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Abstract

Higher-order topological insulators (HOTIs) represent a new family of topological materials featuring quantized bulk
polarizations and zero-dimensional corner states. In recent years, zero-dimensional corner states have been
demonstrated in two-dimensional systems in the form of quadrupole modes or dipole modes. Due to the challenges
in designing and constructing three-dimensional systems, octupole corner modes in 3D have not been observed. In
this work, we experimentally investigate octupole topological phases in a three-dimensional electrical circuit, which
can be viewed as a cubic lattice version of the Hofstadter model with a 7-flux threading each plaquette. We
experimentally observe in our higher-order topological circuit a 0D corner state manifested as a localized impedance
peak. The observed comer state in the electrical circuit is induced by the octupole moment of the bulk circuit and is
topologically protected by anticommuting spatial symmetries of the circuit lattice. Our work provides a platform for

investigating higher-order topological effects in three-dimensional electrical circuits.

Introduction

Topological phases of matter possessing quantized
invariants have attracted growing interest not only in the
field of condensed matter physics but also in classical
systems, such as photonics and acoustics, and have shown
great potential in lasing'~, quantum computing®®, and
robust signal transmission in optical6_8, acoustic”®, and
mechanical'"'* systems. While most of the research
interests for topological insulators have focused on pro-
tected nontrivial localized modes one dimension lower
than the bulk material, the recent emergence of higher-
order topological insulators (HOTIs) shows the possibility
of further dimensional reduction of the edge states'* "%,
These quantized higher-order multipole moments are
localized at the intersection of the edges of a square (two-
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dimensional (2D), quadrupole moment) or cubic (three-
dimensional (3D), octupole moment) lattice and are
protected by spatial symmetries. Thus far, HOTIs are
mostly studied in 2D systems that host a quadrupole
corner state, such as 2D microwave circuits'’, low-
frequency electrical circuits®, photonic crystalsm’zs,
mechanical systems”, and acoustic systems*’. The 3D
topological corner mode has been demonstrated very
recently**~>!; however, some of these modes result from
the nontrivial Zak phase of 3D bulk states®®, which is of a
very different origin than octupole modes.

Here we experimentally observe the third-order topo-
logical corner state induced by the octupole moment in a
3D electrical circuit. Electrical circuits have recently
emerged as a new potential platform for exploring topo-
logical models, such as the Haldane model and magnetic
dipoles32, spin Hall effect®®>*, one-dimensional (1D)
Su—Schrieffer—Heeger (SSH) model®*>®, and Weyl states
and Fermi arc surface states’” °. A few works have been
reported on the observation of higher-order topological
states in electrical circuits, including 2D square circuit
lattices®”, breathing Kagome and pyrochlore circuit
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lattices*’, and anisotropic honeycomb and diamond cir-
cuit lattices*'. However, all these works were limited to
either 2D lattices hosting quadrupole corner states or only
simulations. In this work, we experimentally demonstrate
a 3D topological circuit with a quantized octupole
moment, which is manifested by a corner state located at
one of the cubic corners. The observed higher-order
corner state originates from the octupole moment of the
bulk circuit, which is protected by the anticommuting
reflection symmetries along all three axes of the bulk
circuit. It is noted that the circuit modelling and mea-
surement in this work are derived from the two founda-
tion works, refs. >*°%,

Results
Bulk circuit diagram and symmetries

Figure 1la illustrates the theoretical model of the bulk
unit cell for the 3D topological circuit possessing an
octupole moment, which consists of a cubic lattice with
bond dimerization in the x, y, and z directions. Each
plaquette (the minimum loop in each plane) in the xoy,
yoz, and xoz planes contains one coupling that has the
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opposite sign to the other three, making the model a cubic
lattice version of the Hofstadter model with 7-flux per
plaquette®. This is critical for generating a synthetic
magnetic n-flux threading the plaquette that gives the
octupole corner state in the finite-sized system.

The theoretical model in Fig. 1a can be converted into
an electrical circuit by implementing four different cou-
plings with two sets of capacitors and inductors (C;, L)
and (Cy, Ly), as illustrated by the circuit diagram in Fig. 1b.
The latter set is related to the first set by a parameter A
through C,=AC; and L,=L;/1 to ensure that both
pairs  have the same  resonant frequency
w0 = 1/VLG = 1/VLG,.

