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PRIMAL-GMM: PaRametrIc MAnifold Learning
of Gaussian Mixture Models

Ziquan Liu, Lei Yu, Janet H. Hsiao, Antoni B. Chan,

Abstract—We propose a ParametRIc MAnifold Learning (PRIMAL) algorithm for Gaussian Mixtures Models (GMM), assuming that
GMMs lie on or near to a manifold of probability distributions that is generated from a low-dimensional hierarchical latent space through
parametric mappings. Inspired by Principal Component Analysis (PCA), the generative processes for priors, means and covariance
matrices are modeled by their respective latent space and parametric mapping. Then, the dependencies between latent spaces are
captured by a hierarchical latent space by a linear or kernelized mapping. The function parameters and hierarchical latent space are
learned by minimizing the reconstruction error between ground-truth GMMs and manifold-generated GMMs, measured by
Kullback-Leibler Divergence (KLD). Variational approximation is employed to handle the intractable KLD between GMMs and a
variational EM algorithm is derived to optimize the objective function. Experiments on synthetic data, flow cytometry analysis,
eye-fixation analysis and topic models show that PRIMAL learns a continuous and interpretable manifold of GMM distributions and
achieves a minimum reconstruction error.

Index Terms—Dimensionality Reduction and Manifold Learning, Gaussian Mixture Models, Interpretability, Unsupervised Learning,
Probabilistic Models
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1 INTRODUCTION

P ROBABILISTIC models are effective representations for
real-world data in the presence of uncertainties. For

example, hidden Markov models (HMMs), a probabilistic
model for series of observations whose hidden states are
a Markov process, are widely used in speech recognition
[1] and sequence analysis [2]; linear dynamical systems
(dynamic textures, DTs) are used to describe a video since
they can abstract complex patterns of motions and ap-
pearance [3]. Our main interest in this paper is Gaussian
Mixture Models (GMMs), a class of probabilistic models
that represents multimodal data, where each mode is a
Gaussian density represented by its mean and covariance.
Moreover, GMMs can approximate any continuous proba-
bility density function as probability theory shows [4, 5].
Hence, there are numerous applications of GMMs in all
kinds of machine intelligence research fields. In computer
vision, GMMs are considered as a universal visual vocabulary
of image patches [6–9]; in natural language processing, re-
searchers use GMMs to represent a mixture of topics [10–12]
or grammar rules [13]; in speech recognition, the emission
probability from a phoneme to a speech segment is often
modeled as a GMM [1]. Previous works have proposed to
cluster probabilistic models to obtain hierarchical represen-
tations of data, which can be further employed in retrieval,
annotation, indexing and codebook generation [14–17].

While clustering probabilistic models (PMs) gives hier-
archical representations, it cannot learn a continuous and
interpretable manifold on which we can see the continuous
change between PMs. In various application domains, such
as medical diagnosis [18, 19], behavior analysis [20] and
text analysis [11, 12], such an interpretable manifold pro-
vides better insights into the differences between subjects
(the GMMs) and the underlying mechanisms. Specifically,
suppose we collect data fromN subjects and learnN GMMs
as their representation. Clustering GMMs will give several

common patterns among the subjects, from which we only
obtain limited discrete representations. Alternatively, if the
GMMs are embedded into a low-dimensional manifold, the
coordinates of subjects on that manifold provide a continu-
ous and low-dimensional latent space, and the relationship
between subjects and their properties, e.g., healthy condi-
tions in medical diagnosis and subject age/performance in
behavior analysis, can be revealed via correlation analysis.
In other words, if we reduce the dimensionality of GMMs so
that GMMs can be represented in a low-dimensional latent
space, the latent space will reflect how subjects’ GMMs are
correlated with their other properties. Furthermore, if we are
able to reconstruct GMMs from the low-dimensional latent
space, the continuous change along specific directions on the
manifold can be readily obtained, providing interpretability
of the hidden mechanisms of the revealed correlations. Note
that here we are concerned with learning a low-dimensional
manifold of GMM distributions (where the GMM itself is the
data sample), as opposed to learning a manifold of vector
data sampled from a GMM, as in [21].

Despite its importance, manifold learning for PMs is
not well-explored. There are two general approaches for
manifold learning of PMs: kernel embedding and latent
variable models. Kernel embedding explicitly models the
mapping from input PMs to latent variables using a kernel
function (or distance function). Hence, PMs can be embed-
ded into a low-dimensional space by a suitably-defined
kernel function over probability distributions. While the
forward mapping from input space to latent space is readily
available, finding an inverse mapping in kernel embedding,
known as the pre-image problem [22], is often difficult. Thus
the interpretability of kernel embeddings is often limited. In
contrast, latent variable models learn the generative pro-
cess, i.e. generative mapping from low-dimensional latent
variables to high-dimensional variables. But such generative
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Fig. 1: Learning a Parametric Manifold for GMMs. (left) Given a set of GMM distributions {φi}Ni=1, parametrized by component
priors, means, and covariances φi = {πik,µik,Σik}Kb

k=1, the goal is to learn a low-dimensional manifold spanning the GMM
distributions. (middle) On the manifold, the GMM parameters φ̂i = {π̂ir, µ̂ir, Σ̂ir}Kr

k=1 are generated from a latent space (w,z,y)
by their corresponding generative functions (f−1

πr
(wi), f

−1
µr

(zi), f
−1
Σr

(yi)). The parameters of the generative functions are obtained
by minimizing the reconstruction loss (KL divergence) between the given GMMs φi and their reconstructions φ̂i. (right) We
further assume that the latent space (w,z,y) is generated from a hierarchical latent space (HLS) v by parametric functions h−1(v)
to further reduce the dimension, which models dependencies among the component priors, means, and covariances.

models only take vectors as input and are not directly
applicable to PMs. AutoEncoders (AEs) [23] are another
type of nonlinear embedding method with latent variables.
AEs first map input vectors to a latent space (encoder)
and then reconstruct input vectors from latent variables
(decoder). Although AEs are able to model complex forward
and inverse mappings by neural networks explicitly, it is
unclear how to handle inputs consisting of multi-modal
distributions like GMMs, except vectorizing such input.

In this paper, we propose to learn a smooth and inter-
pretable low-dimensional manifold for GMMs such that the
generative mapping from the low-dimensional latent space
and the statistical manifold can be obtained easily and prob-
abilistic properties of GMMs are well respected. Inspired
by PCA, we propose a parametric approach for learning
a manifold of distributions. The GMM parameters for the
component priors, means and covariances {πk,µk,Σk}Kb

k=1
are each modeled by their own principal axes, i.e. mappings
from latent variables to the high-dimensional manifold. We
minimize the KL divergence between the original GMMs
and their reconstructions from the latent space, which
makes our method more accommodating to probabilistic
models compared to latent variable models. However, it
is well-known that the KL divergence between GMMs is
intractable so we resort to variational approximation to
obtain an upper-bound of the KL loss. We propose a varia-
tional EM optimization algorithm: alternatively optimizing
variational parameters and manifold parameters. To avoid
local minima, Metropolis-Hastings sampling [24, 25] is used
to introduce stochasticity into the optimization process.
Finally, a Hierarchical Latent Space (HLS) is constructed
to capture dependencies between the latent spaces for the
priors, means and covariances. Our contributions are 4-
fold: 1) we propose a novel learning framework, PaRametrIc
MAnifold Learning of GMMs (PRIMAL-GMM), to learn
a smooth and interpretable low-dimensional manifold of
GMMs; 2) we derive an EM-style optimization algorithm
to learn such a manifold and use Monte Carlo sampling to
avoid local minima ; 3) we propose to learn a kernelized
hierarchical latent space to model nonlinear dependencies
between different GMM parameter spaces; 4) we empirically
show the efficacy of PRIMAL-GMM on various applications,
including eye-fixation data analysis, flow cytometry analy-

sis and topic model visualization.
A preliminary conference version of this work was

published as [26]. Compared to [26], we have three main
improvements in this paper: (1) we propose a kernelized
HLS to model nonlinear dependencies in GMM parameters;
(2) we propose a parameterization for diagonal-covariance
GMMs and provide a corresponding implementation in
Tensorflow [27] to enhance scalability and flexibility; (3) we
test our method on several real-world datasets of different
modality such as text documents.

