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Abstract

Background: Next-generation sequencing (NGS) enables unbiased detection of pathogens by mapping the
sequencing reads of a patient sample to the known reference sequence of bacteria and viruses. However, for a new
pathogen without a reference sequence of a close relative, or with a high load of mutations compared to its
predecessors, read mapping fails due to a low similarity between the pathogen and reference sequence, which in
turn leads to insensitive and inaccurate pathogen detection outcomes.

Results: We developed MegaPath, which runs fast and provides high sensitivity in detecting new pathogens. In
MegaPath, we have implemented and tested a combination of polishing techniques to remove non-informative
human reads and spurious alignments. MegaPath applies a global optimization to the read alignments and
reassigns the reads incorrectly aligned to multiple species to a unique species. The reassignment not only
significantly increased the number of reads aligned to distant pathogens, but also significantly reduced incorrect
alignments. MegaPath implements an enhanced maximum-exact-match prefix seeding strategy and a SIMD-
accelerated Smith-Waterman algorithm to run fast.

Conclusions: In our benchmarks, MegaPath demonstrated superior sensitivity by detecting eight times more reads
from a low-similarity pathogen than other tools. Meanwhile, MegaPath ran much faster than the other state-of-the-
art alignment-based pathogen detection tools (and compariable with the less sensitivity profile-based pathogen
detection tools). The running time of MegaPath is about 20 min on a typical 1 Gb dataset.

Keywords: Pathogen detection, Shotgun metagenomic sequencing, Next generation sequencing, Abundance
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Background
Detecting pathogens such as bacteria or viruses that
cause infections such as pneumonia and meningitis is an
important step in clinical diagnosis. One problem in
detecting pathogens is that traditional methods of patho-
gen detection are time-consuming, as an infectious
disease may be caused by a large range of pathogens,
which have to be checked one by one. Another problem
is that up to 60% of the pathogens in some infectious
diseases cannot be detected [1]. This can cause a delay
in treatment or even mistreatment of patients.
Unbiased next-generation sequencing (NGS) can de-

tect DNA fragments (reads) of all species in a metage-
nomic sample with a mixture of different species. Those
NGS reads can be classified into different taxa by com-
paring them with a collection of reference sequences,
and pathogens can be detected if some reads match
them. In clinical diagnoses, it is essential that a classifier
can detect a significant number of reads supporting the
potential pathogens and report as few false classifications
as possible to give a high abundance rank to the patho-
gen. Otherwise, the pathogen cannot be distinguished
from background noise, and it will take doctors a long
time to go through a long list of candidates to dig out its
existence.
Existing metagenomic classifiers are not effective for

detecting low-similarity pathogens, i.e., pathogen with a
genome that is not similar to the reference. This is be-
cause most classifiers detect pathogens by constructing a
characteristic profile (e.g., k-mers) for each reference
and assigning reads to species by comparing them with
the reference profiles [2, 3]. When the characteristic pro-
file does not match the genome of low-similarity patho-
gens, this approach fails and results in many incorrect or
non-specific classifications.
Some tools assign reads to reference sequences by

local or semi-global alignment. Using an alignment-
based method, more reads can be assigned to the causal
pathogen, but at the cost of much longer analysis time
(over 4 h for a typical 1 Gb dataset). However, the align-
ment score of reads from a low-similarity pathogen is
conceivably low, and these reads often cannot be
assigned to the causal pathogen specifically, so the
number of reads supporting the causal pathogen is still
too low.
To detect low-similarity pathogens, we developed

