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Ocular drug delivery is one of the most challenging issues in ophthalmology because of
the complex physiological structure of the eye. Polysaccharide-based nanomaterials
have been extensively investigated in recent years as ideal carriers for enhancing
the bioavailability of drugs in the ocular system because of their biocompatibility
and drug solubilization. From this perspective, we discuss the structural instability
of polysaccharides and its impact on the synthesis process; examine the potential
for developing bioactive polysaccharide-based ocular drug nanocarriers; propose four
strategies for designing novel drug delivery nanomaterials; and suggest reviewing the
behavior of nanomaterials in ocular tissues.
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INTRODUCTION

Given the emerging popularity of electronic devices and the corresponding changes in lifestyle,
the incidence of ophthalmologic diseases has increased rapidly. It has been speculated that the
number of blind individuals will add up to 702 million by 2050 (Flaxman et al., 2017). However,
the efficacy of ocular drug delivery has remained challenging in clinical management, mainly
because of the unique anatomy and complex physiological barriers of the eye. For anterior diseases,
including dry eye syndrome, conjunctivitis, and keratitis, eye drops are recognized as common
treatments because of their high accessibility at the ocular surface (Jian et al., 2017; Li et al., 2019).
However, ocular surface barriers and associated stress responses, such as tearing, cause eye drops
to have poor bioavailability, and hence frequent instilling is required to maintain an effective drug
concentration (Bennett et al., 2020). The posterior of the eye mainly includes the vitreous body,
choroid, and retina, which maintain distance from the ocular surface and barrier layers, such as the
choroidal circulation region and the blood–retinal barrier. For the posterior, intravitreal injection
has been adopted for direct drug delivery. Nonetheless, this method remains difficult for patients to
accept due to possible side effects, such as endophthalmitis and trypanophobia and the associated
economic burdens (Müller et al., 2017). The ideal ophthalmic drug delivery system should be simple
and non-invasive with ensured bioavailability. In recent decades, increasing studies have reported
nanoscale materials as novel ocular drug carriers considering their enhanced tissue permeation and
sustained release characteristics (Lakhani et al., 2018; Lynch et al., 2019; Qamar et al., 2019).

Polysaccharides are polymer compounds consisting of many monosaccharide molecules
connected by glycosidic bonds. They can be divided into homopolysaccharides (composed of single
monosaccharides, such as starch and cellulose) and heteropolysaccharides (composed of different
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monosaccharides, i.e., mucopolysaccharide). The physical
characteristics of polysaccharides suggest distinct structural
and physicochemical features, including chemical composition,
degree of polymerization, number of branches, and surface
charge, which are advantageous for designing drug carrier
systems with adjustable characteristics in terms of drug loading
content, release capacity, and biodistribution (Bernd et al.,
2004; Furlani et al., 2019; Jin et al., 2020; Soliman et al., 2020).
Compared with synthetic nanocarriers, polysaccharide-based
nanomaterials exhibit a better performance in terms of drug
retention and ocular permeability via the interpenetration
of mucin chains, both directly and indirectly (Servais et al.,
2018; George and Suchithra, 2019; Pathak, 2019). For example,
chitosan, a type of polysaccharide with a linear structure and
positive charge, can closely integrate with the cornea and
conjunctiva, which have a negative surface charge. Consequently,
this electrostatic interaction prolongs the retention time and
enhances the penetration capability (Irimia et al., 2018).
Moreover, polysaccharides are commonly present in the
eye, such as hyaluronic acid, one of the major components
of the vitreous body. Emerging studies have suggested the
biocompatibility of polysaccharides and their derivative
nanomaterials for ocular delivery (Nishikawa and Tamai, 1996;
Nakagawa et al., 1997; De Oliveira Fulgêncio et al., 2012; Lodhi
et al., 2020). Increasing evidence indicates their biosafety, good
tolerance, and superior bioavailability, and polysaccharide-based
nanocarriers have received considerable attention for clinical
practice (Dubashynskaya N. et al., 2020). This perspective
focuses on the structural instability of polysaccharides in
synthesizing nanocarriers and provides a glimpse into their
translational potential, including bioactive polysaccharide-based
nanomaterials, novel strategies in nanocarrier design, and their
behavior in ocular therapy (Figure 1).