The remainder of this paper is organized as follows. We
discuss related work in Section 2, and propose the learning
framework and optimization algorithm in Section 3. In
Section 4, we extend the linear HLS to a kernel HLS. Finally,
Section 5 presents experimental evaluations of PRIMAL-
GMM and several baseline methods on one synthetic dataset
and four real-world applications.

2 RELATED WORK

Given a set of probabilistic models (PMs), with each PM rep-
resenting one subject in the dataset, the relationship among
the PMs can be uncovered through clustering, to obtain dis-
crete groups of common models, or through dimensionality
reduction (manifold learning), to obtain a latent space where
directions in the latent space correspond to changes in PM.
2.1 Clustering for Probabilistic Models
The hierarchical EM (HEM) algorithm is the seminal work
in clustering PMs [15], and was first proposed to cluster
Gaussian distributions. The Gaussians are collected into a
“base” GMM, from which a “reduced” GMM is estimated
with a fewer number of components. The components in
the reduced GMM serve as the representative Gaussians
for the clusters, and the cluster memberships map between
base and reduced Gaussian components. To avoid the high
computational cost, virtual samples are generated from
the base GMM and a closed-form solution is derived for
the parameter updates of the reduced GMM, expressed in
terms of the parameters of the base GMM. [28] proposed to
minimize a distance between a base GMM and a reduced
GMM that neglects component priors of the reduced GMM
and obtained a hard-clustering algorithm. [29] proposed to
minimize the KL divergence between the base GMM and the
reduced GMM using a variational approximation, since the
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KL divergence between two mixture models is intractable,
also resulting in a hard clustering algorithm. Recently [14]
derived a tighter upper-bound of the KL divergence and
proposed a density-preserving HEM (DPHEM), i.e., the
reduced GMM preserves the density of the base GMM.
Besides GMMs, HEM was extended to cluster time-series
PMs: Linear Dynamical Systems [16, 30] and HMMs [17, 31].

These clustering methods only give a discrete represen-
tation of the set of PMs, i.e., a finite set of representative
models and cluster assignments. In contrast, we propose
to learn a manifold of PMs, which is a continuum of
representative models specified by the latent space coeffi-
cients. Hence, our model can better visualize changes in the
structure of the PMs. In our learning algorithm, we adopt
a variational approximation to the expected log-likelihood,
which is similar to DPHEM [14]. The main difference is that
DPHEM takes a single input GMM and reduces the number
of components to obtain a single output GMM. In contrast,
our formulation takes a set of GMMs and embeds them into
a parametric manifold by minimizing the reconstruction loss
of the GMMs. DPHEM is a special case of our framework
when there is one input GMM and Km < Kb, where Km

and Kb are the number of components in the reconstruction
GMM and the input GMM. Also, the EM algorithm in our
paper has no closed-form solution in the M-step, whereas
the simpler M-step of DPHEM has a closed-form solution.

2.2 Manifold Embedding for Probabilistic Models

As we discussed in Section 1, kernel embeddings and la-
tent variable models can be used for manifold learning of
PMs. Kernel PCA [32] can be used with KL kernel [33] or
probability product kernel [34] to perform nonlinear dimen-
sionality reduction for a set of GMMs. Based on information
geometry [35], Fisher Information Nonparametric Embed-
ding (FINE) is proposed, which computes geodesics on
the Riemannian manifold of probabilistic distributions, and
then uses multi-dimensional scaling (MDS) [36] to obtain
embeddings [18]. The advantage of these kernel methods is
that the forward mapping from distributions to embedding
coordinates can be obtained explicitly. However, the disad-
vantage is that the generative mapping from embedding co-
ordinates to distributions is difficult and requires solving the
pre-image problem, which hinders interpretation of the em-
bedding space and its relationship with the input space. In
contrast to kernel methods, our method explicitly constructs
the generative mapping from latent space to probability
space. Gaussian Process Latent Variable Models (GPLVM)
[37] is a representative latent variable model, which assumes
the non-linear generative mapping is a Gaussian process.
However, the high-dimensional variables are treated as vec-
tors, and thus GPLVM cannot naturally represent structured
non-vector data, such as probability distributions. While it
is possible to also kernelize the high-dimensional variable,
this leads to the same pre-image problem as KPCA above.
Similar to GPLVM, our method is also a generative model,
but in contrast to GPLVM, we construct an explicit paramet-
ric mapping from the latent space to probability distribu-
tions. Another drawback of GPLVM is that it assumes no
dependencies among different dimensions of input vectors,
while PRIMAL models dependencies between input GMM
parameters via a hierarchical latent space.

Mixed models are able to accommodate correlation be-
tween individual samples by introducing random effects
into the prediction distributions. Thus, the distribution of
random effects provides certain individual properties, de-
pending on the corresponding covariates. Mixed hidden
Markov models (MHMM) [38] is a generalization of mixed
models to capture the correlation between multiple pro-
cesses, where the random effects can be interpreted as
the hidden random variables for individual processes, i.e.,
latent variables for HMMs. Mixed GMM (MGMM) can be
obtained from MHMM by setting the number of state to be
1 and the emission probabilistic model to be a GMM. In
this sense, MGMM learns mixed GMMs and corresponding
latent variables simultaneously from samples of a collection
of subjects. In contrast, PRIMAL learns latent variables from
given GMMs, where the predictor model is either a linear
or kernel function and the link function is f−1’s mapping
latent variables to GMM parameters. We give an ablation
study in Section 4 to compare the efficacy of PRIMAL and
its MGMM variant which learns a GMM manifold from
observation data directly.

3 PARAMETRIC MANIFOLD LEARNING OF GAUS-
SIAN MIXTURE MODELS

Let {πik,µik,Σik}Kb

k=1 be the parameters of the ith GMM
with Kb components, where πik is the prior probabil-
ity of the kth component, and µik ∈ RD and Σik ∈
SD×D+ are the mean and covariance matrix of the kth
component. The probability distribution for a GMM is
pi(x) =

∑Kb

k=1 πikN (x|µik,Σik), where N (x|µ,Σ) =
(2π)−d/2|Σ|−1/2 exp(−1

2 ‖x−µ‖
2
Σ) is the multivariate Gaus-

sian with mean µ and covariance Σ, and ‖x − µ‖2Σ =
(x−µ)TΣ−1(x−µ). Our goal is to learn a generative map-
ping from a low-dimensional latent space to the statistical
manifold of GMMs, i.e., f−1 : (wi, zi,yi) → pi(x) where
wi ∈ Rdw , zi ∈ Rdz , yi ∈ Rdy are the latent variables for
component prior, mean and covariance respectively.

3.1 Parametric Manifold for GMMs

In contrast to kernel embeddings, here we focus on explicitly
constructing the generative mapping from the latent space
to the statistical manifold. Following PCA reconstruction,
we define a set of “principal axes” and corresponding
“coefficients” (wi, zi,yi) for each GMM parameter (prior,
mean, covariance), from which the parameters can be re-
constructed. The “principal axes” and “coefficients” in our
method is generalized to parameterized principal functions
and latent variables. The latent space variables are used
to reconstruct a GMM with Km components (possibly dif-
ferent from Kb)

1, with parameters {π̂ir, µ̂ir, Σ̂ir}Km
r=1. The

rth component of the reconstructed GMM is defined by
rth principal functions and latent variables, denoted as
f−1
πr

: wi → π̂ir, f−1
µr

: zi → µ̂ir and f−1
Σr

: yi → Σ̂ir.
Note that latent variables (wi, zi,yi) are shared among all
reconstructed components while each reconstructed com-
ponent r has its own principal functions (f−1

πr
, f−1
µr
, f−1

Σr
).

1. Although it is possible for Km to be different from Kb in principle,
we set Km = Kb in our experiment to better reconstruct the manifold,
as in the synthetic experiment. We also suggest users to set Km = Kb

for the same reason.
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The next question is how to choose the parameterizations
for the principal functions. Many existing works have pro-
posed parameterizations for Gaussian parameters so that
they satisfy constraints for those parameters naturally, i.e.,
priors must lie in a simplex and covariance matrices must
be positive definite [7, 39, 40]. Here we employ different
parameterizations for full-covariance GMMs and diagonal-
covariance GMMs because the two kinds of GMMs often
come up in problems of different scales: diagonal matrices
are a common setting in large scale problems, while full
covariance matrices are often used in small datasets.

