Investigating Risk Factors for Falls Among Community-dwelling Older Adults According to WHO's Risk Factor Model for Falls

Xing Xing Qian¹, Pui Hing Chau¹, Chi Wai Kwan², Vivian WQ Lou^{3,4}, Angela YM Leung⁵, Mandy Ho¹, Daniel YT Fong¹, Iris Chi⁶

¹School of Nursing, The University of Hong Kong, Hong Kong

² Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong

³ Department of Social Work and Social Administration, The University of Hong Kong, Hong Kong

⁴ Sau Po Centre on Aging, The University of Hong Kong, Hong Kong

⁵ School of Nursing, The Hong Kong Polytechnic University, Hong Kong

⁶ School of Social Work, University of Southern California, Los Angeles, CA,

USA

Corresponding author: Pui Hing Chau School of Nursing, The University of Hong Kong, Pokfulam, Hong Kong Tel: (+852) 3917 6626 Email: phpchau@hku.hk

Abstract

Objectives: The World Health Organization developed the Risk Factor Model for Falls to describe fall risks in a comprehensive manner. However, there was a lack of study adopting such framework in quantifying falls risk from different factors in a single model. Therefore, this study examined the risk factors from four domains in the Risk Factor Model for Falls among older adults.

Design: Secondary data analysis of 10-year assessment records of the Minimum Data Set-Home Care instrument.

Setting: Hong Kong.

Participants: 89,100 community-dwelling adults aged 65 and over who first applied for publicly funded long-term care services from 2005 to 2014.

Measurements: The Minimum Data Set-Home Care instrument was used to ascertain older adults' care needs and match them with appropriate services. Additionally, meteorological records from the same period were extracted from the Hong Kong Observatory. The logistic regression model was used to examine risk factors and their associations with falls.

Results: In total 70 factors were included in the analysis, of which 37 were significantly associated with falls. Behavioral risk factors generally had greater odds ratios of falling, as compared with biological, socioeconomic, and environmental factors. Out of all significant factors, functional status, alcohol drinking, and locomotion outdoors had the largest odds ratios of falling.

Conclusion: Behavioral risk factors for falls are of remarkable influence yet are modifiable among older adults. Hence, falls prevention programs may need to prioritize addressing these factors.

Keywords: Falls; risk factors; older population; World Health Organization

Introduction

Generally, around 40% to 60% of falls lead to injuries among the older population, and these injuries result in considerable morbidity, mortality, and high costs to health services (1). It was reported that fall-related injuries account for 40% of the leading cause of older people's long-term institutional care (1). According to the Centers for Disease Control and Prevention, fall-related injuries were responsible for approximately 32,500 deaths, 3 million emergency department visits, and 900,000 hospitalizations in 2018 among older adults aged 65 and over in the US (2). Concerning the financial burden caused by falls, the annual costs spent on falls for older adults aged 65 and over in the US were more than 50 billion in 2015 (3).

Various identified risk factors have been summarized in a previous systematic review, which were age, gender, history of falls, limitation on physical activity, physical disability, instrumental disability, low educational level, use of walking aid, depression, urinary incontinence, rheumatic disease, dizziness and vertigo, increment of comorbidity, self-perceived low health status, fear of falling, Parkinson's disease, use of antihypertensives, and vision impairment (4). According to the Risk Factor Model for Falls developed by the World Health Organization (WHO), these risk factors can be categorized into four dimensions that are biological, socioeconomic, behavioral, and environmental domains (Figure 1) (11). Though risk factors for falls have been extensively studied, only one study has investigated risk factors using the WHO's framework among adults aged 50 and older (6). Meanwhile, only a few studies explored the effects of environmental hazards on falls, together with individual risk factors (7-10). However, these studies only addressed a small number of individual factors and did not involve the meteorological factors from the environmental domain. Identifying the risk factors for falls using the Risk Factor Model for Falls that address the risk factors from different domains simultaneously, allows comparison of the falls risks of factors from different

dimensions, as such it could inform the most prominent domain to target with falls prevention initiatives. Therefore, the present study aimed to examine the risk factors for falls from four domains in the WHO's Risk Factor Model for Falls, among community-dwelling older adults in Hong Kong.

Methods

Data

A retrospective cross-sectional study was conducted. The data set was obtained from the InterRAI Corporation and included the 10-year Minimum Data Set-Home Care (MDS-HC) assessment records of community-dwelling older adults first applying for publicly funded long-term care services in Hong Kong from 2005 to 2014. In Hong Kong, individuals who would like to apply for publicly funded long-term care services have to undergo the standardized assessment by the MDS-HC. Trained assessors conducted the assessment, which included direct questioning of the clients and the primary family caregivers, observation of the clients in their home environment, and a review of secondary documents when available. The MDS-HC is a validated instrument that including nine parts: the general information; the assessment information; the physical and mental patterns; the social supports; the physical function; the health conditions; the living environment; the service utilization; and the medications. Meteorological data from 2005 to 2014 were obtained from the Hong Kong Observatory.

The primary outcome of falls was accessed by a single question in MDS-HC asking the number of falls episodes experienced by the client in the past 90 days. This study extracted and analyzed the data concerning falls outcome (with experiences of falling or not), as well as assessment records of the biological, socioeconomic, behavioral, and environmental domains. The inclusion criteria were those (1) aged 65 years and older, (2) living in their own homes in Hong Kong, and (3) who underwent the MDS-HC assessment when they first applied for publicly funded long-term care services. The exclusion criterion was those with missing information concerning the outcome of falls. After applying selection criteria to select the eligible subjects, 89,100 individuals were included in the data analysis.

