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Abstract We introduce the concept of the reverse bullwhip effect (RBWE), which

can be caused by supply disruptions. In the RBWE, order variability increases as

one moves downstream in the supply chain, and therefore the RBWE is the opposite

of the classical bullwhip effect (BWE). We test our conjecture that disruptions cause

the RBWE using both a live ‘‘beer game’’ experiment and a simulation study. In the

beer game, we find that players modify their ordering behavior during disruptions,

and that these modifications cause the RBWE. We confirm this cause of the RBWE

under a broad range of settings using discrete-event simulation. Our results dem-

onstrate that supply uncertainty (in the form of random disruptions) and an over-

weighting of the supply line cause the RBWE. They also confirm previous studies

showing that demand uncertainty and an underweighting of the supply line cause the

BWE. Moreover, our study provides guidance for models of operational disruptions

by incorporating human reactions to disruptions.
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1 Introduction

Hurricane Katrina struck the U.S. Gulf Coast in 2005, disabling most of the oil

drilling and refining capacity in the region, which produces approximately 7% of the

oil consumed in the U.S. (Mouawad 2005). Meanwhile, gasoline consumers reacted

to the potential disruption, resulting in price spikes and long lines for gasoline

(Mouawad and Romero 2005), as well as chaotic gasoline-buying patterns (Gold

et al. 2005).

In the days and weeks following Katrina, therefore, the demand end of the

gasoline supply chain temporarily experienced increased order volatility, while the

supply end experienced less volatility since drillers and refiners were operating full-

tilt at their (newly reduced) capacity. This suggests that demand volatility was

greater than supply volatility—the reverse of the classical bullwhip effect (BWE).

Indeed, we postulate in this paper that a reverse bullwhip effect (RBWE) occurs

during and immediately after supply disruptions. We present evidence for the

RBWE using both a variant of the ‘‘beer game’’ and a simulation study. Moreover,

our study shows that human behavior creates an additional layer of variability to

systems under supply disruptions, suggesting that the modeling of operational

disruptions needs to take human reactions into account. This introduces new

challenges for designing and managing flexible supply chains.

The classical bullwhip effect (BWE) describes the amplification of order

variability as one moves upstream in the supply chain. The BWE was formally

introduced and analyzed by Lee et al. (1997b), and has since drawn extensive

attention from both academia and industry. However, recent evidence suggests that

the BWE does not prevail in general. Baganha and Cohen (1998) study the quantity

of shipments from manufacturers and that of sales from wholesalers and retailers in

the USA from 1978 to 1985. They conclude, by examining the coefficient of

variation, that it is the wholesalers rather than the manufacturers who see the largest

variance of demand (i.e., orders from retailers). This implies that the wholesalers

actually smooth the orders received from the retailers rather than amplifying them.

Moreover, Cachon et al. (2007) perform a detailed empirical study at the industry

level and show that only 47% of industries studied exhibit the BWE, while the

remaining 53% show the reverse, again demonstrating that order variance tends to

be largest in the middle of the supply chain. Similarly, although a number of studies

have confirmed the presence of the BWE in an experimental setting using the beer

game, several of these studies (Croson and Donohue 2003, 2006; Croson et al.

2004; Kaminsky and Simchi-Levi 2000; Wu and Katok 2006) find a substantial

portion of trials in which the opposite effect occurs. Our findings help to explain the

BWE, or lack thereof, identified by these empirical and experimental studies.

In this paper, we show that both the BWE and the RBWE can occur during the

beer game in the presence of supply disruptions. In order to examine and verify the

kind of behaviors that trigger the BWE and RBWE, we perform statistical analyses

on the results of the beer game experiment and use simulation both to validate the

findings of the experiment and to generate additional insight. Previous beer game

studies (e.g., Sterman 1989; Croson and Donohue 2006) have suggested that the

BWE is caused by demand uncertainty and an underweighting of the supply line
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(i.e., partially ignoring on-order inventory when setting order quantities). Our

results confirm these findings. However, we also find that some players put more

emphasis on the supply line in the presence of disruptions. Moreover, we observe

that some players either increase or decrease their order quantities significantly

during supply disruptions. For those players, we find the inverse result to earlier

studies: that overreaction to supply disruptions and overweighting of the supply line

can cause the RBWE. Using the terminology of our bullwhip metaphor in Sect. 1.1,

overreaction to supply shocks serves as an amplifying factor, overweighting of the

supply line serves as a damping factor, and both cause the RBWE.

When the BWE occurs, the demand/order variability increases upstream. In this

case, as Glatzel et al. (2009) advocate, additional flexible resources are needed

upstream, because the supply chain needs to be able to react quickly in the face of

highly volatile demand. However, when the RBWE occurs, it raises a particular

challenge for flexible supply chain design, since in this case the supply and demand

processes are highly interdependent, unlike the independence assumption typically

made in the flexibility literature (e.g. Tomlin and Wang 2005; Lim et al. 2008). If

the flexible design ignores the RBWE, either over- or under-investment may occur,

depending on whether the customers decrease or increase their orders during

disruptions. Our beer game experiment provides a behavioral model to describe

these demand patterns. Moreover, our simulation study helps us understand how the

upstream supply process affects the demand pattern at each stage in the supply

chain. Both studies will be useful in the development of future models for the design

of flexible supply chains.

1.1 The bullwhip metaphor

To illustrate the RBWE, we extend the common metaphor of the supply chain as a

string or whip, with the left-hand side representing upstream supply and the right-

hand side representing downstream demand. Demand variability is represented as a

vibration applied to the right end of the string. It is well known that a base-stock

policy is optimal at each stage of a serial supply chain (and thus the BWE does not

occur) if demands and purchase prices are stationary, upstream supply is infinite

with a fixed lead time, and there is no fixed order cost (Lee et al. 1997b). In this

case, vibrations (demand changes) are transmitted without modification up the

string, as in Fig. 1a. It has been argued (Sterman 1989) that demand spikes act as

shocks applied to the right end of the string, and that these shocks amplify as they

move up the string, causing the BWE (Fig. 1b).

Now suppose that a shock is applied to the left end of the string instead of the

right (Fig. 1c). The wave then initiates upstream and amplifies as it propagates

downstream—the RBWE.

It is also possible for both effects to occur simultaneously. For example, if the left

end of the string acts as a ‘‘fixed point’’ (that is, it is immovable), then vibrations

will tend to first amplify and then dampen as they move up the string (Fig. 1d). Such

a fixed point may represent an upstream supply shortage: The upstream stage

utilizes 100% of its (now reduced) capacity, so it has no variability in its order

quantities. The fixed point may also represent ordering behaviors that tend to
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dampen, rather than amplify, order variability. Either way, the fixed point ensures

that the vibration (demand) amplitude first amplifies and then dampens as one

moves upstream; that is, the BWE occurs downstream and the RBWE occurs

upstream. We call this the umbrella pattern because a plot of the order variability

stage-by-stage resembles an umbrella. The umbrella pattern may also occur when

exogenous supply and demand shocks both occur (both ends of the string are

perturbed—Fig. 1e). In both cases, order volatility (wave amplitude) is smallest at

the ends of the supply chain (string) and largest in the middle.

The umbrella pattern occurs frequently in our beer game experiment and

simulation study. It also is the shape observed at a macro level by Baganha and

Cohen (1998) and Cachon et al. (2007). We believe our experiments help to explain

the results found by these studies.

The discussion above identifies two types of RBWE. In one type, the upstream end

of the supply chain is fixed, and the volatility tends to reduce as it approaches the

fixed point (Fig. 1d), while in the other, a shock upstream amplifies as it propagates

downstream (Fig. 1c, e). We refer to the former type of RBWE as damping-type and

the latter as amplification-type; we discuss both types in this paper.

The remainder of the paper is organized as follows. In Sect. 2, we review the

relevant literature. In Sect. 3, we explain the basic settings for our experiments.

Sections 4 and 5 discuss the results of our beer game and simulation experiments,

respectively. Finally, we summarize our conclusions in Sect. 6.