STRUCTURAL INSTABILITY OF
POLYSACCHARIDES

Quality control is a critical challenge for translational studies
of polysaccharide-based nanocarriers from bench to bedside.
Control of the physical-chemical properties in large-scale
nanocarrier synthesis has been fully discussed elsewhere
(Nagarwal et al., 2010; Bazile, 2014; Felice et al., 2014). However,
the structural instability of the parent polysaccharides is often
overlooked. Polysaccharides are widespread in various natural
sources, including animals, plants, microbes, and algae, and
techniques for their isolation and purification are the foundation
for developing polysaccharide-based nanomaterials (Mozammil
Hasnain et al., 2019). Thus, polysaccharides are readily accessible
compared with proteins and nucleic acids because the latter
two can encounter conformational changes upon extraction.
Nonetheless, emerging evidence suggests a sort of structural
instability in polysaccharides during extraction. For example,
an increase in the molecular weight of hemicellulose was
observed in a high-temperature aqueous alkali environment.
Compared with barium hydroxide, hemicellulose is more
vulnerable to degradation when exposed to organic alkaline

compounds (Bian et al., 2010, 2012). Moreover, the viscosity of
chitosan extracted from fungi is lower than that of crustaceous
chitosan (Żukiewicz-Sobczak et al., 2015). Recent studies have
demonstrated that different sources and separation methods
may result in variances in the purity, molecular weight, and
substituents of hyaluronic acid and chondroitin sulfate, which
subsequently affect their bioactivities (Abdallah et al., 2020).
Chang et al. reported that chitosan extracted from Auricularia sp.
elicited better antibacterial activities than commercial chitosan
(Chang et al., 2019). These differences will most likely lead
to unpredictable drug-release behaviors from the synthesized
polysaccharide-based nanomaterials and thus cause unstable
therapeutic effects via the ocular nanocarriers. Even for several
commercialized polysaccharides, such as cellulose, chitosan, and
hyaluronic acid, many structural properties, such as chain length,
degree of polymerization, and polydispersity, can vary between
batches, resulting in unreproducible experimental results. To deal
with this instability, reports on nanomaterial preparation should
include detailed structural characterization of the employed
polysaccharides, whether extracted or commercialized. In this
regard, given the functional importance of the physicochemical
and biological properties of synthesized ocular nanocarriers,
systematic review methods could promote classification
algorithms for polysaccharide processes.

To scale up the production of polysaccharide-based
nanocarriers, the structural instability must be overcome,
particularly for polysaccharides with branched-chain or
special functional groups like mucopolysaccharides. From this
point of view, it seems difficult to standardize the industrial
production of polysaccharides by pharmaceutical companies
worldwide as well as specified polysaccharide derivatives
without standard guidelines. Therefore, consensus and standards
covering properties including chain length, polymolecularity,
degree of substitution, and monosaccharide composition are
a high priority.

BIOACTIVE POLYSACCHARIDE-BASED
NANOCARRIERS FOR OCULAR
DELIVERY

Existing studies on ocular nanocarriers have mainly focused on
commercialized polysaccharides, including cellulose, chitosan,
and hyaluronic acid, because of their their easy access and
ready usage for nanocarrier synthesis without needing additional
preparation. In contrast, little is known about the properties,
modification reactions, and ophthalmological applications of
polysaccharides extracted from natural sources. Many studies
have suggested that certain natural polysaccharides, particularly
those from plants, possess unique biological activities for the
ocular system. Lycium barbarum polysaccharides have been
reported to ameliorate dry eye disease, prevent oxidative
damage in human trabecular meshwork cells, and preserve the
function, ganglion cells, and pigment epithelium cells of the
retina (Yang et al., 2017; Yang M. et al., 2020; Chien et al.,
2018; Lakshmanan et al., 2019; Liu and Zhang, 2019; Liu L.
et al., 2020). Carboxymethyl Terminalia catappa polysaccharides
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FIGURE 1 | Future developing routes of polysaccharide-based nanomaterials for ocular drug delivery.