Statistical analysis

T-test and Chi-square test were used to compare the characteristics of subjects by their fall status (non-fallers and fallers). The logistic regression model was used to examine the association between various factors and falls. The dependent variable was being a faller (versus being a non-faller). The selection of independent variables was based on the WHO's Risk Factor Model for Falls (11). The independent variables were presented in Table 1. For independent variables in terms of scores, the scores were grouped into classes only when the classes were well defined in the literature. For the IADL-ADL Hierarchy Scale, classes were not well defined, and the score was used as a categorical variable in the regression model because a linear relationship might not hold. The model selection procedure was conducted by using the backward elimination method. Potential multicollinearity was checked by examining VIFs, and variables were removed until all VIFs were below 4 (12). All tests were 2-sided. SPSS version 25.0 was used for data analysis and a significance level of 5% was adopted.

Results

Descriptive statistics

A total of 28,396 subjects (31.9%) experienced at least one fall episode within the previous 90

days (fallers). The majority of subjects were aged between 75 and 84, and 60.1% were female. The mean number of medications taken was 5.4, and hypertension (65.6%) was the most common disease among all subjects. The biological, socioeconomic, behavioral, and environmental characteristics of subjects were presented in Tables 2.

The univariate analysis (T-test or Chi-square) showed that there were significant differences between fallers and non-fallers in most variables from four domains except for these variables: (1) biological factors: gender, vision impairment, severe malnutrition, morbid obesity, coronary artery disease, hypertension, irregularly irregular pulse, peripheral vascular disease, dementia, epilepsy, arthritis, glaucoma, renal failure, and thyroid disease; (2) environmental factors: moved to the current residence within last two years, wind speed, and hazards related to lighting in evening, kitchen, heating and cooling, personal safety (Table 2).

Logistic regression model

There were 70 independent variables initially included in the analysis. After the model selection procedure, 37 independent variables remained in the final model. No variable was further removed as all VIFs were below 4. In the final multiple logistic regression model, the variables that independently associated with falls from four domains were (1) biological factors: male gender, cognitive impairment, functional status, pain, depression, delirium, bladder incontinence, fecal incontinence, unintended weight loss, morbid obesity, congestive heart failure, coronary artery disease, hypertension, hemiplegia, Parkinson's disease, arthritis, psychiatric diagnosis, unitary tract infection, cancer, diabetes, and emphysema/COPD/asthma; (2) socioeconomic factors: marital status, educational level, and living alone; (3) behavioral factors: medication compliance, locomotion indoor, locomotion outdoor, alcohol drinking, and smoking; (4) environmental factors: hazards related to flooring and carpeting, hazards related

to access to home, hazards related to access to room in house, number of very hot days, number of cold days, number of very humid day, number of very dry day, and number of days with heavy rain (Table 3).

Among the 37 significant factors, the magnitudes of the odds ratio of falling ranged from 1.00 to 2.00 for most factors. The factor with the highest odds ratio of falling was functional status, with odds ratios corresponded to different scores of the IADL-ADL Hierarchy Scale ranged from 1.31 to 2.05. The factor with the second-highest odds ratio of falling was alcohol drinking, which had an odds ratio of 1.96. The factor with the third-highest odds ratio of falling was locomotion outdoors, with odds ratios corresponded to different levels of mobility ranged from 1.40 to 1.72. Other than these three factors, the magnitudes of odds ratios of the remaining biological factors ranged from 1.04 to 1.52; those of socioeconomic factors ranged from 1.07 to 1.16; those of the remaining behavioral factors ranged from 1.01 to 1.41. The magnitudes of odds ratios in behavioral factors were generally higher compared with other domains.

After taking account of the environmental and individual factors simultaneously, the results showed that the number of cold days and the number of days with heavy rain were positively associated with the risk of falling. For example, there were 14 cold days in total from December 2012 to February 2013, and the falls risk would be 15% higher than the summer months, which with 0 cold days.

Discussion

The current study investigated associations between falls and factors from four domains in the WHO's Risk Factor Model for Falls among the community-dwelling older population in Hong

Kong. While various risk factors were well studied on their own in different studies, there was a lack of studies that examined the strength of associations of these factors when taking into account all factors in the four domains together. Our findings added to knowledge about the extent and nature of risk factors for falls in four domains and provided a reference for specific areas of focus for falls prevention.

The findings of the present study indicate that, out of all risk factors from four domains in the WHO's Risk Factor Model for Falls, the behavioral risk factors generally had greater odds ratios of falling than biological, socioeconomic, and environmental risk factors. Meanwhile, the risk factors from the socioeconomic domain had the minimum odds ratios of falling. Behavioral risk factors are defined as factors concerning human actions, emotions, or daily choices, and they are potentially modifiable (11). Evidence suggested that behavioral change to a healthy lifestyle in the older population was crucial in encouraging healthy aging and avoiding falls (5). The behavioral intervention was found with flexibility and a promising effect on falls prevention in older adults (13). On the contrary, the socioeconomic risk factors are those related to influence social conditions and economic status of individuals, which are difficult to change (11). Therefore, the efforts on preventing falls among community-dwelling older adults are suggested to focus on the behavioral risk factors to maximize the benefit.

