
1.  Introduction
Wet tropical forests regulate the global exchange of carbon dioxide, energy, and water fluxes between the 
land surface and the atmosphere. They account for 34% of global annual terrestrial photosynthesis (gross 
primary production, GPP) (Beer et al., 2010) and provide more than 75% of rainwater recycling in tropical 
rainforests through plant evapotranspiration (Spracklen et al., 2012; van den Ent et al., 2014). Despite a per-
ennial canopy, wet tropical forests shed and rejuvenate their leaves, leading to litterfall and photosynthesis 
peaks at different seasons across sites in humid tropical forests (Saleska, Miller, et al., 2003; Sayer et al., 2011; 
Leff et al., 2012). Understanding the seasonal variations of leaf phenology (leaf flush and litterfall) and their 

Abstract  Amazonian evergreen forests show distinct canopy phenology and photosynthetic 
seasonality but the climatic triggers are not well understood. This imposes a challenge for modeling leaf 
phenology and photosynthesis seasonality in land surface models (LSMs) across Amazonian evergreen 
forest biome. On continental scale, we tested two climatic triggers suggested by site observations, 
vapor pressure deficit (VPD), and short-wave incoming radiation (SW) for defining leaf shedding and 
incorporated VPD- and SW-triggered new canopy phenology modules in the ORCHIDEE LSM (hereafter 
VPD-AP and SW-AP versions). Our results show that both VPD and SW are plausible precursors of large 
scale litterfall seasonality across the basin by comparing against in situ data from 14 sites. Specially, both 
VPD-AP and SW-AP correctly capture the increases in litterfall during the early dry season, followed by a 
flush of new leaves with increasing photosynthetic rates during the later dry season. The VPD-AP version 
performs better than the SW-AP version in capturing a dry-season increase of photosynthesis across the 
wet Amazonia areas where mean annual precipitation exceeds 2,000 mm yr−1, consistent with previous 
satellite data analysis. Both VPD-AP and SW-AP model versions perform well in northern, central and 
southern Amazon regions where the SW seasonality is unimodal, but miss the seasonality of satellite GPP 
proxies in the eastern region off the coast of Guyana shield where SW seasonality is bimodal. Our findings 
imply that atmospheric dryness and sunlight availability likely explain the seasonality of leaf shedding 
and leaf flush processes, respectively, and consequently control canopy photosynthesis in Amazonian 
evergreen forests.
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impact on photosynthesis also offers insights into how they may respond to climate change, e.g., longer dry 
seasons in southern Amazon (Boisier et al., 2015).

Eddy-covariance (EC) measurements in Amazonian evergreen forests, the focus of our study, are sparse, 
but most sites record an increase of photosynthetic rates in the dry season (de Weirdt et al., 2012; Manoli 
et al., 2018; Restrepo-Coupe et al., 2013, 2017; Saleska, Miller, et al., 2003; Xu, Saatchi, et al., 2015). A key 
plant trait linking seasonal variations of leaf properties with photosynthesis seasonality was shown to be 
leaf age (Albert et al., 2018; Wu, Guan, et al., 2017; Xu, Medvigy, et al., 2017). Young leaves are observed to 
take advantage of the increase in surface radiation in the dry season and increase canopy photosynthesis 
(Anber et al., 2015; Wu, Serbin, et al., 2017). The fall of old leaves as litter followed by the flush of new leaves 
in the late wet season triggers an increase of canopy photosynthesis through the subsequent dry season 
because young leaves have a higher light use efficiency (Wu, Albert, et al., 2016). This process is relatively 
well documented from EC data (Wu, Albert, et al., 2016) and biometric measurements of canopy foliage 
productivity (Doughty, Metcalfe, et al., 2015) in both humid low- and dry-land Amazonian forests.

In contrast, diagnosing whether photosynthesis increases or decreases during the dry season period across 
different Amazon regions requires the use of satellite products. Satellite optical remote sensing detect can-
opy green-up during the dry season in parts of Amazonian evergreen forests (Huete et al., 2006; Saleska, 
Wu, et al., 2016; Xiao, Zhang, et al., 2005). However, such a dry-season green-up pattern has been ques-
tioned (Morton et al., 2014; Samanta et al., 2010, 2011a, 2011b) due to the near-infrared reflectance changes 
induced by cloud/aerosols contaminations and surface anisotropy, as observed using varying sensor and 
illumination geometries. Recent analyses of optical data from multiple sensors show that Solar-Induced 
Fluorescence (SIF) can be used as an arguably better proxy of GPP than optical data (Doughty, Köhler, 
et al., 2019; Lee et al., 2013; Xu, Saatchi, et al., 2015), and that the Enhanced Vegetation Index (EVI) (Huete 
et al., 2006; Lopes et al., 2016; Wu, Kobayashi, et al., 2018) (Supplementary Texts: A) can be considered as a 
proxy for leaf area change and new leaf flush. Combining above datasets, studies confirmed some regions of 
Amazonia become greener in the dry season period (Badgley et al., 2017; Guan, Pan, et al., 2015), however, 
with nonuniform seasonal patterns (Bi et  al.,  2015; Parazoo et  al.,  2013). Moreover, independent space-
borne Lidar observations of canopy structure also suggest a dry-season increase of canopy volume across 
the Amazon (Tang & Dubayah, 2017).