The response of an electrical circuit can be explicitly
described by a circuit Laplacian J(w), which relates the
total input current I, flowing out of node a to the con-
tribution of all other voltages V), across nodes a and b,

1
J(w) = <iwC +,—W) (1)

iw
where C and W are the capacitance and inverse
inductance matrices, respectively. The diagonal and off-
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Fig. 1 Unit cell and bulk band structure of the higher-order topological circuit hosting the octupole corner state. a Theoretical model.
Numbers indicate the basis for the circuit Laplacian matrices and Pauli matrices. b Circuit diagram of the unit cell. The grounded terms ‘Z’ are given in
Supplementary Tables S2-56. ¢ Band structure of the bulk circuit for A= 3.3 (pink) and A=1 (grey) along high symmetry lines, as indicated in the
inset. d Eigenfrequencies of the eight states at the R point as A is swept from 0.1 to 10
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diagonal terms represent the self-admittance of a certain
node and mutual admittance between two nodes,
respectively. J(w) is purely imaginary when there are only
capacitors and inductors and becomes complex when
resistors are present. Because inductors function as the
negative counterpart of capacitors at the resonant
frequency, that is, 1/C = —w2L, a grounded element
composed of inductors and/or capacitors is attached to
each node (indicated by the letter ‘Z’ in Fig. 1b) to
neutralize the admittance of each node to maintain zero
admittance for all the diagonal elements at the resonant
frequency wo in the Laplacian matrix (Supplementary
Table S1). More details of the modelling, characterization
and measurement of the topological circuit can be found
in refs, 2%,

The circuit Laplacian /) (o, q) of the bulk circuit, which
consists of periodically repeating unit cells, can be
obtained by substituting the matrices C and W given in
Supplementary Eqs. (S4) and (S5) into Eq. (2). Here, ¢ is
the quasi-wave vector linking the voltages on unit cells #
and n+1 as V,,;=V,e" In the quantum model, a
higher-order corner mode emerges at zero energy due to
the zero onsite terms of its bulk Hamiltonian'®. For the
circuit analogue with nonzero diagonal elements in the
circuit Laplacian, the corner mode is expected to appear
at the midgap frequency wo. The topological circuit is a
dispersive system in which all terms (onsite and cou-
pling) are highly dependent on the frequency; here we
only focus on the properties of the bulk circuit Laplacian
I, q) at © = w,,

C
Ji(00,q) = iy /L—l[/l sing, I, + (14 Acosgq,)T5 + Asing,I'y
1
(1+Acosq,)Ty]

(2)

where T, = §3 @ To, [} = §3 @11, Ty = {3 @1y, I3 = §5®
I35, T, =80T4l=2E @l Ty =il T,
1"1 =17,&®01, 1"2 =Ty X 09, 1"3 =Ty X 03, F4 =171 ® 00,
and 1,, 0,, and (, are Pauli matrices corresponding to the
internal degrees of freedom within a unit cell, as
illustrated by the node indices 1-8 in Fig. la, with v=
0, 1, 2, 3. The circuit Laplacian J(wo, g) in Eq. (3) takes a
similar form (up to a factor of i) as the bulk Hamiltonian
of the model with a quantized octupole moment in
ref. 12,

Extending from the 2D case with a quadrupole corner
state®”, we remark that the quantized octupole moment in
our 3D topological circuit is protected by the presence of
all three reflection symmetries, =& Q1 Q03
my =& ®11®o01, and 71, =11 ® 03 ® &, and chiral
symmetry C = 73 ® 03 ® . These symmetry matrices
apply to the 8 x 8 circuit Laplacian J;(w, g) in momentum

+(1 + Acosgy)Ty + Asing, Iy +
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space in the following way:

mx]/l (woﬂmqya%) ]A @, qmqyaqz) (3)

(
myh<coo7qx,qy, ) h(w . quqz) (4)
I

mZ]/l <(‘)0?qx7qy7qz) (1)0, qx7qy’ qz) (5)

C]/l (w():qxaqyaqz)CT = _]/1 (w():qxaqyaqz) (6)

It is noted from the bulk circuit unit cell that the system
does not have an exact reflection symmetry in the x- and
z-directions. It is the effective magnetic fluxes B, =B, =
B,=m, not the vector potentials 4,, A), and A, that are
invariant under the three reflection symmetries 71, 71,
and m,. Hence, the three reflection symmetries and the
chiral symmetry operators in Egs. (3)—(6) have been fixed
by a gauge for application to our 3D circuit with a 7z-flux
magnetic field in all three directions. Therefore, the three
gauge-fixed reflection symmetries anticommute with each
other, that is, A1,/ + M, = 0,49, + i, = 0, and
mym, + myn, = 0. Such anticommutation among the
three reflection symmetries is key to achieving a nontrivial
topological octupole corner mode. The 3D circuit also
respects the three rotational symmetries Qx, C4y, and C;Z
along the three axes x, y, and z, respectively, and the three
mirror symmetries 71, = C'4yrhx, my, = Cerhy, and
Py = Cypiity. Supplementary Egs. (512)—(S17) give the
matrix representations of the rotational symmetry
operators and illustrate how they apply to the 8 x 8 circuit
Laplacian J)(wq, q).