In general, to prevent falls effectively, a multifactorial intervention program has been shown to be effective by addressing multiple risk factors (14, 15). However, in resource-limited situations, if multifactorial interventions are not affordable or accessible, prevention programs might be prioritized toward a particular domain. Our findings showed that risk factors from the behavioral domain had relatively higher falls risks than those from the other three domains in the WHO's framework. When interpreting the odds ratio, a value of 2.00 to 3.00 has been recognized as having a practically significant effect (16). In the behavioral domain, alcohol drinking had an odds ratio of 1.96, which was approaching this practically significant effect

threshold. Therefore, prevention programs targeting the factors from the behavioral domain could be considered. Furthermore, factors from the behavioral domain were mostly modifiable, implying interventions could be implemented. For example, there were cost-effective interventions that could successfully reduce alcohol drinking, smoking, and enhance medicine compliance. Evidence showed that increasing alcohol prices could significantly reduce consumption and the level of alcohol-related problems (17, 18). More intensive interventions, including personalized feedback reports, educational materials, and follow-up, were also reported to effectively reduce alcohol consumption among older adults when maintained up to one year (19). Similarly, the price increase on tobacco products was one of the most valid solutions to reducing smoking (15). Meanwhile, nicotine replacement therapy was the intervention for smoking cessation that most studied, yet limited evidence suggested its effectiveness in the older population (20). For medicine compliance, promising strategies to improve medicine adherence included monitoring through electronic devices, self-report methods, and pill counts (21).

For biological and socioeconomic domains, the odds ratios of falling were small for most risk factors (slightly to moderately exceeded 1.00), except for the functional status in the biological domain. The odds ratios of falling corresponded to different scores of the IADL-ADL Hierarchy Scale ranged from 1.31 to 2.05, of which the odds ratio of 2.05 was considered practically significant (16). Functional status has been well studied as a prominent risk factor for falls (22). At the same time, limited functional status could be associated with the falls outcome (23). As functional status could be both a cause and a consequence of falls within the past 90 days, interpretation of the odds ratios should be paid with extra attention. The same situation might also apply to the use of assistive devices in the behavioral domain. While the use of assistive devices to help with locomotion after falling (24, 25). Despite the limitation in

interpreting the magnitudes of odds ratios in terms of functional status and locomotion, it is still essential to ensure a safe and accessible residential environment as well as more attention from caregivers or communities to reduce the risk of falling for those with functional limitations and need to use assistive devices. Moreover, it is critical to not only instruct the older people the correct method to use the assistive devices safely but also, to educate them on how to avoid falls or other injuries during use.

For the environmental domain, literature suggested that an unfamiliar surrounding environment would increase the risk of falls among older adults (26). However, there were limited studies on this. Our study included a variable on whether the older people moved to the current residence within the last two years. Surprisingly, this factor was not significant, both in univariate analysis and the multiple logistic regression. It might be explained by the tight housing conditions in Hong Kong. Generally, when people are able to move to a new residence, their new residence tends to be improved when comparing to the older one. Hence fewer environmental hazards may present there, which would reduce their risk of falling. On the other hand, our study found that, after taking account of individual risk factors from the other three domains, it was the environmental hazards related to floor and carpeting and the accessibility to house or rooms that were associated with increased fall risks. It is particularly true for a densely populated city such as Hong Kong, where the living environment would be less spacious. Housing design could play a role in improving older adults' living environments to reduce their falls risk (27). Concerning the meteorological conditions less studied, we found that the occurrence of falls occurrence increased with the number of cold days and the number of days with heavy rain. The finding on the number of cold days is consistent with the existing evidence that the falls risk was higher in the winter season (28, 29). Nevertheless, the findings of the impact of rainfall on falls in subtropical regions were contradictory in the published studies, in which one study showed no association between rainfall and falls occurrence in Hong Kong, while another study found rainy days had a greater risk of falling in Taiwan (28, 30). In our study, the number of days with heavy rain was positively associated with falls occurrence, which is consistent with the findings in Taiwan. Possible explanations behind could be the heavy rain makes surfaces slippery, as well as makes cracks and uneven sidewalks difficult to distinguish. These environmental hazards would increase the risk of falling among older adults. Hence, during cold days and heavily rainy days, reminders such as weather alert, broadcast, and message on the television should be implemented for falls prevention.

The strengths of this study are the use of a large cohort and a comprehensive, validated measurement tool. The large sample size included in the study allowed for more reliable results, while the comprehensive and validated instrument improved data collection. Meanwhile, investigating risk factors for falls using the WHO's Risk Factor Model for Falls facilitated the comparison of factors in different domains in terms of their falls risk. The inclusion of factors from biological, socioeconomic, behavioral, and environmental domains at the same time allowed to precisely examine the interrelation between environmental factors and falls when controlling factors from the remaining domains. Nevertheless, the study is limited by its crosssectional nature that it could not determine causal effects. Self-reported fall data were subject to possible recall bias, which may influence the reliability of results. Since the falls outcome only contained the number of falls episodes within the previous 90 days and without the exact date of falling, some of the potential associated factors could be the conditions happened after falls occurrences or even could be the consequences caused by falls, which may weaken the evidence of their associations. Due to the same reason, the investigation of meteorological risk factors for falls was limited to the cumulative impact of weather conditions within the previous 90 days. Additionally, some risk factors for falls, such as balance and mobility, were not included in this study as the analysis was subject to the information in the data set. Therefore, a prospective study addressing more risk factors would be needed in the future.

Conclusion

In conclusion, the present findings demonstrated the strength of associations with falls of risk factors from four domains in the WHO's Risk Factor Model for Falls and recommended prioritization of prevention initiatives of falls.