The key point is that forests in different sub-regions of Amazonia experience different seasonal constraints 
of water and light availability during recurrent dry and wet seasons (Brando et al., 2010; Chen et al., 2020; 
Davidson et al., 2012; Xiao, Zhang, et al., 2005) and thus show distinct canopy phenology and GPP seasonal-
ity (Chen et al., 2020; Xu, Saatchi, et al., 2015). The underling mechanisms linking seasonal water and light 
availability with litterfall and photosynthetic seasonality remain elusive and likely differ between regions 
(Leff et al., 2012; Saleska, Miller, et al., 2003; Sayer et al., 2011). Many data suggested that most forests in the 
Amazon have deeper rooting system to access sufficient ground water supply during the dry seasons so that 
soil water is not the limitation causing litterfall and dry-season leaf rejuvenation is due to the increases in 
sunlight availability (Huete et al., 2006; Lee et al., 2013; Tang & Dubayah, 2017; Wright & Van Schaik, 1994). 
But Chen et al. (2020) proposed vapor pressure deficit (VPD) as a trigger for leaf phenology and photosyn-
thetic seasonality and tested the impact of a VPD driven litterfall and subsequent canopy turnover in the 
ORCHIDEE model at four Amazon flux tower sites. ORCHIDDE showed good performances for modeling 
GPP and LAI seasonality at three sites in the central Amazon, but missed the seasonality of the fourth site 
near the sea in French Guiana.

The scientific question addressed in this study is whether the wet- and dry- season variability in leaf shed-
ding observed at site and regional levels is more controlled/limited by atmospheric water VPD or by sun-
light availability, given that soil water is likely not the limitation for Amazon. Therefore, we tested VPD as 
suggested by Chen et al. (2020) from tower-based observations and SW radiation as suggested by Zhang, 
Yuan, et al. (2014) from evidence at several litterfall sites, as potential climatic triggers for leaf shedding. 
We designed and implemented VPD- and SW-triggered leaf shedding modules in gridded runs with the OR-
CHIDEE LSM (hereafter VPD-AP and SW-AP, respectively) simulating dynamic leaf area, canopy age and 
GPP over the whole Amazon evergreen forests during the 1980–2015 period. The results are evaluated against 
multiple satellite datasets of phenology and photosynthetic proxies. Following Guan, Pan, et al. (2015) that 
identified distinct dry-minus-wet-season differences in canopy phenology between northern wetter part of 
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Amazonia where MAP > 2,000 mm yr−1 and other regions where MAP < 2,000 mm yr−1 based on GOME-2 
SIF and MODIS EVI data (Supplementary Texts: A), we also checked whether VPD-AP and SW-AP simu-
lations reproduce the same observed patterns, that is, that forests greening-up during the dry season are 
located in wet regions with mean annual precipitation (MAP) higher than 2,000 mm yr−1.

2.  Methodology, Model, and Data Sets
2.1.  Overview of the Study Strategy

In this study, we run both the ORCHIDEE-TRUNK (https://forge.ipsl.jussieu.fr/orchidee/wiki/Source-
Code#trunk) and ORCHIDEE-AP model versions (Chen et al., 2020) over Amazonia. The two versions differ 
only by the representation of canopy phenology for evergreen broadleaved forests. The models are described 
in Section 2.2. Given the lack of a consensus from theory or empirical knowledge about which climate var-
iable triggers litter fall (Bi et al., 2015; Lopes et al., 2016; Huete et al., 2006; Tang & Dubayah, 2017; Saleska, 
Miller, et al., 2003; Wu, Albert, et al., 2016; Xu, Saatchi, et al., 2015), we tested both the seasonal increase 
of VPD and of SW (see equations in Section 2.2). In the previous site-simulation paper (Chen et al., 2020), 
ORCHIDEE-AP only considered VPD but the present study also updated a modified formulation using SW 
instead of VPD, as Zhang, Yuan, et al. (2014) found that SW is a good precursor of leaf shedding. To evaluate 
the dominant cause of VPD or SW in driving the increase of GPP across the entire region, this study verified 
how much their timing precedes the one of satellite SIF from GOME-2 (SIFGOME-2, Global Ozone Monitoring 
Experiment-2) (Joiner et al., 2013; 2016; Supplementary Texts: A) using a spectral phase analysis method 
(Bradley et al., 2011). Further, to access uncertainty related to climate forcing (including VPD and SW) used 
to drive land surface models (LSMs), in particular over Amazonia, we performed simulations using two dif-
ferent reanalyzes, with either the Climatic Research Unit - National Centers for Environmental Prediction 
(CRUNCEP) (Viovy et  al.,  2018, https://rda.ucar.edu/datasets/ds314.3/) 6-hourly or Global Soil Wetness 
Project Phase 3 (GSWP3) (Kim, 2017, http://hydro.iis.u-tokyo.ac.jp/GSWP3/) 3-hourly meteorological forc-
ing data. The model parameterization is summarized in Section 2.2, the simulation setup in Section 2.3 and 
datasets used for evaluation in Section 2.4. Results and discussion are provided thereafter.

