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Abstract—Karyotyping is the most commonly used genetic tool
for diagnosing diseases associated with chromosomal abnormali-
ties. It generates images of the chromosomes of a patient in which
quantity or shape discrepancies against normal chromosomes
might suggest chromosomal abnormalities. However, the current
methods are cumbersome and require manual or half-automatic
separation of overlapping chromosomes, significantly limiting the
productivity of clinical geneticists and cytologists. In this project,
we implemented a fully automatic method, called ChromSeg,
which efficiently separates crossing-overlap chromosomes. It
uses a new neural network architecture called “region-guided
UNet++” to accurately detect crossing-overlap chromosomes
from metaphase cell images. A new heuristic algorithm, called
“crossing-partition”, is then applied to splice and reconstruct the
crossing-overlap chromosomes into single chromosomes. While
there are a very limited number of publicly accessible annotations
on overlapping chromosomes, we manually annotated 345 images
for our model training and performance testing. Benchmark-
ing results showed that our method achieved 99.1% overlap
detection on crossing-overlap chromosomes and outperformed
the second best method by 3.1%. Notably, this is the first tool
to provide an image of the reconstructed chromosomes; other
tools provide only segmentation suggestions, which are of less
value to end-users. The source code of ChromSeg is available at
https://github.com/HKU-BAL/ChromSeg, and the 345 annotated
images are available at http://www.bio8.cs.hku.hk/bibm/.

I. INTRODUCTION

Karyotyping is the characterization of the number, form
and size of chromosomes in an individual’s cells. It involves
three main steps: 1) capturing metaphase cell images using a
microscope camera; 2) applying segmentation on the metaphase
cell images to obtain images of individual chromosomes; and
3) classifying and counting the chromosomes[2]. For a single
patient, an experienced technician can finish the three steps in a
few hours and generate a karyogram with sorted chromosomes,
in which structural abnormalities can be identified by a clinical
geneticist or cytologist for diagnosing genetic diseases, such as
Down’s syndrome, Edward’s syndrome and Patau’s syndrome.

Despite the clinical importance of karyotyping, it is com-
monly known to be laborious and fallible. The chromosomes
are often disentangled in multiple ways in the captured
metaphase cell images, so in the second and third step
of karyotyping, meticulous manual cutting to segment the
chromosomes is almost always needed. It is not uncommon
for medical professionals to make mistakes in cutting the
entangled chromosomes, resulting in misdiagnosis, especially

when the number of samples overwhelms processing power.
Thus, computer-aided or fully-automatic methods have been
actively explored in the recent years to increase the processing
power.

The third step, namely chromosome classification, has been
amply facilitated using deep learning-driven methods[16].
However, there are few effective solutions for chromosome
segmentation, and some complications in the second step
remain unsolved. In Figure 1, we provide two examples of
overlapping chromosomes commonly found in a metaphase cell
image: one is “touching-overlap” and the other is “crossing-
overlap”[7]. While touching-overlap is reportedly solved by
recent algorithmic breakthroughs, there is as yet no effective
solution for crossing-overlap, which comprise 25.55% of real-
life scenarios (calculation explained in the method section).

(a) (b)

Fig. 1: Two examples of overlapping chromosomes. (a) Red
lines denote the touching-overlap regions; (b) blue boxes denote
the crossing-overlap regions.

Previous attempts to solve overlapping chromosomes have
used thresholding[7], morphological analysis[21], [11], and
geometric methods[2], [15] to analyze the cutting points[8] and
convex hulls[14], which rely heavily on handcrafted features.
Each of these algorithms can handle a few testing cases well
but fails occasionally in real-life cases, in which exceptions and
noise can easily cause confusion. In recent years, researchers
have leveraged the power of deep-learning models to better
tolerate exceptions and noise. Sharma et al.[19] were the first
to use a deep-learning model for karyotyping. They achieved
86.7% accuracy for classification, but for segmentation, their
work still relied on traditional algorithms and manual curations
from a crowdsourcing platform. Altinsoy et al.[1] applied a
U-Net-based neural network for semantic segmentation on
metaphase cell images to separate the chromosomes from the
background. Their framework achieved an intersection-over-
union (IOU) score of 94.11% on 40 metaphase cell images, and



