) were eligible to participate in this study. Exclusion criteria included the
following: (1) anyone with an implanted cardiac device, such as a pacemaker, (2) those who
were physically unable to wear equipment and use a smartphone; (3) individuals who were
pregnant or lactating; and (4) people with any unstable medical or psychiatric problems.
The study protocols were approved by the University of Utah Institutional Review Board
(IRB approval number: 00109145).

2.3. Instruments
2.3.1. MotionSense HRV

The MotionSense HRV is a custom wrist-worn sensor developed by the MD2K. The
MotionSense HRV includes a tri-axial accelerometer and tri-axial gyroscope, a multispectral
(red-, green-, infrared-light emitting diodes) PPG sensor, and a microcontroller [15]. The
MotionSense HRV can track (1) hand gestures and arm movements through accelerometers
and gyroscopes and (2) interbeat intervals from optical sensors for calculating heart rate
variability [5]. Recently, the arm movement tracking of the MotionSense HRV was used
for the puffMarker model, which can detect the timing of a lapse in smoking cessation by
tracking arm movements [8]. Additionally, the MotionSense HRV could potentially be used
to assess stress (i.e., cStress model) by integrating the measures of accelerations, interbeat
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intervals, and heart rate variability [26]. The data collected by the MotionSense HRV are
transmitted to a smartphone in real time using the built-in microcontroller [15]. Given the
evidence, the measures of time spent in sedentary behavior and PA as well as other health
information by the MotionSense HRV in everyday life can potentially provide several
benefits: (1) the periodical or real-time detection of health-related risk factors such as
excessive sedentary behavior; (2) the convenient self-monitoring of various health-related
behaviors with a wrist-worn sensor and mobile application; (3) the real-time sharing of
various types of health information with healthcare providers for efficient counseling;
(4) the delivery of interventions for smoking cessation by identifying smoking patterns.

2.3.2. ActiGraph GT9X Accelerometer

The ActiGraph GT9X Link (GT9X; ActiGraph Corp, Pensacola, FL, ISA) was used as
another criterion method for evaluating the validity of the MotionSense HRV in estimating
time spent in sedentary behavior and PA under free-living conditions. ActiGraph is the
leading manufacturer of research-grade wearable activity monitors; ActiGraph accelerome-
ters are most commonly used to examine sedentary behavior and PA in research [27–32].
The GT9X is the latest generation of research-grade accelerometer produced by ActiGraph.
The GT9X is a small and light (3.5 × 3.5 × 1 cm; 14 g) device that can be worn on the wrist
or at the waist using a manufacturer-provided wrist-strap or belt clip and features a tri-axial
accelerometer at a dynamic range ± 8 g. The GT9X records vertical, anteroposterior, and
mediolateral accelerations at a user-selected sampling rate (30–100 Hz). This device can
be used to estimate a user’s PA intensity, activity and sedentary bouts, and steps taken
at a user-selected epoch length (1–60 s) [27,31]. Previous studies have determined the
validity of GT9X in estimating PA energy expenditure [27,33] and activity intensities [12]
compared to an indirect calorimetry method, as well as wear-time detection compared
to direct observation and self-reported methods [34]. Additionally, the reliability of the
ActiGraph accelerometer for measuring sedentary behavior and PA under free-living condi-
tions was confirmed in a previous study (standard error of the measurement < 11.2%) [35].
Accordingly, GT9X was previously used as a criterion measure to investigate the validity
of consumer-based activity monitors in estimating PA in free-living conditions [36,37]. For
that reason, the current study chose GT9X as a criterion measure to examine the validity
of the MotionSense HRV in estimating time spent in sedentary behavior and PA during
free-living conditions.

2.3.3. Indirect Calorimetry

The Cosmed K5 portable indirect calorimetry system (COSMED, Rome, Italy; K5) was
used as a criterion measurement of PA during a simulated free-living session. Indirect
calorimetry is a non-invasive technique that measures respiratory gas exchange to calculate
energy expenditure. More specifically, indirect calorimetry measures inspired and expired
gas flows, volumes, and concentrations of oxygen (O2) and carbon dioxide (CO2). The
expired concentrations of O2 and CO2 can be used to calculate oxygen uptake (VO2)
and carbon dioxide production (VCO2), which can, in turn, be used to estimate energy
expenditure [38]. Indirect calorimetry is commonly used to calculate respiratory quotient
(CO2 production/O2 uptake) and resting energy expenditure, as well as to determine
caloric needs in research [39–41]. The K5, our criterion measure, is a portable indirect
calorimetry system (174 × 111 × 64 mm and 900 g, including battery and O2 sensor) that is
worn on the back with a harness [42].

Generally, portable indirect calorimetry systems are used for measuring maximal oxy-
gen uptake (VO2max) in specific exercise conditions, validating and calibrating accelerometer-
based physical activity monitors in the laboratory and free-living conditions (up to 6 con-
tinuous hours), and calculating physical activity energy expenditure in free-living condi-
tions [42]. Previous studies have determined the validity and the reliability of the K5. They
showed that the K5′s measurements of metabolic parameters (pulmonary ventilation, oxy-
gen consumption, and carbon dioxide production) were comparable to the measurements
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from the breath-by-breath method of the traditional metabolic cart (Vyntus CPX; Jaeger-
CareFusion, Höchberg, Germany), the automated breathing metabolic simulator (VacuMed
automated system; VacuMed, USA), and the Douglas Bag Method [42–44]. Additionally, a
recent study reported very high intra- and inter-device reliability of the K5 in measuring
pulmonary ventilation, oxygen consumption, and carbon dioxide production (r > 0.99) [44].

Moreover, the K5 has been utilized as a criterion measurement to examine the validity
of wearable activity monitors in estimating activity intensities [45]. The main unit of the K5
communicates with the OMNIA Metabolic software (COSMED, Rome, Italy) on a computer
via Bluetooth and is capable of storing up to 2,048,000 breaths. Prior to the simulated free-
living session, the K5 was calibrated using the manufacturer’s recommendations: (1) a
flow meter calibration using a 3-L syringe, (2) a scrubber calibration that zeros the carbon
dioxide (CO2) analyzer, (3) a reference gas calibration using a reference gas (16% O2, 5%
CO2, 79% nitrogen). During the simulated free-living session, we used the Breath-by-Breath
test mode (measures pulmonary ventilation and gas exchange) to measure oxygen uptake
VO2 (mL·min−1) values [42].

2.4. Procedures

Participants visited the University of Utah PA research laboratory on two separate
occasions (1st visits: free-living session; 2nd visits: simulated free-living session). Upon
arrival at the PA lab for the 1st visit, the participants completed informed consent and a pre-
enrollment survey, which gathers sociodemographic information. Research staff measured
the anthropometric characteristics of each participant using a stadiometer (ShorrBoard®,
Olney, MD, USA) for height (cm), an electric body-scale (Seca 869, Hamburg, Germany)
for weight (kg), and a tape measure (Baseline® Evaluation Instruments, White Plains, NY,
USA) for waist circumference. For the anthropometric measure, the participants were
asked to wear minimal clothing and take off their shoes. Body mass index (BMI, kg/m2)
was calculated based on the measured height and weight. Research staff measured all
the anthropometric characteristics three times to avoid any measurement error. After the
anthropometric measures, participants were fitted with an MotionSense HRV device on
their non-dominant wrist. Then research staff paired the device with a smartphone and
the mCelebrum mobile application, where raw acceleration data from the sensor were
transferred and stored. The sampling rate of the MotionSense HRV was 25 Hz, which is the
default configuration. After fitting the MotionSense HRV, a GT9X device was initialized
with a sampling rate of 100 Hz using ActiLife 6 software (ActiGraph, Pensacola, FL, USA).
The GT9X device was fitted on the participant’s non-dominant wrist using a manufacturer-
provided wrist-strap. The GT9X was secured midway between the radial and the ulnar
styloid processes [12]. Each participant was instructed on how to simultaneously wear
MotionSense HRV and GT9X devices for the next 7 days during all waking hours except
while performing aquatic activities (e.g., bathing or swimming) and charging the devices.
Additionally, the participants were instructed to record (document) their daily sleep times
and any non-wear time during waking hours on the sleep and non-wear time log.