2.2.  Representation of Tropical Evergreen Canopy Phenology in ORCHIDEE-AP

A detailed description of VPD-AP is given in Chen et al. (2020). The main modification of the phenology 
and photosynthesis modules compared to ORCHIDEE-TRUNK is that the production of new leaves and 
the abscission of old leaves is linked to environmental variables (Bi et al., 2015; Brando et al., 2010; Huete 
et al., 2006; Lee et al., 2013; Guan, Pan, et al., 2015; Wu, Albert, et al., 2016; Xu, Saatchi, et al., 2015). Four 
leaf age classes describe the canopy demography. Leaf class 1 represents the youngest age cohort and class 
4 represents the oldest one. The four leaf age classes are characterized by their fraction of leaf biomass and 
mean age. At each time step, a fraction of the biomass of the younger leaf class turns over to the next age 
cohort until the older cohort reaches a predefined leaf life span. Then, leaves from the oldest cohort fall on 
the ground (Krinner et al., 2005, Appendix A, Section A4.4). The carbon allocation toward new leaves (age 
class 1) was parameterized as a function of SW and LAI of the oldest leaves (age class 4). The fraction of net 
primary productivity (NPP) allocated to new leaves is given by:

  
   

 

20.5new 4
leaf week 1 leafmin 0.99, /

CLAIf SW e C f� (1)

where new
leaff  and leaff  are the modified and standard allocation fractions of NPP to leaves (carbohydrates 

entering age class 1); weekSW  is the weekly mean shortwave downwelling solar radiation, 4LAI  is the LAI of 
the oldest leaf age class 4, C1 and C2 are empirical coefficients set to 35.0 W.m−2 and 6.0 (Chen et al., 2019, 
in revision), calibrated from observed LAI cohorts (Wu, Albert, et al., 2016). The maximum carboxylation 
rate of leaves at 25°C (Vcmax) is a function of leaf age and was calibrated using field data from 20 tropical 
evergreen forests (Xu, Medvigy, et al., 2017).

The leaf shedding process from the oldest leaf age class (4) is triggered by changes in the weekly mean 
weekVPD  as follows:
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 
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4
4

3
crit crit

ΔΔ min 0.99, / min 0.99,
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i i week
t aB B VPD C

a a
� (2)

where Δ iB  is the loss of biomass iB  of the oldest leaves (age class i = 4) at each time step ∆t ia , is the leaf age 
(days) and crita  is a critical leaf age (days), that is the maximum longevity of a leaf (Krinner et al., 2005). The 
unit of weekVPD  is kPa, C3, and C4 are empirical factors set to 3.0 and 2.5 kPa, respectively, calibrated from 
observed litter fall data from four flux sites in Amazonia (Chen et al., 2020). In Equation 2, when weekVPD  
reaches the threshold C3, there is an acceleration of the litter fall rate, while a reduction of litter fall rate 
happens when weekVPD  is smaller than C3.

As an alternative to the VPD-triggered litter fall model, we also tested in this study a SW-AP version based 
on SW observations inspired from the studies of Taiz and Zeiger (2002) and Zhang, Yuan, et al. (2014). In 
SW-AP, the leaf shedding process from the oldest leaf age class 4 is set to depend on weekly SW (SWweek) as 
follows:

                             

46
week

3 crit crit

ΔΔ min 0.99, exp 1.0 min 0.99,
C

m
m m

SW t ageB B
C age age

� (3)

where C5 and C6 are empirical factors set to 180.0 W m−2 and 6.0. These empirical values were also calibrat-
ed using observed litter fall data from the four tower sites in Chen et al. (2020).

2.3.  Simulation Setup

Three versions of the ORCHIDEE model (TRUNK, VPD-AP and SW-AP) were run over a 1,200 × 1,200 km2 
region covering Amazonia (20°S-10°N by 50°W-80°W) at a 1° lat/lon spatial resolution. Analysis of the daily 
outputs was performed at grid-scale across the Amazonian evergreen broadleaved forests. The three ver-
sions of ORCHIDEE were forced using 6-hourly CRUNCEP and 3-hourly GSWP3 meteorological data. We 
used the Zobler soil texture map of the Food and Agriculture Organization (Zobler, 1986). The ORCHIDEE 
parameter prescribing a maximum LAI was set to be 6.0 m2 m−2 according to De Weirdt et al. (2012) and 
consistent with field data from Wu, Albert, et al. (2016). Carbon allocation toward new leaves is stopped in 
the model when total LAI of the four leaf age classes reaches the maximum LAI (see Section A5 of Krinner 
et al., 2005). A spin-up run was performed cycling on years 1980–2010 for 230 years, until all vegetation 
carbon pools had reached an equilibrium and the model was then run for the 1980–2015 period. Plants 
with similar morphology and behavior were grouped into 13 plant functional types (PFTs) in ORCHIDEE; 
the PFT maps were derived from the ESA CCI Land Cover maps (Bontemps et al., 2013). This study only 
considered the grid cells with evergreen broadleaved forest PFT fractions higher than 90%.