their results were better than all previous thresholding methods.
Hu et al.[6] improved the model to produce four masks to
separate the non-overlapping parts and overlapping parts of two
overlapping chromosomes, resulting in a 94.70% IOU score for
overlapping region segmentation. However, Hu’s model cannot
handle clusters with three or more chromosomes. Very recently,
object detection was adapted to segment chromosomes. The
idea is to define different chromosomes as different objects,
and then leverage the power of general object detection deep-
learning models to extract individual chromosomes from a
cluster. Li et al. developed DeepACE[22], based on the Faster
R-CNN[17] model for automated chromosome enumeration
in metaphase images. While only the bounding box instead
of the contour of the enumerated chromosomes is provided
in DeepACE, the IOU score was not provided for a direct
performance comparison with previous methods. Ding et al.[5]
worked on a similar idea and added classification to the model.
Luo et al.[13] extended DeepACE to accept prior knowledge for
segmentation. Compared to the semantic-segmentation methods,
object-detection methods localize and separate “touching
overlap” chromosomes more effectively, but underperform in
handling crossing-overlap chromosomes. Figure 2 shows two
examples in which the overlapping chromosomes could not
be effectively separated by bounding boxes, so the subsequent
classification step failed. In summary, none of the previous
methods handle crossing-overlap chromosomes well.

(a) (b)

Fig. 2: Two examples that failed segmentation generated by
DeepACE.

In this study, we present ChromSeg, a two-stage deep-
learning-based segmentation method, which focuses on maxi-
mizing the performance of segmenting and splicing crossing-
overlap chromosomes. ChromSeg takes crossing-overlap im-
ages from DeepACE or Faster R-CNN as input. In the first
stage of ChromSeg, it uses a multi-layer aggregation semantic
segmentation convolutional neural network, based on deep-layer
aggregation (DLA)[23] and UNet++[24] to localize the input
image’s crossing regions and separate chromosomes from the
background. The input image is divided into crossing-overlap
regions and non-overlap regions in the first stage. In the second
stage, all crossing-overlap regions and non-overlap regions are
divided and reconstructed using a novel heuristic algorithm,
named “crossing-partition”. The output of ChromSeg comprises
single chromosome images segmented from the input. From
535 metaphase cell images, which is the highest among all the
previous methods mentioned above, we extracted 345 crossing-
overlap images that failed segmentation in DeepACE and
annotated them manually for model training and performance

testing. The benchmarks show ChromSeg outperformed all
vision methods in crossing-overlap chromosome segmentation.

Our main contributions are summarized as follows:
• We designed and implemented ChromSeg, a two-stage

deep-learning based segmentation method, which focuses
on maximizing the performance of segmenting crossing-
overlap chromosomes.

• We manually annotated 345 “cross overlapping” images
that failed segmentation using existing tools for model
training and performance testing. The images are freely
accessible by other research teams.

• Compared to the second-best method, ChromSeg increased
the segmentation accuracy of crossing-overlap chromo-
somes from 96.0% to 99.1%.

• This is the first tool to provide an image of the recon-
structed chromosomes; other existing tools provide only
segmentation suggestions, which are of less value to end-
users.

The next section provides a detailed description of our
dataset and the ChromSeg method. The heuristic algorithm
“crossing-partition” is described in pseudo-code. Section 3
presents our benchmarking results and ablation studies and
draws conclusions from them. Section 4 discusses a possible
defect in ChromSeg and discusses our future research directions.
Our conclusions are provided in the final section.