Once the participants returned to the PA lab after the free-living condition, they first
asked to complete the post-enrollment survey, which includes 12 questions about usability
(e.g., the degree of the burden to carry devices and a smartphone, privacy issues, and
troubleshooting experiences) of the MotionSense HRV during the free-living session. Then,
participants were explained on the activity protocol for the simulated free-living session.
During this session, each participant performed the activity protocol for 62 minutes in the
gym. In the activity protocol, a total of 12 activities were categorized into three intensity
categories (i.e., sedentary behavior, light PA, and moderate-to-vigorous PA) according
to the PA compendium [46]. Each activity was selected to simulate activities that are
commonly performed in free-living conditions (Table 1). Following the explanation about
the activity protocol, the participant was fitted with the K5 indirect calorimetry with a
face mask. Additionally, the participant wore the MotionSense HRV and GT9X on their
non-dominant wrist. Participants performed each activity for 5 minutes and took a 1-
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minute break during the transition between each intensity category. Upon completing the
entire activity protocol, data collected from the MotionSense HRV, GT9X, and K5 were
immediately downloaded and securely stored for statistical analyses.

Table 1. Description of activities by intensity.

Intensity Type Activity Duration

Sedentary Behavior

Resting in the supine position 5 min
Watching TV in the sitting position 5 min

Reading books in the sitting position 5 min
Typing computer in the sitting position 5 min

Transit #1 1 min

Light Physical Activity

Fidgeting in the standing position 5 min
Walking at a casual pace (1–1.5 mph) 5 min

Housekeeping/work (i.e., setting the table) 5 min
Exploring/sorting (i.e., stacking light boxes) 5 min

Transit #2 1 min

Moderate-to-Vigorous
Physical Activity

Walking briskly (2.5–3.0 mph) 5 min
Running at a moderate pace (3.5–4.0 mph) 5 min

Running at a fast pace (4.5–5.0 mph) 5 min
Full body free play (e.g., throwing ball,
basketball, soccer, tennis, jumping jack) 5 min

2.5. Data Processing
2.5.1. Activity Monitors

Data from the GT9X and MotionSense HRV were downloaded and saved as their
raw data format using the ActiLife 6 software and the mCerebrum mobile application,
respectively, and both types were converted into “.csv” files for further analyses. The
R-package (http://cran.r-project.org (accessed on 15 January 2021)) designed for reducing
multiday raw acceleration data called the GGIR package (version 1.10-10) [47] was used to
calculate the amount of time spent in sedentary behavior and PA based on the intensity-
specific milli-g cut-points derived from previously validated regression equations [48].
More specifically, the GGIR package calibrates the raw tri-axial acceleration data and
converts it to the Euclidean norm minus one (ENMO;

√
x2 + y2 + z2 − 1g). The ENMO

indicates the value of gravity with negative values rounded to zero [49]. The ENMO
values were categorized into different activity levels per one-second by applying the
intensity thresholds for ENMO derived by Hildebrand et al [48,50]. Following the activity
classification, the processed GT9X and MotionSense HRV data were merged and aligned
into a single dataset. The single activity monitor dataset was collapsed into a 60-s epoch
data for excluding the non-wear and sleep time. Non-wear time and sleep time were
defined and excluded in the ActiLife software using Choi’s Algorithm [51] and self-reported
activity/sleep log from each participant. Choi’s Algorithm detects the non-wear time
if the accelerometer detects consecutive zero counts within a 90-minute window [51].
Additionally, Choi’s Algorithm regards nonzero counts of up to 2 minutes within 30-
minute rolling windows of zero counts as artifactual accelerometer movements (e.g., the
device is accidentally moved on a bedside table) during non-wear periods [51]. In addition,
given that MotionSense HRV’s acceleration data could not be collected at the disconnecting
moments with the smartphone, the times not recorded MotionSense HRV’s data were
considered as invalid times in this study. We only included the data with valid time during
waking hours of each day for statistical analyses.

2.5.2. Indirect Calorimetry

Breath-by-breath data from the K5 were exported in a “.csv” format by a 10-s epoch.
The K5 data were collapsed into a 60-s interval and calculated to the metabolic equivalence
of task (MET; 1 MET = 3.5 ml/kg/min) using measured VO2 (ml/min) and the body

http://cran.r-project.org
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weight (kg) of each participant. Then, the calculated MET were classified into different
activity levels (≤1.5 MET = sedentary behavior, 1.6 − 2.9 MET = Light PA, 3.0 − 5.9
MET = Moderate PA,≥6.0 MET = Vigorous PA). Following the classification, the processed
K5 data was merged with a single activity monitor dataset for statistical analyses.

2.6. Statistical Analysis

Descriptive analyses were conducted to summarize the sociodemographic and anthro-
pometric characteristics of the participants. The normality of data was confirmed using the
Shapiro–Wilk test. Thus, all statistical analyses were performed using parametric statistics.
Pearson correlation coefficients were used to determine the relationship between estimates
from the MotionSense HRV and those from the GT9X or the K5 indirect calorimetry. Mea-
surement errors of the MotionSense HRV in comparison with the criterion measures were
calculated based on mean absolute percent errors. Bland–Altman plots illustrated the
agreement and systematic biases in the estimates of sedentary behavior and PA between
the MotionSense HRV and criterion measures. Equivalence testing was performed to
determine whether sedentary behavior and PA estimates from the MotionSense HRV are
equivalent to those from the GT9X or the K5 indirect calorimetry [52]. The 90% confidence
interval (CI) of the estimates from the MotionSense HRV were compared with the EZ from
the K5 and the GT9X. Since there is no evidence of a universally acceptable EZ range, this
study established a minimum EZ for the K5 and GT9X measures that include 90% CI of the
MotionSense HRV estimates. Data were analyzed using the Stata 14.2 software and SAS
9.4 software (SAS Institute, Cary, NC, USA), and statistical significance was set at p < 0.05.

3. Results

The participant characteristics are presented in Table 2. The mean age of participants
was 32.5 ± 15.1 years. Participants had an average weight of 90.1 ± 12.5 kg, with a BMI
of 30.5 ± 4.0 kg/m2. Moreover, the results of the post-enrollment survey revealed that
participants were generally acceptive of the smartphone and mCerebrum software and had
little concerns over data privacy issues. The majority of the participants (i.e., 75%) were
willing to use the system for longer-term measurements (Table S1).

Table 2. Participant characteristics by gender, mean ± standard deviation.

All (N = 20) Male (N = 8) Female (N = 12) p-Value *

Age (years) 32.5 ± 15.1 29.5 ± 13.1 34.5 ± 16.5 0.48
Height (cm) 172.0 ± 6.9 178.8 ± 2.5 167.5 ± 4.6 <0.01 **
Weight (kg) 90.1 ± 12.5 96.1 ± 13.0 86.1 ± 10.9 0.08
Waist (cm) 97.7 ± 10.9 98.1 ± 13.5 97.5 ± 9.4 0.91

BMI (kg/m2) 30.5 ± 4.0 30.1 ± 4.3 30.7 ± 4.0 0.74
Weight Status (%)

Normal 15% 12.5% 17% 0.78
Overweight/obese 75% 87.5% 83% 0.78

Wear time
(min/day) 297.7 ± 119.7 318.3 ± 158.9 283.9 ± 90.3 0.54

* p-value for gender difference; ** p < 0.05.