2.4.  Evaluation Datasets

Two gridded satellite observation products were used for model evaluation, as summarized in Table  S1 
(more details are provided in Supplementary Texts: A). All datasets were aggregated at the same spatial 
and temporal resolutions than the model outputs (1°/1-month). For each evaluation product, the model 
outputs were analyzed over the time period covered by the data set. We used the Enhanced Vegetation Index 
(EVI) data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (Huete 
et al., 2002; Xu, Saatchi, et al., 2015) to evaluate the seasonal patterns of LAIyoung. We used field observa-
tions of seasonal litter fall ( obsLitt ) (Table S2) from 14 evergreen forest sites across Amazonia (Zhang, Yuan, 
et al., 2014) and additional litterfall data from literature (Chen et al., 2020). We also used Solar-induced 
chlorophyll fluorescence (SIF) NASA data derived from the European Global Ozone Monitoring Experi-
ment-2 (GOME-2) instrument (SIFGOME-2; Joiner et al., 2013; 2016; Zhang, Joiner, et al., 2018) to evaluate 
the simulated seasonal patterns of GPP.

CHEN ET AL.

10.1029/2020GB006893

4 of 15



Global Biogeochemical Cycles

2.5.  Evaluation Metrics

Two metrics were chosen to evaluate the simulated time series (Mod) against the observation-based datasets 
(Obs): the Kobayashi decomposition of the Mean Square Difference between model and observation 
(Kobayashi & Salam, 2000) and the Nash–Sutcliffe efficiency (NSE) coefficient (Nash & Sutcliffe, 1970) for 
gridded fields.

�(1)	� Decomposition of the mean square deviation (MSD) model error

The mean squared deviation (MSD) is given by Kobayashi and Salam (2000):

  
T 2

t=1

1MSD t tMod obs
n

� (4)

where tMod  is the modeled data at time t, and tobs  is the observed one at time t (month).

MSD can be decomposed into the sum of three components: the squared bias ( biasd ), the squared difference 
between standard deviations (variance-related difference, vard ), and the lack of correlation weighted by the 
standard deviations (phase-related difference, phased ) after (Kobayashi & Salam, 2000):

MSD
mod obs mod obs

          Mod Obs r

2 2 2

2 1   � (5)

where Mod and Obs are the mean of modeled and observed data, d Mod Obsbias
  ,    

2
var mod obsd , 

      
2

phase mod obs2 1d r ; mod and  obs indicate the standard deviation of Mod and Obs, respectively, 
r indicates the correlation coefficient between Mod and Obs.

GOME-2 SIF were all transformed into a GPP equivalent by fitting a linear regression between FLUXCOM 
GPP and GOME-2 SIF for all 1° grid-cells using yearly average data, and then applying this regression to 
GOME-2 SIF to generate GPPGOME-2_SIF. This transformation adjusts the mean and the linear variation of 
proxies to the mean values of FLUXCOM GPP but preserves the seasonality and spatial patterns of the 
original proxies.

�(2)	� Nash–Sutcliffe efficiency coefficient

The Nash–Sutcliffe efficiency (NSE) (Equation 6) is a nonparametric index that quantifies the misfit be-
tween two time series, accounting for their differences in terms of phase, amplitude and mean value. It was 
originally proposed to assess modeled river discharge (Nash & Sutcliffe, 1970) and is now widely used for 
hydrological (Krause et al., 2005), climate variables (Fernández-Peruchena, et al., 2015; Soltani et al., 2007), 
land-atmosphere heat fluxes (Jim & He, 2011), and GPP (Dass et al., 2016). To compare the phase of sea-
sonality correcting for the impacts of different seasonal amplitudes, we used the Z-transformed variables to 
calculate the NSE between modeled and observation-based data.

 

 





 



2T
t=1

2T
t=1

NSE 1 t t

t

Mod obs

obs obs
� (6)

NSE is sensitive to both absolute values and seasonal variations (K. Wu & Johnston, 2007). The range of NSE 
values is [−∞, 1]. An NSE of 1 indicates that the model outputs are exactly the same as the observations; an 
NSE of 0 indicates that the model outputs perform equivalently to the mean of the observed data. A negative 
value of NSE indicates that the model outputs perform poorly in comparison with the observed data.

2.6.  Spatial Pattern of Wet-Minus-Dry Season Differences in GPP Across Amazonia

Following the work of Guan, Pan, et al. (2015), we compared the spatial patterns of the wet- minus dry- 
season differences (∆) between observed and simulated variables. To determine the wet and dry seasons in 
each grid cell, we defined a month as dry when monthly average precipitation was smaller than the potential 
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evapotranspiration (PET) computed using the method of Maes et al. (2019); other months are defined as wet. 
GPP was calculated for each grid cell as the wet-season average GPP value minus the dry-season average 
value of GPP.