3.1.1 Full-Covariance GMM Parameterization
If a dataset contains N subjects and we learn a GMM
for each subject, the total number of parameters of full
covariance matrices will be O(D2KbN). Therefore, full co-
variance matrices are not practical for a large scale dataset
with hundreds of dimensions due to the D2 term. But for
small datasets like eye-fixation and flow-cytometry in our
experiment, full covariance matrices are necessary to repre-
sent the correlation between different dimensions. Note that
the estimation of full covariance matrices requires a large
number of samples for each subject. Here we propose a
parameterization for full-covariance GMMs so that priors
and covariance matrices fulfill their constraints automati-
cally. The principal functions are

π̂ir = f−1
πr

(wi;ar) =
σ(wT

i ar)∑Km

n=1 σ(w
T
i an)

,

µ̂ir = f−1
µr

(zi;mr, br) = (
dz∑
l=1

zilmrl) + br, (1)

Σ̂−1
ir = f−1

Σr
(yi;Cr, βr) =

dy∑
l=1

log(1 + exp(yil))CrlC
T
rl + β2

rI,

where ar ∈ Rdw , mrl, br ∈ RD , Crl ∈ RD×D , βr ∈ R,
σ(x) = 1/(1 + exp(−x)) is the sigmoid function, yil, zil are
the l-th coefficients of yi and zi.

Similar to PCA, the mean µ̂ir is a linear combination
of principal axes mrl, weighted by zil, and an offset vec-
tor br . The reconstructed precision matrix Σ̂−1

ir is a linear
combination of CrlCT

rl and an offset β2
rI . The reason for

reconstructing the precision matrix in this way is three-
fold. First, the positive definite constraint of Σ̂ir is naturally
fulfilled since the weights log(1 + exp(yil)) are always non-
negative. Second, when the latent variable yi � 0, then the
precision matrix will be a “default” value (i.e., a fixed level
of uncertainty) of β2

rI . For increasing values of the latent
variable yi, the precision will increase, i.e., the covariance
(uncertainty) decreases. Thus the latent variable naturally
interpolates between different shapes of covariance matrices
and a default covariance. Third, the gradients are easier
to compute when defining the reconstruction through the
precision matrix. For priors π̂r , empirically we found that
using the sigmoid function has more stable training, c.f.,
the softmax function. Using the linear parametrization, the
softmax function saturates too quickly to 0 or 1 due to
the exponential function, and makes it difficult to learn to
predict component probabilities between 0 and 1. Also note
that the probability constraints (non-negative and sum to 1)
on the prior are naturally fulfilled by the formulation.

Note that there is no need to define an explicit corre-
spondence between the rth component of the reconstructed
GMM and kth component of the input GMM, since the
learning algorithm uses the reconstruction loss between the
whole input GMM and the whole reconstruction GMM –
the ordering of the components in the input GMMs will not
affect the embedding. Finally, PCA is a special case of our
formulation in (1) with only one component Kb = Km = 1,
and the latent variable yi → −∞ and βr is a constant
(see Appendix A). From this perspective, our method is a
generalization of vanilla PCA to probabilistic models.

3.1.2 Diagonal-Covariance GMM Parameterization
For large scale datasets such as images [7], audio segments
[41] and topic models [12], diagonal covariance is a practical
setting as a result of the poor scalability of full covariance
matrices with respect to vector dimensions. Here we use a
different parameterization for diagonal covariance matrices
to exploit the diagonal property so that the computation
is much faster than that of full covariance matrices pa-
rameterization. A two-layer neural network (NN) with an
exponential function output is used as the parameterization
of f−1

Σr
(yi;C

(NN)
r ), i.e.,

Σ̂−1
ir = f−1

Σr
(yi;C

(NN)
r ) (2)

= Diag(exp(W (C,2)
r · ReLU(W (C,1)

r yi + h
(C,1)
r ) + h(C,2)

r ))

where Diag is the operator to form a diagonal matrix from a
vector, ReLU is the rectified linear unit, and the NN param-
eters are C(NN)

r = {W (C,1)
r ,h

(C,1)
r ,W

(C,2)
r ,h

(C,2)
r }. This

function always outputs a valid positive definite diagonal
matrix, and lowers the computational cost of full covariance
from O(D2Kb) to O(DKb). Similar parameterizations was
used to parametrize a Gaussian distribution in [39]. The
priors and means are also parametrized by two-layer NNs,

µ̂ir = f−1
µr

(zi;M
(NN)
r ) (3)

=W (M ,2)
r · Sigmoid(W (M ,1)

r zi + h
(M ,1)
r ) + h(M ,2)

r ,

π̂i = f−1
π (wi;A

(NN)) (4)

= softmax(W (A,2) · ReLU(W (A,1)w + h(A,1)) + h(A,2)),

where M (NN)
r = {W (M ,1)

r ,h
(M ,1)
r ,W

(M ,2)
r ,h

(M ,2)
r } and

A(NN) = {W (A,1),h(A,1),W (A,2),h(A,2)}. There is no
constraint for means so the output layer of f−1

µr
(zi;M

(NN)
r )

is a linear function. Note that we parameterize priors as
a vector π̂i = [π̂i,1, . . . , π̂i,Km

] using a network with a
softmax as the output activation following the convention of
neural networks that output a categorical distribution. We
empirically observe that the softmax function with NN is
not prone to unstable training, because the non-linear func-
tion better adapts to the softmax for predicting component
probabilities, compared to the linear parametrization in (1).

3.2 Linear Hierarchical Latent Space
In (1), we use different latent variables to embed the prior,
means and covariances to allow flexibility in representation.
However, this treats the generation of each set of parameters
independently. The dependencies among the prior, mean,
and covariances is further modeled using a hierarchical
latent space (HLS), which also reduces the dimensionality
of the latent space (LS). In other words, we assume the
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latent space {wi,yi, zi}Ni=1 is generated from a HLS v. The
HLS can also be used to visualize the GMM manifold in
a 2D or 3D space. Here we assume a linear relationship
between HLS and LS. Define Li = [wT

i ,y
T
i , z

T
i ]
T ∈ RdL as

the vector of concatenated latent variables with dimension
dL = dw + dy + dz . Then, the latent vectors are generated
from the HLS via Li =H(L)vi, where vi ∈ Rdv are the HLS
variables, dv is the dimension of the HLS, and the matrix
H(L) ∈ RdL×dv consists of basis vectors. Both H(L) and
{vi} are estimated when learning the manifold.

3.3 Kernel Hierarchical Latent Space
The previous subsection proposes to learn a Linear HLS
(LHLS) to capture the dependencies among priors, means
and covariances, which could be quite limited when the gen-
erative process is highly nonlinear. We address this problem
by introducing a kernel HLS (KHLS), i.e., the relationship
between LS and HLS is defined by a kernelized function
mapping vi to Li. Define the positive definite kernel func-
tion between HLS vectors as κ(vi,vj). The corresponding
kernel matrix is K ∈ RN×N with entries κ(vi,vj), and
kernel vector is ki ∈ RN between vi and vj for all j. The
kernelized function mapping is then

Li =H
(K)(K + λI)−1ki, (5)

where λ is the regularization parameter, I is the identity
matrix of size N , and H(K) ∈ RdL×N is the collection of
learned basis vectors. This formulation is inspired by multi-
variate kernel ridge regression [42] – in this context, the i-th
column of H(K) is equivalent to an “output” vector for the
corresponding i-th “input” vi, which form an input/output
training pair. However, in our case, both {vi} andH(K) are
unknown and trained from the data by fitting the manifold.

An obvious shortcoming of this kernel formulation is
its poor scalability: the computational cost of (K + λI)−1

is O(N3). We introduce pseudo-points to overcome this
problem, similar to [43] for improving the scalability of
Gaussian processes. We define a set of Np pseudo-points
{ν1, . . . ,νNp}, where νi ∈ Rdv . The kernel matrix K̃ ∈
RNp×Np is now calculated between the Np pseudo-points,
and the kernel vector k̃i ∈ RNp is calculated between all
pseudo-points and vi. The sparse kernelized function is
then Li =H(K)(K̃ + λI)−1k̃i, where the basis vectors are
H(K) ∈ RdL×Np . In the sparse formulation, H(K), {νi},
and {vi} are estimated when learning the manifold. See
Appendix D for a visualization of pseudo-points in the eye-
fixation experiment. In the remainder of this paper, we only
use the sparse formulation of KHLS.