Figure 1. The Risk Factor Model for Falls derived from WHO (2007)

Risk factors for falls	Independent variables			
Misk factors for fails				
Riological domain				
Gender	Female			
Gender	Male			
Age	A ge of $65-74$			
nge	Age of $75-84$			
	Age of >85			
Cognitive	Measured by the Cognitive Performance Scale			
impoirmont	(CPS) soores range from 0 to 6 with 0 indicating			
impairment	being integet and seers 6 indicating a very severa			
	impoirmont (21)			
Functional	Mangurad by the LADI ADI Hieroraby Scole			
Functional	sectors renge from 0 to 10, with higher sector			
dependency	indicating a high an level of denomden av (22)			
D- :	Magnum d hu the Deire State and a final for the			
Pain	weasured by the Pain Scale, scores range from 0			
	to 5, with 0 representing no pain and 3			
Dava	representing daily severe pain (33)			
Depression	Measured by the Depression Rating Scale (DRS),			
	scores range from 0 to 7, with a score greater than			
	3 meaning likely to be depressed (34)			
Delirium	No			
	Yes			
Hearing/ vision	Measured by a 4-point Likert-scale, with 0 being			
impairment	adequate and 1-3 being impaired in different			
	extent			
Incontinence	Measured by a 6-point Likert-scale, with 0 being			
(bladder/ fecal)	continent, and 5 being incontinent			
Medications	Measured by the number of medications taken			
Medical conditions	Measured by the presence of diseases that could			
	increase the risk of falling, yes or no answer			
Nutritional	Measured by the following items: (1) unintended			
condition	weight loss (5% or more in the last 30 days or			
	10% or more in the last 180 days), (2) severe			
	malnutrition, and (3) morbid obesity. Yes or no			
	answer			
Socioeconomic domain				
Marital status	Married			
	Unmarried/ divorced/ widowed			
Educational level	No formal education/ primary			
	Secondary			
	Tertiary			
Living alone	No			
	Yes			
Health literacy	Measured by the Risk Estimate of Inadequate			
(HL)	Health Literacy (REIHL), scores range from 0 to			
	23, with a score greater than 11 indicating an			
	inadequacy in health literacy (35)			

Table 1. Independent variables included in the current study based on the WHO's Risk Factor Model for Falls

Behavioral domain

	Medication compliance	Measured by a 3-point Likert-scale, with 0 being always compliant, 1 being compliant 80% of time or more, 2 being compliant less than 80% of time
	Locomotion	No assistive device, cane, walker/ crutch,
	(Indoor/ outdoor)	wheelchair/ scooter
	Alcohol drinking	No
		Yes
	Smoking	No
		Yes
Fnviron	mental domain	
Linnin	Residential history	Measured by whether the subject moved to current residence within last two years, yes or no
	Environmental hazards	Whether hazards related to eight aspects (lighting in evening, flooring and carpeting, bathroom and toilet, kitchen, heating and cooling, personal safety, access to room, and access to home) were assessed, yes or no answers
	Meteorological factors	<i>Extracted from the Hong Kong Observatory</i> Temperature (degrees Celsius °C) was reflected by (1) number of very hot days; (2) number of hot nights; and (3) number of cold days within past 90 days
		Wind speed (m/s) was reflected by (1) number of days with calm wind; (2) number of days with light wind; (3) number of days with moderate wind; and (4) number of days with fresh wind within past 90 days
		Relative humidity (%) was reflected by (1) number of very humid day; and (2) number of very dry day within past 90 days
		Rainfall (mm) was reflected by (1) number of days with light rain; (2) number of days with moderate rain; (3) number of days with heavy rain; and (4) number of days with very heavy rain within past 90 days
		Thresholds for defining the meteorological conditions were based on the definitions of the Hong Kong Observatory (36), except the threshold for rainfall was based on the definitions of the World Meteorological Organization (37)

Chara	cteristics	All subjects	Non-fallers	Fallers	P Value
		(n=89,100)	(n=60,704)	(n=28,396)	(t or χ^2)
Biolog	ical domain				
Gender	r				0.193
	Male	39.9%	39.8%	40.2%	
	Female	60.1%	60.2%	59.8%	
Age					0.001
-	65-74	16.6%	16.8%	16.2%	
	75-84	49.1%	49.3%	48.7%	
	≥85	34.3%	34.0%	35.1%	
Cognit	ive impairment (CPS)				<0.001
	Intact/ borderline intact	48.9%	49.6%	47.3%	
	Mild impairment/ moderate	49.4%	48.4%	51.6%	
	impairment				
	Moderately severe	1.7%	2.0%	1.0%	
	impairment/ severe				
	impairment				
	Very severe impairment	0.1%	0.1%	0.0%	
Functio	onal status (IADL-ADL				<0.001
Hierard	chy Scale)				
	Scored of 0	1.2%	1.5%	0.6%	
	Scored of 1	1.1%	1.3%	0.6%	
	Scored of 2	6.9%	7.9%	4.9%	
	Scored of 3	10.8%	11.8%	8.8%	
	Scored of 4	7.0%	7.4%	6.3%	
	Scored of 5	19.6%	19.8%	19.1%	
	Scored of 6	20.0%	18.6%	22.9%	
	Scored of 7	19.7%	18.6%	22.1%	
	Scored of 8	1.3%	1.4%	0.9%	
	Scored of 9	1.8%	2.0%	1.6%	
	Scored of 10	10.5%	9.7%	12.2%	
Pain					<0.001
	No pain	43.3%	45.5%	38.6%	
	Less than daily pain	11.5%	11.5%	11.6%	
	Daily pain but not severe	39.2%	37.4%	43.1%	
	Daily severe pain	6.0%	5.6%	6.7%	
Depres	sion				<0.001
	No	91.7%	92.0%	90.9%	
	Yes	8.3%	8.0%	9.1%	
Deliriu	m				<0.001
	No	95.8%	96.5%	94.5%	
	Yes	4.2%	3.5%	5.5%	
Hearin	g impairment				<0.001
	Adequately/ minimal difficulty	87.7%	87.9%	87.1%	
	Hears in special situations only/ highly impaired	12.3%	12.1%	12.9%	
Vision	impairment				0.086
	Adequate/ slightly impaired	91.9%	92.0%	91.7%	*