However, when relating a Hamiltonian in an electronic
system to a circuit Laplacian, one should keep in mind
that the circuit Laplacian itself is dependent on the fre-
quency, and therefore, it does not directly give the
eigenfrequency of the system in the same way as the
Hamiltonian does in quantum and photonic systems.
There are a number of methods for calculating the
eigenfrequencies of the circuit from the circuit Laplacian,
as detailed in Supplementary Note S2. As the circuit we
considered here is composed of only linear elements, i.e.
capacitors and inductors, we can calculate the eigen-
frequency of the circuit from the dynamical matrix D(k)
= C (W) C*(k)*%, with C and W given in
Supplementary Egs. (S4) and (S5). In Fig. 1c, we show the
eigenfrequencies of the bulk circuit calculated along the
high symmetry lines with parameters of C; =1nF, L; =
3.3 uH, and A =3.3 (pink curves), which exhibit a com-
plete nontrivial bandgap from 2.4 to 3.8 MHz. Similar to
the tight-binding model, the band structure undergoes a
phase transition at A = 1 with band closing at the R point
(m, m, m) (Fig. 1c, grey curves). The topological phase
transition can also be observed in Fig. 1d, where the eight
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Fig. 2 Structure and band properties of the finite circuit containing 2.5 x 2.5 x 2.5 unit cells. a Circuit diagram and b fabricated sample of the
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frequency varies from 0 to 8 MHz. The isolated curve crosses zero admittance at the corner mode frequency 2.77 MHz. This plot has been rotated by
90° to enable a better comparison with the sorted eigenfrequency plot in d. d Sorted eigenfrequencies of the finite circuit. The isolated mode in the

o}
9

Corner mode

Eigenvalue of D (MHz)
N

0 50 100 125
Solution index

eigenfrequencies at the R point are plotted as A is swept
from 0.1 to 10. The bandgap closes and reopens as A
crosses one, with the eigenfrequencies of the eight
eigenmodes W;-Wg crossing @, which is a necessary
condition for the presence of any topological state.

Finite circuit with an octupole corner state

To observe the topologically protected corner mode in
the 3D circuit, we construct a finite-sized circuit, as
shown in Fig. 2a, with 2.5x 2.5 x 2.5 unit cells (5x5x%x5
nodes). The diagonal elements of the finite circuit
Laplacian matrix should vanish at wo to obey chiral
symmetry C. The detailed grounded terms for each node
are provided in Supplementary Tables S2—S6.

There exists a one-to-one mapping between the eigen-
value spectrum of J(w) and that of the dynamic matrix D,
that is, a spectrally isolated eigenfrequency wo of D corre-
sponds to a spectrally isolated zero eigenvalue of J(wp).
Figure 2c, d presents the eigenvalue of J(w) and band
structure of the system, respectively. An isolated midgap
mode (octupole corner state) located at 2.77 MHz can be
clearly identified from the band diagram in Fig. 2d.
The frequencies where the admittance j,(w) (Fig. 2c, red
dashed line) crosses zero correspond exactly to the

eigenfrequencies of the circuit (Fig. 2d). The mathematical
relation between J(w) and D implies that the bulk topolo-
gical invariants of the circuit calculated from the eigenstates
of J(w) and D should be mathematically equivalent.