3.4 Learning with EM Optimization

We next propose an algorithm for learning the reconstruc-
tion parameters and HLS variables from training data.
Given a training set of N GMMs, let pi(x) be the distribu-
tion for the ith GMM with parameters {πik,µik,Σik}Kb

k=1.
Denote the corresponding latent variables and HLS vari-
ables as {wi, zi,yi} and {vi}, the reconstructed GMMs as
{π̂ir, µ̂ir, Σ̂ir}Km

r=1 with distribution p̂i(x). The parameters
Θ(F ) in reconstruction functions {f−1

πr
, f−1
µr
, f−1

Σr
}Km
r=1 are

Θ(F ) = {ar, {mrl}dzl=1, br, {Crl}
dy
l=1, βr}

Km
r=1, (6)

for full covariance matrices, or

Θ(F ) = {A(NN), {M (NN)
r ,C(NN)

r }Km
r=1} (7)

for diagonal covariance matrices. The parameters in
HLS are Θ(H) = H(L) for linear HLS, or Θ(H) =
{H(K),ν1, . . . ,νNp

} for KHLS, and the HLS variables for
the training data are Ω = {vi}Ni=1.

The reconstruction and HLS parameters, and variables
{Θ(F ),Θ(H),Ω} are obtained by minimizing the recon-
struction loss between pi(x) and p̂i(x), given by KLD [44],

{Θ(F )∗,Θ(H)∗,Ω∗} = argmin
Θ(F ),Θ(H),Ω

N∑
i=1

DKL(pi‖p̂i), (8)

where DKL(p‖q) =
∫
p(x) log p(x)

q(x)dx is the KLD between p
and q. Note that different combinations of parameterizations
for Θ(F ) are possible, as we explore in the experiments.
We use a compact notation Θ for all function parameters
{Θ(F ),Θ(H)}. Decomposing the KLD and removing the
first term, which is a constant w.r.t. {Θ,Ω} yields an equiv-
alent optimization problem based on the cross-entropy loss,

JCE(Θ,Ω) = −
N∑
i=1

∫
pi(x) log p̂i(x|Θ,Ωi)dx

= −
N∑
i=1

∫ Kb∑
k=1

πikNik(x) log{
Km∑
r=1

π̂irN̂ir(x)}dx, (9)

where Nik(x) = N (x|µik,Σik) is the original Gaus-
sian (kth component of the ith GMM) and N̂ir(x) =
N (x|µ̂ir, Σ̂ir) is the rth reconstruction component.

3.4.1 Variational Approximation
As the cross-entropy between two GMMs in (9) is in-
tractable, we derive an approximation based on a variational
upper-bound inspired by [14]. Introducing the variational
parameters q = {q(i)

kr }, (9) is approximated as follows,

JCE(Θ,Ω)

= −
N∑
i=1

∫ Kb∑
k=1

πikNik(x) log{
Km∑
r=1

π̂irN̂ir(x)
q

(i)
kr

q
(i)
kr }dx

≤ −
N∑
i=1

∫ Kb∑
k=1

πikNik(x){
Km∑
r=1

q
(i)
kr log

π̂irN̂ir(x)
q

(i)
kr

}dx (10)

= −
N∑
i=1

Kb∑
k=1

πik

Km∑
r=1

q
(i)
kr

[
log π̂ir

q
(i)
kr

+ Ex∼Nik
[log N̂ir(x)]

]
= J̃CE(Θ,Ω, q),

where the inequality in (10) is based on Jensen’s inequality.
The variational parameter q(i)

kr can be interpreted as a soft
assignment value for assigning the kth component of the
ith GMM to the rth component of the reconstructed GMM.

3.4.2 Variational optimization algorithm
Using J̃CE , we minimize an upper bound to JCE ,

{Θ̂, Ω̂, q̂} = argmin
Θ,Ω,q

J̃CE(Θ,Ω, q). (11)

We adopt an alternating (variational EM) algorithm to solve
the optimization problem:
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(i) Variational M-step: Given q̂, optimize the mani-
fold parameters and HLS variables: {Θ̂, Ω̂} =
argminΘ,Ω J̃CE(Θ,Ω, q̂).

(ii) Variational E-step: Given {Θ̂, Ω̂}, calculate the optimal
variational parameters: q̂ = argminq J̃CE(Θ̂, Ω̂, q).

For (ii), the problem can be formulated as a constrained
optimization problem,

min
q
J̃CE(Θ̂, Ω̂, q) (12)

s.t.
∑
r

q
(i)
kr = 1,∀i, k (13)

We use Lagrangian multiplier method to derive an analyti-
cal solution to q(i)

kr (see Appendix B for derivation),

q̂
(i)
kr =

π̂irN̂ir(µik) exp{− 1
2 tr(Σ̂

−1
ir Σik)}∑Km

n=1 π̂inN̂in(µik) exp{− 1
2 tr(Σ̂

−1
in Σik)}

. (14)

For (i), we use an alternating optimization strategy, i.e.,
optimizing one set of parameters while keeping others fixed.
However, we employ different optimization methods for
middle-size and large-scale datasets. Since full covariance
matrices are applied in moderate-size datasets, we should
optimize Θ(F ) = {ar, {mrl}dzl=1, {Crl}

dy
l=1, br, βr}

Km
r=1 and

HLS variables. In this setting, fast solvers can be derived for
sub-problems. For example, mrl and br is obtain in closed-
form, CrlCT

rl is solved by semidefinite programming, ar
and βr are solved by the Newton-Raphson method (see
Appendix C). For large-scale datasets, we use Tensorflow
to implement the gradient descent algorithm so that we
can make use of automatic differentiation and use GPUs
to accelerate the optimization, which allows more flexible
parameterizations and ameliorates scalability.

One drawback of this learning algorithm is that the
assignment variables q̂ affect the training result to a great
extent, and poor initialization may cause the optimizer to
become stuck in a local minimum. To help q̂ escape from
local minima, after each iteration, we use a Metropolis-
Hasting (MH) sampler for q̂ [24, 25], which randomly swaps
assignments for a random Gaussian component (more de-
tails are provided in Appendix C). The learning algorithm
is summarized in Algorithm 1.

3.4.3 Regularization

In (1), the HLS variables and manifold parameters are
unconstrained, and thus multiple equivalent solutions exist
by scaling the latent variables and principal axes in opposite
directions. The similar argument applies to (2). To remove
this ambiguity, we apply regularization on latent variables,
which effectively constrains the principal functions, similar
to the constraint on scales of principal vectors in PCA,

ρ1(Ω) =
N∑
i=1

cw‖wi‖2 + cz‖zi‖2 + cy‖yi‖2 + cv‖vi‖2,

(15)

where cw, cz, cy, cv are the regularization hyperparameters.
A second regularization is used to constrain the distance

between the HLS variables so that the low-dimensional
latent space preserves the distance information on the high-
dimensional GMM manifold. Specifically, we require the

Algorithm 1 Optimization Algorithm for PRIMAL

Input: {πik,µik,Σik}Kb

k=1, i = 1, . . . , N
Parameters: Nv , cw, cz , cy , cKL, cv, TMH

Output: {q̂, Θ̂, Ω̂}
1: Initialize {q,Θ,Ω}
2: while not converge do
3: M-step: Fix q̂ and optimize {Θ,Ω}
4: E-step: Fix {Θ̂, Ω̂} and optimize q̂, save J̃CE
5: Randomly sample a GMM, denoted as is
6: Randomize variational parameters of all component

of isth GMM as q̂(is)∗ and calculate J̃∗CE using q̂(is)∗

7: if pswap =
exp (−J̃∗

CE/TMH)

exp (−J̃CE/TMH)
> 1 then

8: Replace q̂(is) with q̂(is)∗

9: else
10: Do the above replacement with probability pswap
11: end if
12: end while
13: return {q̂, Θ̂, Ω̂}

distance of any two GMMs in HLS matches their symmetric
KL divergence DSKL(pi, pj) = DKL(pi, pj) +DKL(pj , pi),

ρ2(Ω) = cKL

N∑
i,j

(‖vi − vj‖2 −DSKL(pi, pj))
2. (16)

Note that the symmetric KL is only computed once before
the optimization.