MegaPath for NGS-based pathogen detection. It has two
significant contributions. First, instead of assigning each
read to a reference sequence one by one, MegaPath
analyzes all aligned reads globally to sort out a subset of
reads with confident alignments. Then, MegaPath
reassigns the non-specifically aligned reads to the species
with confident alignments and discards spurious
alignments to avoid potential false classifications. The

reassignment increases the number of reads supporting
the causal pathogens and reduces the number of false-
positive assignments. Second, MegaPath implements a
fast alignment-based approach, utilizing an enhanced
maximum-exact-match prefix seeding strategy and a
SIMD-accelerated Smith-Waterman algorithm.
Let us take a metagenomic NGS sample of cerebro-

spinal fluid [4] as an example. The similarity of the
pathogen to reference is 18.9%. Centrifuge [2], CLARK
[5] and Kraken [3], based on characteristic profile, de-
tected 31, 1 and 6 reads from the pathogen, respectively.
The abundance rank of the pathogen was 710, 1488 and
384, respectively. With that, a medical doctor needs to
go through a list of hundreds of species to reach the
causal pathogen. Kraken2 [3] is the successor of Kraken
that applies more sophisticated characteristic profiles. It
detected 74 reads from the pathogen and the abundance
rank of the pathogen went up to 176. SURPI [6] spent
four hours on read alignment and detected 76 reads
from the pathogen, abundance rank at 264. In contrast,
with better alignment tools and global analysis of reads,
MegaPath took less than one hour and detected 608
reads for the pathogen, abundance rank at 33. In our
experiment, MegaPath performed better than the exist-
ing tools, ran faster than the alignment-based tools and
has comparable running time with the less sensitivity
profile-based tools.
In addition to detecting pathogens with known refer-

ence sequences, MegaPath can detect novel pathogens
without any similar DNA-level sequences in the refer-
ence database. MegaPath uses MegaHit [7] to assemble
the reads from the novel pathogens to longer DNA frag-
ments. Since protein sequences are better-conserved
than DNA sequences [8, 9], these DNA contigs from
novel pathogens are then annotated by DNA-protein
alignment [10] to detect related species, genera or
families.

Implementation
Figure 1 shows the workflow of MegaPath. There are
three major steps in MegaPath for detecting pathogens.
First, it applies MegaGuide, an ultrafast NGS aligner
specifically designed for pathogen detection to align
reads to reference sequences of bacteria and viruses.
Then it applies spike polishing to filter spurious
alignments at highly repeated regions. Lastly, it applies a
two-phase taxonomy assignment of reads.

Aligning reads with MegaGuide
MegaGuide is an ultra-fast aligner that follows a seed-
and-extend procedure. In the seeding stage, MegaGuide
searches for maximum-mappable seeds in the read using
a BWT built from the reference sequences. The search
will stop at (or a few bases after) a sequencing error or a
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genomic mutation. A new search will start at the end of
the previous seed. The maximum-mappable seeding
strategy reduces a vast number of short seeds that can-
not be used to find the true alignments. The overlap be-
tween the seeds boosts sensitivity, especially for distant
species. In the extension stage, MegaGuide implements
an improved Smith-Waterman algorithm with each
entry in the dynamic programming tables using 8 bits or
less (instead of the normal implementation using 64
bits). Thus, by applying the 256-bit SIMD instructions,
values of 32 entries can be calculated in parallel.
The reference database is large (the size of the latest

RefSeq is over 30 Gb). It is neither efficient nor necessary
to align all reads to all reference sequences. Thus, the fol-
lowing two types of reads, which are not informative for
pathogen detection, will be filtered out from the down-
stream analysis. First, clinical metagenomic samples are
usually dominated with human DNA (which could be as
high as 95%) that carries no pathogen information. Sec-
ond, short NGS reads sampled from the repetitive or
homologous regions across species, e.g., ribosomal DNA,
are not useful for pathogen detection. MegaPath filters
out the two types of reads by aligning reads to the human
reference genome and a database of homologous regions.
Reads confidently aligned to the human reference genome
or the homologous regions will be removed. The
remaining reads will then be aligned to the pathogen gen-
ome database for pathogen detection.

