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Abstract: Acute myeloid leukaemia (AML) carrying internal tandem duplication (ITD) of Fms-Like
Tyrosine kinase 3 (FLT3) gene is associated with high risk of relapse and poor clinical outcome upon
treatment with conventional chemotherapy. FLT3 inhibitors have been approved for the treatment of
this AML subtype but leukaemia relapse remains to be a major cause of treatment failure. Mechanisms
of drug resistance have been proposed, including evolution of resistant leukaemic clones; adaptive
cellular mechanisms and a protective leukaemic microenvironment. These models have provided
important leads that may inform design of clinical trials. Clinically, FLT3 inhibitors in combination
with conventional chemotherapy as induction treatment for fit patients; with low-intensity treatment
as salvage treatment or induction for unfit patients as well as maintenance treatment with FLT3
inhibitors post HSCT hold promise to improve survival in this AML subtype.
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1. Introduction

Acute myeloid leukaemia (AML) is defined pathologically by an abnormal increase in blasts in
blood and/or bone marrow (BM). It is a group of heterogeneous diseases with distinct driver events
and pathogeneses that may occur at different stages of the haematopoietic hierarchy [1]. Subtypes of
AML show different morphologies, immunophenotypes as well as cytogenetic, genetic and clinical
features. Conventional chemotherapy, comprising induction and consolidation as well as allogeneic
haematopoietic stem cell transplantation (HSCT) are the mainstays of treatment but only 30%–40% of
patients can achieve long-term remission. The outcome of elderly patients ineligible for chemotherapy
and HSCT is dismal.

Laboratory studies in leukaemia biology in the past few decades have led to identification of
molecular targets and development of novel therapeutic strategies. In the past 3 years, eight therapeutic
agents have been approved by the U.S. Food and Drug Administration (FDA) for the treatment of
different AML subtypes in different clinical contexts (Table 1). In particular, two multi-kinase inhibitors
were approved for the treatment of AML carrying gain-of-function mutations in Fms-like tyrosine
kinase 3 (FLT3) gene: Midostaurin in combination with conventional induction and consolidation
chemotherapy in newly diagnosed patients [2] and gilteritinib monotherapy for relapsed/refractory
(R/R) FLT3-mutated patients [3]. Another specific FLT3 inhibitor quizartinib was also approved in
Japan for the treatment of R/R patients [4]. However, disease relapse remains an important cause of
treatment failure. This review focuses on the potential mechanisms of drug resistance in this AML
subtype and strategies that may be exploited to overcome resistance.
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Table 1. Eight FDA-approved therapeutic agents in acute myeloid leukaemia (AML).

Therapeutic Agents Indications

FLT3 inhibitors
1. Midostaurin Newly diagnosed FLT3-mutated AML
2. Gilteritinib Relapsed/refractory FLT3-mutated AML
IDH inhibitors
3. Ivosidenib Relapsed/refractory IDH1-mutated AML
4. Enasidenib Newly diagnosed or relapsed/refractory IDH2-mutated AML
BCL2 inhibitor
5. Venetoclax + hypomethylating agents or LoDAC Newly diagnosed AML aged ≥ 75
Hedgehog pathway inhibitor
6. Glasdegib + LoDAC Newly diagnosed AML aged ≥ 75
Liposomal combination of daunorubicin and cytarabine
7. CPX-351 Newly diagnosed AML-MRC and t-AML
Antibody-chemotherapy adjunct
8. Gemtuzumab ozogamicin Newly diagnosed and relapsed/refractory CD33-positive AML

MRC: MDS-related changes; t-AML: transformed AML; LoDAC: low-dose cytarabine.