We observed very strong correlations for sedentary behavior and PA estimates between
the GT9X and MotionSense HRV (range: r = 0.95 to 0.99, p < 0.01) under free-living
conditions (Figure 1). In the simulated free-living conditions, the correlations between the
K5 and MotionSense HRV were moderate for sedentary behavior (r = 0.51, p = 0.04) and
total PA (r = 0.38, p = 0.13), weak for moderate-to-vigorous PA (r = 0.28, p = 0.28), and very
weak for light PA (r = −0.03, p = 0.91; Figure 2).
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Figure 1. Pearson Correlations (r) for sedentary behavior and physical activity (PA) estimates between
the GT9X and MotionSense HRV (MSHRV) under free-living conditions. SED: sedentary behavior;
LPA: light PA; MVPA: moderate-to-vigorous PA; TPA: total PA; * p < 0.05.
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Figure 2. Pearson Correlations (r) for sedentary behavior and physical activity (PA) estimates between
the Cosmed K5 (K5) and MotionSense HRV (MSHRV) under simulated free-living conditions. SED:
sedentary behavior; LPA: light PA; MVPA: moderate-to-vigorous PA; TPA: total PA; * p < 0.05.



Sensors 2021, 21, 1411 9 of 18

Overall, the mean differences in activity estimates across varying intensities were
relatively small between the GT9X and MotionSense HRV (mean difference range:
−5.7–5.7 min/day; mean absolute present error range: 2.4–9.1%) in the free-living condi-
tions (Table 3). In the simulated free-living conditions, the mean differences in sedentary
behavior and PA estimates between the Cosmed K5 and MotionSense HRV ranged from
−4.1 min to 6.8 min; the mean absolute present error of MotionSense HRV in estimating
sedentary behavior and PA ranged from 12.3% to 44.2% (Table 4).

Table 3. Mean differences (SE) and Mean Absolute Percent Errors of Sedentary behavior and Physical
activity (PA) between the GT9X and MotionSense HRV under free-living conditions.

Intensity GT9X (SD) MotionSense
HRV (SD) Mean diff. (SE) MAPE (%)

SED 237.1 min (97.8) 242.8 min (99.5) −5.7 min (1.7) 2.4%
LPA 38.6 min (15.8) 35.3 min (14.8) 3.3 min (1.1) 8.7%

MVPA 26.4 min (16.2) 24.0 min (15.1) 2.4 min (0.8) 9.1%
TPA 65.0 min (29.3) 59.2 min (27.2) 5.7 min (1.7) 8.8%

MAPE: Mean Absolute Percent Error; SD: standard deviation; SE: Standard Error; SED: sedentary behavior; LPA:
light PA; MVPA: moderate-to-vigorous PA; TPA: total PA.

Table 4. Mean differences (SE) and Mean Absolute Percent Errors of Sedentary behavior and Physical
activity (PA) between the Cosmed K5 and MotionSense HRV under simulated free-living condition.

Intensity Cosmed K5
(SD)

MotionSense
HRV (SD) Mean diff. (SE) MAPE (%)

SED 21.6 min (4.2) 25.7 min (2.6) −4.1 min (0.9) 18.9%
LPA 15.3 min (2.7) 8.5 min (1.6) 6.8 min (0.8) 44.2%

MVPA 17.5 min (3.8) 19.6 min (2.4) −2.1 min (0.9) 12.3%
TPA 32.8 min (3.9) 28.2 min (2.6) 4.6 min (0.9) 14.1%

MAPE: Mean Absolute Percent Error; SD: standard deviation; SE: Standard Error; SED: sedentary behavior; LPA:
light PA; MVPA: moderate-to-vigorous PA; TPA: total PA.

The results from the Bland–Altman plots showed that there was no apparent bias for
the agreement in sedentary behavior and PA estimates between the MotionSense HRV
and GT9X under free-living conditions (Figure 3); however, the results from the simulated
free-living condition revealed that the MotionSense HRV tends to provide lower light PA
estimates compared to the K5 (Figure 4).

The results of the equivalent tests are shown in Tables 5 and 6. The estimates from the
MotionSense HRV were equivalent to those from GT9X when the equivalence zones were
set at 16.5% for sedentary behavior, 23.6% for light PA, 29% for moderate-to-vigorous PA,
and 24.1% for total PA (Table 5). Under the simulated free-living conditions, the estimates
from the MotionSense HRV reached equivalence when the equivalence zones of the K5
were set at 24.1% for sedentary behavior, 48.6% for light PA, 18.2% for moderate-to-vigorous
PA, and 17.5% for total PA (Table 6).
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Figure 3. Bland–Altman plots illustrating the level of agreement in sedentary behavior and PA
estimates between the GT9X and MotionSense HRV (MSHRV) under free-living conditions. Dashed
lines show 95% limits of agreement (±1.96 standard deviation). SED: sedentary behavior; LPA: light
PA; MVPA: moderate-to-vigorous PA; TPA: total PA.
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Figure 4. Bland–Altman plots illustrating the level of agreement in sedentary behavior and PA
estimates between the Cosmed K5 and MotionSense HRV (MSHRV) under simulated free-living
conditions. Dashed lines show 95% limits of agreement (±1.96 standard deviation). SED: sedentary
behavior; LPA: light PA; MVPA: moderate-to-vigorous PA; TPA: total PA.
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Table 5. 90% Confidence Intervals (CIs) from the MotionSense HRV and Equivalence Zones (EZs) from the GT9X in
free-living conditions.

Intensity GT9X (SE) MotionSense
HRV (SE)

90% CI of
MotionSense

HRV

EZ of
GT9X EZ (%)

SED 237.1 min (4.2) 242.8 min (22.4) 198.18 to 275.7
min/d

197.98 to 276.2
min/d 16.5%

LPA 38.6 min (3.6) 35.3 min (3.2) 29.51 to 40.7 min/d 29.49 to 47.71
min/d 23.6%

MVPA 26.4 min (3.7) 24.0 min (3.3) 18.74 to 30.28
min/d

18.72 to 34.01
min/d 29.0%

TPA 65.0 min (6.7) 59.2 min (5.9) 49.35 to 69.87
min/d

49.31 to 80.62
min/d 24.1%

SE: standard error; SED: sedentary behavior; LPA: light PA; MVPA: moderate-to-vigorous PA; TPA: total PA.

Table 6. 90% Confidence Intervals (CIs) from the MotionSense HRV and Equivalence Zones (EZs) from the K5 indirect
calorimetry in simulated free-living conditions.

Intensity Cosmed K5 (SE) MotionSense
HRV (SE)

90% CI of
MotionSense

HRV

EZ of
Cosmed K5 EZ (%)

SED 21.6 min (4.2) 25.7 min (2.6) 24.64 to 26.85
min/d

16.43 to 26.86
min/d 24.1%

LPA 15.3 min (2.7) 8.5 min (1.6) 7.88 to 9.2 min/d 7.86 to 22.73 min/d 48.6%

MVPA 17.5 min (3.8) 19.6 min (2.4) 18.60 to 20.63
min/d

14.29 to 20.65
min/d 18.2%

TPA 32.8 min (3.9) 28.2 min (2.6) 27.06 to 29.25
min/d 27.03 to 38.5 min/d 17.5%

SE: standard error; SED: sedentary behavior; LPA: light PA; MVPA: moderate-to-vigorous PA; TPA: total PA.

4. Discussion

The current study evaluated the concurrent validity of the MotionSense HRV for
estimating time engaged in sedentary behavior and PA against two previously established
criterion measures. Our overall findings indicated that the MotionSense HRV can provide
reasonably comparable measures of time spent in sedentary behavior and different PA
intensities in comparison to the GT9X, which is the most widely accepted objective method
for PA measurement in free-living conditions [53,54]. However, the estimates from the
MotionSense HRV were less comparable when compared with those from K5 indirect
calorimetry during simulated free-living conditions. More specifically, the MotionSense
HRV tends to overestimate sedentary behavior and moderate-to-vigorous PA but underes-
timate light PA and total PA. These specific findings would be valuable to researchers and
clinicians considering using the MotionSense HRV for comprehensively evaluating various
health-related behaviors in a large population.