To better condition the assignment variables q
(j)
kr and

prevent degeneration to uniform assignments, following
previous work [14, 15], we introduce virtual samples where
the variables x are replicated with i.i.d. distributions, i.e.
X = {x1, . . . ,xNv

}. Now the objective function is

J
(vs)
CE (Θ,Ω) = −

N∑
i=1

EX∼pi [log p̂i(X|Θ,Ω)]

= −
N∑
i=1

Kb∑
k=1

πikEX∼pik [log p̂i(X|Θ,Ω)]

≤ −
N∑
i=1

Kb∑
k=1

πik

Km∑
r=1

q
(i)
kr {log

π̂ir

q
(i)
kr

+ EX∼pik [log p̂ir(X|Θ,Ω)]}.

(17)

The virtual samples are i.i.d., and thus the expecta-
tion term EX∼pik [log p̂ir(X|Θ,Ω)] can be written as
NvEx∼pik [log p̂ir(x|Θ,Ω)]. The upper bound is then

J̃
(vs)
CE (Θ,Ω, q) = (18)

−
N∑
i=1

Kb∑
k=1

πik

Km∑
r=1

q
(i)
kr {log

π̂ir

q
(i)
kr

+NvEx∼pik [log p̂ir(x|Θ,Ω)]}

Using similar techniques in (14), the optimal variational
parameters with virtual samples are,

q̂
(i)
kr =

π̂irN̂ik(µik)Nv exp{− 1
2Nvtr(Σ̂

−1
ir Σik)}∑Km

n=1 π̂inN̂in(µik)Nv exp{− 1
2Nvtr(Σ̂

−1
in Σik)}

.

(19)

This expression is similar to deterministic annealing [45],
derived from the maximum entropy principle to avoid poor
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local optima. To see this, we add a regularization term
consisting of negative entropy of q to our objective function,

min
Θ,Ω,q

J̃CE(Θ,Ω, q) + TDA

N∑
i=1

Kb∑
k=1

πik

Km∑
r=1

q
(i)
kr log q

(i)
kr , (20)

where TDA is the temperature parameter that affects the
randomness of the variational parameters. Solving this
regularized problem will give a similar solution for q as
(19), with Nv replaced with 1

TDA+1 . This provides insights
to the effect of the virtual samples: more virtual samples
lead to more deterministic variational parameters. Thus we
can adapt the number of virtual samples to change the
homogeneity of the variational parameters. When Nv is 0,
the variational parameters will be uniform, and when Nv is
large, variational parameters will take binary values (0 or 1).

Finally, the optimization with regularization is

{Θ̂, Ω̂, q̂} = argmin
Θ,Ω,q

J̃
(vs)
CE (Θ,Ω, q) + ρ1(Ω) + ρ2(Ω).

(21)

3.5 Inference
After learning the manifold Θ̂, a novel GMM is embedded
in the manifold by minimizing the cross-entropy between
the novel GMM {πk,µk,Σk}Kk=1 and its reconstruction,

v̂ =argmin
v
−
∫ Kb∑

k=1

πkNk(x) log
Km∑
r=1

π̂rN̂r(x)dx+ cv‖v‖2

(22)

where the distribution N̂r(x) is a function of (w, z,y). The
optimization problem is solved using the same algorithm in
Section 3.4, but keeping the manifold parameters Θ̂ fixed.
This is equivalent to defining an implicit forward mapping
f from the distribution p(x) to the latent space (w, z,y).
Note that several novel GMMs can be input for inference by
optimizing several HLS variables in a parallel manner.

3.6 Connection to Generalized Linear Models
The hierarchical latent space formulation can be better un-
derstood from the perspective of Generalized Linear Models
(GLM) [46]. A GLM is made up of a linear predictor
η = Xβ and a link function η = g(ζ), where ζ are
parameters of the output distribution Y . The linear predic-
tor is the systematic component that embodies our belief
of the linear relationship between the input X and latent
variables η. The link function models the function between
latent variables η and expected value of target variables Y .
A classical linear regression model can be regarded as a
special case of GLMs in which the link function is an identity
mapping and the output distribution is a Gaussian. Hence,
GLMs enrich the hypothesis space of linear predictors by
introducing a possibly nonlinear link function and other
output distributions. GLM has also been kernelized by
assuming a kernel function for the predictor η(X) [47].

PRIMAL can be interpreted as a type of generalized
linear/kernel model. PRIMAL learns a manifold for a set
of GMMs assuming a generative process from hierarchical

latent variables to GMM parameters: v h−1

−−→ (w,y, z)
f−1

−−→
(π,µ,Σ). The first generative process from hierarchical
latent variables to latent variables h−1, which models the

relationship between “input” variables v and latent vari-
ables (w,y, z), is equivalent to the predictor or systematic
component in GLMs. The difference is that GLM assumes
a supervised setting (using both inputs X and outputs Y ),
while PRIMAL uses an unsupervised setting (only output
distributions (π,µ,Σ) are known, and the “inputs” v of
the HLS are inferred). The second generative process from
latent variables to GMM parameters f−1 is equivalent to the
link function in GLMs because it relates latent variables to
parameters of the target variables. We propose special link
functions for GMM parameters to satisfy their constraints.
GLMs are learned via maximum likelihood estimation on
a finite set of samples. PRIMAL extends GLM to learning
through infinite samples (probability distributions) by min-
imizing the KLD between probability distributions.

4 EXPERIMENTS
We conduct experiments with PRIMAL on learning GMM
manifolds on a variety of synthetic and real datasets: 1)
synthetic GMMs generated from a ground-truth GMM
manifold; 2) GMMs of eye-fixation data from young and
old subjects [20]; 3) GMMs of flow cytometry data from
acute myeloid leukemia (AML) positive and healthy donor
patients [19]; 4) topic models in the form of GMMs from
BBC News dataset [48].
4.1 Evaluation Metrics
We first describe how to evaluate the PRIMAL (and related
methods). Given a set of GMMs, PRIMAL is used to estimate
a low-dimensional GMM manifold represented by the HLS.
We evaluate the learned GMM manifold and HLS in 4 ways:

1) KLD reconstruction loss on held-out test GMMs, which
measures how well the learned manifold represents the
true underlying manifold.

2) Correlation between the HLS and other dependent
variables (metadata), which measures whether the HLS
dimensions are meaningful w.r.t. other measured data.

3) Classification accuracy using latent discriminant anal-
ysis (LDA) in the latent space, which measures the
correlation between the HLS and data labels, as well as
the efficacy of HLS in downstream tasks. We use LDA
to learn a 1D discriminant space from the trained HLS
variables, then map the test HLS variables to the same
space and use k Nearest Neighbors (kNN) to perform
the classification. If not specified, the k is set as 1.

4) Visualization of the GMM manifold, which provides
better understanding of the data and also highlights the
interpretability of our method.

4.2 Experiment Setup
In the synthetic data experiment, we generate the input
GMMs from a given parametric GMM manifold. The test
GMMs are generated from points interpolated between the
training points on the manifold. In real-world applications,
we randomly sample subjects as the training/testing set and
then use EM algorithm to estimate GMM for each subject’s
sample collection. See the following sections for details of
data processing.