2. Fms-Like Tyrosine Kinase 3 (FLT3)

Fms-like tyrosine kinase 3 (FLT3), first identified to be expressed in normal haematopoietic stem
and progenitor cells, is one of the most frequently mutated genes in AML. Internal tandem duplication
(ITD) is the commonest genetic abnormality and is associated with leucocytosis at diagnosis and high
risk of relapse after conventional chemotherapy, particularly those with high ITD allelic ratio [5], large
ITD size [6] and multiple ITD clones [7]. FLT3-ITD occurs particularly in AML with normal cytogenetics,
where it occurs in up to 40% cases, and those with rare t(6;9) translocation involving DEK/CAN gene
fusion, where it occurs in up to 70%–80% [8]. Missense mutations of tyrosine kinase domain (TKD) also
occur, albeit infrequently at 5%–10% of AML. Their prognostic impact has remained unclear [9], which
could be due to their low incidence of occurrence or modest biologic activities. Mechanistically, both ITD
and TKD mutations result in constitutive activation of FLT3 signalling, hence the cellular proliferation,
anti-apoptosis and differentiation block that are often seen in FLT3 mutant AML cases [1,10].

Under physiological conditions, FLT3 protein is activated by its ligand (FLT3L) and the binding
results in dimerization and conformational changes of FLT3 that expose the phosphorylation sites
of its TKD. Subsequent auto-phosphorylation of FLT3 leads to binding of adaptor proteins such as
SHP2, Grb2 and SRC family kinases, hence activation of downstream signalling kinases including
MAPK/ERK, JAK/STAT and PI3K/AKT/mTOR [11]. While both ITD and TKD mutations result in
constitutive activation of FLT3, via MAPK and PI3K pathways, there are significant differences in the
activated downstream signalling pathways between them [12]. For instance, FLT3-TKD is associated
with activation of SHP1 and SHP2 phosphatases that negatively regulate JAK signalling, whereas
STAT5 activation via SRC binding is only seen in FLT3-ITD but not FLT3-TKD or FLT3-WT cells [13].

3. FLT3 Inhibitors

The pathogenetic roles of FLT3-ITD and TKD in AML and the inferior outcome of this AML
subtype provide the basis for developing FLT3 inhibitors. Mechanistically FLT3 inhibitors can be
categorised into 2 types. Type I inhibitors bind FLT3 in the active conformation near the activation loop
or ATP binding site and are effective against both ITD and mutant TKD as exemplified by midostaurin,
sunitinib, lestaurtinib, crenolanib and gilteritinib. Type II inhibitors bind FLT3 in the inactive state
near the ATP binding domain, targeting FLT3-ITD but not mutant TKD. Examples include sorafenib,
ponatinib and quizartinib. In order of their development, FLT3 inhibitors can be categorised into those
of first and second generation. First generation FLT3 inhibitors refer to several multi-kinase inhibitors
including lestaurtinib, sunitinib, sorafenib and midostaurin that have been evaluated since early 2000.
As monotherapy, sorafenib has been widely used as salvage therapy for R/R FLT3-ITD AML with a rate
of combined complete remission (CR) and CR with incomplete haematologic recovery (CRi) at about
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16%–46%. Responses were typically transient with median duration of 1–3 months, and sorafenib
was perceived at best as a bridging therapy to curative allogeneic HSCT. More recent data showed
that sorafenib may be effective as maintenance therapy post HSCT, resulting in improved survival
of these patients [14–16]. Midostaurin showed only modest effect as monotherapy in R/R AML [17].
When used as an adjunct to conventional chemotherapy in newly diagnosed FLT3-mutated AML,
midostaurin was shown to prolong overall survival [2], leading to its approval by FDA.

Second generation FLT3 inhibitors refer to new inhibitors with higher specificity and potency
against FLT3, including quizartinib, gilteritinib and crenolanib. They have been tested in clinical
trials as monotherapy in R/R FLT3-mutated AML with CR/CRi of 23%–57% and median duration of
response of 9–20 weeks (Figure 1). Based on an interim analysis of the ADMIRAL trial [3], gilteritinib
was granted FDA approval for the treatment of R/R FLT3-mutated AML. In a randomised open-label
phase 3 study (QUANTUM-R) [4], quizartinib was shown to improve overall survival compared with
salvage chemotherapy in R/R FLT3-mutated AML. Several phase 3 studies were underway including
those that evaluate gilteritinib following induction and consolidation chemotherapy (NCT02236013,
NCT02310321) as well as allogeneic HSCT (NCT02997202) in newly diagnosed AML; crenolanib in
combination with salvage chemotherapy in R/R FLT3-mutated AML (NCT02400281, NCT02298166,
NCT03250338), and crenolanib compared with midostaurin in newly diagnosed FLT3-mutated AML
when used in conjunction with conventional chemotherapy (NCT03258931); quizartinib in combination
with induction chemotherapy in newly diagnosed FLT3-mutated AML (NCT02834390, NCT03723681,
NCT02668653, NCT04107727).