show therapeutic effects in the cornea from blue light-emitting
diodes. Moreover, Polygonatum sibiricum polysaccharides could
attenuate the damage from diabetic retinopathy, while dry eyes
can be relieved by mucoadhesive Bletilla striata polysaccharide-
based artificial tears (Chandel et al., 2019; Wang et al., 2019c;
Thacker et al., 2020). Evidence has also demonstrated that phyto-
based polysaccharides can be utilized for drug delivery systems
upon graft modification or synergistic interaction via non-
covalent stabilization with other commercial polysaccharides
such as hyaluronic acid (Uccello-Barretta et al., 2013; Wang et al.,
2019b). There is no doubt that leveraging this feature to develop
dual-functional polysaccharide-based nanocarriers serving both
carrier and therapeutic functions holds great potential from a
clinical point of view.

The quality control of natural active polysaccharides has
been challenging for developing ophthalmic drug-delivery
systems and FDA approval. In addition to separation methods,
it is also difficult to define certain polysaccharides with
differential constituents, such as those from P. sibiricum,
P. cyrtonema, P. kingianum, and P. odoratum; despite all being
referred to as the so-called P. sibiricum polysaccharide, they
present various saccharide mappings in high-performance gel
permeation chromatography (Zhao et al., 2020). Moreover,
emerging quality control methods for polysaccharides have
been proposed, including polysaccharide receptor theory and
multiple-fingerprint analysis (Cao et al., 2019; Li et al., 2020;
Wang et al., 2020). In this context, the collaboration of

experts in the fields of phytochemistry, analytical chemistry, and
pharmacology is the highest priority to classify the structures of
botanical polysaccharides for medical use.

TYPICAL OCULAR
POLYSACCHARIDE-BASED
NANOCARRIERS AND NOVEL DESIGN
STRATEGIES

Polysaccharides show high chemical activities because of their
abundant functional groups, such as amino and hydroxyl
groups (Yang Y. et al., 2020). Several reviews have summarized
the synthetic protocols for common polysaccharide derivatives
(Tiwari and Bahadur, 2019; Anpilova et al., 2020; Yang Y. et al.,
2020). In the nanomaterial synthesis process, polysaccharides can
be reacted under drastic conditions, such as high temperatures,
salt contents, and shear forces, with relatively stable structures
and biological activities compared with nucleic acids and proteins
(Yuan et al., 2018; Garcia-Vaquero et al., 2019; Wang et al.,
2019a; Chao et al., 2020; Chen B. et al., 2020). Therefore,
by using polysaccharides and their derivatives, nanomaterials
with different types of geometric structures can be prepared,
from zero- to three-dimensional, through various synthetic
methods, such as hydrothermal synthesis and co-precipitation
(Ferreira et al., 2020; Alizadeh-Sani et al., 2021; Pan et al., 2021).
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Nanoparticles, nanocapsules, and nanomicelles are typical zero-
dimensional drug carriers; nanoparticles are characterized by a
uniform distribution of the drug and carrier, while the drug in the
latter two is encapsulated in the carrier core. These nanomaterials
improve the drug solubility and enhance the corneal penetration
with prolonged retention times (Liu et al., 2019; Karava et al.,
2020). One-dimensional polysaccharide-based nanomaterials are
often used as excipients for their plasticity and low-encapsulation
efficiency. For example, nanocellulose with its high mechanical
strength can act as a reinforcing material (Taheri et al.,
2020). Starting from one-dimensional nanofibers, the common
two-dimensional fibrous membrane can be synthesized by
electrospinning. Because of the high drug-loading capacity, long
retention time, and sustained release of such membranes, they are
often utilized as ocular inserts (Zheng et al., 2018). The properties
of nanofibers dramatically affect the drug delivery performance
(Mirzaeei et al., 2018; Yellanki et al., 2019). Nanogels are three-
dimensional hydrophilic networks on the nanometer scale that
are capable of encapsulating drugs or biological macromolecules
while maintaining their native conformation. One important
feature is that certain nanogels with functional groups (e.g.,
disulfide moieties) are stimuli-responsive. Exogenous stimuli,
including temperature, pH, and ionic strength, can significantly
influence the drug release kinetics and degradation rate; thus,
nanogels are also called intelligent delivery systems (Chen S. et al.,
2020; Lai et al., 2020).