II. METHOD

In this section, we introduce a new crossing-overlap chro-
mosome annotation dataset with 345 images and our two-
stage ChromSeg model. ChromSeg is a two-stage framework,
based on the divide-and-conquer concept. In the first stage of
ChromSeg, we use a deep-learning method to pinpoint and
divide overlapping regions in the input images. In the second
stage, we use improved geometry and union-find methods to
predict and splice crossing-overlap and non-overlap regions.
The output is individual chromosomes that can be successfully
spliced. The model introduction comprises three parts: 1)
the architecture of the region-guided UNet++, 2) the Mixed
Weight Focal (MWF) loss function, and 3) a crossing-partition
algorithm. The framework of ChromSeg is shown in Figure 3.

A. New crossing-overlap chromosome annotation dataset

There are a few chromosome annotation datasets from
previous studies for solving the automatic karyotyping problem.
The best are Hu’s fluorescent chromosome dataset[6] for
semantic segmentation and DeepACE’s Peking University Third
Hospital metaphase cell images dataset[22] for object detection.
However, as explained in the introduction, none of the previous
studies and their annotations effectively separated crossing-
overlap chromosomes. To quantify the impact of crossing-
overlap chromosomes, we summarized different numbers of
overlapping chromosomes from 535 metaphase cell images
from the University of Hong Kong. The statistics are shown in
Table I. If we assume that each metaphase cell image contains
46 chromosomes, i.e. 24,610 chromosomes in 535 images,



Fig. 3: ChromSeg framework.

Fig. 4: Our annotation for crossing-overlap chromosomes. Each
original image (left) is annotated with two binary images
representing the crossing-overlap regions (middle) and the
non-overlap regions (right).

TABLE I: Statistics of cross-overlap chromosomes from 535
real-life metaphase cell images. The percentages are calculated
as ”(# of overlapping chromosome * count) / 24,610”.

Overlapping chromsomes Count
2 1,460 (11.86%)
3 514 (6.27%)
4 220 (3.58%)

5 or more 189 (3.84%)
All overlapping chromosomes 6,287 (25.55%)

the ratio of crossing-overlap chromosomes is approximately
25.55%.

In order to solve the crossing-overlap chromosome segmen-
tation problem, we selected and annotated 345 crossing-overlap
chromosome images of size 256×256. All of the images were
annotated with two binary images representing the crossing-
overlap regions and the non-overlap regions. An example is
shown in Figure 4. As annotation is time-consuming and

laborious, we selected even-number representative images of
different numbers of overlapping chromosomes. It is true that
for deep-learning applications, the more training samples the
better. Nevertheless, later in our experiments, we show that
345 annotated images are enough for good performance. The
dataset is available at http://www.bio8.cs.hku.hk/bibm/.

B. Region-guided UNet++

Figure 5 illustrates the architecture of the first stage, i.e. the
region-guided UNet++. This is a semantic segmentation net-
work for separating crossing-overlap regions and non-overlap
regions of input images. The idea for the region-guided UNet++
was inspired by UNet++, which is a convolutional neural
network for image segmentation that adds densely aggregation-
modules over its predecessor U-Net’s skip connection to fuse
information better[23]. UNet++ and its sister framework, DLA,
were demonstrated to be better than U-Net on cell medical
images[9], [3], [24].

To separate overlapping regions of metaphase cell images,
two problems must be solved: 1) separating the background
and objects, and 2) pinpointing crossing-overlap regions.
Theoretically, multiple semantic segmentation networks can be
used to handle different parts of the input in parallel. However,
the size of a good-performing semantic segmentation network,
UNet++[24], DeepLab series[4] for example, are not small.
Using more networks might increase the sensitivity, but it will
also increase the computation linearly, which is not practical.
To solve this problem, we reconsidered the characteristics of
the two problems and found a simple and effective solution.