3.  Results
3.1.  VPD and SW as Triggers of Leaf Shedding

To verify the assumption that VPD or SW trigger off Amazonian leaf shedding and consequently control 
canopy photosynthesis, we mapped the regions where VPD and SW are in phase or precede GPP in season-
ality given by SIFGOME-2 observations. A cross-spectral analysis (Bradley et al., 2011) (Supplementary Texts: 
B) applied to CRUNCEP VPD and CRUNCEP SW showed that in most parts of Amazonia, the seasonality 
of VPD and SW is dominated by a 12-months seasonal cycle (Figures S1a and S1d), while few northeastern 
parts of Amazonia off the coast of the Guyana shield rather exhibit a stronger 6-months cycle (Figures S1b 
and S1e). The SIFGOME-2 signal, although noisy, shows stronger 12-months seasonal cycle in most of Amazo-
nia. Only very few pixels in northern and western regions had stronger 6-months seasonal cycles with two 
wet seasons (Figure S1c). VPD and SW were found to be either in phase or to lead by 1–2 months than the 
SIFGOME-2 signal everywhere VPD and SW are dominated by a 12-months seasonal cycle (blue and purple 
pixels, Figures 1a and 1c). This relationship became weaker however in the north east Guyana shield region 
where VPD and SW are dominated by a 6-months seasonal cycle (Figure 1). Using GSWP3 climate fields 
for VPD and SW show similar spatial patterns than using CRUNCEP (blue and purple pixels in Figures 1e 
and 1g). We concluded from this phase analysis that both VPD and SW were valid predictors of the increase 
of GPP, which justified their use in the model parameterizations.

3.2.  Leaf Flush and Litterfall Across Amazonia

Former studies observed that EVI is sensitive to leaf flushing, especially for young leaves aged 2–4 months 
(Galvão et al., 2011; Gonçalves et al., 2020). To conduct a full spatial evaluation for potential leaf flush, we 
used the seasonality of EVI to evaluate the seasonality of modeled LAI of young leaves across the Amazonia 
region. The LAIyoung modeled by TRUNK version (LAItrunk, young) is always flat and equal to 2.0 throughout 
the whole year. The AP model results show that, at the BR-Sa1 site (one site in Chen et al. [2020], see also in 
Figure 9), LAIyoung modeled by VPD-AP and SW-AP using CRUNCEP and GSWPS forcing (LAICRUN_VPD, young, 
LAICRUN_SW, young, LAIGSWP_VPD, young, and LAIGSWP_SW, young), perform well for simulating the seasonality against 
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Figure 1.  Relative phasing of vapor pressure deficit (VPD) and short-wave (SW) against SIFGOME-2 for 12- and 6-months cycles-dominated regions, according 
to spectral analyses. (a and b) CRUNCEP VPD versus SIFGOME-2 in areas dominated by an annual cycle and a 6-months cycle; (c and d) CRUNCEP SW versus 
SIFGOME-2 in areas dominated by an annual cycle and a 6-months cycle; (e and f) GSWP3 VPD versus SIFGOME-2 in areas dominated by an annual cycle and a 
6-months cycle; (g and h) GSWP3 SW versus SIFGOME-2 in areas dominated by an annual cycle and a 6-months cycle.
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Phenocam-observed LAI at the BR-Sa1 site (Figure 2a), capturing a dry-season increase trends in LAI of 
young leaves. The mean modeled LAICRUN_VPD, young, LAICRUN_SW, young, LAIGSWP_VPD, young, and LAIGSWP_SW, young 
across the whole Amazon all show consistent seasonality with that of EVI (Figure 2b). At the continent scale, 
the Pearson correlation values between EVI and LAICRUN_VPD, young (R = 0.78), LAICRUN_SW, young (R = 0.85), 
LAIGSWP_VPD, young (R = 0.72), and LAIGSWP_SW, young (R = 0.94) are positive (Figure 3).

The litterfall simulation results were compared to the observed seasonality from 14 sites (Zhang, Yuan, 
et al., 2014). At most sites, the NSE of monthly litterfall was positive, indicating the ability of our model to 
roughly capture the timing of this process. VPD-AP performed equally as well as SW-AP with CRUNCEP, 
but was inferior to SW-AP with GSWP3 (Figures 4 and S2). Only at 3 out of 14 sites (Bojaca, La-Es and Jen-
aro) in the “everwet” western Amazon was the litter fall seasonality poorly represented by all the versions 
(NSEs<0). The VPD-AP model performed better than the SW-AP one at the Tierra and Lago-Ua sites while 
AP-SW performed better at the Piedras and Gran sites (Figure 4). The SW-AP model was in general more 
stable in simulating litterfall seasonality than the VPD-AP model when using CRUNCEP or GSWP3 forcing 
data sets. The lower performances of VPD-AP with GSWP3 may be due to a dry bias of GSWP3 over the 
Tropics (Boisserie & Cocke, 2012).