Given input GMMs, we use Algorithm 1 to learn the
PRIMAL-GMM manifold. We denote PRIMAL using a lin-
ear HLS as PRIMAL-L, and using the non-linear kernel HLS
as PRIMAL-NL. The dimension of HLS and LS in linear
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Dataset Metric KPCA GPLVM FINE PRIMAL(L) PRIMAL(NL)

Synthetic (L) KL Loss (Train) 352.3 3.656 - 3.474e-2 -
KL Loss (Test) 358.1 4.678 - 5.419e-2 -

Synthetic (NL) KL Loss (Train) 508.0 9.236e-4 - - 5.546e-2
KL Loss (Test) 714.8 2.375e-2 - - 4.844e-2

Eye Fixations KL Loss 1.749 0.8257 - 0.7100 0.5011
LDA Acc 51.5% 51.5% 45.5% 81.8% 97.0%

Flow Cyto (M6) KL Loss 4.794 4.100 - 2.903 2.226
LDA Acc 95.00% 85.00% 75.00% 90.00% 95.00%

Topic Model KL Loss 38.97 11.13 - 9.183 10.23
LDA Acc (kNN = 16) 55.00% 58.33% 71.67% 78.33% 66.67%

TABLE 1: KL reconstruction loss for held-out test GMMs and LDA classification accuracy in the latent space. The LDA accuracy
is the result of the smallest KL loss among several trials. Bold text denotes the best performance.
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Fig. 2: Experiment on Synthetic Data. The positions of HLS variables are kept the same as that of ground truth. PRIMAL-L learns
a smooth latent structure and achieve the best reconstruction.

synthetic data is set as dv = 1, dw = 1, dy = dz = 2. We set
dv = 3, dw = dy = dz = 2 for all other experiments. The
hyperparameter settings for PRIMAL-L/NL are shown in
Appendix D. For the kernel in KHLS, we use a combination
of Gaussian kernel and polynomial kernel,

κ(vi,vj) = σ2
es exp (−

‖vi − vj‖2

2σ2
w

) + σ2
psv

T
i vj . (23)

We compare PRIMAL with GPLVM [37], KPCA [32] and
FINE [18]. GPLVM and KPCA cannot directly take GMMs
as input so we convert GMMs into vectors. To vectorize
a GMM, we first transform its parameters so that valid
GMMs can be obtained in the reconstruction stage: the prior
is mapped to an unconstrained space using the inverse
softmax function, the covariance matrix is represented by
its Cholesky decomposition. The transformed parameters
of the GMM are then concatenated into a long vector.
However, caution should be exercised in the concatenation
because the ordering of Gaussian components will affect the
vectors and the final embeddings. We normalize the order
as follows. For all GMMs in the dataset, the parameters for

each Gaussian component are converted into vectors and
then mapped to a 1-D line using PCA. The PCA coefficient
for each Gaussian component then determines the order
during concatenation. Note that PRIMAL is invariant to
the component order in that variational parameters q will
determine the assignment between input components to
reconstructed components.

In the original paper [18], FINE was formulated to take
a single Gaussian as input. Here we extend FINE to embed
GMMs by approximating the KLD between GMMs using
the variational approximation in [49]. Note that FINE can-
not reconstruct GMMs from the latent space because it is
based on MDS, which directly optimizes the latent variables
according to the distance matrix.

Our framework uses a two-stage estimation procedure:
1) subsets of data (e.g., corresponding to subjects) are sum-
marized using GMMs; 2) the GMM manifold is estimated
from the individual GMMs. One reasonable alternative to
our framework is to directly learn the GMM manifold from
the data samples, denoted as Direct-PRIMAL (DPRIMAL).
After learning the latent space {w,y, z}with DPRIMAL, we
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Fig. 3: Experiment on Synthetic Data. PRIMAL-NL learns a smooth latent structure and achieves a good reconstruction.
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run PCA on the latent space to obtain a hierarchical space
analogous to HLS.

4.3 Synthetic Data

We use two syntheic datasets of GMMs generated by a linear
and a nonlinear latent function to test PRIMAL with a linear
HLS and a kernel HLS, respectively.

The linear synthetic data consist of 39 synthetic GMMs
with 10 components, whose means and covariances are
generated from a 1D latent space, according to known
latent functions (Fig. 2-a1), and the priors are uniform.
20 GMMs are used for training and the other 19 GMMs
are reserved for testing. We use full-covariance parame-
terization Θ(fc) = {ar, {mrl}dzl=1, {Crl}

dy
l=1, br, βr}

Km
r=1 for

PRIMAL-L. Fig. 2 shows results of PRIMAL with a linear
HLS (PRIMAL-L), GPLVM and KPCA. PRIMAL-L learns
both a smooth latent space and achieves the best reconstruc-

tion error (Table 1), compared with other methods.2 KPCA
neither reconstructs GMMs nor learns a smooth latent space.
GPLVM reconstructs some of the GMMs but fails on others,
and the latent space is not consistent with the ground truth.

We create a more challenging synthetic dataset by
generating GMMs from a 3D space by some nonlinear
function (Figure 3-a). There are 30 GMMs (blue points
in HLS) for training and 29 GMMs (red points in HLS)
for testing (see GMMs in Fig. 3-a2). Each GMM has 9
components, where each component corresponds to a let-
ter in “PRIMALGMM” and its position in the letter is
mapped from the HLS. We use neural networks as the
parameterization of means in PRIMAL-NL, i.e., Θ(mNN) =

{ar,M (NN)
r , {Crl}

dy
l=1, βr}

Km
r=1, and the hyperparameters

for the KHLS kernel are σes = σps = σw = 1. Both PRIMAL-
NL and GPLVM reconstruct the GMM density well while
KPCA fails to reconstruct the density. In terms of the latent
space, only PRIMAL-NL learns a smooth latent space. Table
1 shows a large gap between training and testing reconstruc-
tion error of GPLVM, which indicates it is overfitting to the
training data. In contrast, PRIMAL-NL has similar training
and testing loss in terms of density reconstruction.

Finally, we use DPRIMAL to learn a latent space
{w,y, z} for both linearly and nonlinearly synthetic data,
and use PCA to obtain the 1 or 3 principal components for
latent space as an analogy to our linear or nonlinear HLS.
The mapping functions from {w,y, z} to GMM parameters
use the full-covariance parameterization. Fig. 2(e) and Fig.
3(e) show the learned principal components and suggest
that DPRIMAL neither learns a good GMM manifold (av-
erage KLD loss of 2.749 and 3.909 for the linear and non-
linear cases) compared to PRIMAL, nor learns the correct
latent space.
4.3.1 Sensitivity Analysis
We investigate the sensitivity of our algorithm to the reg-
ularization hyperparameters (cwyz, cv), where (cw, cy, cz)

2. Note that PRIMAL-L has multiple equivalent solutions by multi-
plying a column of H and corresponding entries in v, as in standard
PCA. Thus, the signs of the HLS values may be flipped, as in Fig. 2d-1.
Nonetheless, the interpretability of the HLS is not affected, since flip-
ping signs only affects the correlation direction (positive vs. negative),
but not the statistical significance.
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share the same value cwyz . In Fig. 4, we show the re-
sult of PRIMAL-L on the linear synthetic data under 4
hyperparameter settings. PRIMAL-L finds the true latent
structure of data and achieves good reconstruction error
under all hyperparameter settings, indicating that PRIMAL
is robust to the hyperparameter setting in this range. When
the regularization becomes weaker (smaller hyperparameter
values), PRIMAL-L achieves smaller KL loss and the scale of
the latent variables becomes larger. However, the optimiza-
tion failed when we set (cwyz, cv) smaller than 0.001, due to
infinite values in the latent variables. This phenomenon is
reasonable, since PCA also requires a unit-norm constraint
on the principal vectors to avoid arbitrary scale in the
latent variables. Thus, we note that relatively large-valued
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Fig. 7: Manifold Visualization of Flow Cytometry Data of PRI-
MAL.

hyperparameters are essential to PRIMAL, but as long as the
optimization does not collapse, the hyperparameter values
will not affect the result much.
4.4 Eye-Fixation Data
Eye-fixation data consists of a time series of 2D location
points of eye fixations of a human subject looking at im-
age stimuli. Previous work [50] has shown that a subject’s
eye fixation patterns during a face recognition task can be
clustered into two general strategies: a holistic strategy that
looks at the face center, and an analytic strategy that looks at
the eyes and mouth. These patterns have also been shown to
be correlated with the cognitive ability of older adults [20].

In this experiment, we use a dataset containing eye-
fixation recordings of 34 young people and 67 old ones
(34 old adults for training, 33 for testing). We model each
person’s eye-fixation pattern with a GMM, where each
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component corresponds to one region-of-interest (ROI) on
a face. As suggested by [20], we use Kb = 3 components
corresponding to 3 ROIs. We use both PRIMAL-L and
PRIMAL-NL to learn GMM manifolds for eye-fixation data
and their parameterizations are Θ(fc) and Θ(pmNN) =

{ANN , {M (NN)
r , {Crl}

dy
l=1, βr}

Km
r=1} respectively.

PRIMAL-L PRIMAL-NL GPLVM FINE KPCA
p <0.0001 <0.0001 0.1586 0.0001 0.0157
R2 0.3180 0.2938 0.0773 0.2703 0.1485

TABLE 2: Eye fixation data: correlation between the HLS and
age using multivariate linear regression analysis.