Table 2. Characteristics of subjects

Moderately impaired/ highly impaired/ severely impaired	8.1%	8.0%	8.3%	
Incontinence (bladder)				<0.001
Continent/ continent with catheter	57.3%	59.5%	52.5%	
Usually continent	22.5%	21.6%	24.4%	
Occasionally incontinent	15.3%	13.6%	19.1%	
Frequently incontinent/	4.9%	5.3%	4.0%	
incontinent				
Incontinence (fecal)				<0.001
Continent/ continent with	81.8%	82.9%	79.7%	
ostomy				
Usually continent	9.1%	8.2%	11.1%	
Occasionally incontinent	5.2%	4.7%	6.3%	
Frequently incontinent/	3.8%	4.3%	2.9%	
incontinent				
Number of medications	5.4 (2.7)	5.3 (2.7)	5.5 (2.7)	<0.001
Psychotropic drugs taken	()	()	()	<0.001
No	82.6%	83.0%	81.9%	
Yes	17.4%	17.0%	18.1%	
Unintended weight loss				<0.001
No	86.7%	87.7%	84.5%	
Yes	13.3%	12.3%	15.5%	
Severe malnutrition				0.255
No	99.2%	99.2%	99.1%	
Yes	0.8%	0.8%	0.9%	
Morbid obesity				0.069
No	98.5%	98.5%	98.6%	
Yes	1.5%	1.5%	1.4%	
Stroke				<0.001
No	71.7%	72.2%	70.9%	
Yes	28.3%	27.8%	29.1%	
Congestive heart failure				<0.001
No	91.9%	91.7%	92.4%	
Yes	8.1%	8.3%	7.6%	
Coronary artery disease				0.051
No	87.3%	87.2%	87.6%	
Yes	12.7%	12.8%	12.4%	
Hypertension				0.135
No	34.4%	34.5%	34.0%	
Yes	65.6%	65.5%	66.0%	
Irregularly irregular pulse				0.538
No	91.9%	92.0%	91.8%	
Yes	8.1%	8.0%	8.2%	
Peripheral vascular disease				0.212
No	98.8%	98.8%	98.7%	
Yes	1.2%	1.2%	1.3%	
Dementia				0.298
No	78.4%	78.3%	78.4%	
Yes	21.6%	21.7%	21.6%	
Hemiplegia				0.016
No	93.3%	93.2%	93.6%	

Yes	6.7%	6.8%	6.4%	
Epilepsy				0.092
No	98.7%	98.8%	98.6%	
Yes	1.3%	1.2%	1.4%	
Parkinson's disease				<0.001
No	94.0%	94.9%	92.3%	
Yes	6.0%	5.1%	7.7%	
Arthritis				0.730
No	77.8%	77.8%	77.7%	
Yes	22.2%	22.2%	22.3%	
Osteoporosis				<0.001
No	91.8%	92.2%	91.1%	
Yes	8.2%	7.8%	8.9%	
Cataract				0.007
No	69.3%	69.5%	68.6%	
Yes	30.7%	30.5%	31.4%	
Glaucoma				0.402
No	95.8%	95.8%	95.7%	
Yes	4.2%	4.2%	4.3%	
Psychiatric diagnosis				<0.001
No	90.0%	90.3%	89.4%	
Yes	10.0%	9.7%	10.6%	
Pneumonia				0.019
No	96.2%	96.15	96.4%	
Yes	3.8%	3.9%	3.6%	
Tuberculosis				0.038
No	98.6%	98.5%	98.7%	
Yes	1.4%	1.5%	1.3%	
Urinary tract infection				<0.001
No	97.1%	97.3%	96.6%	
Yes	2.9%	2.7%	3.4%	
Cancer				<0.001
No	92.7%	92.4%	93.4%	
Yes	7.3%	7.6%	6.6%	
Diabetes				<0.001
No	71.6%	72.5%	69.7%	
Yes	28.4%	27.5%	30.3%	
Emphysema/ COPD/ asthma				<0.001
No	88.9%	87.9%	90.9%	
Yes	11.1%	12.1%	9.1%	
Renal failure				0.498
No	96.6%	96.5	96.6%	
Yes	3.4%	3.5%	3.4%	
Thyroid disease				0.459
No	96.6%	96.6%	96.5%	
Yes	3.4%	3.4%	3.5%	
Socioeconomic domain				
Marital status				0.011
Married	43.0%	43.3%	42.4%	
Unmarried/ divorced/ widowed	57.0%	56.7%	57.6%	