Several strategies have been developed to maximize the
drug delivery capacity of polysaccharide-based nanomaterials.
A feasible design could be achieved using hybrid nanomaterials
with polysaccharides. Polysaccharides can serve as stabilizers
for other components, such as functional nanomaterials and
biological macromolecules, in constructing polysaccharide-
based nanohybrids (Zhan et al., 2019; Hammi et al., 2020).
The participation of polysaccharides can also enhance the
biocompatibility and biodegradability of exogenous materials,
especially inorganic nanoparticles (Fan et al., 2019; Alaei
et al., 2020; Dincă et al., 2020; Zheng et al., 2020). Santana
et al. prepared ZnS-coated CdS quantum dots and ZnS-
coated AgInS2 quantum dots by an aqueous route using
chitosan conjugated with bevacizumab. Animal experiments
showed no significant changes in electroretinography, intraocular
pressure, histological, morphometric, or immunohistochemical
examinations, indicating the good biocompatibility and biosafety
of chitosan for ocular delivery (Santana et al., 2020). In addition,
many studies have reported that the addition of precious-metal
nanoparticles, such as silver, and carbon materials, such as
graphene, can improve the antibacterial activity and release
capacity (Shi et al., 2016; Joz Majidi et al., 2019; Asghar et al., 2020;
Shah et al., 2020; Sun et al., 2020).

On the basis of small-molecule drugs, macromolecular
drugs and cell therapy (e.g., stem cells) have attracted much
attention because of their multi-target effects and promising
clinical results, particularly for complicated ophthalmic
diseases. Previous research has shown that hyaluronan–
chitosan nanoparticles can be absorbed by the corneal and
conjunctival epithelial cells and further assimilated, suggesting
the potential of polysaccharide-based nanocarriers for gene

therapy (de La Fuente et al., 2008a,b). Chaharband et al.
synthesized chitosan–hyaluronic acid nanopolyplexes loaded
with siRNA through an ionic gelation method, which could
penetrate the vitreous and retina barriers. Intravitreal injection
experiments demonstrated that the nanopolyplexes could
reach the posterior of rabbits and effectively reduce the size of
laser-induced choroidal neovascularization (Chaharband et al.,
2020). Biological macromolecules such as peptides can also be
used to form polysaccharide-based hybrid nanocarriers (Qian
et al., 2019; Lu et al., 2020). Silva et al. developed chitosan–
hyaluronic acid nanoparticles loaded with erythropoietin.
In vitro permeation experiments showed rapid penetration into
porcine conjunctiva followed by the sclera and cornea, with no
cellular toxicity (Silva et al., 2020). Considering the therapeutic
potential of stem cells for ophthalmological diseases, the
development of polysaccharide-based cell-loading nanocarriers
for further exploration is encouraging, especially for retinal and
corneal stem cells.

Novel structural types of polysaccharide-based nanomaterials
such as core-shell, hollow, and multi-layer structures have
shown excellent drug delivery properties in terms of stability,
drug-loading capacity, sustained release, corneal permeability,
multi-stimuli sensitivity, and ocular bioavailability (Liu et al.,
2018; Nie et al., 2019; Tan et al., 2019; Wei et al., 2020).
Machado et al. synthesized a brimonidine-containing polymer-
β-cyclodextrin membrane with graphene oxide nanosheets and
poly-β-aminoester intercalation. The drug release experiment
suggested an association between the drug release kinetics and
the number of graphene oxide nanosheet layers, making it easy
to implement time-controlled drug release in the ocular system
(Machado et al., 2019). Luo et al. prepared dual-functional
nanoparticles by modifying chitosan and ZM241385 onto the
surfaces of hollow ceria nanoparticles loaded with pilocarpine.
The hollow structure significantly improved the drug retention.
In addition, chitosan and ZM241385 were able to penetrate the
cornea, while ceria elicited antioxidant and anti-inflammatory
functions. These nanoparticles exhibited a 42-fold longer period
of lowering the intraocular pressure compared with that of
commercial eye drops (Luo et al., 2020). Jiang et al. prepared
a core-shell structured polysaccharide-based nanocarrier with a
polycaprolactone shell and a chitosan core through a two-step
emulsion method. The chitosan core was filled with bevacizumab
via electrostatic interactions. These core-shell particles had a
significantly improved capacity for long-term release of up to
3 months and possess good prospects for anti-VEGF therapeutics
in clinical practice (Jiang et al., 2020).