2 Literature review

The BWE was first described by Forrester (1958), although the term ‘‘bullwhip

effect’’ was coined by managers at Proctor & Gamble and introduced into the

literature by Lee et al. (1997a, b), who suggest four causes of the BWE: demand

forecasting, rationing game, order batching, and price fluctuations. Lee et al.

(1997b) show that all four causes can result from rational, optimizing behaviors on

(a) (b) (c)

(d) (e)

Fig. 1 String vibrations a with no amplification, b with a demand vibration and BWE, c with a supply
shock and RBWE, d with a demand vibration, a fixed point, and umbrella pattern, and e with a demand
vibration, a supply shock, and umbrella pattern. Thick lines above strings plot wave amplitude
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the part of managers. Prior to the work by Lee et al., it was generally thought that

only irrational behaviors caused the BWE.

Sterman (1989) introduces the beer game and observes an order amplification due

to the underweighting of the supply line—that is, players tend to ignore some or all

of their pipeline inventory and instead base their ordering decisions primarily on

their on-hand inventory. The behavioral study by Sterman (1989) and the theoretical

results developed by Lee et al. (1997b) have stimulated numerous theoretical

studies on the causes of the BWE, as well as a number of additional beer game

experiments that attempt to reconcile the theories with actual human behavior, and

to explore other behavioral causes of the BWE. Since this paper is concerned with

behavioral causes for both the BWE and the RBWE, we first review the literature on

the beer game. We refer readers who are interested in theoretical analyses of the

BWE to the survey by Lee et al. (2004).

Kaminsky and Simchi-Levi (2000) find that a reduction in order information delay

and shipment lead-time results in lower total supply chain costs but not in a reduction

of order variability amplification. Chen and Samroengraja (2000) make the mean and

standard deviation of the normally distributed demand known to every player and

find that, though the four operational causes are removed, the BWE still occurs.

Croson and Donohue (2003) observe a decrease in the magnitude of the BWE in their

point-of-sale (POS) treatment group, who know the realized customer demand, when

compared with their control group, who know only the underlying demand

distribution. The primary reason for the decrease is that the participants in the POS

treatment group almost equally utilize the realized customer demand and the order

information from their immediate downstream stage in their ordering decisions.

Steckel et al. (2004) show that POS information can actually increase a team’s costs

when it distracts the participants under certain types of customer demand.

Croson and Donohue (2006) tell the participants the status of the inventory across

the supply chain at any point in time. The magnitude of the BWE decreases compared

with the situation in which participants are not provided with such information,

because upstream stages use downstream inventory information to anticipate and

adjust their orders. Oliva and Gonçalves (2007) suggest that participants respond

differently to their own on-hand inventory and backorders due to the difference

between holding and backorder costs and find that participants tend to ignore their own

backorders rather than over-reacting to them and placing panicked orders. Wu and

Katok (2006) show that effective communication along with learning can significantly

diminish the magnitude of BWE. Croson et al. (2004) show that the BWE still persists

even if the demand is constant and known to every player. They attribute this to

‘‘coordination risk’’; that is, players place larger than necessary orders to protect

themselves against the risk that other players will not behave optimally.

Despite its potential to systematically investigate the outcomes generated by

various ordering behaviors, simulation has rarely been used in the BWE literature.

An exception is Chatfield et al. (2004), who use simulation to study the effect of

players’ behaviors in a beer game in which all stages are managed by computer,

rather than by live players. Their order functions are very similar to the base stock

policy studied by Chen et al. (2000). Chatfield et al. find that an increase in the

variance of the stochastic lead time results in greater BWE, while information
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sharing dampens BWE. Furthermore, they provide three forecasting models under

stochastic lead times. The model that forecasts demand and lead-time separately

leads to higher forecast variability and therefore higher order variability than the

other two, one ignoring lead-time uncertainty and the other forecasting lead-time

demand. The BWE reaches its maximum magnitude when demand and lead-time

are estimated separately.

The theoretical studies on the rationing game by Rong et al. (2008) and on the

interactions among capacity, price and demand by Rong et al. (2009) are the first

studies of the RBWE1 in the literature to analyze the operational causes of the

RBWE in the presence of supply uncertainty. Rong et al. (2008) show that the BWE

occurs between retailers and customers and that the RBWE occurs between

suppliers and retailers when retailers compete for scarce supply under a standard

mechanism used by the supplier to allocate the available supply. Rong et al. (2009)

show that when customers react not only to the price itself but also to changes in

price, some pricing strategies implemented by the supplier may lead to the RBWE.

These two papers provide a theoretical development of the RBWE, while the aim of

the present paper is to address the behavioral causes of the RBWE.

Current studies on supply disruptions assume that decision makers are rational

optimizers. Parlar and Berkin (1991), Berk and Arreola-Risa (1994), Parlar and

Perry (1995, 1996), Gupta (1996), Mohebbi (2003), Snyder (2008), and many others

modify classical inventory models to cope with supply disruptions. Tomlin (2006)

examines how the optimal mitigation strategy (backup inventory, supplier

redundancy, or some combination) changes as the characteristics of the disruptions

change. Snyder and Tomlin (2008) take into consideration the benefit of advance

warning of supply disruptions. Babich et al. (2007) study the impact of supplier

default risk on the relationship between one retailer and multiple suppliers. Kim

et al. (2006), Hopp and Liu (2006), Snyder and Shen (2006) and Schmitt et al.

(2008) extend the study of supply uncertainty to multi-echelon supply chains.

Since managers have limited experience in dealing with supply disruptions due to

their low probability of occurrence, it may be difficult to apply the models cited in

the previous paragraph in practice. Moreover, just as Thietart and Forgues (1995)

suggest that the ‘‘butterfly effect’’ (that is, a small variation at one point may cause a

large variation of the whole system) can exist in organizations, so, too, can a small

disruption be amplified by irrational decision makers within a supply chain.

Therefore, studying human behavior under disruptions is important. One of the main

contributions of our paper is to examine people’s behavior when they face supply

disruptions, and the impact of this behavior on order-variability propagation in a

multi-echelon setting.

3 Basic settings

In our beer game experiment and simulation, we study a 4-stage serial supply chain

under periodic review. Stages 1–4 correspond to the retailer, wholesaler, distributor,

1 Ozelkan and Cakanyildirim (2009) use the term ‘‘reverse bullwhip effect’’ to refer to an unrelated

phenomenon involving prices in auctions.
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and manufacturer, respectively. The retailer receives demand from an external

customer. Since our study focuses on the impact of supply shocks, we remove the

demand shocks from beer game and fix the demand to 50 units per period. (The

exception is the simulation study in Sect. 5.1, in which we examine the impact of

supply-line weighting under demand uncertainty only.)

The manufacturer (stage 4) has a production capacity that limits the quantity it

may order in a given period. The production capacity, nt, is also a random variable.

Each time period is classified as either an ‘‘up’’ or a ‘‘down’’ period. During up

periods, nt is larger than the demand observed by the retailer and is smaller during

down periods. This setting is consistent with the supply disruption literature cited in

Sect. 2. The difference is that most papers set nt = 0 during down periods, but we

set nt [ 0 to model the situation in which capacity is reduced but not totally

eliminated during a disruption. See Sects. 3.1 and 5.2 for more details on the supply

process nt.

In each period, each stage i experiences the following sequence of events:

1. The shipment from stage i ? 1 shipped two periods ago arrives at stage i (that

is, the lead-time is 2). If i = 4, stage i ? 1 refers to the external supplier.

2. The order placed by stage i - 1 in the current period arrives at stage i. If i = 1,

stage i - 1 refers to the external customer.

3. Stage i determines its order quantity and places its order to stage i ? 1.

4. The order from stage i - 1 is satisfied using the current on-hand inventory, and

excess demands are backordered. Holding and/or stockout costs are incurred.

To reflect the modern data-processing environment (e.g., EDI) and to maintain

consistency with our assumption that information about disruptions is propagated

instantaneously, we assume (unlike Sterman 1989 and most subsequent papers) no

order information delay, i.e., stage i receives order information in the same period

that the order is placed by stage i - 1.