In our region-guided UNet++, we extended UNet++ to be a
multi-branch region predictor. The input of the region-guided
UNet++ is a 256×256 RGB 3-channel metaphase cell image.
We used a shallow U-Net (depth 4) as the encoder-decoder
backbone and added three middle convolution layers to the skip



Fig. 5: Structure of the region-guided UNet++. The output of the region-guided UNet++ contains two probability maps: 1)
foreground-background (top-right), and 2) overlap regions (middle-right). The third probability map, non-overlap chromosome
regions (bottom-right), is generated from the other two probability maps.

connection path. This structure can iteratively and hierarchically
fuse information across different levels of features, and its
output can be optimized by deep supervision and pruning
approaches. In addition, we extended UNet++ to a two-branch
dual-output framework, producing a foreground-background
output and a crossing-overlap region output. The rationale
of a two-branch output is to utilize the features at multiple
levels to solve the two problems simultaneously. As shown
in Figure 5, the network utilizes shallow and adjacent spatial
features to separate the background from the foreground, and
aggregates all information from multiple layers to predict the
crossing-overlap regions. Our region-guided UNet++ generates
two probability maps of size W×H×C, with 1) Pf representing
the foreground-background, and 2) Pc representing the overlap
regions, where W is the width and H is the height of the input
image, and the channel dimension C is 1 for each probability
map.

Our experiments show that the region-guided UNet++ solved
the two problems simultaneously and effectively. It achieved a
better IOU score than the existing U-Net using equal numbers
of parameters.

C. Mixed-Weight Focal (MWF) loss function

At the end of the region-guided UNet++, two 1×1 con-
volution layers with sigmoid activation function are used to
extract final features and produce output probability maps of
foreground-background and crossing-overlap regions. In these
two probability maps, the foreground objects, including the
individual chromosomes and crossing-overlap regions, occupy
only a small fraction of pixels, meaning that our crossing-

overlap region segmentation task is an imbalanced pixel-wise
classification problem. With imbalanced classes, training a
network with the standard cross-entropy loss will fail early in
the network training (falling into a local minimum) or lead to
degenerate models with poor performance.

We designed a mixed-weight focal loss function to solve
the imbalanced classification problem. Focal loss is applied to
trade off positive and negative sample training[12]. The focal
loss is defined as:

FL(Pt) =

{
−αt(1− Pt)γ log(Pt) y = 1

−(1− αt)P γt log(1− Pt) y = 0
(1)

, where Pt is the predicted probability, y is the ground truth,
1 denotes a positive sample, and 0 denotes a negative sample.
αt and γ are parameters that control class balance. αt is a
weighting factor between the positive and negative samples. γ
is used to control the steepness and smoothness of the weight
distribution. When γ=0, the focal loss is equivalent to cross-
entropy loss. Higher weight is applied to the minority class
with increasing γ.

In the region-guided UNet++, the two probability maps
outputs are trained against their corresponding truth annotation.
Therefore, a combined-loss function with discounted weights
was used to train this network. The Mixed-Weight Focal (MWF)
loss defined below worked effectively in the region-guided
UNet++.

Lf (Pf ) = FL(Pf ) Lc(Pc) = FL(Pc)

MWFloss(Pf , Pc) = λLc(Pc) + (1− λ)Lf (Pf ) + φ
(2)



, where Lf and Lc are the focal loss of the two probability
maps; λ is a hyperparameter for balancing the trade-off between
two terms; and φ is a regularization term. Experiments using
different hyperparameters in the loss function are shown in the
hyperparameter study subsection in Section 3.