Spike polishing
Aligning reads to human genome or homologous
regions can detect most of the reads that are not inform-
ative for pathogen detection. However, not all of them
can be detected due to the missing annotation or the
incomplete classification of all possible homologous
regions. To filter out reads sampled from unknown
homologous regions, MegaPath makes use of the read
depth information of each genome. Since MegaGuide
aligns a read to all its possible genome positions, the
read depth of the homologous regions is expected to be
much higher than the other regions. MegaPath calcu-
lates the mean (u) and the standard deviation (sd) of the
read depth of each genome. Continuous regions with a
read depth higher than u + α·sd are defined as spike
regions. All alignments in the spike regions will be
removed from the downstream analysis. We have tried
the value of α from 1 to 100. When α < 10, there are
many regions misidentified as spike regions and are
removed. When α > 50, only a few spike regions were
detected and many homologous regions remain. The
filtering has the best performance for α being from 10 to
50. Thus, we select α = 30 as default.

The two-stage taxonomy assignment algorithm
It is common that a read is aligned to different genomes
with the same (or similar) confidence. These genomes
may be from different species, genus, or even families. A

Fig. 1 The workflow of MegaPath

Leung et al. BMC Genomics 2020, 21(Suppl 6):500 Page 3 of 9



straightforward way to assign a read to a taxon is assign-
ing it to the lowest common ancestor (LCA) of all taxa
the read aligned to. However, this approach leads to a
large number of less specific assignments. MegaPath
implements a two-stage assignment algorithm to in-
crease the specificity. In the first stage, MegaPath assigns
each read to the species they aligned to. We allow a read
to be assigned to multiple species because the sequenced
pathogen might have enriched mutations in some re-
gions, and these regions can look very different from the
correct reference genome. After assigning all the reads,
in the second stage, MegaPath will try to reassign each
of the shared reads to a species using the following
rules.
First, all reads are assigned to one or more species

according to their alignments. A read is tagged by ‘U’ if
it is assigned to only one species, or ‘M’ if assigned to
more than one species. Then, for each species, the num-
bers of ‘U’-tagged reads and the number of ‘M’-tagged
reads are calculated. For a species S, we define
UCount(S) as the number of ‘U’-tagged reads assigned
to S, and AllCount(S) as the number of both ‘U’-tagged
and ‘M’-tagged reads assigned to S. For two species S
and T, we define MCount(S, T) as the number of reads
assigned to both S and T. We say a species S weakly
explains another species T, if 1) AllCount(S) -
MCount(S, T) ≥ r * AllCount(S), and 2) UCount(T) < e *
UCount(S). The default values of r and e are both
0.05. Descriptively, the criteria are interpreted as, 1)
reads aligned to S are likely to be correct alignments
(instead of misaligning read sampled from T) if quite
a number of reads (r = 5%) are not similar to T; 2)
the unique reads that support T might be a coinci-
dence (e = 5%) due sequencing error or misalignment.
We say S explains T if S weakly explains T and no
species weakly explains S.
In the second stage, a read assigned to both S and T

will be reassigned to S only if S explains T. After
reassigning all the shared reads, MegaPath will apply the
LCA algorithm to determine the taxon of each read.

Results
Real datasets with known causal pathogens detected
using traditional methods were used to evaluate the per-
formance of MegaPath, and existing pathogen detection
tools including SURPI [6], Centrifuge [2], CLARK [5],
Kraken and Kraken2 [3]. Centrifuge, CLARK, Kraken,
and Kraken2 construct a characteristic profile for each
reference sequence and detect the existence of patho-
gens by comparing the reads to the constructed profiles.
Kraken2 rans longer but performs better than its prede-
cessor Kraken because it constructs a more sophisticated
profile. These tools ran fast, but their sensitivity is not as
good as the alignment-based tools’ for detecting low-

similarity pathogens. SURPI detects pathogens by
aligning reads to the reference sequences. SUPRI as the
slowest tool, is generally more sensitive than the profile-
based tools. MegaPath, by implementing a fast alignment
strategy and analyzing the read alignments globally,
achieves the highest sensitivity using a reasonable
amount of running time.
We evaluated the tools using three types of data-

sets. First, we compared the sensitivity of the tools on
real metagenomic datasets with known pathogens.
Second, since the abundance rank of the pathogens in
the real metagenomic datasets is unknown, we evalu-
ated the tools based on mock metagenomic datasets
with known relative abundance. Last, we evaluated
the sensitivity and false-positive rate of the tools on
detecting pathogens with different similarity to their
corresponding reference sequence using a real cul-
tured dataset.