Findings in free-living conditions demonstrated that the actual mean differences
(−5.7–5.7 min/day) and the mean absolute percent errors (2.4–9.1%) were relatively small
between the MotionSense HRV and GT9X, suggesting that the MotionSense HRV has
promising potential to accurately assess sedentary behavior and PA patterns under true
free-living conditions. The mean bias and mean absolute percent error values provide a
valuable indicator to determine if the MotionSense HRV accurately estimates sedentary
behavior and PA patterns. Although it is challenging to directly compare our results with
other studies due to the absence of published data, the observed mean absolute percent
errors of the MotionSense HRV against GT9X across sedentary behavior and PA estimates
can be compared with previous studies that assessed the accuracy of activity monitors
compared to the ActiGraph in free-living conditions. In general, studies that used the
ActiGraph as a criterion measure under free-living conditions indicated that the mean
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absolute percent error of 15% or less is an acceptable degree of error for sedentary behavior
and PA estimates [55–57]. In light of the relatively low mean absolute percent error values,
the present study indicated that the MotionSense HRV had a high accuracy across the
activity intensity classification. Moreover, these results can be interpreted against previous
validation studies that compared the outcomes between devices worn at different body
locations (e.g., hip, wrist, or ankle) [54,58]. It has been reported that the accelerometer
performance may vary with the device placement site [59–61] suggesting that the validity
determined between the devices worn at different body site could be limited. Unlike those
studies, our study directly compared the SED and PA estimates between the MotionSense
HRV and GT9X, as both devices were placed on the same wrist and used for the same
data processing algorithm using raw acceleration signals [58,62]. Due to the observed
agreements for sedentary behavior and PA estimates between the MotionSense HRV and
GT9X, the MotionSense HRV can be considered a valid device to measure the total spectrum
of activity, including sedentary behavior and all PA intensities [63].

It is worth noting that the measurement errors in sedentary behavior and light PA were
greater for the comparison with the indirect calorimetry than the GT9X. More specifically,
the MotionSense HRV showed a large degree of underestimation for light PA relative
to the K5 indirect calorimetry, indicating that light PA could be misclassified as either
sedentary behavior or moderate PA. One possible explanation for the observed difference
in the light PA estimate could be due to the limited number of activities prescribed at
light intensity levels in the simulated free-living conditions. It is also speculated that
some participants might have relatively low or high magnitudes of wrist movement
when standing or performing certain activities for a short duration within light PA under
the simulated free-living condition. Since the estimations of sedentary behavior and
PA were based on the amount of wrist acceleration measured by the MotionSense HRV,
the degree of wrist movements at the prescribed light PA might directly influence the
magnitude of wrist acceleration measured by the MotionSense HRV. A previous study
using the ActiGraph accelerometer demonstrated that the locomotive movements could be
considered as sedentary behavior since the magnitude of wrist acceleration while standing
corresponds to that of acceleration during sedentary activities in the lab-based activity
protocol [48]. Accordingly, the MotionSense HRV may record low acceleration signals
during locomotive activities involving limited arm movements, thus misclassifying light
PA as sedentary behavior while performing the prescribed activities during the simulated
free-living conditions. Likewise, the magnitude of wrist acceleration during a certain light
PA with a lot of wrist movements might exceed the threshold for the light PA, resulting
in the MotionSense HRV underestimating the light PA time. Consequently, our findings
may suggest that the MotionSense HRV may not be an ideal device to measure activity
estimates or energy expenditure for light PA in laboratory-based settings or a short period
of time. Nonetheless, given that people use various arm movements even when standing
in true free-living conditions, the MotionSense HRV is still an acceptable measurement tool
to estimate the time spent in sedentary behavior and PA for clinical and research purposes.

In the present study, we examined the MotionSense HRV’s accuracy at both the
individual and group level. Evaluating the degree of systematic error at the individual
level may be more stringent because, unlike the measurement at the group level, the
measurement errors may not be offset by the larger sample at the individual level [64].
The results from the Bland–Altman plots across all activity intensities showed that the
mean biases in the estimates between MotionSense HRV and GT9X were small, and only
one individual bias fell outside of the 95% limits of agreement. These findings suggest
that the MotionSense HRV yielded relatively precise SED and PA estimates compared
to the GT9X at the individual level under free-living conditions [64,65]. Moreover, we
used equivalence testing to directly assess agreement between the MotionSense HRV and
criterion measures at the group level [52,66]. Due to the absence of a universally acceptable
equivalence zone range, the current study attempted to examine the relative equivalency,
which is actual equivalence zone of the MotionSense HRV against the criterion measures,
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instead of determining the equivalence of the MotionSense HRV in a dichotomous manner
by setting a priori a specific zone of equivalence [64]. Additionally, equivalence testing
was a rigorous analytic method to assess agreement for the MotionSense HRV against
the criterion measures, so it would not be used alone to define the agreement. Instead, it
facilitated the evaluation of systematic error with other analytic methods, such as mean
absolute present error and Bland–Altman plot. Using this approach, we were able to
identify the actual equivalence regions where the 90% confidence intervals of the estimates
from the MotionSense HRV completely fall within the mean estimates from the criterion
measures. These findings also demonstrated that the MotionSense HRV had a relatively
low measurement error at the group level in estimating sedentary behavior compared to
light PA and moderate-to-vigorous PA under free-living conditions, supporting the results
of other statistical analyses in this study. Thus, the findings from the equivalence testing
could help researchers and clinicians to make more informed decisions on the validity of
the MotionSense HRV for future use in research and in practical settings.

With the ever-increasing interest in mobile health (mHealth), the utility of a wearable
device for monitoring various physiological and behavioral factors influencing health
conditions is an essential component of the mHealth system [3]. The MotionSense HRV,
a wrist-worn mHealth device, is capable of measuring hand gestures and bodily move-
ments via accelerometers and gyroscopes and interbeat intervals via PPG sensors [5]. In
addition, the MotionSense HRV could provide more efficiency in data management than
using multiple sensors measuring individual factors, because it is compatible with the
mCerebrum mobile application that enables processing data from multiple sensors in an
integrated way [5,17]. Notably, the data from the MotionSense HRV can be used to analyze
activity patterns, stress, smoking events, and eating habits through specific algorithms
within the mCerebrum [5,8,14,15]. Moreover, the mCerebrum mobile application supports
data quality assessment and privacy management for sensor and self-report data collected
by participants in both lab and field settings and wirelessly transmits the processed data
to a cloud platform (called Cerebral Cortex) [5], allowing clinicians and researchers to
use various biological and behavioral data just in time [3,5,17]. Therefore, the Motion-
Sense HRV would be a useful mHealth device to accurately and comprehensively evaluate
users’ various health-related behaviors along with PA patterns for patient-centered lifestyle
change intervention and large-scale epidemiologic studies [17,67].

It is also noteworthy that the MotionSense HRV has great potential for improving its
accuracy by integrating the data from other equipped sensors such as a 3-axis gyroscope
and the photoplethysmogram (PPG) sensor, which can measure the angular motion, force,
and orientation of the body in three dimensions and heart rate (HR) [68,69]. Indeed, a
recent study reported that the combined use of gyroscope and accelerometer data in the
wrist-worn ActiGraph GT9X reduced the measurement error in estimating moderate-to-
vigorous PA compared with the estimates derived from accelerometry data alone [27]. This
suggests that, along with the MotionSense HRV’s primary three-axis accelerometer, the
use of multiple sensors together can improve the accuracy of measuring PA, as they allow
one to measure very comprehensive and sophisticated bodily movements [70]. Another
significant enhancement that the MotionSense HRV has over other accelerometer-only
devices is the availability of a PPG sensor, which can measure HR [5,71]. Given the direct
relationship between activity intensity and HR, adding HR data to the accelerometry-only
algorithm has been shown to increase the device’s accuracy for estimating the amount and
intensity of PA that particularly involved fewer arm movements (e.g., lower body dominant
resistance exercise) [72,73]. An additional unique feature of the MotionSense HRV is GPS
data capability. Compatible with smartphones, the smartphone’s GPS data can be synced
with the data from the MotionSense HRV unit and then processed together via a mobile
application installed on the smartphone called mCerebrum. Adding GPS data into the
accelerometer-only algorithms could significantly improve the quality of the measurements,
as it can incorporate rich information, including grades and locations, which particularly
improve assessing PA performed outdoors. Although algorithms that incorporate all the
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data from multiple sensors and GPS has not been developed and thus the validity of these
additional features in estimating PA was untestable in the present study, the MotionSense
HRV has tremendous potential to improve its validity and usability further when the utility
of its additional sensors in measuring PA is determined in subsequent research.