The nontrivial topological feature of a topological sys-
tem is manifested by a topologically robust edge state
located at the lattice boundaries. Different from conven-
tional topological insulators in electronic and photonic
systems, the nontrivial boundary state in topological cir-
cuits is commonly observed through a two-point impe-
dance measurement between node a and node b, subject
to an external excitation current I, flowing through
them?%3638, According to the definition of Z,,(w) = (V,
— V,)/Iy, one can express it with the inversion of Eq. (1) as

’ 2

_ V,—V, - ’(//n.a - (//n,b (7)
Zub (w) IO zﬂ: ]-n ( w)

in which ¥,,;. (i=a or b) and j,(w) are the eigenstates and
eigenvalues of J(w), respectively. As the roots of j,(w)
correspond to the eigenfrequencies of the circuit, Z,;(w)
diverges when the denominator j,(w) crosses zero. Hence,
an edge state can be easily identified by a spectrally isolated
strong resonant peak from the impedance spectra measured
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at the circuit boundary. Although the octupole corner states
can in principle exist at all eight corners of the cube in the
nontrivial phase', in our circuit analogue, only corner A
(see Fig. 2a) can host the octupole corner state for the
following reasons. First, the boundary termination in our
circuit obeys only chiral symmetry C and three mirror
symmetries #1,;, #1,;, and #1,, which only allow possible
corner states at the two corners labelled A and B
(Supplementary Fig. S3). In addition, corners A and B are
terminated with different unit cell choices of type I (Fig. 1b)
and type II (Supplementary Fig. S3), which correspond to
two circuit Laplacian matrices jl(l) (wo, k) and jfl/;(wo,k),
respectively. As unit cell type I is nontrivial for A > 1, only
corner A allows the existence of the octupole corner state in
our specific model. More details are given in Supplementary
Note S3.

Note that the corner mode observed in our 3D topo-
logical circuit is induced by the octupole moment of the
bulk, which takes a topological invariant of 1/2 and 0
when the system is in the nontrivial and trivial states,
respectively. This is confirmed by calculating the
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topology of the Wannier bands through nested Wilson
loops along the x, y, and z axes using the analytical
solutions of the eigenstates of the bulk circuit, which is
detailed in Supplementary Note S4.

Experimental results

A 3D circuit cube containing 5 x5 x5 nodes (2.5 x
2.5x2.5 unit cells) is fabricated to experimentally
demonstrate the octupole corner mode (Fig. 2b). The
sample consists of five circuit board layers, each fabri-
cated with printed circuit board technology. The five
circuit boards are assembled together through copper
wires. The impedance spectra are measured using a
vector network analyser (Agilent 8753ES) through
the predesigned microwave port on the circuit board.
The resonant frequency is designed to be 2.77 MHz. The
parameter A = 3.3 was deliberately chosen to ensure a
clear observation of the corner state in the experiment by
considering the choices of commercially available circuit
components, as discussed in detail in the ‘Methods and
materials’ section.
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Figure 3a, b compares the experimental data with the
theoretical calculations of the impedance spectra from
30kHz to 6 MHz, where the blue- and grey-coloured
curves represent the impedance spectra measured at
corner A and the bulk nodes, respectively. Good agree-
ment is observed between the measured and calculated
impedance spectra at four chosen nodes (Supplementary
Fig. S1), despite a slight frequency shift of the measured
impedance peak due to the parasitic effect of the circuit
board layout. The measured impedance peak is slightly
lower than the calculation, which is attributed to the
lower Q-factor of the real circuit components. This
influence can be clearly observed in the calculated
impedance spectra at corner A with a Q-factor from 10 to
80 (Supplementary Fig. S2).

To directly visualize the corner state in the cubic circuit,
we plot in Fig. 3¢, d the measured and calculated impe-
dance distributions of all nodes at the corner mode fre-
quency 2.77 MHz. Obvious localization of the impedance
at corner A is observed in both the measurement and
simulation, verifying the existence of a topological corner
state. The level of localization of the corner state is
determined by the bulk gap. Specifically, the impedance
would be less localized at the corner nodes for A close to
1. In contrast to the second-order TI realized with 2D
extension of the SSH lattice, where different dimensional
(i.e. 1D, 2D) topological boundary states can exist in the
same structure’ ~>**3, quadrupole moments and dipole
moments are not allowed due to the three anticommuting
reflection symmetries.

Similar to the 1D edge state (2D surface state) in con-
ventional 2D (3D) topological materials, which exhibits
excellent immunity against defects and disorder, the zero-
dimensional (0D) corner state in our HOTI circuit is also
highly robust against certain types of disorder. To confirm
this, we deliberately add different levels of variations to
the circuit components in the calculation. Figure 4a—c
shows the statistics of 500 calculated results of the
impedance spectra with circuit component variations of
10, 20, and 40%, respectively. It can be observed that the
frequency of the corner mode is distributed over a larger
range around the central frequency of 2.77 MHz, and the
level of the frequency shift is proportional to the ran-
domness of the component variation. However, the cor-
ner state remains almost unaffected even at 20% circuit
component variation, as is confirmed by the theoretically
calculated impedance distributions in Fig. 4j.