Performance on real metagenomic datasets
Nine real metagenomic datasets [4, 11, 12] were used
to evaluate the sensitivity of MegaPath, SURPI [6], Cen-
trifuge [2], CLARK [5], Kraken and Kraken2 [3] on de-
tecting pathogens in real clinical samples. The datasets
include cerebrospinal fluid, nasopharyngeal, and serum
sample with the pathogen confirmed by conventional
methods. Datasets 1 and 3 are two metagenomic NGS
samples of cerebrospinal fluid (CSF) and nasopharyn-
geal (NP) swabs [4]. Datasets 2, 6, and 7 are plasma
samples spiked with different concentrations of HIV
[6]. Datasets 4, 5, 8, and 9 are HCV- or HBV-infected
human livers [11].
Table 1 shows the number of reads and the abundance

rank of the pathogen detected by each tool, sorted in in-
creasing order of similarity between the pathogen gen-
ome and the reference sequence. Using BLASTn [13] as
the aligner, the similarity is measured by the number of
reads sampled from the pathogen that were aligned to
the reference sequence against the number of reads sam-
pled from the pathogen. Since the number of reads from
the pathogen is unknown in the real dataset, we used
those reads detected by the multiple tools as a rough es-
timation. Table 1 shows that when the pathogen genome
is similar to the reference sequence (datasets 6 to 9), all
tools performed quite well, except for dataset 7, in which
the abundance of the pathogen is very low. For those
datasets in which the pathogen genome is varied from
the reference sequence (datasets 1 to 5), although most
of the tools have detected more or less a few reads from
the pathogen, the numbers were too low to tell apart the
pathogen from the background noise, especially for
those profile-based tools. Use dataset 1 as an example,
Centrifuge, CLARK, and Kraken detected 31, 1, and 6
reads, respectively. The abundance rank of the pathogen
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was 710, 1488, and 384, respectively (a doctor will have
to go through a list of over 300 candidate species to dig
out the pathogen). Kraken2 outperformed its predeces-
sor and detected 74 reads from the pathogen, with an
abundance rank at 176. SURPI spent over four hours on
read alignment and detected 76 reads for the pathogen,
with an abundance rank at 264. Notably, MegaPath took
less than one hour and detected 608 reads for the patho-
gen, with an abundance rank at 33. MegaPath performed
the best among the existing tools but ran much faster
than other alignment-based tools. Worth mentioning,
the reference sequences of the low similarity Enterovirus
D in dataset 1 and 3 were drafted and were just recently
accepted to NCBI. We expect the performance of
MegaPath as well as other tools will further improve
using updated NCBI databases with more complete
reference sequences.

Performance on mock metagenomic datasets
The abundance rank of the pathogen is unknown in real
metagenomic datasets. So in addition, we evaluated the
performance of the tools using a mock metagenomic
dataset, which was generated by mixing NGS reads from
3 real datasets: 1) 95% reads from a human sample
(NA12878), 2) 4.75% (5% × 95%) reads from a metage-
nomic dataset with ten species with known abundance
[14], and 3) 0.25% (5% × 5%) reads from a spiked
bacteria. Since the reads from the species are known, the
abundance rank of the spiked bacteria was determined
as rank 4. Bacteria that have different similarities to their
reference sequences were tested and the results are
shown in Table 2.
With high similarity between the bacteria and the ref-

erence sequence (datasets 5 to 12), most tools detected
the spiked bacteria in the top 30 species. However, the
abundance rank detected by other tools was incorrect.
MegaPath detected the correct rank (rank 4 for datasets
7 to 12) or a close rank (rank 6 for datasets 5 and 6) for