This study has strengths that should be highlighted. We assessed the validity of the
MotionSense HRV comprehensively in both lab-based and free-living conditions using
high-quality criterion measures [42–44,64,74]. Moreover, we measured PA in free-living
conditions for more than seven days, including at least one weekend day, in order to
ensure a high reliability of PA measurement [75]. This approach was critical for deter-
mining the validity of MotionSense HRV against GT9X because the longer measurement
period in this study provided more representative measures of habitual PA during free-
living conditions [75,76] compared to other recent studies that determined the validity of
accelerometers based on only 1–2 days of measurement [62,77].

This study also has limitations that are worth mentioning. Our sample consisted of
Pacific Islanders and was relatively small in size, which may limit the generalizability of the
findings from this study. However, the observed PA pattern in our sample (24–26 min/day
of moderate-to-vigorous PA) was not significantly different from that in generally healthy
populations; thus, the ethnic characteristics of our sample should not be considered as a
major threat to internal validity in this study. Another limitation of this study was that
basal metabolic rate (BMR) was not measured during the lab session. Although using the
true BMR rather than resting metabolic rate is more desirable for estimating MET values,
the BMR test requires a significant participant burden (i.e., 12-hour fasting) as well as
exclusive lab settings (i.e., sleep lab), which was not feasible for the present study. Lastly,
this study could not measure aquatic activities performed during free-living conditions
because the MotionSense HRV is not completely waterproof.

5. Conclusions

The MotionSense HRV can provide reasonably valid sedentary behavior and PA
estimates in relation to the GT9X in free-living conditions. Relative to the K5 indirect
calorimetry, however, we found that the MotionSense HRV had sizable measurement errors
for sedentary behavior in lab-based and/or short-term research. Considering the accuracy
of MotionSense HRV’s sedentary behavior and PA estimates under free-living conditions,
we confirmed the promising potential of using MotionSense HRV alone to monitor a variety
of health-related behaviors, including PA patterns, stress response, smoking events, and
eating habits, for research and clinical purposes. Accordingly, this study suggests that
the developers of the MotionSense HRV should consider adding specific algorithms that
measure the user’s daily sedentary behavior and PA patterns using the internal sensors of
the MotionSense HRV.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-822
0/21/4/1411/s1. Table S1: evaluation of the usability of the MotionSense HRV, mean ± standard
deviation or percent.

Author Contributions: Conceptualization, N.W., W.B., S.K. (Sunku Kwon), E.E., D.W.W., C.Y.L., and
M.W.; Methodology, S.K. (Sunku Kwon) and W.B.; Software, S.K. (Sunku Kwon), W.B., and E.E.;
Validation, S.K. (Sunku Kwon), N.W., R.D.B., T.A.B., Y.K., and W.B.; Formal Analysis, S.K. and W.B.;
Investigation, S.K. (Santosh Kumar), N.W., and W.B.; Resources, S.K. (Sunku Kwon), N.W., E.E., and
W.B.; Data Curation, S.K. (Sunku Kwon) and W.B.; Writing—Original Draft Preparation, S.K. (Sunku
Kwon) and W.B.; Writing—Review and Editing, S.K. (Sunku Kwon), N.W., R.D.B., T.A.B., Y.K., S.K.
(Santosh Kumar), C.Y.L., and W.B.; Visu-alization, S.K. (Sunku Kwon) and W.B.; Supervision, W.B.;
Project Administration, S.K. (Sunku Kwon), N.W., and W.B.; Funding Acquisition, N.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by a Pilot Project Award from the American Cancer Society
(ACS) Huntsman Cancer Institute Institutional Research Grant.

https://www.mdpi.com/1424-8220/21/4/1411/s1
https://www.mdpi.com/1424-8220/21/4/1411/s1


Sensors 2021, 21, 1411 15 of 18

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board at University of Utah
(protocol code: IRB_00109145 and date of approval: 6 February 2018).

Informed Consent Statement: Informed consent was obtained from all the participants involved in
the study.

Data Availability Statement: The datasets of the current study are available from the authors on
reasonable request.

Acknowledgments: The authors thank all the participants of this study and the research assistants
who supported the data collection process.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. mHealth: New Horizons for Health through Mobile Technologies; World Health Organization: Geneva,

Switzerland, 2011.
2. Kotz, D.; Gunter, C.A.; Kumar, S.; Weiner, J.P. Privacy and security in mobile health: A research agenda. Computer 2016, 49,

22–30. [CrossRef]
3. Kumar, S.; Nilsen, W.; Pavel, M.; Srivastava, M. Mobile health: Revolutionizing healthcare through transdisciplinary research.

Computer 2013, 46, 28–35. [CrossRef]
4. Martin, C.K.; Gilmore, L.A.; Apolzan, J.W.; Myers, C.A.; Thomas, D.M.; Redman, L.M. Smartloss: A personalized mobile health

intervention for weight management and health promotion. JMIR mHealth uHealth 2016, 4, e18. [CrossRef]
5. Kumar, S.; Abowd, G.; Abraham, W.T.; Al’Absi, M.; Chau, D.H.; Ertin, E.; Estrin, D.; Ganesan, D.; Hnat, T.; Hossain, S.M.; et al.

Center of excellence for mobile sensor data-to-knowledge (MD2K). IEEE Pervasive Comput. 2017, 16, 18–22. [CrossRef]
6. Kumar, S.; Abowd, G.D.; Abraham, W.T.; Al’Absi, M.; Beck, J.G.; Chau, D.H.; Condie, T.; Conroy, D.E.; Ertin, E.; Estrin, D.; et al.

Center of excellence for mobile sensor data-to-knowledge (MD2K). J. Am. Med. Inform. Assoc. 2015, 22, 1137–1142.
[CrossRef] [PubMed]

7. Razzak, M.I.; Imran, M.; Xu, G. Big data analytics for preventive medicine. Neural Comput. Appl. 2019, 32, 4417–4451.
[CrossRef] [PubMed]

8. Saleheen, N.; Ali, A.A.; Hossain, S.M.; Sarker, H.; Chatterjee, S.; Marlin, B.; Ertin, E.; Al’Absi, M.; Kumar, S. puffMarker: A
multi-sensor approach for pinpointing the timing of first lapse in smoking cessation. In Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 9–11 September 2015.

9. Ertin, E.; Stohs, N.; Kumar, S.; Raij, A.; al’Absi, M.; Shah, A. AutoSense: Unobtrusively wearable sensor suite for inferring the
onset, causality, and consequences of stress in the field. In Proceedings of the 9th ACM Conference on Embedded Networked
Sensor Systems, Seattle, WA, USA, 1–4 November 2011.

10. Center of Excellence for Mobile Sensor Data-to-Knowledge. AutoSense. Available online: https://md2k.org/documentation/
data_dictionary/raw_streams/autosense.html (accessed on 12 September 2019).

11. Center of Excellence for Mobile Sensor Data-to-Knowledge. MotionSense. Available online: https://md2k.org/documentation/
data_dictionary/raw_streams/motionsense.html (accessed on 12 September 2019).

12. Rhudy, M.B.; Dreisbach, S.B.; Moran, M.D.; Ruggiero, M.J.; Veerabhadrappa, P. Cut points of the Actigraph GT9X for moderate
and vigorous intensity physical activity at four different wear locations. J. Sports Sci. 2020, 38, 503–510. [CrossRef]

13. Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (NHANES): Physical Activity
Monitor (PAM) Procedures Manual; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention:
Hyattsville, MD, USA, 2014.