We examine the presence of the BWE or RBWE at each stage individually. Let

ri be the standard deviation of orders placed by stage i across the time horizon.

When ri [ ri-1, stage i amplifies its order variability; i.e., the bullwhip effect

(BWE) occurs at stage i. If ri \ ri-1, then the reverse bullwhip effect (RBWE)

occurs at stage i instead.

If ri?1 [ri for all i B 3, then the system exhibits pure BWE, and when

ri?1 \ ri for all i B 3, the system exhibits pure RBWE. There are also several other

possible shapes for the pattern of order standard deviations across the supply chain.

For example, when ri?1 [ri for i = 1,2 and ri?1 \ ri for i = 3, the supply chain

exhibits the umbrella pattern; this pattern is natural when the downstream part of the

supply chain is affected primarily by demand uncertainty while the upstream is

affected primarily by the capacity process.

3.1 Experimental design

Our beer game setup is motivated in part by consumer buying patterns for gasoline

following hurricane Katrina. Customers were aware of the supply shock (but not of

the magnitude of its downstream effect), and many of them filled their cars at the
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beginning of the shock in order to avoid future shortage and price fluctuations. In

our beer game experiment, we create capacity shocks during the game to observe

how players behave during supply disruptions. All players know when a capacity

shock is occurring, but only the player in the role of the manufacturer knows its

severity.

Our beer game experiment was conducted using a Microsoft-Excel-based

implementation written by the authors. Our computerized implementation gives

players more information about the status of the system than in the traditional board

version of the game. Figure 2 shows the game’s user interface. Players can easily

acquire information about their own on-hand inventory, backorders, on-order

inventory, and in-transit inventory, as well as backorders at their suppliers.

Each player is randomly assigned to a team and role, and players do not know the

team and role that the other players have been assigned to. No communication is

allowed during the game.

Our implementation automates the information-transfer process: when a player

places an order, it is transmitted electronically to his or her supplier, and when

orders are shipped, the delivery quantity is transmitted downstream electronically.

This reduces transaction errors, speeds the playing of the game, and enforces the no-

communication rule since players do not know who their teammates are.

Following Sterman (1989), we set the holding and backorder cost to $0.50 and

$1.00, respectively, at every stage of the supply chain. In order to focus the study on

the supply uncertainty faced by the whole supply chain, the demand is deterministic.

We fix the demand to 50 units per week and make this known to every player.

The manufacturer has a capacity limitation on his or her order size. Since most of

the literature on supply disruptions (e.g., Parlar and Berkin 1991; Berk and Arreola-

Risa 1994; Parlar and Perry 1995, 1996; Gupta 1996; Mohebbi 2003) uses a Markov

process to model disruptions and recoveries, we also assume that the capacity

fluctuates throughout the game following a two-state discrete-time Markov process.

Fig. 2 Screen shot of beer game
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The ‘‘up’’ state corresponds to full capacity nu and the ‘‘down’’ state corresponds to

disrupted capacity nd. We fix nu = 60 and allow nd to vary randomly according to a

normal distribution with mean 40 and variance 4. The capacity nd is different for

each disruption but the same for every period during a given disruption. The

transition probability from the up state to the down state is pd, and that from the

down state to the up state is pu. The stationary probabilities of being in the up and

down states are therefore pu/(pd ? pu) and pd/(pd ? pu), respectively. To ensure the

stability of the system, we require (nupu ? E(nd)pd)/(pd ? pu) [ 50, the demand per

period. In the experiment, we set pd = 0.2 and pu = 0.3. Hence the average

capacity is 52.

The players were told that the manufacturer occasionally experiences disruptions,

that during a disruption, the capacity decreases to a random value for a random

number of periods, and that after a disruption ends, the capacity returns to its normal

value. Players were not given the actual values of the disruption parameters (pu, pd,

nu, nd). They were told, however, that pu C 50 and that pd is random with mean less

than 50.

Each team faced the same sample path of the disruption process, which was

generated randomly before the experiment began and then repeated to ensure that

fair comparisons could be made from team to team. This sample path includes 17

down periods during the 50-period horizon, occurring during the same periods for

every team. Players were informed that every team would face the same sample

path.

In the real world, when there is a supply disruption, the further away a company

is from the disruption source, the less information it generally has about the

disruption. For example, when a fire occurred at a Philips semiconductor plant in

2000 (Sheffi 2005), the managers at telecom operators’ retail stores are unlikely to

have known how serious the problem was. In order to reflect this situation in our

game, players were notified (via an indicator in the beer game screen) whether a

disruption was in progress, but they did not know how severe the disruption was.

The exception is the manufacturer, who can indirectly determine the capacity in any

period since the program prompts him or her for a new order quantity if the quantity

entered exceeds the capacity.

Our experiment consisted of 92 participants (23 teams of 4 players each) from

Lehigh University, including 84 undergraduate students and 8 graduate students.

Roughly one-third of the participants received a cash incentive for playing the game

(the other two-thirds played the game as part of a course they were enrolled in). For

those receiving cash, the amount of the award was scaled based on the teams’

performance in a manner similar to that described by Croson and Donohue (2003).

Each team played for up to 1 h and 45 min. The introduction lasts 20 min,

followed by a roughly 10-min practice round in which the participants play for five

periods to familiarize themselves with the software environment; the results of this

practice round are discarded. The remaining time is used for the actual experiment.

The maximum number of periods that each team played is 50, and most teams

completed at least 40 periods.

We exclude teams who completed fewer than 30 periods’ worth of game play

since it is reasonable to assume that those teams may not have understood the game
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well enough to play fluently. Based on this criteria, 4 of the 23 teams (teams 9–12)

are omitted from the results below. In addition, team 6 was omitted because its

retailer and wholesaler had mean order quantities of 77.4 and 91.2, respectively,

both of which are more than four standard deviations above the mean order quantity

for all retailers and wholesalers (and significantly more than the demand of 50 per

period). Therefore, the results reported below include a total of 18 teams consisting

of 72 participants.

3.2 Order functions

It is well known that a stationary base-stock policy is optimal in a serial supply

chain if the back-order cost only occurs at the most downstream stage of the supply

chain and all parameters are stationary. Lee and Whang (1999) show that such a

policy is still optimal for decentralized supply chains by introducing specific

performance measures in the decentralized system. However, in most of the beer

game literature, the backorder cost occurs at every stage. We are not aware of any

literature that addresses the structure of the optimal ordering policy for individual-

utility-maximizing players in a serial supply chain in which information is not

shared among supply chain stages and holding and backorder costs are incurred at

every stage. Moreover, although there has been a great deal of research on supply

chain disruptions recently, the study of multi-echelon supply chains under

disruptions is fairly limited (see, e.g., Hopp and Liu 2006). Consequently, the

optimal ordering policy is unknown for centralized serial supply chains with supply

disruptions, nor is the optimal behavior known for individual-utility-maximizing

players under our beer game settings.

In light of these difficulties, Sterman (1989) postulates a model that expresses a

player’s order quantity as a function of several random state variables in order to

analyze whether the players put more focus on their inventory level or their on-order

inventory:

Oi
t ¼ max 0; Ôi�1

tþ1 þ ai
bðILi

t � ai
bÞ þ bi

bðIPi
t � ILi

t � bi
bÞ

� �
: ð1Þ

We refer to this as the base order function. The state variables used in the

function are as follows:

• ILi
t: Inventory level (on-hand inventory - backorders) at stage i after event 2

(i.e., after observing its demand but before placing its order) in period t.
• IPi

t: Inventory position (on-hand inventory ? on-order inventory - backorders)

at stage i after event 2 in period t.
• Ot

i: Order quantity placed by stage i in event 3 in period t. If i = 0, Ot
i represents

demand from the external customer.