D. Crossing-partition algorithm

The crossing-partition algorithm extracts single chromo-
somes from the candidate crossing-overlap regions detected by
the region-guided UNet++. First, the watershed algorithm[20]
is used to divide the overlapping chromosomes in a crossing-
overlap region into two groups: overlapping parts and non-
overlapping parts (see stage 2 in Figure 3). The target of the
crossing-partition algorithm is to group the parts from the two
groups accurately to form individual chromosomes. As shown
in Algorithm 1 (Function Build Dictionary), we identify the
non-overlapping parts that are supposed to be connected with
an overlapping part by searching in a small disk area of the
overlapping part. The disk area is a dilation of the overlapping
part. The disk area is set to contain the overlapping part and
all of its authentic non-overlapping parts as much as possible.
We set the dilation of the disk area at about 8 to 12 pixels (See
DiskAreaSize d in Algorithm 1). It is rare, if not impossible, for
an overlapping part to belong to three or more chromosomes.
In real-life applications, the problem is usually solved by using
another metaphase cell image of the same cell taken at a
different time, so our algorithm doesn’t handle overlapping
parts that consist of more than two chromosomes. That being
said, each disk area of an overlapping part should contain no
more than four adjacent non-overlapping parts that belong to
exactly two chromosomes, forming shapes including the “X”
shape, “T” shape and “L” shape. If we can properly pair up the
non-overlapping parts, we can then use a union-find algorithm
to efficiently assign the parts to individual chromosomes.

In order to properly pair-up the non-overlapping parts,
we designed a heuristic algorithm. The pseudo code of the
algorithm is shown in Algorithm 1 (Function Classify). For
each overlapping part and its non-overlapping parts, the
algorithm first calculates the central coordinate of all the parts.
Specifically, when calculating the central coordinate of the
non-overlapping parts, the algorithm considers only the points
within the disk area of the overlapping part it belongs to in
order to avoid being affected by chromosomes with unexpected
shapes or large curliness. Then a straight line is connected from
each centre of the non-overlapping parts to the centre of the
crossing-overlap part, and then extended past the centre to scan
other parts (like emitting a ray from the non-overlapping parts to
the overlapping part). If an extended straight line intersects with
at least one non-overlapping part in the disk area, we conclude
that the two parts belong to the same chromosome. Using this
algorithm, we found that most of the complicated crossing-
overlap chromosomes cases can be effectively segmented and
reconstructed (see Figure 6).

After using Function Classify to group all non-overlapping
parts, we obtained a forest based on the union-find algorithm.
Then we traversed all trees in the forest and combined

Algorithm 1 Crossing-partition

Input: OverlapBlock V : V0,V1,...,Vg−1

NonoverlapBlock S: S0,S1,...,Sk−1

DiskAreaSize: d
Output: Chromosome C: C0,C1,...

function BUILD DICTIONARY(V , S, d)
for Vi in V do

for Sj in S do
if Sj adjacent to Vi in scope d then

D[Vi].Add(Sj);
end if

end for
end for
Return D;

end function

function CLASSIFY(V, D, d)
Init Forest F ;
for Vi in V do

xi, yi ← Find Center(Vi);
for Sj in D[Vi] do

xj , yj ← Find Center(Sj);
Sh ← Ray Emit((xi, yi),(xj , yj)) in scope d;
if Sh is not NULL then

Add Sh to F (UnionFind(Sj));
end if

end for
end for
Return F ;

end function

D ← Build Dictionary(V , S, d);
F ← Classify(V , D, d);
for Tree in F do

Cn.Add(Tree.Root);
for Vi in V do

if Vi adjacent to Tree.Root then
Cn.Add(Vi);

end if
end for
for Each Node in Tree.Root do

Cn.Add(Node);
for Vi in V do

if Vi adjacent to Node and Vi not in Cn then
Cn.Add(Vi);

end if
end for

end for
end for
Return C;



them with crossing-overlap parts to output all individual
chromosomes.

III. EXPERIMENTS AND RESULTS

To test ChromSeg and prove its robustness, we trained a
region-guided UNet++ on our newly labeled ChromSeg dataset
and tested the crossing-partition algorithm on different types
of crossing-overlap chromosome images. We carried out an
ablation study and a hyperparameters study for our proposed
two-stage method.

A. Dataset and training details

There were 345 crossing-overlap images in our dataset. The
size of each image was 3×256×256 pixels, and its ground
truth was two binary masks annotating crossing-overlap regions
and chromosome foreground regions. We divide the dataset
into 230 training images and 115 test images. The training data
was augmented using 30-degree rotation and random horizontal
and vertical flipping.