14. Center of Excellence for Mobile Sensor Data-to-Knowledge. MotionSense HRV. Available online: https://md2k.org/
documentation/data_dictionary/raw_streams/motionsensehrv.html (accessed on 12 September 2019).

15. Holtyn, A.F.; Bosworth, E.; Marsch, L.A.; McLeman, B.; Meier, A.; Saunders, E.C.; Ertin, E.; Ullah, A.; Samiei, S.A.;
Hossain, M.; et al. Towards detecting cocaine use using smartwatches in the NIDA clinical trials network: Design, rationale, and
methodology. Contemp. Clin. Trials Commun. 2019, 15, 100392. [CrossRef]

16. Liao, P.; Dempsey, W.; Sarker, H.; Hossain, S.M.; Al’Absi, M.; Klasnja, P.; Murphy, S. Just-in-time but not too much: Determining
treatment timing in mobile health. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 179. [CrossRef] [PubMed]

17. Hossain, S.M.; Hnat, T.; Saleheen, N.; Nasrin, N.J.; Noor, J.; Ho, B.-J.; Condie, T.; Srivastava, M.; Kumar, S. mCerebrum: A mobile
sensing software platform for development and validation of digital biomarkers and interventions. In Proceedings of the 15th
ACM Conference on Embedded Network Sensor Systems, Delft, The Netherlands, 5–8 November 2017.

18. World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzer-
land, 2010.

19. Adams, S.A.; Matthews, C.E.; Ebbeling, C.B.; Moore, C.G.; Cunningham, J.E.; Fulton, J.; Hebert, J.R. The effect of social desirability
and social approval on self-reports of physical activity. Am. J. Epidemiol. 2005, 161, 389–398. [CrossRef] [PubMed]

http://doi.org/10.1109/MC.2016.185
http://doi.org/10.1109/MC.2012.392
http://doi.org/10.2196/mhealth.5027
http://doi.org/10.1109/MPRV.2017.29
http://doi.org/10.1093/jamia/ocv056
http://www.ncbi.nlm.nih.gov/pubmed/26555017
http://doi.org/10.1007/s00521-019-04095-y
http://www.ncbi.nlm.nih.gov/pubmed/32205918
https://md2k.org/documentation/data_dictionary/raw_streams/autosense.html
https://md2k.org/documentation/data_dictionary/raw_streams/autosense.html
https://md2k.org/documentation/data_dictionary/raw_streams/motionsense.html
https://md2k.org/documentation/data_dictionary/raw_streams/motionsense.html
http://doi.org/10.1080/02640414.2019.1707956
https://md2k.org/documentation/data_dictionary/raw_streams/motionsensehrv.html
https://md2k.org/documentation/data_dictionary/raw_streams/motionsensehrv.html
http://doi.org/10.1016/j.conctc.2019.100392
http://doi.org/10.1145/3287057
http://www.ncbi.nlm.nih.gov/pubmed/30801052
http://doi.org/10.1093/aje/kwi054
http://www.ncbi.nlm.nih.gov/pubmed/15692083


Sensors 2021, 21, 1411 16 of 18

20. Mathie, M.J.; Coster, A.C.F.; Lovell, N.H.; Celler, B.G. Accelerometry: Providing an integrated, practical method for long-term,
ambulatory monitoring of human movement. Physiol. Meas. 2004, 25, R1–R20. [CrossRef]

21. Yang, C.-C.; Hsu, Y.-L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 2010,
10, 7772–7788. [CrossRef]

22. Bacong, A.M.; Holub, C.; Porotesano, L. Comparing obesity-related health disparities among native Hawaiians/Pacific islanders,
Asians, and whites in California: Reinforcing the need for data disaggregation and operationalization. Hawaii J. Med. Public
Health 2016, 75, 337–344.

23. Madan, A.; Archambeau, O.G.; Milsom, V.A.; Goldman, R.L.; Borckardt, J.J.; Grubaugh, A.L.; Tuerk, P.W.; Frueh, B.C. More than
black and white: Differences in predictors of obesity among native Hawaiian/Pacific islanders and European Americans. Obesity
2012, 20, 1325–1328. [CrossRef] [PubMed]

24. Mau, M.K.; Sinclair, K.; Saito, E.P.; Baumhofer, K.N.; Kaholokula, J.K. Cardiometabolic health disparities in native Hawaiians and
other Pacific islanders. Epidemiol. Rev. 2009, 31, 113–129. [CrossRef] [PubMed]

25. Miller, B.A.; Chu, K.C.; Hankey, B.F.; Ries, L.A.G. Cancer incidence and mortality patterns among specific Asian and Pacific
islander populations in the U.S. Cancer Causes Control 2007, 19, 227–256. [CrossRef] [PubMed]

26. Hovsepian, K.; al’Absi, M.; Ertin, E.; Kamarck, T.; Nakajima, M.; Kumar, S. cStress: Towards a gold standard for continuous
stress assessment in the mobile environment. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, Osaka, Japan, 9–11 September 2015.

27. Hibbing, P.R.; Lamunion, S.R.; Kaplan, A.S.; Crouter, S.E. Estimating energy expenditure with ActiGraph GT9X inertial measure-
ment unit. Med. Sci. Sports Exerc. 2018, 50, 1093–1102. [CrossRef]

28. Shwetar, Y.J.; Veerubhotla, A.L.; Huang, Z.; Ding, D. Comparative validity of energy expenditure prediction algorithms using
wearable devices for people with spinal cord injury. Spinal Cord 2020, 58, 821–830. [CrossRef]

29. Fraser, S.; Ciptaningtyas, R.; Claes, J.; Cornelissen, V.; McDermott, C.; Moyna, N.; Pattyn, N.; Cornelis, N.; Gallagher, A.;
McCormack, C.; et al. Feasibility, acceptability, and clinical effectiveness of a technology-enabled cardiac rehabilitation platform
(physical activity toward health-I): Randomized controlled trial. J. Med. Internet Res. 2019, 22, e14221. [CrossRef]

30. Wennman, H.; Pietilä, A.; Rissanen, H.; Valkeinen, H.; Partonen, T.; Mäki-Opas, T.; Borodulin, K. Gender, age and socioeconomic
variation in 24-hour physical activity by wrist-worn accelerometers: The FinHealth 2017 survey. Sci. Rep. 2019, 9, 6534. [CrossRef]

31. Valkenet, K.; Veenhof, C. Validity of three accelerometers to investigate lying, sitting, standing and walking. PLoS ONE 2019,
14, e0217545. [CrossRef]

32. Ho, C.-S.; Chang, C.-H.; Lin, K.-C.; Huang, C.-C.; Hsu, Y.-J. Correction of estimation bias of predictive equations of energy
expenditure based on wrist/waist-mounted accelerometers. PeerJ 2019, 7, e7973. [CrossRef]

33. Montoye, A.H.K.; Conger, S.A.; Connolly, C.P.; Imboden, M.T.; Nelson, M.B.; Bock, J.M.; Kaminsky, L.A. Validation of
accelerometer-based energy expenditure prediction models in structured and simulated free-living settings. Meas. Phys. Educ.
Exerc. Sci. 2017, 21, 223–234. [CrossRef]

34. Arguello, D.; Andersen, K.; Morton, A.; Freedson, P.S.; Intille, S.S.; John, D. Validity of proximity sensor-based wear-time detection
using the ActiGraph GT9X. J. Sports Sci. 2017, 36, 1502–1507. [CrossRef]

35. Aadland, E.; Ylvisåker, E. Reliability of the Actigraph GT3X+ accelerometer in adults under free-living conditions. PLoS ONE
2015, 10, e0134606. [CrossRef] [PubMed]

36. Kim, Y.; Lochbaum, M. Comparison of polar active watch and waist- and wrist-worn ActiGraph accelerometers for measuring
children’s physical activity levels during unstructured afterschool programs. Int. J. Environ. Res. Public Health 2018, 15, 2268.
[CrossRef] [PubMed]