3.3.  GPP Seasonality Across Amazonia

The GPP seasonality from VPD-AP and SW-AP versions using CRUNCEP and GSWP3 climate forcing data 
are compared at regional scale in Figure 5. In general, the multiple-year averages of GPPCRUN_VPD-AP, GP-
PGSWP_VPD-AP, GPPCRUN_SW-AP, GPPGSWP_SW-AP show mean seasonal cycles consistent with SIFGOME-2 over the 
whole Amazonia (Figure 5), with a decrease from May to June and an increase from July to October, in 
agreement with former studies (Huete et al., 2006; Lee et al., 2013; Lopes et al., 2016; Wu, Albert, et al., 2016; 
Xu, Saatchi, et al., 2015).

The MSD decompositions (see Section 2.5.1) for GPP simulation misfit against GPPGOME-2_SIF are displayed 
in Figure 6 for both TRUNK and AP versions. The squared bias was found to be the major contributor to the 
larger MSD found for GPPTRUNK (Figure S3; Table S3). The MSD between GPPCRUN_VPD-AP, GPPGSWP_VPD-AP, 
GPPCRUN_SW-AP, GPPGSWP_SW-AP and GPPGOME-2_SIF were greatly reduced, by on average 0.736 gC2 m−4 day−2, 
0.697 gC2 m−4 day−2, 0.659 gC2 m−4 day−2, and 0.612 gC2 m−4 day−2 in AP as compared to GPPTRUNK, because 
of a reduction of both the bias (0.673 gC2 m−4 day−2, 0.674 gC2 m−4 day−2, 0.680 gC2 m−4 day−2, and 0.680 gC2 
m−4 day−2) and variance-related terms (0.058 gC2 m−4 day−2, 0.042 gC2 m−4 day−2, 0.038 gC2 m−4 day−2, and 
0.058 gC2 m−4 day−2). The phase-related term of the MSD was smaller than the bias and variance-related 
terms in both model versions. Nevertheless, the phase-related term of the MSD with AP (Table S3) was 
also significantly reduced as compared TRUNK, by 0.007 gC2 m−4 day−2, −0.019 gC2 m−4 day−2, −0.058 gC2 
m−4 day−2, and −0.125 gC2 m−4 day−2 for GPPCRUN_VPD-AP, GPPGSWP_VPD-AP, GPPCRUN_SW-AP, GPPGSWP_SW-AP, and 
GPPGOME-2_SIF, respectively.
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Figure 2.  Seasonality of simulated LAIyoung in comparison with observed data. (a) Mean seasonal cycles of 
LAICRUN_VPD, young, LAICRUN_SW, young, LAIGSWP_VPD, young, and LAIGSWP_SW, young against Phenocam-observed LAIobs, young and 
remote sensing Enhanced Vegetation Index (EVI) at the BR-Sa1 site; (b) Mean seasonal cycles of LAICRUN_VPD, young, 
LAICRUN_SW, young, LAIGSWP_VPD, young, and LAIGSWP_SW, young against remote sensing EVI for the whole Amazon region. The 
gray shading areas represent the standard error of the mean (SEM).
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As shown by the MSD analysis, the model error is dominated by the bias and variance-related terms, which 
masks a detailed assessment of the improved seasonality of AP versus TRUNK. We thus examined NSE, 
which is a better metric for evaluating seasonal variations. Figure 7 displays maps of NSE for both model 
versions against the four different GPP proxies, using Z-transformed variables. The AP model better cap-
tured the GPP seasonality with GPPGOME-2_SIF products with the median NSE values of GPPCRUN_VPD-AP, GP-
PGSWP_VPD-AP, GPPCRUN_SW-AP, GPPGSWP_SW-AP equaling to 0.43, 0.30, 0.07, and −0.02, respectively (Figures 7b–
7e, S4; Table S4). In contrast, GPPTRUNK shows a negative median NSE with GPPGOME-2_SIF (Figures 7a and S4; 
Table S4). GPPCRUN_VPD-AP presents the largest spatial extent of best modeling efficiencies among the four 
AP versions.