In the synthesis of polysaccharide-based nanomaterials,
some reagents may cause unpredictable toxicity toward normal
tissues because of the limited available toxicological information
compared with numerous synthetic compounds. Therefore,
synthetic approaches based on green chemistry, such as
self-assembly via hydrogen bonding, hydrophilic/hydrophobic
interactions, Van der Waals forces, and electrostatic interactions,
have attracted increasing interest (Han et al., 2020; Jin et al.,
2020). Alqurshi et al. synthesized nanoparticles for delivering
prednisolone acetate based on chitosan and sodium deoxycholate
as a counterion through self-assembly. These nanocarriers
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performed better in terms of drug release behavior and anti-
inflammatory effects in the guinea pig model compared with
micronized gel (Alqurshi et al., 2019). Several studies have
attempted to modify polysaccharides simply to obtain various
non-covalent interactions (Dubashynskaya N. V. et al., 2020;
Liu C.H. et al., 2020).

BEHAVIOR OF
POLYSACCHARIDE-BASED
NANOMATERIALS IN OCULAR TISSUE

Before further clinical trials in patients with polysaccharide-based
nanomaterials, their biological behavior and potential influence
on the ocular system must be determined. Although emerging
studies have emphasized the biocompatibility and biosafety
of polysaccharides, a few have reported concerns regarding
worsening the ocular pathology, including slightly elevated
inflammatory factors and decreased densities of cones and rods
(Yang et al., 2008; Jiang et al., 2018). In particular, as the size of
materials decreases to the nanoscale, whether the corresponding
changes in physical and chemical properties will have toxic effects
should be further studied based on structural nanotoxicology
(Zielińska et al., 2020). There have been several studies focusing
on the biosafety of polysaccharide-based nanocarriers for ocular
compartments; however, data on long-term observations and
drug formulation are still lacking (De Campos et al., 2004; De
Salamanca et al., 2006; Prow et al., 2008; Lai et al., 2010; Zorzi
et al., 2011; Lai, 2012; Ogunjimi et al., 2017). Furthermore,
the biodegradation of polysaccharide-based nanocarriers in the
ocular system remains far from satisfactory, despite the fact
that polysaccharides easily degrade in vivo (Etienne et al.,
2005; Nguyen et al., 2019). Lai et al. detected polysaccharide
degradation from drug carriers in lysozyme-containing buffers,
a key metabolic regulator also present in the aqueous humor of
the eyes, and suggested the possible enzymatic degradation of
polysaccharide-based nanocarriers post-injection (Lai and Luo,
2017). However, at the nanoscale, some specific questions remain
unclear, including where and how the polysaccharide-based
nanocarrier is decomposed, metabolized, and excreted; what
metabolites are produced by their degradation; and the possible
impacts on the physiological function of the eye, particularly
for hybrid nanomaterials. Emerging evidence has demonstrated

the biocompatibility and biosafety of polysaccharide-based
nanocarriers based on material design, but there is a lack of
effectiveness in real scenarios. In terms of the effect of controlled
drug release in time-and-space evaluation, certain studies on
polysaccharide-based nanocarriers, especially in the context of
the physiological environment, remain controversial due to their
differing animal models and research methodologies. In addition,
as a sensory organ, visual function significantly affects patient
compliance. Therefore, the influence of drug-delivery systems
on visual quality should be considered. Nanoparticles are prone
to aggregating because of their low surface energy, and as the
size of aggregates increases, optometric diseases will emerge,
such as vitreous opacity (Sultana et al., 2020). It is undeniable
that the evaluation of visual quality is difficult, considering
the physiological differences between human and animal
models. Consequently, multi-disciplinary cooperation including
ophthalmology, optometry, chemistry, materials science, and
zoology should be encouraged. For instance, the development
of biomimetic eye models based on engineering perspectives is
expected to improve our understanding of the biological behavior
of drug carriers (Bennet et al., 2020; Peng et al., 2020).
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