The HLS is shown in Figure 5-1. Only in the HLS of
PRIMAL-L and PRIMAL-NL can we observe that there are
different regions for older (AD quadrant in Fig. 5-1a and
BkDk quadrant in Fig. 5-1b) and young (CD quadrant in
Fig. 5-1a and AkCk quadrant in Fig. 5-1b) adults, and the
test old adults’ GMMs (black plus points) are all embedded
into the older regions. In contrast, the other three methods
embed testing GMMs into their latent spaces in an unde-
sirable way (see LDA accuracy for “Eye Fixations” in Table
1). We examine the correlation between hierarchical latent
variables and ages of subjects using the multivariate linear
regression analysis and show the p-value and R2 value in
Table 2. The result indicates that HLS variables of PRIMAL
are correlated with ages at a statistically significant level and
have the largest R2 statistic.

We visualize the reconstructed GMMs of PRIMAL-L and
PRIMAL-NL from their respective HLS’s in Fig. 6. Along
AB in the HLS, from the centroid towards A shows a
vertically shaped ROI going up towards the upper center
of the face, and towards B shows a vertically shaped ROI
at the nose and a more horizontally shaped ROI around the
eyes. AlongCD, from the centroid to C shows a horizontally
shaped ROI going upwards, whereas towards D shows a
vertically shaped ROI going downwards. As older adults’
ROIs focus on the face midline, their ROIs are vertically
shaped, and thus they are embedded into the AD quadrant.
In contrast, young adults look around the eye regions and
have horizontal ROIs around the eyes, and thus they are
embedded into the BC quadrant. In the non-linear HLS
along CkDk, a vertically shaped ROI at the mouth and
nose changes to a horizontal ROI around eyes. Along AkBk,
an ROI around the nose changes to one that is around the
mouth. This finding is consistent with previous work [20],
but PRIMAL is able to visualize the continuous change of
eye gaze strategy, instead of only discrete clusters as in [20].
4.5 Flow Cytometry Data
Flow cytometry data measures cell properties of patients for
medical diagnosis. Cells are dyed with fluorescent markers,
and then forced to pass through a laser beam one at a
time in the flow cytometry instrument. The detector records
the light scattering of the cells and the emitted light of
the fluorescent markers, which reflect certain properties of
the cells like sizes and surface proteins. The dimensionality
of flow cytometry data samples ranges from 5-8, and the
number of samples for each patient is often thousands,
which makes direct analysis cumbersome. We propose to
model each patient’s data as a GMM and embed them
into a low-dimensional space. Here we use an open AML
dataset [19] with 7-dim features and each patient is labeled
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Fig. 8: Manifold visualization of topic model HLS learned by
PRIMAL-L. Colors denote topics while markers denote differ-
ent words. In (b), word samples of each topic keep the same
and from GMM order 0 to 40 denotes from start to end of the
visualization line.

as either healthy or unhealthy. To better interpret our result,
we choose the tube containing marker CD34, which is the
same visualized marker in [19]. 30 healthy and 30 unhealthy
patients are used for training, and another 10 healthy and 10
unhealthy are used for testing. We run EM on each patient’s
data using K ∈ {2, 3, 4, 5} and find that when K > 2 there
are many subjects (> 80%) with low-weight components.
Hence, we use GMMs with 2 components to model each
patient. We use a smaller scale parameter for the exponential
kernel, i.e., σes = 0.1, because we find that the nonlinearity
will harm the KL loss. The parameterization for PRIMAL-L
is Θ(fc) and for PRIMAL-NL is Θ(mNN).

Fig. 5-2 shows latent spaces learned by various methods.
Although all methods show a good qualitative result, quan-
titative assessments in Table 1 show that PRIMAL-L/NL
achieves the best performance in terms of LDA accuracy
and KL reconstruction loss. In Fig. 7, we visualize the
GMM change along the direction from unhealthy patients
to healthy patients in HLS of PRIMAL-L/NL. To compare
with previous work [19], we visualize two dimensions,
log CD34 and log forward scatter. The value of the CD34
marker decreases when moving from the unhealthy to the
healthy region, which is consistent with the previous work
on classification [19]. Our method learns an interpretable
HLS, on which classification can also be performed.

4.6 Topic Models
Previous work has proposed to model documents as GMMs
to represent both word semantics and topic diversity [12].
The words are modeled as high-dimensional vectors in a
word space, and the topics are Gaussian distributions over
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1. A group of MPs has tried to raise the pressure on Tony Blair over reform to the House of Lords by publishing a detailed blueprint for change.
2. Lib Dem leader Charles Kennedy has said voters now have a ”fundamental lack of trust” of Tony Blair as prime minister.
3. Tony Blair faces his first prime minister’s questions of 2005 after a week of renewed speculation about his relationship with Gordon Brown.
4. Ministers would not rule out scrapping the Child Support Agency if it failed to improve, Work and Pensions Secretary Alan Johnson has warned.
5. First Minister Jack McConnell has ordered a report on the decision to allow a paranoid schizophrenic knife attacker to go on a visit unguarded.
6. He called it his ”masochism strategy” in the run-up to the Iraq war and now Tony Blair has signed up for another dose of pain.
7. For the umpteenth time, Tony Blair and Gordon Brown are said to have declared all out war on each other.
8. Venezuela is to review all foreign investment in its mining industries in an effort to strengthen its indigenous industrial output.
9. An ex-chief financial officer at Boeing has received a four-month jail sentence and a fine of $250,000 (£131,961) for illegally hiring a top Air Force aide.

10. The US government is to investigate two airlines-US Airways and Delta Air Lines’ Comair subsidiary
11. As European leaders gather in Rome on Friday to sign the new EU constitution, many companies will be focusing on matters much closer to home.
12. Pan-European stock market Euronext has approached the London Stock Exchange (LSE) about a possible takeover bid.
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1. Pan-European stock market Euronext has approached the London Stock Exchange about a possible takeover bid.
2. US mortgage company Fannie Mae should restate its earnings, a move that is likely to put a billion-dollar dent in its accounts.
3. UK advertising giant WPP has posted larger-than-expected annual profits and predicted that it will outperform the market in 2005.
4. Swiss cement firm Holcim has bid $800m (£429m) to buy two Indian cement firms and a holding company in the country.
5. Fans who buy tickets for this year’s Glastonbury festival will be issued with photo ID cards in an attempt to beat touts.
6. Brad Pitt, Robert De Niro and Hugh Grant have been added to the line-up for a two-hour US TV special to raise money for victims of the Asian

tsunami.
7. Premiership footballer and record company boss Kevin Campbell has gained a court injunction stopping R&B singer Mark Morrison from releasing an

album.
8. Actor Stephen Fry is joining the cast of the forthcoming film adaptation of The Hitchhiker’s Guide To The Galaxy.
9. A British author has had the film rights to her children’s bestseller snapped up for a seven-figure sum, with Ridley Scott set to direct.

10. New York electro-rock group The Bravery have come top of the BBC News-website’s Sound of 2005 poll to find the music scene’s most promising new
act.

11. Novelist Arthur Hailey was known for his bestselling page-turners exploring the inner workings of various industries.
12. Russian drama The Return (Vozvrashchenie) has been named winner of the BBC Four World Cinema Award.
13. Film stars from across the globe are preparing to walk the red carpet at this year’s Bafta award ceremony.