the spiked bacteria. A possible explanation is that other
tools discard or randomly assign the reads without a
unique alignment, which leads to error in the abundance
rank. However, MegaPath analyzes all aligned reads
globally and assigns the non-uniquely aligned reads
based on reads that are confidently aligned, leading to a
more accurate abundance rank. For low-similarity
bacteria (datasets 1 to 4), the amount of non-unique
alignments increased. Other tools failed or detected the
bacteria with low abundance ranks. In contrast, Mega-
Path detected the spiked bacteria within the top 14
species.
We also evaluated the sensitivity, precision, and F1-

score of the tools on the mock metagenomic dataset.
The results are shown in Table 3. Since we know the
origin of each read – from the human, the mock
community or the spiked bacteria, a true positive is
defined as a read being assigned correctly to its
origin. Among the results, MegaPath achieved the
highest sensitivity, precision, and F1 score. SURPI has
been left out in Table 3, because it filtered out reads
without annotation, making us unable to get the
number of false-negative reads.

Sensitivity and FDR on mutated species
Since the real assignment to an exact species of an indi-
vidual read is unknown in the real metagenomic datasets
and the mock metagenomic dataset, thus it is unsuitable
for evaluating the false discovery rate (FDR) of the tools.
To evaluate the FDR of the tools, we have done an ex-
periment on 139 NGS datasets of cultured isolated bac-
teria [2] where 1) all reads in each dataset are supposed
to come from a single bacteria, and 2) the similarities
are between 20 and 90%. According to the benchmarks
in the previous two sections, we only benchmarked the
two best performing tools Centrifuge and MegaPath in
this section.

Table 1 Benchmarking results of the pathogen detection tools on nine real metagenomic datasets

Dataset Pathogens Similarity
to
reference

MegaPath SURPI Centrifuge CLARK Kraken Kraken2

rank (# read)

1 Enterovirus D 18.9% 33 (608) 264 (76) 710 (31) 1.5 K (1) 384 (6) 176 (74)

2 Human immunodeficiency virus 19.0% 15 (3.8 K) 63 (1.0 K) 78 (1.3 K) 69 (444) 109 (216) 32 (1.4 K)

3 Enterovirus D 27.9% 622 (202) 788 (50) 2.5 K (14) 2.6 K (8) 1.3 K (9) 1.5 K (17)

4 Hepatitis C virus 36.3% 2 (12 K) 2 (7.4 K) 65 (2.9 K) 15 (2.5 K) 3 (2.4 K) 31 (4.2 K)

5 Hepatitis C virus 38.4% 2 (568) 6 (374) 379 (150) 152 (182) 12 (130) 231 (218)

6 Human immunodeficiency virus 43.9% 3 (54 K) 5 (21 K) 6 (16 K) 4 (13 K) 6 (4.5 K) 2 (18 K)

7 Human immunodeficiency virus 46.1% 187 (41) 421 (19) 859 (18) 430 (18) n/a (0) 496 (19)

8 Hepatitis B virus 69.4% 2 (43 K) 2 (33 K) 18 (19 K) 4 (20 K) 3 (19 K) 7 (20 K)

9 Hepatitis B virus 72.8% 2 (3.0 K) 4 (2.4 K) 191 (1.5 K) 41 (1.5 K) 4 (1.1 K) 94 (1.5 K)
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Figure 2 has shown the sensitivity (a) and FDR (b)
of Centrifuge and MegaPath on each dataset for
assigning reads to the known isolated bacteria. At the
same similarity, higher sensitivity and lower FDR are
expected. As shown, MegaPath consistently outper-
formed Centrifuge. Both the sensitivity and FDR of
the two tools were close at higher similarities. How-
ever, at lower similarities, MegaPath achieved higher
sensitivities and lower FDRs.