Education	onal level				0.007
	No formal education/	86.4%	86.6%	85.9%	
	Secondary	10.9%	10.8%	11.2%	
	Tertiary	2.7%	2.6%	2.9%	
Living a	alone				<0.001
0	No	76.8%	76.4%	77.5%	
	Yes	23.2%	23.6%	22.5%	
Inadequ	ate HL				<0.001
1	No	26.0%	26.3%	25.4%	
	Yes	74.0%	73.7%	74.6%	
Rehavia	oral domain				
Medicat	tion compliance				<0 001
medica	Always compliant	93.2%	93 4%	92.6%	-0.001
	Compliant >80% of time	4 9%	4 7%	5 3%	
	Compliant $\leq 80\%$ of time	1.9%	1.8%	2.1%	
Locomo	otion (indoor)	1.970	1.070	2.170	<0.001
Locome	No assistive device	47 3%	51.5%	38 3%	-0.001
	Cane	20.2%	19.2%	22 4%	
	Walker/ crutch	20.276	18.5%	29.7%	
	Wheelchair/ scooter	10.4%	10.7%	9.6%	
Locomo	otion (outdoor)	10.470	10.770	2.070	<0.001
Locome	No assistive device	15.9%	18 4%	10.4%	-0.001
	Cane	38.6%	39.7%	36.2%	
	Walker/ crutch	7.6%	6.6%	9.9%	
	Wheelchair/ scooter	37.9%	35.3%	43 5%	
Alcohol	drinking	51.570	55.570	13.370	<0.001
7 neonoi	No	99.6	99 7%	99.5%	-0.001
	Ves	0.4%	0.3%	0.5%	
Smokin	σ	0.170	0.570	0.570	0.002
Sinokin	No	96.7%	96.8%	96.4%	0.002
	Yes	3 3%	3 2%	3.6%	
			0.270	21070	
Environ	imental domain				0.000
Moved	to current residence within				0.883
last two	years	00 (0/	00 (0)	00.5%	
	No	90.6%	90.6%	90.5%	
	Yes	9.4%	9.4%	9.5%	0.004
Hazard	related to lighting in evening	00.00/	00.00/	00.00/	0.084
	No	99.9%	99.9%	99.9%	
	Yes	0.1%	0.1%	0.1%	
Hazard	related to flooring and				0.005
carpetin	lg	~~ -		00.00	
	No	99.7	99.7%	99.6%	
	Yes	0.3%	0.3%	0.4%	0.001
Hazard	related to bathroom and toilet	00.00/	00.00/	00.00/	<0.001
	NO	99.2%	99.3%	99.0% 1.00/	
	Yes	0.3%	0.7%	1.0%	0.462
Hazard	related to kitchen	00.004	00.00/	00.00/	0.462
	NO	99.8%	99.8%	99.8%	
	Yes	0.2%	0.2%	0.2%	

Hazard related to heating and cooling				0.640
No	99.9%	99.9%	99.9%	
Yes	0.1%	0.1%	0.1%	
Hazard related to personal safety				0.388
No	99.2%	99.2%	99.1%	
Yes	0.8%	0.8%	0.9%	
Hazard related to access to home				0.001
No	99.4%	99.4%	99.3%	
Yes	0.6%	0.6%	0.7%	
Hazard related to access to rooms in				~0.001
house				<0.001
No	95.0%	95.2%	94.6%	
Yes	5.0%	4.8%	5.4%	
Number of very hot days	4.6 (7.1)	4.7 (7.2)	4.3 (7.0)	<0.001
Number of hot nights	5.4 (7.4)	5.5 (7.4)	5.1 (7.3)	<0.001
Number of cold days	5.2 (7.8)	5.0 (7.7)	5.6 (8.0)	<0.001
Number of days with calm wind	0.1 (0.2)	0.1 (0.2)	0.0 (0.2)	0.571
Number of days with light wind	73.0 (6.2)	73.0 (6.2)	73.1 (6.1)	0.204
Number of days with moderate wind	16.9 (6.1)	16.9 (6.1)	16.8 (6.1)	0.242
Number of days with fresh wind	0.1 (0.3)	0.1 (0.3)	0.1 (0.3)	0.054
Number of very humid day	25.3 (12.8)	25.6 (12.8)	24.8 (12.8)	<0.001
Number of very dry day	3.5 (4.7)	3.4 (4.6)	3.7 (4.8)	<0.001
Number of days with light rain	8.6 (5.4)	8.7 (5.4)	8.4 (5.4)	<0.001
Number of days with moderate rain	5.8 (5.2)	5.9 (5.2)	5.6 (5.2)	<0.001
Number of days with heavy rain	2.2 (2.4)	2.2 (2.4)	2.1 (2.4)	<0.001
Number of days with very heavy rain	1.0 (1.3)	1.0 (1.3)	0.9 (1.2)	<0.001

Factors	((95% co)	P Value	
Biological domain			
Gender			<0.001
Female	1.00		
Male	1.12	1.17, 1.08	
Cognitive impairment (CPS)		, , ,	<0.001
Intact/ Borderline intact	1.00		
Mild impairment/ Moderate	1.09	1.05, 1.13	<0.001
impairment		,	
Moderately severe impairment/	0.77	0.63, 0.94	0.009
Severe impairment		,	
Very severe impairment	0.73	0.29, 1.85	0.512
Functional status (IADL-ADL		,	<0.001
Hierarchy Scale)			
Scored of 0	1.00		
Scored of 1	1.09	0.83, 1.44	0.531
Scored of 2	1.36	1.10, 1.68	0.004
Scored of 3	1.51	1.23, 1.85	<0.001
Scored of 4	1.67	1.36, 2.06	<0.001
Scored of 5	1.80	1.47, 2.20	<0.001
Scored of 6	1.97	1.60, 2.42	<0.001
Scored of 7	1.96	1.59, 2.40	<0.001
Scored of 8	1.31	1.01, 1.72	0.045
Scored of 9	1.60	1.24, 2.06	<0.001
Scored of 10	2.05	1.59, 2.65	<0.001
Pain		,	<0.001
No pain	1.00		
Less than daily pain	1.22	1.15, 1.29	<0.001
Daily pain but not severe	1.29	1.24, 1.35	<0.001
Daily severe pain	1.28	1.19, 1.38	<0.001
Depression (DRS)		,	<0.001
No	1.00		
Yes	1.15	1.09, 1.23	
Delirium			<0.001
No	1.00		
Yes	1.52	1.40, 1.66	
Incontinence (bladder)		-	<0.001
Continent/ continent with	1.00		
catheter			
Usually continent	1.16	1.11, 1.21	<0.001
Occasionally incontinent	1.34	1.27, 1.41	<0.001
Frequently incontinent/	1.02	0.90, 1.16	0.750
incontinent		, -	
Incontinence (fecal)			<0.001
Continent/ continent with ostomy	1.00		
Usually continent	1.17	1.10, 1.25	<0.001
Occasionally incontinent	1.20	1.10, 1.31	<0.001
Frequently incontinent/	0.93	0.80, 1.09	0.386
incontinent		,	•