3.4.  Spatial Pattern of Dry-Season Green-Up Across Amazonia

Guan, Pan, et al. (2015) showed a large-scale dry-season green-up area in the northern wetter part of Amazo-
nia where MAP exceeds 2,000 mm yr−1. Here, we tested whether VPD- and SW-triggered models can repro-
duce this green-up spatial pattern against SIFGOME-2 by investigating differences between wet- and dry-sea-
son (∆) (Figure  8). Spatial patterns of ∆GPPCRUN_VPD-AP (Figure  8c) were similar to those of GOME 2ΔSIF ‐  
(Figure 8b), with higher GPP during the dry season (blue area) almost everywhere north of the Equator. 
The patterns of ∆GPPGSWP_VPD-AP show no dry-season green up pixels (Figure 8d) while SW-AP using both 
CRUNCEP and GSWP3 forcing show only a thin band of dry season green-up going from the Guyana shield 
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Figure 3.  Pearson correlation coefficient (R) between seasonality of simulated LAIyoung and MODIS Enhanced 
Vegetation Index (EVI). (a) LAICRUN_VPD-AP, young, (b) LAI CRUN_SW-AP, young, (c) LAI GSWP_VPD-AP, young, (d) LAI GSWP_SW-AP, young.
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to Ecuador (Figure  8e). Scatterplots (Figure  S5) of modeled ∆GPP versus observation-based ∆SIFGOME-2 
against MAP also confirmed that VPD-AP and SW-AP using the CRUNCEP forcing perform better in repre-
senting the sign of ∆GPP across Amazonia than those using the GSWP3 forcing. A similar MAP threshold 
of approximately 2000 mm.yr−1 was also identified in this study for SIFGOME-2 (Figure S6k), whereas the 
distribution of GPPTRUNK did not capture this pattern, with only very few grid cells having negative ∆ where 
MAP > 2,000 mm yr−1 (Figure S6). We further analyzed the scatterplots of ∆GPP versus observation-based 
∆SIFGOME-2 against mean annual SW (Figure S6). Results confirmed that, for most blue grid cells in Figure 8 

where the forests show a dry-season green-up, SIFGOME-2 for most pixels is 
not negatively related to SW (blue points in Figure S6). However, for the 
red grid cells in Figure 8, where forests show a higher GPP in wet sea-
son, the SIFGOME-2 decreases when SW increases in the dry season. Only 
VPD-AP using the CRUNCEP forcing correctly captures this relationship. 
Thus, overall, our analysis indicates that VPD-AP using CRUNCEP forc-
ing has a good capability in identifying the spatial patterns of dry-season 
green-up across Amazonia.

4.  Discussion
The impacts of seasonal atmospheric dryness and sunlight availability 
on litterfall and photosynthetic seasonality remain elusive and differ 
between regions (Leff et  al.,  2012; Saleska, Miller, et  al.,  2003; Sayer 
et  al.,  2011). Chen et  al.  (2020) tested the seasonality of precipitation, 
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Figure 4.  NSE of modeled litterfall for SW-AP and VPD-AP phenology model versions, each version being run with 
two different climate data sets CRUNCEP and GSWP3 (see legend in upper right corner of the figure). The sector 
size represents NSE values (red: NSE>0; blue color: NSE<0). The 14 sites correspond to locations where litterfall was 
monitored.

Figure 5.  Seasonality of modeled GPP for the VPD-AP and SW-AP 
phenology schemes. Each version was run with the CRUNCEP (CRUN) 
and GSWP3 (GSWP) climate forcing data sets. The gray shading areas 
represent the respective standard error of the mean (SEM), computed over 
the whole region.
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SW and VPD as climate triggers of litterfall and suggested that VPD was 
the best empirical trigger for old leaf shedding at three Amazonian sites 
with field observations, while no driver worked at the fourth site off the 
shore of the Guiana coast. Zhou et al. (2019) found that increases of low 
VPD promoted photosynthesis, while increases in high VPD inhibited it 
due to stomatal closure. VPD was also suggested as a trigger of old leaf 
abscission (Myers et al., 1998) and may be a signal for trees to form new 
leaves that have higher photosynthetic capacity. On the other hand, some 
studies showed that the increase of SW correlated well with the timing 
of litter fall (Zhang, Yuan, et al., 2014). A possible reason is that leaves 
may shed in response to a long decline of solar radiation, after experi-
encing declining photosynthetic rates (Taiz & Zeiger, 2002; Zhang, Yuan, 
et al.,  2014). Observations also suggest that most evergreen and decid-
uous forests in the humid Amazonia both shed mature leaves (Zhang, 

Yuan, et al., 2014) usually coincident with the production of new leaves when SW begins to increase again 
with the coming dry season (Descheemaeker et al., 2006; Moraes et al., 1999; Zalamea & González, 2008). 
Our VPD-AP model version was shown to capture the photosynthetic seasonality of evergreen forests over 
a large fraction of the Amazon, and also represented better than the SW-AP version in simulating the large 
scale dry-season green-up pattern in northern Amazonia. The results, in turn, support the fact that atmos-
pheric dryness and light are credible climatic factors regulating the seasonality of leaf shedding and leaf 
flush in Amazonian evergreen forests, respectively. The new insights in this study are that we demonstrate 
the observed seasonal changes in phenology and productivity can be explained if plants adjust their canopy 
based on changes in climatic variables, which are related to plant resources (water and sunlight) limiting 
vegetation activity in these regions in a first approximation.
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Figure 6.  Mean squared deviation (MSD) and its components (dbias, dvar, 
and phased ) between TRUNK/AP modeled GPPCRUN_VPD-AP, GPPGSWP_VPD-AP, 
GPPCRUN_SW-AP, GPPGSWP_SW-AP and observation-derived GPPGOME-2_SIF on the 
horizontal axis.