Time consumption on real metagenomic datasets
The time complexities of the profile-based tools and the
alignment-based tools are different. Profile-based tools
including Centrifuge, CLARK, Kraken, and Kraken2,

have a time complexity of O(n + ts), where n is the total
number of bases of the input reads, t is the number of
the input reads, and s is the number of species in the in-
put database. Alignment-based tools including MegaPath
and SURPI, have a time complexity of O (nd), where d is
the maximum allowed edit distance between a read and
a reference sequence.
To show the real-time consumption of each tool in

practice, we benchmarked all tools using nine real meta-
genomic datasets. The results are shown in Table 4. All
software tools expect for Kraken2 and CLARK were
benchmarked using two Intel E5–2637 v2 (8 CPU cores)
and 96 GB RAM. Kraken2 and CLARK asked for much
memory, thus they were benchmarked on another faster

Table 3 Sensitivity, precision, and F1-score of the pathogen detection tools on a mock metagenomic dataset

Dataset Spiked Bacteria MegaPath Centrifuge CLARK Kraken Kraken2

F1-score (Sensitivity, Precision)

1 Enterococcus hirae 98.5% (97.1, 99.9%) 96.2% (92.8, 99.9%) 98.0% (96.1, 100%) 97.3% (94.8, 99.9%) 97.7% (95.6, 99.9%)

2 Corynebacterium halotolerans 98.5% (97.1, 100%) 96.3% (92.8, 100%) 98.0% (96.1, 100%) 97.3% (94.8, 100%) 97.8% (95.6, 100%)

3 Clostridium botulinum 98.5% (97.1, 100%) 96.3% (92.8, 99.9%) 98.0% (96.1, 100%) 97.3% (94.8, 100%) 97.8% (95.6, 99.9%)

4 Corynebacterium falsenii 98.5% (97.1, 100%) 96.3% (92.8, 100%) 98.0% (96.1, 100%) 97.3% (94.8, 100%) 97.8% (95.6, 100%)

5 Gardnerella vaginalis 98.6% (97.2, 100%) 96.3% (92.9, 100%) 98.0% (96.1, 100%,) 97.3% (94.8, 100%) 97.8% (95.7, 100%)

6 Pasteurella multocida 98.6% (97.2, 100%) 96.3% (92.9, 100%) 98.0% (96.1, 100%) 97.3% (94.8, 100%) 97.8% (95.7, 100%)

7 Micrococcus luteus 98.6% (97.2, 100%) 96.4% (93.0, 100%) 98.1% (96.2, 100%) 97.4% (94.9, 100%) 97.8% (95.8, 100%)

8 Gallibacterium anatis 98.6% (97.3, 100%) 96.4% (93.0, 100%) 98.1% (96.2, 100%) 97.4% (95.0, 100%) 97.8% (95.8, 100%)

9 Citrobacter freundii 98.5% (97.2, 99.9%) 96.4% (93.0, 99.9%) 98.0% (96.2, 99.9%) 97.4% (95.0, 99.9%) 97.8% (95.8, 99.9%)

10 Haemophilus parainfluenzae 98.6% (97.3, 100%) 96.4% (93.0, 99.9%) 98.1% (96.3, 100%) 97.4% (95.0, 100%) 97.8% (95.8, 100%)

11 Leuconostoc gasicomitatum 98.2% (96.6, 100%) 96.4% (93.0, 99.9%) 98.1% (96.3, 100%) 97.4% (95.0, 100%) 97.9% (95.8, 100%)

12 Human campylobacteriosis 98.6% (97.3, 100%) 96.4% (93.0, 100%) 98.1% (96.3, 100%) 97.4% (95.0, 100%) 97.8% (95.8, 100%)

Table 2 Benchmarking results of the pathogen detection tools on a mock metagenomic dataset

Dataset Spiked bacteria Similarity
to
reference

MegaPath SURPI Centrifuge CLARK Kraken Kraken2

rank (# read)