To obtain a statistical view of the frequency shift of the
corner mode for the three cases in Fig. 4a—c, we present in
Fig. 4d, f, h the probability distributions of the corner
mode frequency under 10, 20, and 40% component var-
iation, respectively. We see that the frequency of the
corner mode spans a larger range as the component
variation increases. The impedance intensity of the corner
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mode also experiences a similar trend as the corner mode
frequency, as shown in Supplementary Fig. S7. We
quantitatively evaluate the robustness of the corner mode
by its bandgap, defined as the bandwidth formed between
the nearest impedance peaks of the bulk modes across the
bandgap. A larger bandgap indicates a more robust corner
mode. Figure 4e, g, i shows that, as the component var-
iation increases, the bandgap is distributed over a broader
range around the central value of 1.38 MHz. It is impor-
tant to note that all the results in the statistical charts of
Fig. 4d-i show prominent corner modes, with the inten-
sity of the corner mode at least twice that of the bulk
modes. The other cases in which the intensity is lower
than this threshold are considered as the failed cases in
which the corner mode is affected by the component
variation. The percentage of the non-failed cases among
all cases is defined as the robustness of the corner mode,
which is 98, 83.8, and 60.2% for component variations of
10, 20, and 40%, respectively. As the component tolerance
of commercially available capacitors and inductors has an
upper limit of 20% and is typically 5 and 10%, respectively,
this gives rise to a good robustness of the octupole corner
mode in real experiments. Figure 4k further reveals how
the bandgap and robustness of the corner mode varies as
a function of component variation. Each statistical result
in the plot is obtained from 500 random cases. It is
interesting to find that the robustness (inset of Fig. 4k) is
maintained at almost 100% (unaffected) for small com-
ponent variation and starts to linearly decrease as the
component variation exceeds 10%. The average corner
mode bandgap remains at approximately 1.38 MHz, while
its standard deviation gradually increases from 0 to
0.49 MHz as the component variation increases from 0
to 40%.

Discussion

In this work, we have experimentally demonstrated a
higher-order topological circuit that can host an octupole
moment manifested by a topologically nontrivial 0D
corner state localized at one of the cubic corners. Our
circuit can be viewed as the 3D version of the famous
Hofstadter model with m-flux per plaquette, in which
three gauge-fixed reflection symmetries with antic-
ommutation relations play an essential role in the gen-
eration of the octupole moment. Our circuit
implementation of octupole topological insulators paves
the way for future investigations of higher-dimensional
topological insulators possessing multipole moments
without introducing synthetic dimensions, benefitting
from the convenient electrical connections among nodes
at arbitrary distances. In addition, the wide choice of
active components, such as operational amplifiers, allows
dynamic control of the topology and order of the 3D

circuit***®, while nonlinear circuit components, such as
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J

varactor diodes, could further introduce strong nonlinear
effects into the 3D circuit to realize self-induced topolo-
gical states*® and topologically robust propagating soli-
tons?’. It is interesting to note that if we apply an
alternating current excitation across the entire bulk cir-
cuit, then most of the electrical energy will be con-
centrated at the corner node due to the high impedance,
which is analogous to the localized electric field dis-
tribution at the surface/edge/corner of a photonic
topological material. Therefore, we remark that the
experimental realization of an octupole corner state in the
electrical circuit system serves as a proof-of-concept
demonstration and can be viewed as the low-frequency
version of the octupole topological insulator in the pho-
tonic regime. Note that, during the revision of this

manuscript, we noticed that another work has reported on
3D experimental realization of the octupole corner state™,

Methods and materials
Experimental details

The parameter A =3.3, which determines the ratio
between the capacitors and inductors, was deliberately
chosen based on the following considerations. First, A
determines the bulk bandgap and consequently the level
of localization of the corner state. Hence, it should not be
too small to allow clear experimental observation of the
corner state in the impedance measurement. However, we
should also consider the minimum inductance L;/(2 + 31)
of the grounded terms, which should not be too close to
the parasitic inductance of the circuit layout (several tens
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of nH). In addition, we also considered the nominal values
of the commercial circuit elements to realize all the pre-
cise circuit parameters using a single element or serial/
shunt combination of two capacitors/inductors. To meet
the above requirements, we chose wire-wound inductors
in the surface mounted device package from Murata,
which offer an average Q-factor of >40 at the working
frequency of 2.77 MHz. Note that, in the fabricated
sample, the capacitors C;/C, between each adjacent layer
are welded on the lower layer.
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