• Ôi
t : Forecast of order quantity that will be placed by stage i in period t. This

forecast is calculated by stage i ? 1 after event 2 in period t - 1 using

exponential smoothing:

Ôi�1
t ¼ gOi�1

t�1 þ ð1� gÞÔi�1
t�1; ð2Þ

where g is the smoothing factor, 0 B g B 1.
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In (1), ab and bb represent target values for the inventory level (IL) and supply-

line inventory (IP - IL), respectively. The constants ab and bb are adjustment

parameters controlling the change in order quantity when the actual inventory level

and the supply line, respectively, deviate from the desired targets. (The subscript b
stands for ‘‘base’’.) Sterman based this order function on the anchoring and

adjustment method proposed by Tversky and Kahneman (1979). It accounts for

changes in the demand, inventory level, and supply line dynamically, even when the

demand and supply processes are unknown. Ôi�1
tþ1 is treated as the anchor, serving as

a starting point for the order quantity, while the remaining part is the adjustment to

correct the initial decision based on the inventory level and supply line. The order

quantity placed by stage 4 in period t is bounded by its capacity nt in that period.

Therefore the actual order placed by stage 4 in period t is min{Ot
4, nt}.

The relationship between |ab| and |bd| determines how the supply line is weighted:

|ab| [ |bd|, |ab| = |bd|, |ab| \ |bd| results in underweighting, equal weighting, and

overweighting the supply line, respectively.

The base order function does not capture the difference in players’ behavior

during up and down periods. To address this difference, we introduce a new order

function, which we call the disruption order function. This function assumes that

each player knows only that a disruption has occurred but does not know the precise

impact it has on inventories, as is often the case in real-world disruptions. The

disruption order function is as follows. (The subscript d on the coefficients stands

for ‘‘disruption.’’)

Oi
t ¼ max 0; Ôi�1

tþ1 þ ai
dðILi

t � ai
dÞ þ bi

dðIPi
t � ILi

t � bi
dÞ þ ci

dSt

� �
; ð3Þ

where St is a public signal to indicate whether there is a supply disruption in the

system; that is, St = 1 if stage 4 is in the down state and 0 otherwise. If cd
i \ 0, then

the player will order less during a disruption (e.g., to reduce potential backorders at

its supplier). If cd
i = 0, the player ignores disruptions, while if cd

i [ 0, then the

player orders more during a disruption (e.g., to protect against possible future

disrupted periods). As in the base order function, the actual order quantity placed by

stage 4 is given by min{Ot
4, nt}.

Our two proposed order functions are used to study (1) whether or not players

pay more attention to the supply line in the presence of disruptions; and (2) whether

or not players order differently during down periods compared with up periods. As

we mentioned above, a mathematical model of rational players is unavailable under

our beer game settings. Therefore, these two order functions should be considered as

tentative models for player behavior. It is an interesting topic of future research to

test the robustness of the results gained from our two order functions versus other

order functions.

4 Beer game results

Our interest is primarily in the presence or absence of the BWE and RBWE during
supply disruptions, rather than over the course of the entire horizon. Prior to
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performing our experiment, we conjectured that the RBWE would occur more often

than the BWE during down periods, but that the BWE may dominate when the SD is

calculated over all periods. This reflects the suggestion that supply disruptions cause

the RBWE and the fact that, taken across all periods, the upstream stage’s order

process is actually more volatile because the capacity changes themselves cause

order variance. Except for Table 1 below, the results reported in the remainder of

Sect. 4 include observations from down periods only.

Our findings may be summarized as follows. In Sect. 4.1, we show that fewer

than half of the players in our beer game experiment exhibited the BWE (that is,

had ri [ ri-1 for a given i) during supply disruptions, while slightly over half

exhibited the RBWE, with the BWE more likely to occur downstream and RBWE

more likely to occur upstream. In Sect. 4.2, we examine the relationship between

the BWE/RBWE and supply-line weighting and show that the players who

underweight [overweight] tend to exhibit the BWE [RBWE]. Moreover, in Sect.

4.3, we show that some players decrease their order quantities during disruptions

since the players are evaluated based on the whole team’s performance. The

decrease in order quantity in response to disruptions and supply-line weighting

type of the players provide an explanation of why some players exhibit the RBWE

while others do not.

Table 1 SD of orders for each player

Team All periods Down periods only

R W D M R W D M

1 0.00 41.76 13.34� 15.35 0.00 29.17 16.12� 11.10�

2 11.22 24.99 14.55� 10.25� 9.81 28.54 9.76� 2.07�

3 7.57 21.58 14.38� 13.4� 7.55 33.27 19.84� 6.58�

4 4.71 6.99 9.48 9.97 7.38 5.56� 8.77 3.11�

5 13.02 13.08 19.62 14.49� 11.98 11.21� 21.65 8.22�

7 26.74 14.70� 21.85 16.5� 23.56 13.36� 12.14� 5.81�

8 11.47 7.56� 5.62� 9.66 12.95 7.16� 5.74� 4.79�

13 8.04 8.83 9.50 14.87 8.38 5.85� 10.66 8.58�

14 1.91 2.06 2.21 8.74 2.21 1.99� 1.86� 2.07

15 10.39 30.31 28.33� 18.08� 12.56 45.53 28.65� 14.28�

16 21.83 15.45� 8.82� 12.52 29.75 18.48� 7.77� 5.07�

17 17.60 39.71 41.26 15.35� 18.62 38.95 40.49 9.62�

18 7.62 8.23 11.59 14.98 8.17 8.46 12.46 10.90�

19 9.41 10.24 18.20 13.23� 10.53 8.26� 23.98 8.55�

20 4.33 6.90 6.94 8.99 3.19 3.78 3.35� 2.06�

21 6.31 5.56� 11.53 10.37� 6.04 4.64� 5.52 1.21�

22 6.70 22.92 17.23� 12.30� 4.64 23.16 18.78� 8.28�

23 26.16 15.02� 21.06 7.37� 22.72 12.90� 21.73 5.73�

Mean 10.83 16.44 15.31 12.58 11.11 16.68 14.96 6.56
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4.1 The existence of BWE and RBWE

One of the major purposes of our version of the beer game is to test the prevalence

of the BWE in an environment that is different from the standard beer game setup.

Our results suggest that the BWE no longer dominates when supply disruptions are

present. Table 1 contains the SD of the players’ orders for all teams except the five

omitted teams (see Sect. 3.1). Standard deviations are reported both across all the

periods and for down periods only. The column labels R, W, D, and M represent

retailer, wholesaler, distributor, and manufacturer, respectively. In Table 1, if ‘‘�’’

appears beside a number in the ‘‘All Periods’’ or ‘‘Down Periods Only’’ column,

then the corresponding player exhibits the RBWE during the whole time horizon or

during down periods, respectively.

Table 1 indicates that 51.4% (37 out of 72) players exhibited RBWE during

down periods, confirming our conjecture that the RBWE at least sometimes occurs

during disruptions. Even when taken across all periods, 30.6% (22 out of 72) players

exhibited RBWE. The middle stages of the supply chain (wholesalers and

distributors) have the greatest order SDs, on average. In the sections below, we

investigate why some players exhibit RBWE while others do not.

The RBWE can occur at wholesalers, distributors and manufacturers, both during

down periods and across all periods. Figure 3 provides a graphical representation of

the order SD of each team during down periods. The dashed line represents the

mean of the order standard deviation over all 18 teams, while the solid lines

represent the individual teams. The general trend in Fig. 3 is an ‘‘umbrella’’ shape,

with demand variability increasing (BWE) downstream but decreasing (RBWE)

upstream. Except for the retailer, the ‘‘average’’ player in each role (dash line)

exhibits RBWE.
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Fig. 3 SD of orders during supply disruptions. Solid lines represent individual teams’ SDs; dashed line
represents mean SD
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We applied Spearman’s rank correlation test (significance level 0.1) to determine

whether the differences in SD between orders and demands (i.e., the differences

among the numbers in Table 1) are statistically significant. The results are

summarized in Table 2, which lists the number of players in each role who

exhibited statistically significant BWE or RBWE. (Details of this and all other

statistical tests can be found in the Appendix.)