37. Yang, Y.; Schumann, M.; Le, S.; Cheng, S. Reliability and validity of a new accelerometer-based device for detecting physical
activities and energy expenditure. PeerJ 2018, 6, e5775. [CrossRef]

38. Mtaweh, H.; Tuira, L.; Floh, A.A.; Parshuram, C.S. Indirect calorimetry: History, technology, and application. Front. Pediatr. 2018,
6, 257. [CrossRef] [PubMed]

39. McClave, S.A.; Martindale, R.G.; Kiraly, L. The use of indirect calorimetry in the intensive care unit. Curr. Opin. Clin. Nutr. Metab.
Care 2013, 16, 202–208. [CrossRef]

40. Lev, S.; Cohen, J.; Singer, P. Indirect calorimetry measurements in the ventilated critically ill patient: Facts and controversies—The
heat is on. Crit Care Clin. 2010, 26, e1–e9. [CrossRef]

41. Kim, Y.Y.; Crouter, S.E.S.; Dixon, P.M.P.; Gaesser, G.A.G.; Welk, G.J.G.; Lee, J.-M. Comparisons of prediction equations for
estimating energy expenditure in youth. J. Sci. Med. Sport 2016, 19, 35–40. [CrossRef]

42. Crouter, S.E.; LaMunion, S.R.; Hibbing, P.R.; Kaplan, A.S.; Bassett, D.R., Jr. Accuracy of the Cosmed K5 portable calorimeter. PLoS
ONE 2019, 14, e0226290. [CrossRef] [PubMed]

43. Perez-Suarez, I.; Martin-Rincon, M.; Gonzalez-Henriquez, J.J.; Fezzardi, C.; Perez-Regalado, S.; Galvan-Alvarez, V.; Juan-
Habib, J.W.; Morales-Almo, D.; Calbet, J.A.L. Accuracy and precision of the COSMED K5 portable analyser. Front. Physiol. 2018,
9, 1764. [CrossRef]

44. Guidetti, L.; Meucci, M.; Bolletta, F.; Emerenziani, G.P.; Gallotta, M.C.; Baldari, C. Validity, reliability and minimum de-
tectable change of COSMED K5 portable gas exchange system in breath-by-breath mode. PLoS ONE 2018, 13, e0209925.
[CrossRef] [PubMed]

http://doi.org/10.1088/0967-3334/25/2/R01
http://doi.org/10.3390/s100807772
http://doi.org/10.1038/oby.2012.15
http://www.ncbi.nlm.nih.gov/pubmed/22286530
http://doi.org/10.1093/ajerev/mxp004
http://www.ncbi.nlm.nih.gov/pubmed/19531765
http://doi.org/10.1007/s10552-007-9088-3
http://www.ncbi.nlm.nih.gov/pubmed/18066673
http://doi.org/10.1249/MSS.0000000000001532
http://doi.org/10.1038/s41393-020-0427-5
http://doi.org/10.2196/14221
http://doi.org/10.1038/s41598-019-43007-x
http://doi.org/10.1371/journal.pone.0217545
http://doi.org/10.7717/peerj.7973
http://doi.org/10.1080/1091367X.2017.1337638
http://doi.org/10.1080/02640414.2017.1398891
http://doi.org/10.1371/journal.pone.0134606
http://www.ncbi.nlm.nih.gov/pubmed/26274586
http://doi.org/10.3390/ijerph15102268
http://www.ncbi.nlm.nih.gov/pubmed/30332785
http://doi.org/10.7717/peerj.5775
http://doi.org/10.3389/fped.2018.00257
http://www.ncbi.nlm.nih.gov/pubmed/30283765
http://doi.org/10.1097/MCO.0b013e32835dbc54
http://doi.org/10.1016/j.ccc.2010.08.001
http://doi.org/10.1016/j.jsams.2014.10.002
http://doi.org/10.1371/journal.pone.0226290
http://www.ncbi.nlm.nih.gov/pubmed/31841537
http://doi.org/10.3389/fphys.2018.01764
http://doi.org/10.1371/journal.pone.0209925
http://www.ncbi.nlm.nih.gov/pubmed/30596748


Sensors 2021, 21, 1411 17 of 18

45. Reddy, R.K.; Pooni, R.; Zaharieva, D.P.; Senf, B.; El Youssef, J.; Dassau, E.; Doyle, F.J., III; Clements, M.A.; Rickels, M.R.; Patton, S.R.
Accuracy of wrist-worn activity monitors during common daily physical activities and types of structured exercise: Evaluation
study. JMIR mHealth uHealth 2018, 6, e10338. [CrossRef]

46. Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-
Glover, M.C.; Leon, A.S. 2011 compendium of physical activities. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [CrossRef] [PubMed]

47. Van Hees, V. Accelerometer Data Processing with GGIR. Available online: https://cran.r-project.org/web/packages/GGIR/
vignettes/GGIR.html (accessed on 22 November 2020).

48. Hildebrand, M.; Hansen, B.H.; Van Hees, V.T.; Ekelund, U. Evaluation of raw acceleration sedentary thresholds in children and
adults. Scand. J. Med. Sci. Sports 2016, 27, 1814–1823. [CrossRef]

49. Van Hees, V.T.; Gorzelniak, L.; Dean Leon, E.C.; Eder, M.; Pias, M.; Teherian, S.; Ekelund, U.; Renström, F.; Franks, P.W.;
Horsch, A.; et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of
human daily physical activity. PLoS ONE 2013, 8, e61691. [CrossRef]

50. Hildebrand, M.; Van Hees, V.T.; Hansen, B.H.; Ekelund, U. Age group comparability of raw accelerometer output from wrist- and
hip-worn monitors. Med. Sci. Sports Exerc. 2014, 46, 1816–1824. [CrossRef]

51. Choi, L.; Liu, Z.; Matthews, C.E.; Buchowski, M.S. Validation of accelerometer wear and nonwear time classification algorithm.
Med. Sci. Sports Exerc. 2011, 43, 357–364. [CrossRef]

52. Dixon, P.M.; Saint-Maurice, P.F.; Kim, Y.; Hibbing, P.; Bai, Y.; Welk, G.J. A primer on the use of equivalence testing for evaluating
measurement agreement. Med. Sci. Sports Exerc. 2018, 50, 837–845. [CrossRef]

53. Lyden, K.; Kozey, S.L.; Staudenmeyer, J.W.; Freedson, P.S. A comprehensive evaluation of commonly used accelerometer energy
expenditure and MET prediction equations. Eur. J. Appl. Physiol. 2011, 111, 187–201. [CrossRef]

54. Plasqui, G.; Bonomi, A.G.; Westerterp, K.R. Daily physical activity assessment with accelerometers: New insights and validation
studies. Obes. Rev. 2013, 14, 451–462. [CrossRef]

55. Redenius, N.; Kim, Y.; Byun, W. Concurrent validity of the Fitbit for assessing sedentary behavior and moderate-to-vigorous
physical activity. BMC Med. Res. Methodol. 2019, 19, 29. [CrossRef] [PubMed]

56. Byun, W.; Kim, Y.; Brusseau, T.A. The use of a fitbit device for assessing physical activity and sedentary behavior in preschoolers.
J. Pediatr. 2018, 199, 35–40. [CrossRef]

57. Alharbi, M.; Bauman, A.; Neubeck, L.; Gallagher, R. Validation of Fitbit-Flex as a measure of free-living physical activity in a
community-based phase III cardiac rehabilitation population. Eur. J. Prev. Cardiol. 2016, 23, 1476–1485. [CrossRef] [PubMed]

58. Staudenmayer, J.; He, S.; Hickey, A.; Sasaki, J.E.; Freedson, P.S. Methods to estimate aspects of physical activity and sedentary
behavior from high-frequency wrist accelerometer measurements. J. Appl. Physiol. 2015, 119, 396–403. [CrossRef]