1 Enterococcus hirae 20.6% 13 (579) 96 (123) 18 (7.3 K) 386 (74) 65 (315) 83 (207)

2 Corynebacterium halotolerans 29.6% 14 (526) n/a (0) 241 (331) 457 (58) 80 (205) 77 (220)

3 Clostridium botulinum 38.3% 8 (1.7 K) 62 (260) 65 (1.5 K) 108 (465) 65 (304) 37 (625)

4 Corynebacterium falsenii 42.1% 9 (1.2 K) n/a (0) 208 (403) n/a (0) 85 (192) 61 (328)

5 Gardnerella vaginalis 56.2% 6 (20.2 K) 23 (7.3 K) 14 (9.7 K) 17 (4.9 K) 13 (4.7 K) 14 (6.6 K)

6 Pasteurella multocida 60.4% 6 (19.8 K) 25 (2.9 K) 21 (6.2 K) 23 (2.8 K) 14 (3.6 K) 14 (5.6 K)

7 Micrococcus luteus 73.7% 4 (25.5 K) 14 (24.7 K) 10 (17.2 K) 13 (12.6 K) 11 (16.6 K) 11 (16.9 K)

8 Gallibacterium anatis 75.8% 4 (37.4 K) 11 (34 K) 10 (17.8 K) 12 (18.3 K) 11 (17.7 K) 11 (18 K)

9 Citrobacter freundii 77.6% 4 (38.5 K) 14 (21.4 K) 8 (27.2 K) 13 (10.4 K) 11 (18.6 K) 12 (18.6 K)

10 Haemophilus parainfluenzae 85.8% 4 (38.7 K) n/a (0) 10 (18.0 K) 12 (20.2 K) 11 (17.4 K) 11 (18.8 K)

11 Leuconostoc gasicomitatum 91.6% 4 (39.0 K) 10 (38.4 K) 9 (21.8 K) 11 (22.6 K) 11 (21.4 K) 11 (21.5 K)

12 Human campylobacteriosis 95.6% 4 (34.6 K) 13 (28.1 K) 8 (30.6 K) 12 (19.0 K) 11 (19.2 K) 11 (18.4 K)
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machine with Intel E5–2695 v2 (24 CPU cores, but only
8 were used) and 192GB RAM. While the database indi-
ces could be reused once built, we did not include the
time for building database indices in Table 4.

Discussion
Next-generation sequencing (NGS) has enabled unbiased
detection of pathogens through mapping the sequencing
reads of a patient sample to the known reference se-
quence of bacteria and viruses. However, existing NGS-
based pathogenic detection tools fail to detect low-
similarity pathogens or usually assign them with a low
rank because the tools fail to assign reads to the refer-
ence sequences correctly. In this paper, we introduced
MegaPath for detecting these low-similarity pathogens.
MegaPath analyzes read alignments globally and uses a
two-phase assignment of reads. We will discuss the
performance of the two-phase assignment design in this
section. Besides, for those novel pathogens without a
reference sequence, we will discuss how MegaPath can
detect them by sequence assembling and how good its
performance is.

Performance of the two-phase assignment of reads
As the mutation rate of bacteria and viruses is high, and
the sequence of some pathogens are unknown, many
pathogens are without a similar reference sequence in
the database. Existing pathogen detection tools often
discard a read sampled from low-similarity regions or
assign the read to an arbitrary position. As a result, a
low-similarity pathogen may not be detected or may be
detected at a low abundance rank. To solve the problem,
MegaPath applies a two-phase assignment of reads. To
evaluate the performance of the two-phase assignment
design, we ran MegaPath with and without a two-phase
assignment on nine real metagenomic datasets.
The results are shown in Table 5. In datasets 1, 3, and

6, the number of reads assigned to the pathogen in-
creases with the two-phase assignment because several
non-uniquely aligned reads from low-similarity regions
have been reassigned to the correct pathogen. Two-
phase assignment not only increases the number of
reads assigned to the correct pathogen, but also reduces
false-positive alignments. In datasets 2, 4 and 7, although
the number of reads assigned to the correct pathogen
did not change, the number of false-positive reads

Fig. 2 (a) Sensitivity and (b) False Discovery Rate (FDR) of Centrifuge and MegaPath

Table 4 Time consumption of six tools. SURPI was running in the “comprehensive mode”