Table 2 indicates that, during down periods, 21 out of 72 players (29.4%)

exhibited statistically significant RBWE during down periods and 27 out of 72

(38.2%) exhibited BWE. Across all periods, 13 players (18.1%) exhibit RBWE and

36 players (50.0%) exhibit BWE. Note, however, that since the retailer faces

constant demand, every retailer by definition exhibits BWE (or no BWE/RBWE).

When retailers are excluded from the analysis, 21 out of 54 players (38.9%) exhibit

RBWE during disruptions and 10 players (18.5%) exhibit BWE.

The majority of manufacturers exhibited statistically significant RBWE during

down periods because their orders are bounded by the reduced capacity. On the

other hand, few manufacturers exhibit RBWE when taken across all periods, since

the capacity changes necessarily cause order variability on the part of the

manufacturer. Similarly, retailers automatically exhibit BWE because they face no

demand variability. Taken together, these observations confirm our conjecture that

during disruptions, the BWE occurs downstream and the RBWE upstream. The

picture is less clear in the middle of the supply chain. There is no clear pattern to

whether the BWE or RBWE dominates at wholesalers and distributors during

supply disruptions. In the next two sections, we explore the question of why some

wholesalers and distributors exhibit BWE, some exhibit RBWE, and some exhibit

neither. In addition, we explore the difference between damping-type and

amplification-type RBWEs. In the remainder of Sect. 4, we consider BWE and

RBWE during disrupted periods only.

4.2 BWE/RBWE and supply-line weighting

Sterman (1989) suggests that one of the main causes of the BWE is that people tend

to weight the supply line less than the inventory level when choosing an order

quantity. But when the system faces supply uncertainty rather than demand

uncertainty, does players’ behavior change?

To address the relationship between supply-line weighting and the occurrence of

the BWE/RBWE, we first estimate the parameters of the base order function for

each individual player (except for the manufacturers since their orders are bounded

Table 2 Statistically significant occurrences of BWE and RBWE

Team All periods Down periods only

R W D M R W D M

BWE 17 8 5 6 17 5 5 0

Neither 1 6 7 9 1 9 10 4

RBWE 0 4 6 3 0 4 3 14
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by the capacity). See section ‘‘Base order function regression’’ in the Appendix for

details.

Our main focus is the behavior of wholesaler and distributor since the behavior of

these stages is the least predictable. The results in section ‘‘Base order function

regression’’ show that 23 out of 36 wholesalers and distributors (63.9%)

underweight the supply line, while another 13 overweight it. This result is

significantly different from that of Croson and Donohue (2003, 2006), who find that

98% of 172 players underweight the supply line.

An F-test indicates that 21 out of 36 of wholesalers and distributors (58.3%)

over- or underweight the supply line at a statistically level. Of these, 16 underweight

the supply line and 5 overweight it. We are interested in the relationship between

under-/overweighting and BWE/RBWE during disruptions. Players who overweight

pay more attention to the supply line, and therefore it is reasonable to assume that

these players want the on-order quantity to be stable more than players who

underweight do. Our conjecture is that players who underweight tend to exhibit

BWE, while players who overweight tend to exhibit RBWE. Table 3 lists the

number of wholesalers and distributors falling into each category. Only players who

exhibit statistically significant under-/overweighting and BWE/RBWE are included.

Note that all of the players who underweight the supply line exhibit BWE (or

neither), while all but one of the players who overweight the supply line exhibit

RBWE (or neither).

We conclude that underweighting the supply line is still a major cause of the

BWE, even if supply uncertainty is introduced to the system. On the other hand, the

presence of supply disruptions causes players to think more about the supply line,

hence overweighting it more; those who do are more likely to exhibit RBWE. This

overweighting causes a damping-type RBWE; by overweighting the supply line,

players dampen, rather than amplify, the order variability. In our experiment, we

believe that the emphasis on disruptions happens to be the cause for players to

overweight; however, it is possible that there are also other causes for overweigh-

ting (and consequent damping-type RBWE) that are not related to disruptions.

4.3 BWE/RBWE and reaction to supply disruptions

To evaluate players’ behavior during disruptions, we estimated the parameters for

the disruption order function using the same statistical regression procedure as in

Sects. 4.2 and ‘‘Base order function regression’’, except that we use the disruption

order function in place of the base order function. Again we omit manufacturers

from our regression analysis since their order sizes are constrained by the capacity.

Table 3 Under-/overweighting of supply line and BWE/RBWE for wholesalers and distributors

Weighting type BWE RBWE Neither

Underweight 6 0 10

Overweight 1 4 0

Neither 3 3 –
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The results, given in detail in Table 5 in section ‘‘Disruption order function

regression’’ of the Appendix, indicate that 39 out of 54 players (72.2%) have cd \ 0:

14 retailers, 10 wholesalers, and 15 distributors. This suggests that players are very

likely to decrease their order quantities during supply disruptions to prevent

backorders at their suppliers. This result surprised us at first, but it is intuitive since

the beer game is centralized, and players are evaluated based on the performance of

the whole team. Over-ordering during a disruption does not provide any benefit

(since it does not improve upstream supply) and it hurts the team by incurring

additional stockout penalties. This setting is different from the hurricane Katrina

example, in which customers act in their own best interests.

A significance test on these data indicate that for 14 out of 54 players (25.9%),

the over-ordering during disruptions is statistically significant at a level of

significance of 0.1; these consisted of 6 retailers, 3 wholesalers, and 5 distributors.

Two players (3.7%) exhibit statistically significant under-ordering. For 9 out of the

18 teams (50.0%), one of the two downstream players (retailer or wholesaler) orders

significantly less during disruptions. The downstream reaction in these teams causes

a (negative) demand shock for the middle-stage players (wholesaler and distributor),

who then face both supply and demand shocks. There is no clear pattern as to

whether these middle-stage players exhibit BWE, RBWE, or neither; it depends on

whether these players under- or overweight the supply line (i.e., whether they pay

more attention to their customers or their suppliers).

The data indicate that 8 out of 18 retailers either increase or decrease their order

quantity significantly during disruptions in our beer game experiment. The resulting

demand shock may be amplified by the middle-stage players (if they tend to

underweight the supply line) or may be dampened (if they tend to overweight the

supply line). The interaction between players’ reaction to disruptions and their

partners’ supply-line weighting causes either the BWE or the RBWE; this

relationship deserves further study. When the RBWE does occur for these teams,

it is (at least partly) an amplification-type RBWE, since downstream players cause

abnormally high volatility in reaction to the supply disruption.

5 Simulation experiment

Although the beer game can provide valuable insights into players’ individual

behaviors, it can be difficult to draw general inferences from such an experiment for

two reasons. First, the total cost of the supply chain is highly dependent on the

behavior of the individuals in the chain and on the arrangement of players in the

team. Second, from previous studies (Croson and Donohue 2006; Sterman 1989),

we know that individuals behave quite differently from each other, and the

behaviors of the participants in a given team may interact strongly. The same player,

if assigned to different groups, may even behave differently due to the effect of

other players. For example, a player may be relatively rational if her downstream

partner can control his order variability, but her behavior may be more chaotic if her

partner’s orders are volatile and unpredictable.
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Another drawback of the beer game experiment is the time limit. To achieve

some sort of stable behavior, the participants need to learn the order patterns of their

customer and supplier, and this may take a long time. This suggests that the

estimated parameters in the order function vary over time at the beginning of the

horizon. However, the time limitation prevents the beer game from being played

long enough to achieve stability.

In addition, there are differences between the incentives in the beer game and

those in a real business setting. In the beer game, the total cost of the supply chain is

the performance measure, while real businesses care about their own profit, not

(directly) that of their partners. This may cause different values of the parameters in

the order function, e.g., the customers in the hurricane Katrina example may have

positive cd instead of negative ones. Finally, due to time and cost considerations, it

is possible to test only a limited set of assumptions in the beer game (e.g., one type

of disruption process, etc.).

These drawbacks can be addressed using a simulation study, in which all stages

are operated by a computer rather than by humans, following pre-defined ordering

rules. Such a study makes it convenient to perform what-if analyses regarding

different ordering behaviors, disruption processes, and so on. It is also trivial to run

the system long enough to achieve an approximately steady state. Thus, our

simulation study complements our beer game experiment and may be viewed as

serving a sensitivity analysis role.