Table 3. Logistic regression model with backward elimination

Unintended weight loss ≥5%				<0.001
No	1.00			
Yes	1.31	1.25,	1.38	
Morbid obesity				0.009
No	1.00			
Yes	0.83	0.72,	0.96	
Congestive heart failure				<0.001
No	1.00			
Yes	0.85	0.79,	0.90	
Coronary artery disease				0.013
No	1.00			
Yes	0.94	0.89,	0.99	
Hypertension				0.033
No	1.00			
Yes	0.96	0.92,	1.00	
Hemiplegia		,		<0.001
No	1.00			
Yes	0.83	0.77.	0.89	
Parkinson's disease	0.00	•••••	0.02	<0.001
No	1.00			0.001
Ves	1 43	1 33	1 53	
Arthritis	1.15	1.55,	1.55	0.015
No	1.00			0.015
Vas	0.02	0.88	0.06	
Deveniatria diagnosis	0.92	0.00,	0.90	0.001
No.	1.00			0.001
Vas	1.00	1.04	1 1 7	
Its	1.10	1.04,	1.17	0.004
Orinary tract infection	1.00			0.004
NO Ver	1.00	1.05	1 20	
Tes	1.1/	1.05,	1.30	<0.001
Cancer	1.00			<0.001
NO	1.00	0 50	0.00	
Yes	0.83	0.78,	0.89	-0.001
Diabetes	1.00			<0.001
No	1.00			
Yes	1.14	1.10,	1.19	
Emphysema/ COPD/ asthma	1.00			<0.001
No	1.00			
Yes	0.74	0.69,	0.78	
Conio comunio domain				
Socioeconomic aomain				~0.001
Marriad	1.00			<0.001
	1.00	1 1 7	1.05	
Unmarried/divorced/ widowed	1.10	1.15,	1.05	0.001
Educational level	1.00			0.001
No formal education/ primary	1.00	1.00		0.000
Secondary	1.09	1.03,	1.15	0.003
Iertiary	1.16	1.04,	1.29	0.008
Living alone	1.00			0.003
No	1.00			
Yes	1.07	1.12,	1.02	

Behavioral domain				
Medication compliance				<0.001
Always compliant	1.00			
Compliant ≥80% of time	1.17	1.08,	1.26	<0.001
Compliant <80% of time	1.33	1.17,	1.50	<0.001
Locomotion (indoors)				<0.001
No assistive device	1.00			
Cane	1.30	1.24,	1.37	<0.001
Walker/ crutch	1.67	1.57,	1.77	<0.001
Wheelchair/ scooter	1.10	1.00,	1.19	0.040
Locomotion (outdoors)				<0.001
No assistive device	1.00			
Cane	1.40	1.31,	1.49	<0.001
Walker/ crutch	1.72	1.57,	1.88	<0.001
Wheelchair/ scooter	1.36	1.26,	1.47	<0.001
Alcohol drinking				<0.001
No	1.00			
Yes	1.96	1.47,	2.61	
Smoking				0.001
No	1.00			
Yes	1.20	1.09,	1.32	
Environmental domain				
Hazard related to flooring and				0.035
carpeting				
No	1.00			
Yes	1.41	1.02,	1.93	
Hazard related to access to home				0.005
No	1.00			
Yes	1.38	1.10,	1.72	
Hazard related to access to rooms in				0.027
house				
No	1.00			
Yes	1.10	1.01,	1.19	
Number of very hot days	0.995	0.992,	0.997	<0.001
Number of cold days	1.008	1.005,	1.012	<0.001
Number of very humid day	0.995	0.993,	0.997	<0.001
Number of very dry day	0.995	0.989,	1.000	0.050
Number of days with heavy rain	1.012	1.002,	1.023	0.015

Ethical Standards: Ethics approval was obtained from the Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong West Cluster.

Funding Disclosure: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of Interest: The authors declare that they have no competing interests.

Reference

- 1. Masud T and Morris R O. Epidemiology of falls. Age Ageing. 2001; 30(suppl_4): 3-7.
- Centers for Disease Control and Prevention. Web-based Injury Statistics Query and Reporting System (WISQARS). <u>https://www.cdc.gov/injury/wisqars/index.html</u>. Updated July 1, 2020. Accessed September 15, 2020.
- Florence C S, et al. Medical costs of fatal and nonfatal falls in older adults. J Am Geriatr Soc. 2018; 66(4): 693-698.
- 4. Deandrea S, et al. Risk factors for falls in community-dwelling older people:" a systematic review and meta-analysis". Epidemiology. 2010; 21(5): 658-668.
- 5. World Health Organization. Active Ageing: A Policy Framework.
 <u>https://apps.who.int/iris/bitstream/handle/10665/67215/WHO_NMH_NPH_02.8.pdf</u>.
 Published April 2002. Accessed September 15, 2020.
- 6. World Health Organization. Measuring prevalence and risk factors for fall-related injury in older adults in low-and middle-income countries: results from the WHO Study on Global AGEing and Adult Health (SAGE).
 https://www.who.int/healthinfo/sage/SAGEWorkingPaper6_Wave1Falls.pdf?ua=1.
 Published July 2013. Accessed September 15, 2020.
- Lo A X, et al. Neighborhood disadvantage and life-space mobility are associated with incident falls in community-dwelling older adults. J Am Geriatr Soc. 2016; 64(11): 2218-2225.
- Nicklett E J, Lohman M C, and Smith M L. Neighborhood environment and falls among community-dwelling older adults. Int J Environ Res Public Health. 2017; 14(2): 175.
- 9. Quach L, et al. Depression, antidepressants, and falls among community-dwelling

elderly people: the MOBILIZE Boston study. J Gerontol A Biol Sci Med Sci. 2013; 68(12): 1575-1581.