59. Cleland, I.; Kikhia, B.; Nugent, C.; Boytsov, A.; Hallberg, J.; Synnes, K.; McClean, S.; Finlay, D. Optimal placement of accelerometers
for the detection of everyday activities. Sensors 2013, 13, 9183–9200. [CrossRef] [PubMed]

60. Mokhlespour Esfahani, M.; Nussbaum, M. Preferred placement and usability of a smart textile system vs. inertial measurement
units for activity monitoring. Sensors 2018, 18, 2501. [CrossRef] [PubMed]

61. Boerema, S.T.; Van Velsen, L.S.; Schaake, L.; Tönis, T.M.; Hermens, H.J. Optimal sensor placement for measuring physical activity
with a 3D accelerometer. Sensors 2014, 14, 3188–3206. [CrossRef]

62. Rowlands, A.V.; Yates, T.; Davies, M.; Khunti, K.; Edwardson, C.L. Raw accelerometer data analysis with GGIR R-package: Does
accelerometer brand matter? Med. Sci. Sports Exerc. 2016, 48, 1935–1941. [CrossRef]

63. Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Nyström, C.D.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B.
Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and
practical considerations. Sports Med. 2017, 47, 1821–1845. [CrossRef]

64. Welk, G.J.; Bai, Y.; Lee, J.-M.; Godino, J.; Saint-Maurice, P.F.; Carr, L. Standardizing analytic methods and reporting in activity
monitor validation studies. Med. Sci. Sports Exerc. 2019, 51, 1767–1780. [CrossRef] [PubMed]

65. Bai, Y.; Welk, G.J.; Nam, Y.H.; Lee, J.A.; Lee, J.-M.; Kim, Y.; Meier, N.F.; Dixon, P.M. Comparison of consumer and research
monitors under semistructured settings. Med. Sci. Sports Exerc. 2016, 48, 151–158. [CrossRef]

66. Lakens, D.D. Equivalence tests. Soc. Psychol. Pers. Sci. 2017, 8, 355–362. [CrossRef] [PubMed]
67. Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation.

J. Neuroeng. Rehabil. 2012, 9, 21. [CrossRef]
68. Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent

algorithm. In Proceedings of the 2011 IEEE 12th International Conference on Rehabilitation Robotics, IEEE, Zurich, Switzerland,
29 June–1 July 2011. [CrossRef]

69. Burns, A.; Greene, B.R.; McGrath, M.J.; O’Shea, T.; Kuris, B.; Ayer, S.M.; Stroiescu, F.; Cionca, V. SHIMMER™—A wireless sensor
platform for noninvasive biomedical research. IEEE Sens. J. 2010, 10, 1527–1534. [CrossRef]

70. Ndahimana, D.; Kim, E.-K. Measurement methods for physical activity and energy expenditure: A review. Clin. Nutr. Res. 2017,
6, 68–80. [CrossRef]

71. Godino, J.G.; Wing, D.; De Zambotti, M.; Baker, F.C.; Bagot, K.; Inkelis, S.; Pautz, C.; Higgins, M.; Nichols, J.; Brumback, T.; et al.
Performance of a commercial multi-sensor wearable (Fitbit Charge HR) in measuring physical activity and sleep in healthy
children. PLoS ONE 2020, 15, e0237719. [CrossRef]

http://doi.org/10.2196/10338
http://doi.org/10.1249/MSS.0b013e31821ece12
http://www.ncbi.nlm.nih.gov/pubmed/21681120
https://cran.r-project.org/web/packages/GGIR/vignettes/GGIR.html
https://cran.r-project.org/web/packages/GGIR/vignettes/GGIR.html
http://doi.org/10.1111/sms.12795
http://doi.org/10.1371/journal.pone.0061691
http://doi.org/10.1249/MSS.0000000000000289
http://doi.org/10.1249/MSS.0b013e3181ed61a3
http://doi.org/10.1249/MSS.0000000000001481
http://doi.org/10.1007/s00421-010-1639-8
http://doi.org/10.1111/obr.12021
http://doi.org/10.1186/s12874-019-0668-1
http://www.ncbi.nlm.nih.gov/pubmed/30732582
http://doi.org/10.1016/j.jpeds.2018.03.057
http://doi.org/10.1177/2047487316634883
http://www.ncbi.nlm.nih.gov/pubmed/26907794
http://doi.org/10.1152/japplphysiol.00026.2015
http://doi.org/10.3390/s130709183
http://www.ncbi.nlm.nih.gov/pubmed/23867744
http://doi.org/10.3390/s18082501
http://www.ncbi.nlm.nih.gov/pubmed/30071635
http://doi.org/10.3390/s140203188
http://doi.org/10.1249/MSS.0000000000000978
http://doi.org/10.1007/s40279-017-0716-0
http://doi.org/10.1249/MSS.0000000000001966
http://www.ncbi.nlm.nih.gov/pubmed/30913159
http://doi.org/10.1249/MSS.0000000000000727
http://doi.org/10.1177/1948550617697177
http://www.ncbi.nlm.nih.gov/pubmed/28736600
http://doi.org/10.1186/1743-0003-9-21
http://doi.org/10.1109/ICORR.2011.5975346
http://doi.org/10.1109/JSEN.2010.2045498
http://doi.org/10.7762/cnr.2017.6.2.68
http://doi.org/10.1371/journal.pone.0237719


Sensors 2021, 21, 1411 18 of 18

72. Brage, S.; Westgate, K.L.; Franks, P.W.; Stegle, O.; Wright, A.; Ekelund, U.M.; Wareham, N.J. Estimation of free-living energy
expenditure by heart rate and movement sensing: A doubly-labelled water study. PLoS ONE 2015, 10, e0137206. [CrossRef]

73. Reis, V.M.; Vianna, J.M.; Barbosa, T.M.; Garrido, N.; Alves, J.V.; Carneiro, A.L.; Aidar, F.J.; Novaes, J. Are wearable heart
rate measurements accurate to estimate aerobic energy cost during low-intensity resistance exercise? PLoS ONE 2019,
14, e0221284. [CrossRef]

74. Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Mâsse, L.C.; Tilert, T.; McDowell, M. Physical activity in the United States measured by
accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [CrossRef]

75. Rowlands, A.V.; Cliff, D.P.; Fairclough, S.J.; Boddy, L.M.; Olds, T.S.; Parfitt, G.; Noonan, R.J.; Downs, S.J.; Knowles, Z.R.; Beets,
M.W. Moving forward with backward compatibility: Translating wrist accelerometer data. Med. Sci. Sports Exerc. 2016, 48,
2142–2149. [CrossRef]

76. Wolff-Hughes, D.L.; McClain, J.J.; Dodd, K.W.; Berrigan, D.; Troiano, R.P. Number of accelerometer monitoring days needed for
stable group-level estimates of activity. Physiol. Meas. 2016, 37, 1447–1455. [CrossRef] [PubMed]

77. Buchan, D.S.; McSeveney, F.; McLellan, G. A comparison of physical activity from Actigraph GT3X+ accelerometers worn on the
dominant and non-dominant wrist. Clin. Physiol. Funct. Imaging 2018, 39, 51–56. [CrossRef] [PubMed]

http://doi.org/10.1371/journal.pone.0137206
http://doi.org/10.1371/journal.pone.0221284
http://doi.org/10.1249/mss.0b013e31815a51b3
http://doi.org/10.1249/MSS.0000000000001015
http://doi.org/10.1088/0967-3334/37/9/1447
http://www.ncbi.nlm.nih.gov/pubmed/27510765
http://doi.org/10.1111/cpf.12538
http://www.ncbi.nlm.nih.gov/pubmed/30058765

	Introduction 
	Materials and Methods 
	Design 
	Participants 
	Instruments 
	MotionSense HRV 
	ActiGraph GT9X Accelerometer 
	Indirect Calorimetry 

	Procedures 
	Data Processing 
	Activity Monitors 
	Indirect Calorimetry 

	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