To perform our study, we used the freeware software (Snyder 2006), which

simulates multi-echelon supply chains with stochastic supply and/or demand. Each

stage can have its own ordering function, following any of several types of

inventory policies, including base stock, (r, Q), (s, S), and various anchoring and

adjustment order functions. More information about the supply chain assumptions

made by the simulation can be found in the documentation that accompanies the

software (Snyder 2006).

Our goal is to simulate the system with different parameter values to determine

the impact of various behaviors on ordering patterns across the whole system. For

each setting of the parameters, we simulated the system for 10 trials, each consisting

of 1,000 periods with a 100-period warm-up interval.

In Sect. 5.1, we establish the relationship between the BWE/RBWE and supply-

line weighting type under demand uncertainty only in order to validate our

simulation model against previous studies. Then, in Sect. 5.2, we investigate the

impact of supply-line weighting type and disruption reaction on the BWE/RBWE.

Finally, in Sect. 5.3, we consider the impact of different capacity processes on the

BWE/RBWE.

5.1 Effect of supply-line weighting under demand uncertainty only

Previous experimental studies, such as Sterman (1989), show through regression

analysis that underweighting the supply line is a major factor in causing the BWE.

To evaluate the relationship between the BWE/RBWE and supply-line weighting

type, as well as the magnitude of the BWE/RBWE under demand uncertainty only,

we use a 2-stage model consisting of a retailer and a wholesaler. The demand
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follows a normal distribution with mean 50 and standard deviation 10. There is no

capacity limit at the wholesaler. The exponential smoothing factor g is fixed to 0

based on the assumption that the customer demand process is known to both stages.

We set a = 10 and b = 100. Using the base order function (Sect. 4.2), we vary ab

and bb from 0.1 to 0.9 in increments of 0.1, respectively.

Figure 4 shows a contour plot of the BWE/RBWE at the wholesaler (i.e., the

difference in order standard deviations between the retailer and wholesaler) under

different weights on the inventory level and supply line. The x- and y-axes plot ab

and bb. It is evident from Fig. 4 that there is a break roughly along the line

|ab| = |bb|, that is, equal weighting between on hand inventory and the supply line.

When |ab| is sufficiently larger than |bb| (underweighting the supply line), the

retailer’s order SD is smaller than the wholesaler’s; that is, the BWE occurs. The

less weight is placed on the supply line, the greater the magnitude of the BWE is.

On the other hand, when |ab| \ |bb| (overweighting the supply line), the system

exhibits RBWE. However, the magnitude of the RBWE appears to be insensitive to

the weight placed on the supply line.

Our simulation confirms previous experimental studies on the relationship

between the BWE and underweighting the supply line and suggests further that the

RBWE occurs when players overweight the supply line. The magnitude of the

RBWE appears to be smaller than that of the BWE and less sensitive to the degree

of supply-line weighting. On the other hand, in a recent survey by Muthukrishnan

and Shulman (2006), 65% of the 2,990 responding executives believe that supply

risk has increased during the past 5 years. Thus, today’s managers may rely more
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heavily on the supply line when making inventory decisions. This can diminish the

magnitude of the BWE or even create the RBWE. As shown in our beer game

experiment, when supply disruptions are a major factor, some players may change

their behavior and put more emphasis on the supply line, resulting in the RBWE.

5.2 Impact of reaction to supply disruptions

To examine the impact of supply disruptions in a serial supply chain, we use a

4-stage model, as in the beer game setting. The simulation study shows that the

reaction to supply disruptions downstream serves as a trigger of order volatility. The

relative weights between on-hand and supply-line inventory of each player largely

determine the pattern of order standard deviations throughout the supply chain.

We use the disruption order function (Sect. 3.2) to model players’ reaction to

disruptions. To isolate the effect of downstream volatility, and because the results in

Sect. 4.3 indicate that downstream players are most likely to react to supply

disruptions, we set cd = 0 at stage 1 only; that is, only stage 1 changes its order

quantity in response to disruptions. For the underweighting case, we set ad = -0.2

and bd = -0.1. For the overweighting case, we set ad = -0.1 and bd = -0.2. This

choice of a and b makes the underweighting and overweighting significant while

keeping their values within the typical ranges observed in Table 5. The parameters

g, ad, and bd are set the same as their counterparts in Sect. 5.1.

The capacity distribution is almost the same as in the beer game, except the

down-state capacity is fixed rather than random. The order placed by stage 4 is

bounded above by nd or nu (depending on the state). We assume nd \ 50 \ nu.

We investigate three cases, representing two extremes and a more realistic hybrid

scenario: (1) all stages overweight the supply line (OW); (2) all stages underweight

the supply line (UW); (3) stages 3 and 4 overweight the supply line and stages 1 and

2 underweight the supply line (OUW). In case OW, all players follow traditional

beer game behaviors. In case UW, players are aware of the supply disruptions and

put more weight on the supply line. Case OUW represents the case in which players

closer to the supply pay more attention to the supply line while players closer to the

demand pay more attention to their own inventory.

We vary cd to model stage 1’s reaction to disruptions. The order SD of each stage

during disruptions is shown in Fig. 5. We fix nu = 60, nd = 40 and pd = 0.1 and

vary pu among 0.2, 0.5 and 0.8 to represent slow, medium, and quick recovery,

respectively. Stage 4’s order SD during disruptions is zero or close to zero because

of the tight capacity.

From Fig. 5, when cd = 0, there is still some order variability at all stages; i.e.,

the supply disruption transfers downstream. That is because the supply disruption

affects the downstream stages through changes in its inventory level and supply

line. But if the retailer does not react to disruptions (much), then the order

variability is limited, especially when the disruptions are not severe.

When cd is large enough, the retailer generates sufficient demand uncertainty for

his or her upstream partner. Underweighting the supply line then magnifies the order

shock such that the BWE appears from stage 1 to stage 3 consistently in case UW

and from stage 1 to stage 2 consistently in case OUW. At the same time,
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overweighting the supply line can effectively reduce the order shock, which causes

the RBWE for the wholesaler and distributor in case OW and the distributor in cases

OUW. However, the sign of cd is not an important factor in determining the order

SD since the order SDs are quite symmetric in Fig. 5. Note also that, as pu increases,

the order SDs decrease, reflecting the improved reliability of the system.

Figure 6 depicts the order SD for each case in Fig. 5, taken at cd = -10. It

represents the general pattern of order SDs that can occur in the supply chain. The

beer game experiment indicates that people may respond to supply disruptions

differently. This is also shown in Fig. 6, where the order standard deviation can

exhibit various types of curves. In reality, if the manufacturer and the retailer have

more control over the supply chain—for example, the manufacturer produces a

popular brand and/or the retailer has the advantage of a strong sales channel, then
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companies close to the manufacturer may weigh the supply line more while

companies close to the retailer may weigh the inventory level more. Consequently,

the chance of having an ‘‘umbrella’’ pattern of order SDs is high.

We conclude that, for sufficiently large |cd|, the retailer generates significant

demand uncertainty for the wholesaler. Interestingly, the magnitude of the reaction

matters more than the direction, as evidenced by the approximate symmetry with

respect to the y-axis in Fig. 5. Moreover, the players’ weighting types determines

the ordering of SDs, and therefore the presence of the BWE, RBWE, or umbrella

pattern.

Players’ reactions to supply disruptions can be considered as a magnifying force,

created by the supply disruption and propagating downstream in the form of an

amplification-type RBWE. At the same time, overweighting the supply line can be

considered as a damping force that decreases vibrations that are propagating

upstream, creating a damping-type RBWE.

5.3 Impact of disruption process

In the base and disruption order functions, it is the variability in the inventory level

and supply line that creates order fluctuations during supply disruptions. The

inventory level and supply line are, in turn, highly dependent on the capacity

process. However, we find that the order SD does not increase monotonically with

respect to the failure probability. It usually reaches its highest point when the failure

probability is roughly equal to 0.5. In contrast, the order SD decreases monoton-

ically with respect to the recovery probability. Moreover, we find that the recovery

probability has more impact on the order SD than the failure probability does.