TABLE 3: First sentences of documents along the directions in linear HLS. Words of Politics/Business/Entertainment topics are
highlighted in different colors (same colors in Fig. 8).

the the word space. In particular, [12] uses word embed-
dings as the vectors and trains a global GMM based on
vectors from all documents as a mixture of topics. The
means and covariances of the global GMM are then fixed,
and the component priors are learned for each document
resulting in its topic representation. We follow a similar
setting to model each document as one GMM, but we
allow each document to have its own Gaussian components
instead of fixing the component means and covariances to
be the same across documents. The 100-dimension word
vectors are trained on Wikipedia corpus using word2vec.
We use documents of three topics, i.e. politics, business
and entertainment, from the BBC news dataset [48]. There
are only around 200 words in each document, thus learn-
ing a 100-dim GMM using only one document will lead
to ill-conditioned full covariance matrices. Thus, we first
learn a global GMM with diagonal covariances using all
word vectors from all documents and then use that global
GMM as the initialization when estimating each individual
document’s GMM. Finally we have 300 GMMs of 5 com-
ponents representing 300 documents in the data. The pa-
rameterizations of diagonal covariances for PRIMAL-L/NL
are neural networks and we use normal parameterizations
for priors and means in linear HLS case and try different
combinations of parameterizations for kernel HLS case. The
Θ = {A(NN), {{mrl}dzl=1, br,C

(NN)
r }Km

r=1} performs best
in PRIMAL-NL experiment. We compare PRIMAL with
embedding models as well as topic models to better position
our model in both research fields.
4.6.1 Comparison with embedding models
Fig. 5-3 shows the latent spaces of our methods and
baselines, where FINE and PRIMAL-L/NL show relatively
good qualitative results. Quantitatively, Table 1 shows that
PRIMAL-L/NL achieves the lowest reconstruction loss and
also the best LDA classification accuracy. We visualize the
manifold by sampling words with high likelihood in each
topic GMM and showing their relative change of GMM
likelihood along directions in HLS. For example, Fig. 8-
1b shows the word likelihood variations from politics and

business topics along a line from business to politics region.
The y-axis is the log of probability ratio between current and
the first word, thus a positive y means a larger likelihood
while a negative one means a smaller likelihood. The mani-
fold visualization demonstrates the strength of our models
in three ways: 1) the word variations are reasonable, i.e.,
when the position in HLS changes from topic A to topic B,
likelihood of words from topic A all decrease while those
from topic B increase; 2) in one topic’s region, the relative
density values of some words manifest the content of the
document, like the high likelihood of music-related words
in Fig. 8-2b may indicate that the document is about music
entertainment; 3) the kernel HLS (See Appendix D for the
visualization of PRIMAL-NL) has more variations along
the low-dimensional direction than the linear HLS, which
means that the functions learned by PRIMAL-NL are more
complex than PRIMAL-L’s. We show the actual change in
documents in linear HLS in Table 3 by sampling the closest
documents when moving along the directions from politics
to business and from business to entertainment. The change
of sentences reflects the gradual transition between topics.

Fig. 9 shows the sensibility of the HLS variables with
respect to the value of k in LDA. PRIMAL-L/NL always
performs better than the two baselines, indicating better
robustness of HLS variables inferred by PRIMAL.
4.6.2 Comparison with topic models
To further understand the effectiveness of PRIMAL on topic
models, we compare the coherence of topics learned by
PRIMAL and those learned by two traditional topic models:
RecoverKL [51] and Geometric Dirichlet Mean (GDM) [52].
The metric we use is Pointwise Mutual Information (PMI)
computed on all Wikipedia documents to obtain reliable
coherence statistics following [53]. PMI measures the co-
occurrence of any two words from the top-10 topic words
in a corpus, i.e, PMI(wi, wj) = log

p(wi,wj)
p(wi)p(wj) . There are 55

word pairs in the top-10 topic words, and the PMI for the
topic is the average of the 55 word-pair PMIs.

For classical topic models, the PMI evaluation is straight-
forward since different documents have a common topic
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PRIMAL
Topic 1 Topic 2 Topic3 Topic 4 Topic 5
year film michael told people
one blair howard part government
first music tony added years
two uk john before labour
best company david set election
time bbc bill back minister
three show charles says british
get plans martin former prime

number brown gordan expected against
think market jamie including party
0.6399 0.9237 1.4400 0.9314 1.0558

RecoverKL
Topic 1 Topic 2 Topic3 Topic 4 Topic 5

film club film number blair
year year festival one election
one glazer year album government

music company one year labour
people united director top year

goverment bid best best minister
company offer first first brown

uk sales award three people
show shares life film. prime
blair board show uk one

0.6072 0.9454 0.7783 0.5449 0.9231
TABLE 4: Top-10 words of 5 topics from PRIMAL and Recov-
erKL on BBC news. The last rows show the mean PMI scores
for the given topic.

subspace and the word probabilities for each topic are often
explicit. However, PRIMAL has different topics (GMMs) for
different documents and word probabilities are implicit. To
obtain a reasonable topic coherence evaluation, we use the
mean of each cluster in the latent space of Fig. 5-d3 to gen-
erate 3 GMMs as representative documents. As each GMM
consists of 5 components corresponding to 5 topics, we eval-
uate 15 topics in total for PRIMAL. The probability of word
wi under topic tj is calculated as p(wi|tj) =

p(tj |wi)p(wi)
Z ,

where p(tj |wi) = πjN (wi|µj ,Σj), wi is the word embed-
ding of word i, and Z =

∑
i p(tj |wi)p(wi). The prior p(wi)

is wi’s frequency in the training documents. For RecoverKL
and GDM, we set the topic number to 5, corresponding to
the 5 topics for each document in our GMM representation.

The mean PMI scores for the three methods are pre-
sented in Table 5, and indicate that our learned GMM
manifold has better topic coherence than RecoverKL, but
worse than GDM. We visualize several topics of PRIMAL
and RecoverKL in Table 4. PRIMAL learns more coherent
topics, while some topics (Topic 1) from RecoverKL are mixes
of two different topics (politics and entertainment). PRIMAL
also learns a “name” topic (Topic 3), which is not captured by
the two baseline methods. Finally, we evaluate the topic sep-
aration in the latent space. The LDA test accuracy is shown
in Table 5, with PRIMAL achieving a higher LDA accuracy
than GDM. Thus, PRIMAL is good at topic coherence and
latent space interpretation at the same time compared to
RecoverKL and GDM. See Appendix D for the latent space
visualization.

To compare the scalability and topic identifiability of
PRIMAL with GDM and RecoverKL, we run another exper-
iment on a larger topic modeling dataset, 20 Newsgroups
[? ], which comprises 4353 training documents with a vo-
cabulary of 60k words. For the scalability, PRIMAL uses
gradient descent so it generally takes longer than GDM and
RecoverKL in training (67 minutes for PRIMAL versus 3 and
26 minutes for GDM and RecoverKL). On the other hand,
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Fig. 9: LDA classification accuracy vs. no. of nearest neighbors.

RecoverKL [51] GDM [52] PRIMAL-L
PMI coherence 0.7598 1.2746 0.9982
LDA accuracy 81.76% 73.33% 78.33%

TABLE 5: Comparisons of PRIMAL with topic models on
pointwise mutual information (PMI) and LDA accuracy.

PRIMAL has a space complexity of O(NDK), where D is
the dimension of the word vectors, which is typically lower
than RecoverKL, which maintains a non-sparse matrix of
size V 2, where V is the vocabulary size. Note that adopting
stochastic gradient descent will decrease the space complex-
ity of PRIMAL to O(BDK), where B is the batch size. For
the identifiability, the topics learned by PRIMAL have an
average PMI of 1.1343, while those of GDM and RecoverKL
have PMIs of 1.2109 and 0.9317, indicating an advantage of
PRIMAL over RecoverKL in learning meaningful topics. See
Appendix D for detailed comparisons.

4.6.3 Training time

The training time of PRIMAL-L, KPCA, GPLVM and FINE
is 958.5s, 0.16s, 288.2s and 1190.5s respectively. Although
PRIMAL is a parametric learning method, it uses gradient
descent to optimize both the manifold parameters and la-
tent variables, and thus takes more training time than the
two non-parametric baselines KPCA and GPLVM. However
PRIMAL is still faster than the best non-parametric baseline
FINE. Note that PRIMAL is not proposed to be a fast
online manifold learning method, but as an interpretable
offline data analysis tool. To design a fast and interpretable
manifold learning method for GMM distributions is an
interesting future work.

5 CONCLUSION

We propose a parametric manifold learning framework
for Gaussian mixture models to obtain a continuous and
interpretable low-dimensional latent space. The parametric
functions are learned by minimizing the distance between
a generative GMM manifold from the latent space and
the ground-truth GMM manifold, which is measured by
a variational upper bound of KL divergence. We adopt a
variational EM optimization algorithm to learn the param-
eters and HLS variables. We demonstrate the effectiveness
of PRIMAL in both synthetic data and several real-world
applications. Future work will extend PRIMAL to more
complex probabilistic models like hidden Markov models
and increase its scalability to larger scale datasets.
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