The region-guided UNet++ was implemented in PyTorch.
An Adam optimizer[10] was used to optimize models with
the learning rate set to 1e-4. The batch size was set to 8
for all training data. The default hyperparameter of Mixed
Weight Focal loss was λ=0.75, α=0.75, γ=1. More details are
provided in Subsection D. Early-stopping on the validation
set was applied with a patience of 5 epochs. The proposed
network was trained on three NVIDIA GTX 1080Ti GPU.

B. Evaluation metrics

The performance of the first stage region-guided UNet++
in our experiment was measured by two metrics: mean
intersection over union (IOU or Jaccard’s index) and overlap
detection accuracy (OverlapAcc). The performance of the
second stage (crossing-partition algorithm) was measured by
splicing accuracy (SPAcc). The two accuracies are defined as:

OverlapAcc =
Nwd
N
× 100% (3)

SPAcc =
Nws
Nwd

× 100% (4)

, where Nwd indicates well-detected crossing-overlap images
in the first stage, Nws indicates well-spliced images in
the second stage, and N indicates the total number of test
images. The overall accuracy for crossing-overlap chromosome
segmentation is counted as OverlapAcc×SPAcc.

C. Comparison and ablation study

First, we compared our proposed method with other methods.
The best-reported vision approach for detecting crossing-
overlap regions is the computational geometry method, based on
the cut-point. Since most of the state-of-art methods reported in
Section 1, including DeepACE, do not deal with the separation
of crossing-overlap chromosomes, our ChromSeg is the first
deep-learning method that tries to solve this problem. Table II
shows the performance comparison between our proposed
method and the computational geometry method.

TABLE II: Performance comparison between ChromSeg and
other methods.

Method IOU
(crossing-
overlap)

IOU
(foreground)

OverlapAcc SPAcc

Computational
geometry[8]

- - 96.0% -

U-Net[18] 78.7% - 98.2% -
ChromSeg 80.8% 99.7% 99.1% 91.3%

The authors of the computational geometry approach, based
on the cut-points, mentioned that their method worked well
on 2 or 3 crossing-overlap cases, but errors still occurred
when dealing with more complicated crossing-overlap cases.
Since most of the images in their dataset had 2 or 3 crossing-
overlap chromosomes, their experiments proved that the
geometry approach could effectively separate most of simple
overlapping cases[8]. But they did not propose an approach
to splice and reconstruct every individual chromosome. In our
experiment, we found that ChromSeg performed very well
in handling all simple and complex crossing-overlap cases,
as the region-guided UNet++ of ChromSeg improved the
overlap-detection accuracy from 96.0% to 99.1%, including
all crossing-overlap cases. On the basis of region-guided
UNet++’s detected crossing-overlap regions, we used the
crossing-partition algorithm to splice chromosome segments
for the first time. Figure 6 shows the excellent segmentation
and reconstruction results of the crossing-partition algorithm.
It achieved accuracy of 91.3% in separating all individual
chromosomes in different complicated cases. After integrating
the two stages, ChromSeg achieved overall accuracy of 90.5%
when it localized and separated every individual chromosome
in crossing-overlap chromosome clusters. We also compared
the first stage of ChromSeg with U-Net, the most commonly
used semantic segmentation method, in the medical image
as an ablation study. In the experiment, the performance of
region-guided UNet++ (IOU and overlap detection accuracy)
was better than U-Net by 1.9% IOU (See Table II).

The comparison experiments proved that ChromSeg is the
best solution for crossing-overlap chromosome segmentation
and reconstruction. The performance of our method might be
improved further by expanding the image data in the future.