We examine the impact of the capacity process on order variability in Fig. 7. We

set cd = -10. In parts a–c, we set pu = 0.9 and vary pd, while in parts d–f, we set

pd = 0.1 and vary pu.

When all stages overweight the supply line (parts a and d), the RBWE is evident

between stages 1 and 4 for all values of pd and pu, though for some values, r3 [ r2.
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When all players underweight (parts b and e), the BWE prevails strongly for stages

1–3, though the SD is small at stage 4 due to the tight capacity. Finally, when

upstream players overweight and downstream players underweight (parts c and f),

the umbrella pattern is apparent, with the smallest order SDs at stages 1 and 4 and

the largest at stages 2 and 3.

As the frequency of supply disruptions increases in parts a–c, the order SD at

each stage does not react monotonically. This can be explained as follows. The

number of up periods follows a geometric distribution with parameter pd. The mean

and variance of the number of up periods decrease as the failure probability

increases. The inventory level and supply line approach a stationary level when the

number of up periods increases. If the failure probability is small, the variance of the

number of up periods is large but the inventory and supply line become stable at the

end of the last up period due to a high mean number of up periods. If the failure

probability is large, the change in the inventory level and supply line is quick

because the mean number of up periods is small, but the variance of the number of

up periods is low. Therefore, the greatest fluctuation in the inventory and supply line

at the beginning of the disruption is achieved when pd & 0.5. Put another way, the

system is relatively predictable if pd is either large or small, but is less predictable

otherwise. Therefore, the order standard deviation reaches its highest point when the

failure probability is in the medium range.

As the recovery speed increases in parts d–f, the order SDs at each stage decrease

monotonically, because when the number of down periods increases, the inventory

level decreases. This makes the order quantity increase by the number of recovery

periods, which expands the range of order quantities. Therefore, the order SD

decreases with the recovery probability.

In Fig. 8, we set pu = pd; that is, the failure and recovery probabilities are the

same, and therefore so are the stationary probabilities of being up and down. We set

cd = -10, and nu and nd to 65 and 45 to ensure that the overall capacity is sufficient

to meet the demand. As pu and pd increase, disruptions become more frequent but

shorter. As this happens, Fig. 8 is closer to parts d–f than it is to parts a–c in Fig. 7.

This indicates that the recovery process dominates the disruption process in terms of

order SD. This can also be verified from the magnitude of Fig. 7, where the

maximum value of the y-axis in parts a–c is half of that in parts d–f.

We conclude that, just as in the beer game, players’ supply-line weighting type

has a significant impact on whether the BWE, RBWE, or umbrella pattern is
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present. Moreover, the order SDs are not monotonic with respect to pd but decrease

monotonically with pu. The recovery process, therefore, seems to have a stronger

impact on order SDs than the disruption process.

6 Conclusion

Managers face uncertainty not only from the demand side but also from the supply

side. The past several years have seen a range of high-profile disruptions or near-

disruptions, including Y2K, September 11th, SARS, the Indian Ocean tsunami, and

hurricane Katrina. These low-probability, high-impact events have a tremendous

impact on the supply chain, as do smaller, less newsworthy disruptions that happen

on a regular basis. In this paper, we studied potential forms of ordering behavior

during disruptions by introducing supply uncertainty into the beer game and a

simulation model.

From our beer game experiment and simulation studies, we conclude that the

BWE is not a ubiquitous phenomenon and suggest that a reverse phenomenon, the

RBWE, often occurs because of supply disruptions. We have identified two

independent ways to generate the RBWE: overweighting of the supply line and

overreacting to capacity shocks. The first causes the RBWE by smoothing the order

pattern upstream (damping-type RBWE). The second propagates supply disruptions

downstream in the form of increased order volatility (amplification-type RBWE).

Both causes provide some explanation as to why recent empirical studies have

concluded that the BWE is not as prevalent as previously thought (Baganha and

Cohen 1998; Cachon et al. 2007).

Behavioral supply chain research addresses the question of how people behave in

various settings and the effect of that behavior on the supply chain as a whole. Our

descriptive models examine the relationship between individual behaviors and order

variability. We believe they can serve as a foundation for studies involving

questions of designing and managing flexible supply chains. Possible research

questions might include:

• When supply disruptions occur, how should a manager of site(s) in the middle of

the supply chain manage flexibility in the presence of both upstream shortages

and demand changes due to human reactions?

• As the BWE and RBWE indicate that both demand and supply uncertainty may

be amplified, where should flexibility be added to the supply chain? Should it be

close to the sources of uncertainty or near the locations with the most direct

impact on supply chain performance?

• The current literature on flexibility (see the recent reviews by Buzacott and

Mandelbaum 2009, Chou et al. 2009 in this issue of the journal) provides many

means to plan and manage flexible resources. Will increased flexibility reduce or

increase the BWE and RBWE? Would chaining or other well studied flexible

structures still be preferable if BWE/RBWE is a major concern of the decision

maker? If not, how should the principles and guidelines on flexible structure

design be changed?
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• How can contracts be designed between two parties in a supply chain to share

the cost and benefit of flexibility to cope with both demand and supply

uncertainty?

Acknowledgments This research is supported in part by NSF grants CMMI-0726822 and CMMI-

0727640 and by a Lehigh University Faculty Research Grant. This support is gratefully acknowledged.

The authors also thank the two editors and two anonymous referees for their helpful comments, which

improved the paper considerably.

Open Access This article is distributed under the terms of the Creative Commons Attribution Non-

commercial License which permits any noncommercial use, distribution, and reproduction in any med-

ium, provided the original author(s) and source are credited.

Appendix

Test of significance of difference in order SDs

To test whether the differences in SD between orders and demands (i.e., the

differences among the numbers in Table 1) are statistically significant, we consider

the following null hypothesis:

Hypothesis 1 There is no amplification of either order or demand variability. That

is, the order SD is equal to the demand SD.

Since each player’s orders and demands are dependent, and their distributions are

unknown, a standard F-test cannot be performed. Instead, we transform Hypothesis

1 to test whether the correlation coefficient of Oi - Oi-1 and Oi - Oi-1 is zero.

To test this correlation, we applied Spearman’s rank correlation test using a level

of significance of 0.1. The results are shown in Table 4, in which 0 indicates that the

player does not show a significant difference between order and demand SDs (no

BWE or RBWE), 1 indicates that the order SD is statistically larger than the demand

SD (BWE), and -1 indicates the reverse (RBWE). The final three rows indicate the

number of players exhibiting each type of behavior.

Base order function regression

We wish to estimate the parameters of the base order function for each player

(except for the manufacturers since their orders are bounded by the capacity). A

simple least-squares fit cannot be applied in this case, because such a procedure

would have infinitely many optimal values for the targets for IL (ab
i ) and IP - IL

(bb
i ). This is because only ab

i , bb
i and ab

i ab
i ? bb

i bb
i can be predicted. Therefore, we

follow the statistical procedure used in previous beer game studies (e.g., Croson and

Donohue 2003, 2006; Oliva and Gonçalves 2007) to calibrate the order quantity

function to observed data by treating -ab
t ab - bb

i bb as a single constant. Since all
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players know that the external customer demand is fixed to 50, demand forecasting

is not required, so we set the smoothing factor g = 0.

The results of the regression are shown in the first set of columns in Table 5. (The

second set of columns will be used in Sect. 4.3.) The columns labeled âb and b̂b

give the parameter estimates. The column labeled Weighting Type indicates the

supply-line weighting for each player: U represents underweighting (|ab| [ |bd|),

while O indicates overweighting (|ab| \ |bd|). Note that regression is not applicable

for one player, R1, who ordered exactly 50 units every week.

To test the statistical significance of the observations in Table 5, we formulate

Hypothesis 2:

Hypothesis 2 Wholesalers and distributors treat the inventory level the same as

the supply line. That is ab = bb.