Dataset Pathogens MegaPath SURPI Centrifuge CLARK Kraken Kraken2

1 Enterovirus D 48min 4 h 34 min 4 min 18min 3 min 12min

2 Human immunodeficiency virus 12min 3 h 29 min 1 min 8 min 1 min 7 min

3 Enterovirus D 4 h 55 min 14 h 57min 9 min 22min 28min 13min

4 Hepatitis C virus 1 h 45 min 5 h 13 min 3 min 10min 12min 6 min

5 Hepatitis C virus 1 h 18 min 4 h 6 min 3 min 14min 10min 9 min

6 Human immunodeficiency virus 26min 3 h 51 min 1 min 7 min 1 min 12min

7 Human immunodeficiency virus 11min 3 h 22 min 1 min 8 min 1 min 15min

8 Hepatitis B virus 58min 5 h 9 min 7 min 12min 9 min 28min

9 Hepatitis B virus 1 h 4 min 4 h 20 min 4 min 13min 9 min 1 h 11 min
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aligned to species with a higher abundance rank is re-
duced. As a result, the abundance rank of the correct
pathogen increases. For pathogens similar to the refer-
ence sequence (datasets 8 and 9), the effect of the two-
phase assignment is insignificant because most of the
reads sampled from the pathogen were aligned correctly.

Detecting novel species without a reference
When a pathogen is novel (i.e., without a reference se-
quence in the database), detecting the pathogen using
alignment does not work. MegaPath handles such cases
by performing sequence assembly using MegaHit [9].
MegaPath assembles the unaligned reads and the reads
aligned to viruses, which are known to mutate rapidly,
to construct contigs for novel species.
We evaluated the performance of MegaPath in detect-

ing a novel pathogen using a serum sample from a pa-
tient infected with a novel BASV Rhabdovirus [15]. To
simulate a situation in which BASV is a novel virus, the
DNA and protein sequences of BASV, which were in the
reference sequence database, were removed. As a result,
eight contigs were assembled by MegaPath. The longest
contig was 3131 bp, with a total length of 11,155 bp,
which is close to the average genome size of a virus [16].
SURPI also supports sequence assembly for discovering
novel species. It assembled 15 contigs, the longest contig
was 1726 bp, with a total length of 11,019 bp, both are
shorter than MegaPath. All these contigs are correct be-
cause they can be aligned to the reference sequence of
the BASV Rhabdovirus.

Conclusions
Next-generation sequencing (NGS) enables unbiased de-
tection of pathogens that cannot be achieved using trad-
itional methods, including culture and PCR. Typical
NGS approaches for detecting a pathogen require map-
ping the sequencing reads of a patient sample to the
pathogen’s reference sequences. However, when the

target pathogen has no close relative with a known refer-
ence sequence, or when the pathogen has a high load of
mutations compared to its predecessor, read mapping
often fails due to low similarity between the pathogen
and the reference sequence. As a result, the detection of
such pathogens remains ineffective.
To solve the problem, we developed MegaPath that

performs global analysis of aligned reads in order to in-
crease the mapping rate and mapping quality of reads to
reference sequences, especially for low-similarity patho-
gens. This process is computationally intensive, but
thanks to MegaPath’s highly optimized alignment engine
(MegaGuide), fast and accurate detection of pathogens
was made possible. MegaPath can detect low-similarity
pathogens in a typical metagenomic dataset in around
20min.

Availability and requirements
Project name: Megapath Project
Project home page: https://sourceforge.net/projects/

megapath
Operating system(s): Linux
Programming languages: Perl, BASH, C/C++
Other requirements: docker engine v17.12.0-ce, AVX2

(CPU)
License: GNU GPLv3
Any restrictions to use by non-academics: Nil

Abbreviations
BASV: BAS-congo Virus; CSF: Cerebrospinal Fluid; DNA: DeoxyriboNucleic
Acid; HBV: Hepatitis B Virus; HCV: Hepatitis C Virus; HIV: Human
Immunodeficiency Virus; FDR: False Discovery Rate; LCA: Lowest Common
Ancestor; NGS: Next Generation Sequencing; NP: nasopharyngeal;
SURPI: Sequence-based UltraRapid Pathogen Identification
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