- 10. Steinman B A, Pynoos J, and Nguyen A Q. Fall risk in older adults: roles of self-rated vision, home modifications, and limb function. J Aging Health. 2009; 21(5): 655-676.
- World Health Organization, WHO Global Report on Falls Prevention in Older Age. <u>http://www.who.int/ageing/publications/Falls_prevention7March.pdf</u>. Published March 7 2007. Accessed September 15, 2020.
- Hair J F, et al. Multivariate data analysis: International version. New Jersey, Pearson, 2010.
- Fleig L, et al. Health behaviour change theory meets falls prevention: feasibility of a habit-based balance and strength exercise intervention for older adults. Psychol Sport Exerc. 2016; 22: 114-122.
- 14. Chang J T, et al. Interventions for the prevention of falls in older adults: systematic review and meta-analysis of randomised clinical trials. Bmj. 2004; 328(7441): 680.
- Gillespie L D, et al. Interventions for preventing falls in elderly people. Cochrane database of systematic reviews, 2003(4).
- Ferguson C J. An effect size primer: a guide for clinicians and researchers. In A. E.
 Kazdin (Ed.), Methodological issues and strategies in clinical research, 2016: 301-310.
- Babor T, et al. Alcohol: no ordinary commodity: research and public policy. Rev Bras Psiquiatr, 2010; 26(4): 280-283.
- 18. Edwards G. Alcohol policy and the public good. Addiction, 1997; 92(3s1): 73-80.
- Kelly S, et al. Interventions to prevent and reduce excessive alcohol consumption in older people: a systematic review and meta-analysis. Age Ageing. 2018; 47(2): 175-184.

27

- Cawkwell P B, Blaum C, and Sherman S E. Pharmacological smoking cessation therapies in older adults: a review of the evidence. Drugs Aging. 2015; 32(6): 443-451.
- Marcum Z A, Hanlon J T, and Murray M D. Improving medication adherence and health outcomes in older adults: an evidence-based review of randomized controlled trials. Drugs Aging. 2017; 34(3): 191-201.
- 22. Rokicki W, et al. Relationship between visual status and functional status and the risk of falls in women. The RAC-OST-POL study. Arch Med Sci: AMS. 2016; 12(6):
 1232.
- Mamikonian-Zarpas A and Laganá L. The relationship between older adults' risk for a future fall and difficulty performing activities of daily living. J Aging Gerontol. 2015; 3(1): 8-16.
- 24. Ferretti F, Lunardi D, and Bruschi L. Causes and consequences of fall among elderly people at home. Fisioter Mov. 2013; 26: 753-762.
- 25. West B A, et al. Assistive device use and mobility-related factors among adults aged≥
 65 years. J Safety Res. 2015; 55: 147-150.
- Lund C and Sheafor M L. Is your patient about to fall? J Gerontol Nurs. 1985; 11(4):
 37-41.
- Pynoos J, Caraviello R, and Cicero C. Lifelong housing: the anchor in aging-friendly communities. Generations. 2009; 33(2): 26-32.
- Yeung P Y, et al. Higher incidence of falls in winter among older people in Hong Kong. Journal of Clinical Gerontology and Geriatrics. 2011; 2(1): 13-16.
- Qian X X, et al. Seasonal pattern of single falls and recurrent falls amongst community-dwelling older adults first applying for long-term care services in Hong Kong. Age Ageing. 2020; 49(1): 125-129.

- 30. Lin L W, et al. Effect of weather and time on trauma events determined using emergency medical service registry data. Injury. 2015; 46(9): 1814-1820.
- 31. Pangman V C, Sloan J, and Guse L. An examination of psychometric properties of the mini-mental state examination and the standardized mini-mental state examination: implications for clinical practice. Appl Nurs Res. 2000; 13(4): 209-213.
- 32. Morris J N, et al. Scaling functional status within the interRAI suite of assessment instruments. BMC Geriatr. 2013; 13(1): 128.
- Fries B E, et al. Pain in US nursing homes: validating a pain scale for the minimum data set. Gerontologist. 2001; 41(2): 173-179.
- Burrows A B, et al. Development of a minimum data set-based depression rating scale for use in nursing homes. Age Ageing. 2000; 29(2): 165-172.
- 35. Leung I, Leung A, and Chau P. Risk Estimate of Inadequate Health Literacy (REIHL) for community-dwelling Chinese older adults. Prensented at the International Symposium on Healthy Aging, Hong Kong, March 7-8, 2015.
- Hong Kong Observatory. Descriptive terms. https://www.hko.gov.hk/en/wxinfo/currwx/flw_description/flw.htm. Updated February 11 2020. Accessed September 15, 2020.
- 37. World Meteorological Organization. SEMDP Workshop: Indonesia & SEA-RCC Node on Data Services.
 http://www.wmo.int/pages/prog/sat/meetings/SEMDP_Workshop/documents/4.1.2-1p_2018.03.19_Ardhasena_SEMDP.pptx#:~:text=Operational%20definition%20of% 20rain%20events%20(daily)%3A&text=Moderate%20rain%20%3A%2020%2D %2050%20mm,rain%3A%20%3E100%20mm%2Fday. Published March 19 2018. Accessed September 15, 2020.