Table 6 shows the F-test results for Hypothesis 2 using a 0.1 level of

significance. The results for retailers are included for comparison. In the table, U

indicates whether the weight placed on the inventory level is significantly higher

Table 4 Results of Spearman’s rank correlation test for Hypothesis 1

Team All periods Down periods only

R W D M R W D M

1 0 1 -1 1 0 1 0 -1

2 1 1 -1 0 1 1 -1 -1

3 1 1 -1 0 1 1 -1 -1

4 1 1 1 0 1 0 1 -1

5 1 0 1 0 1 0 1 -1

7 1 -1 1 0 1 -1 0 -1

8 1 -1 -1 1 1 -1 0 0

13 1 0 0 1 1 0 1 0

14 1 0 0 1 1 0 0 0

15 1 1 0 -1 1 0 0 -1

16 1 -1 -1 1 1 -1 -1 -1

17 1 1 0 -1 1 1 0 -1

18 1 0 1 0 1 0 1 -1

19 1 0 0 0 1 0 1 -1

20 1 1 0 1 1 0 0 0

21 1 0 1 0 1 0 0 -1

22 1 1 -1 0 1 1 0 -1

23 1 -1 0 -1 1 -1 0 -1

BWE 17 8 5 6 17 5 5 0

Neither 1 6 7 9 1 9 10 4

RBWE 0 4 6 3 0 4 3 14

1 = BWE, -1 = RBWE, 0 = neither
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Table 5 Regression results for base and disruption order functions

Base Disruption

âb b̂b Weighting type âd b̂d ĉd Reaction type

R1 N/A N/A N/A N/A N/A

W1 -0.19 -0.44 O -0.19 -0.41 -47.24 D

D1 -0.13 -0.01 U -0.12 -0.01 -0.48 D

R2 -0.19 0.07 U -0.19 0.06 -1.13 D

W2 -0.43 -0.01 U -0.43 -0.02 0.76 I

D2 -0.07 -0.10 O -0.07 -0.10 3.22 I

R3 -0.66 -0.55 U -0.65 -0.54 -4.36 D

W3 -0.15 -0.23 O -0.17 -0.26 10.94 I

D3 -0.47 -0.64 O -0.48 -0.65 -5.29 D

R4 -0.50 -0.12 U -0.51 -0.12 -0.87 D

W4 -0.57 -0.41 U -0.57 -0.41 -3.41 D

D4 -0.48 -0.14 U -0.47 -0.14 -2.39 D

R5 -0.12 -0.06 U -0.14 -0.07 -9.77 D

W5 -0.04 -0.07 O -0.04 -0.08 0.71 I

D5 -0.37 0.08 U -0.37 0.08 -4.04 D

R7 0.02 -0.04 O 0.02 -0.03 -21.72 D

W7 -0.11 0.15 O -0.10 0.17 -6.57 D

D7 -0.31 -0.16 U -0.32 -0.17 -15.95 D

R8 -0.10 -0.10 O -0.10 -0.09 -11.57 D

W8 0.02 -0.19 O 0.02 -0.14 -3.32 D

D8 -0.14 -0.13 U -0.09 -0.09 -5.43 D

R13 0.01 -0.02 O -0.02 -0.06 -8.34 D

W13 -0.21 -0.11 U -0.16 -0.08 -7.41 D

D13 -0.01 -0.02 O -0.01 -0.04 -4.53 D

R14 -0.11 0.07 U -0.11 0.08 -0.23 D

W14 -0.11 -0.13 O -0.11 -0.15 -1.67 D

D14 -0.38 -0.39 O -0.36 -0.37 -0.48 D

R15 -0.26 -0.04 U -0.27 -0.05 -1.37 D

W15 -0.57 -0.25 U -0.60 -0.27 -6.54 D

D15 -0.30 -0.06 U -0.30 -0.06 -3.60 D

R16 0.15 0.00 U 0.16 0.00 4.54 I

W16 -0.16 -0.27 O -0.16 -0.27 4.13 I

D16 -0.09 -0.06 U -0.09 -0.06 1.64 I

R17 -0.39 -0.04 U -0.38 -0.04 -0.56 D

W17 -0.35 -0.12 U -0.36 -0.13 4.48 I

D17 -0.63 -0.65 O -0.63 -0.65 -4.02 D

R18 -1.04 -0.81 U -0.95 -0.73 -5.89 D

W18 -0.32 -0.03 U -0.31 -0.03 -1.55 D

D18 -0.40 -0.16 U -0.39 -0.16 -2.26 D

R19 0.13 -0.05 U 0.12 -0.05 2.10 I
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Table 5 continued

Base Disruption

âb b̂b Weighting type âd b̂d ĉd Reaction type

W19 -0.34 -0.28 U -0.34 -0.29 4.39 I

D19 -0.11 -0.22 O -0.11 -0.20 -5.68 D

R20 -0.72 -0.34 U -0.74 -0.32 -2.58 D

W20 -1.08 -0.72 U -1.10 -0.75 1.69 I

D20 -0.19 -0.14 U -0.21 -0.14 -2.70 D

R21 -0.22 -0.32 O -0.22 -0.31 0.71 I

W21 -0.36 -0.04 U -0.34 -0.07 -2.09 D

D21 -0.44 -0.20 U -0.31 -0.15 -11.29 D

R22 -0.17 0.09 U -0.16 0.10 -1.15 D

W22 -0.72 -0.21 U -0.73 -0.20 -1.60 D

D22 -0.44 -0.33 U -0.44 -0.33 0.81 I

R23 0.02 -0.13 O 0.02 -0.13 -7.37 D

W23 0.09 0.03 U 0.09 0.03 1.33 I

D23 -0.14 -0.03 U -0.15 -0.03 -6.43 D

Mean -0.28 -0.17 -0.28 -0.17 -3.61

O = overweighting, U = underweighting, D = decrease quantity during disruptions, I = increase

quantity during disruptions

Table 6 Results of hypothesis

test for equal weight of inventory

level and supply line

Note: * and � indicate that the

player exhibits BWE or RBWE,

respectively

O = overweighting,

U = underweighting,

– = neither

Team R W D

1 N/A O* U

2 U U* –�

3 U –* O�

4 U U U*

5 U – U*

7 – O� –

8 – O� –

U3 – U –*

U4 U – –

U5 – – U

U6 – O� –�

U7 U U* –

U8 – U U*

U9 U U –*

2– U U –

2U – U U

22 U U* U

23 O –� –
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than that placed on the supply line (underweighting), while O indicates

overweighting. A – indicates that there is no significant difference in weight

between the inventory level and the supply line. An asterisk (*) indicates that the

player exhibits a statistically significant degree of BWE in Table 4, while a dagger �
indicates RBWE.

Disruption order function regression

To evaluate players’ reaction to disruptions, we estimated the parameters for the

disruption order function using the same statistical regression procedure as in Sects.

4.2 and ‘‘Base order function regression’’, except that we use the disruption order

function in place of the base order function.

The results are displayed in the second set of columns in Table 5. The column

labeled Reaction Type contains I if the player increases his or her order size during

disruptions (cd [ 0) and D if the player decreases his or her order size (cd \ 0).

To test whether this over- or under-ordering is statistically significant, we use the

following null hypothesis:

Hypothesis 3 Players ignore the supply disruption signal. That is, cd = 0, and the

disruption order function degenerates to the base order function.

The results, using a level of significance of 0.1, are shown in Table 7. In this

table, – indicates a player who does not behave statistically differently during up

and down periods, while I [D] means that during disruptions the player orders

significantly more [less] than he or she does in normal periods.

Table 7 Results of hypothesis

test for reaction to disruptions

Note: * and � indicate that the

player exhibits BWE or RBWE,

respectively

D = decrease quantity during

disruptions, I = increase quantity

during disruptions, – = neither

Team R W D

1 N/A D* –�

2 – –* –�

3 D –* –

4 – D –*

5 D – –*

7 D –� D

8 D –� D

13 D – –*

14 D – –

15 – – –

16 – –� –�

17 – –* D

18 – – –*

19 I – D*

20 I – –

21 – D –

22 – –* –

23 – –� D
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