Figure 7.  Nash–Sutcliffe efficiency (NSE) of simulated GPPTRUNK, GPPCRUN_VPD-AP, GPPGSWP_VPD-AP, GPPCRUN_SW-AP, GPPGSWP_SW-AP in comparison with 
observation-derived GPPGOME-2_SIF. Gray regions indicate grid cells with NSE<0. The NSE was calculated based on Z-transformed variables.
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Figure 8.  Multi-year average of wet minus dry season differences (∆) of simulated GPPTRUNK, GPPCRUN_VPD-AP, GPPGSWP_

VPD-AP, GPPCRUN_SW-AP, GPPGSWP_SW-AP with satellite GPP proxies (SIFGOME-2), respectively. Blue indicate regions that show 
a dry-season green-up or an increase in GPP.
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It is worth noting that the VPD-AP model failed to capture the correct GPP seasonality in a Guyana site 
(Chen et al., 2020). In this study, we found that the Guyana north east region is better captured for the dry 
season green-up of SIF with the VPD as a trigger compared to SW, but model performances remain poor 
in this area. Here, we further compared the model results in different sub-regions. As solar radiation and 
precipitation control the seasonality of sunlight and water availability and in turn influence the tropical 
phenology and photosynthesis, we classified the Amazon region into 5 sub-regions (Figure  9a) using a 
K-means clustering analysis (Supplementary Texts: B) based on MAP and SW data from CRUNCEP. The 
classification results are similar to that of Tang and Dubayah (2017) (Figure S7). The MSD (Table S3, Fig-
ure S8) and NSE (Table S4, Figure 7) metrics (Table S3) show that AP versions perform well in CA, SA1, 
and SA2 sub-regions where the SW seasonality is a unimodal curve. However, AP versions perform poorly 
in WA and NA regions where SW seasonality is a bimodal curve. We predict that the underlying mechanism 
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Figure 9.  Comparison of simulated and satellite GPP for 5 sub-regions classified by the K-means clustering analysis (see text). The 5 sub-regions are: Northern 
Amazonia (NA), Western Amazonia (WA), Central Amazonia (CA), Southern Amazonia1 (SA1) and Southern Amazonia2 (SA2). Colored areas correspond 
to Amazonian evergreen forests with fraction >90% based on ESA CCI land cover-derived PFT map. The EC sites used in Chen et al. (2020) are shown for 
information.
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in triggering the phenology and productivity differ greatly in these regions during the periods of the two 
GPP peaks.

5.  Conclusions
This study for the first time integrates site-level process knowledge, which precedes the emergence of new 
leaves and an increase of GPP generally during the dry season in wet regions of the Amazon, to match diag-
nostic evidence at large scale. This work is an important step to simulate more realistic impacts of climate 
change in LSMs for the future, as tropical forests play a major role in global carbon and water cycles. This 
study showed that our new canopy phenology module implemented into a global LSM can capture the 
large-scale spatial and seasonal patterns of satellite-observed GPP proxies across Amazonian tropical ever-
green forests. The module was originally developed from process understanding and observations of LAI 
and GPP at one site (Wu, Albert, et al., 2016) and tested at three other sites in Amazonia (Chen et al., 2020). 
Here, it is shown to provide good results over a large part of Amazonia. Equally important, the new formu-
lation of phenology successfully reproduces the observed MAP threshold of approximately 2,000 mm yr−1 
distinguishing dry-season green-up areas as previously shown in Guan, Pan, et al. (2015).

Our work will improve the representation of leaf phenology and the seasonal controls of productivity in 
evergreen, broadleaved tropical forests in Earth system models, and has wide implications for assessing his-
torical and predicting future hydrology and carbon cycling in response to climate change. Although using 
multiple in situ, satellite and modeled data sets for model evaluation, there are still potential limitations due 
to sparse sites of in situ litterfall measurements, uncertainties of satellite and modeled datasets, and coarse 
spatial scale of PFT maps in comparison with the real-world spatial heterogeneity. One way forward could 
be to refine the representation of functional diversity in tropical biomes which are currently not captured by 
models applying a PFT approach (Franklin et al., 2020). Perspectives for this work include: (a) investigating 
the different underlying mechanisms of the two GPP peaks in the WA and NA sub-regions where SW also 
exhibits a bimodal seasonality; (b) extending the modeling exercise to tropical evergreen forests in Africa 
and South-east Asia in order to improve the photosynthesis and possibly transpiration modeling across the 
pan-tropics; (c) predicting future changes in tropical phenology, productivity and transpiration in response 
to future climate changes, which are important for regional and global climate feedbacks.

Data Availability Statement
The CRUNCEP forcing files are available at website: https://rda.ucar.edu/datasets/ds314.3/. The GSWP3 
forcing files are available at website: http://hydro.iis.u-tokyo.ac.jp/GSWP3/. The GOME-2 Solar-Induced 
Chlorophyll Fluorescence (SIFGOME-2) is available at website: https://avdc.gsfc.nasa.gov/. The MODIS En-
hanced Vegetation Index (EVI) data are available at website: https://modis.gsfc.nasa.gov/data/dataprod/
mod13.php. The model outputs and field data used this study are available at: https://doi.org/10.5281/
zenodo.4743415.
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