D. Hyperparameters study

Based on the experiments in Table II, we studied the selection
of hyperparameters in the first stage. Mixed Weight Focal
(MWF) loss has huge advantages in training models. It can
trade off the training process between two probability maps and
also allows the model to focus on learning imbalanced positive
samples instead of being distracted by easily learned negative
samples. However, the hyperparameters (λ,α,γ) in MWF loss
can have a direct effect on the results of the experiment, and
setting hyperparameters empirically does not allow the model
to perform well most of the time. Thus, we designed the
hyperparameters study to select the best hyperparameters in
MWF loss. Table III shows the hyperparameters study for α,
γ in MWF loss. Another hyperparameter, λ, was selected to a



Fig. 6: The segmentation result of ChromSeg. It handles crossing-overlap situations including the “X” shape, “L” shape, “T”
shape, and a mix of the above shapes.

TABLE III: Hyperparameters findings for α, γ. γ=0, α=0.5
denotes the binary cross entropy loss.

γ α IOU (crossing-overlap) IOU (foreground)
0 0.5 79.98% 99.70%

1

0.25 69.64% 99.11%
0.50 79.36% 99.71%
0.75 80.62% 99.74%
0.90 75.90% 99.69%

2

0.25 58.80% 98.74%
0.50 73.76% 99.66%
0.75 79.80% 99.70%
0.90 77.92% 99.71%

fixed value, 0.5, in this experiment. The findings indicated that
γ=1, α=0.75 is the best hyperparameter for detecting crossing-
overlap regions. The hyperparameters were not sensitive to
detecting chromosome foreground regions. Table IV shows the
hyperparameters study on λ, indicating that λ=0.7 is the best
hyperparameter for training region-guided UNet++.

IV. DISCUSSION

The results show that ChromSeg can solve most of the
complex cases of crossing-overlap chromosome segmentation

TABLE IV: Hyperparameters experiment result for λ. γ=1,
α=0.75.

λ IOU (crossing-overlap) IOU (foreground)
0.9 78.85% 99.75%
0.7 80.77% 99.75%
0.5 80.62% 99.74%
0.3 79.96% 99.75%
0.1 79.09% 99.75%

and reconstruction. However, there are still some cases that
ChromSeg fails to solve. In this section, we evaluate these
errors and offer future direction for solving them.

The failed cases that we found in the entire two-stage
segmentation and reconstruction task can be divided into
3 classes: 1) segmentation error in crossing-overlap region
detection (stage 1); 2) splicing error due to the connection
between the non-overlapping parts (stage 2); and 3) two or
more overlapping regions being too close, causing connecting
crossing-overlap (stage 2). We can solve the first case by
expending the dataset. For the other two cases, however, there
is still a lack of suitable solutions. We find that these two
types of failed cases have a feature in common: two parts have



(a) (b)

Fig. 7: Two examples of failed cases. (a): blue boxes denote
connecting crossing-overlap; (b): red circles denote connecting
non-overlapping parts.

shared connecting areas. They can be seen as a combination
of touching-overlap and crossing-overlap problems. A possible
solution is to design a multi-branch or multi-task ChromSeg
+ Fast R-CNN framework. Before running ChromSeg, we
could first use Fast R-CNN[17] or other methods for localizing
to remove touching-overlap regions that would affect the
segmentation.

V. CONCLUSION

Karyotyping is a core topic in medical image analysis and
bioinformatics because of its usefulness in genetic diagnosis. In
this paper, we focused mainly on solving the challenging task of
crossing-overlap chromosome segmentation and reconstruction.
To accomplish precise segmentation, we proposed a novel
two-stage method and annotated a new dataset for crossing-
overlap chromosome segmentation. In the first stage of the
model, our region-guided UNet++ and MWF loss achieved
99.1% overlap detection accuracy in separating crossing-overlap
regions. In the second stage of the model, the crossing-partition
algorithm completed the chromosome image reconstruction and
output for each chromosome for the first time. In summary,
ChromSeg achieved state-of-the-art performance, with 90.5%
overall segmentation and reconstruction accuracy. This model
has huge potential to be combined with Fast R-CNN-based
object detection methods to achieve automatic karyotyping.
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