Figure 1. Results of clinical trials involving Fms-Like Tyrosine kinase 3 (FLT3) inhibitors on
relapsed/refractory AML. The reported sample size (N), percentage of FLT3-ITD, D835, ITD/D835 and
wildtype (WT), and response rate and duration of reported clinical trials on the use of FLT3 inhibitors on
relapsed/refractory (R/R) AML were shown here. The response duration was represented as bar charts
(right) for graphical presentation and it was not intended for direct statistical comparison between
studies. The vertical dotted line represented the estimated pooled median overall survival in R/R
patients treated with salvage chemotherapy (around 14 weeks). CR: complete remission; CRp: complete
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remission with incomplete platelet count; CRi: complete remission with incomplete haematological
recovery; PR: partial response; NR: no response; CRc: composite complete remission
rate = CR + CRp + CRi; Sor: sorafenib; Aza: Azacytidine; OME: omacetaxine mepesuccinate;
Mido: midostaurin; Les: Lestaurtinib; MEC: mitoxantrone, etoposide, cytarabine; FLAG-Ida:
Fludarabine, cytarabine, G-CSF, Idarubicin; LoDAC: low-dose cytarabine; HiDAC: high-dose cytarabine;
TKI: tyrosine kinase inhibitors; TKI: tyrosine kinase inhibitor(s). The chemotherapy reported in
Roboz et al. (2014) included investigators’ choice among 7 salvage regimens: HiDAC, MEC,
FLAG/FLAG-Ida, LoDAC, hypomethylating agents, hydroxyurea, or supportive care. Reference
(top to bottom): [3,3,4,4,10,17–23,23–29].

A major limitation in the treatment of FLT3-mutated AML by FLT3 inhibitor monotherapy is
leukaemia relapse that often occurs within months after initial remission. In most circumstances, this
is related to development of drug resistance. The mechanisms are heterogeneous and may involve
emergence of clones that are resistant to FLT3 inhibitors being used; protection of leukaemia cells by BM
microenvironment; and adaptation of leukaemia cells to survive FLT3 inhibitors. These mechanisms
are reviewed in the following sections.

4. Clonal Evolution

4.1. Emergence of FL3-TKD Mutations

Initial evidence of emerging FLT3-TKD mutations as a cause of drug resistance to FLT3 inhibitors
arose from laboratory studies. In particular, FLT3-TKD mutant clones could be selected from in vitro
saturation mutagenesis assay [30] and found in FLT3-ITD AML cell lines treated with increasing dose
of FLT3 inhibitors for 6–7 weeks [31]. In clinical practice, a recurrent phenomenon in patients receiving
FLT3 inhibitors is the emergence of leukaemia clones carrying FLT3-TKD mutations at relapse. On one
hand it has confirmed the on-target effect of FLT3 inhibitors and their anti-leukaemia efficacy, on the
other hand it contributes to drug-resistant leukaemia relapse. Mutations may occur at the activation
loop (e.g., D835, I836) or gate-keeper site (e.g., F691), and the frequencies and mutation sites depend on
the specific FLT3 inhibitors being used (Table 2). Heterogeneity of FLT3 mutant clones and polyclonal
architecture with respect to FLT3-ITD and FLT3-TKD have been shown by single-cell sequencing of
AML samples from patients who relapsed during quizartinib treatment [32]. In most cases FLT3-TKD
mutations were not detectable by molecular means prior to FLT3 inhibitor treatment [10,32]. However,
when pre-treatment samples were xenografted into immunodeficient mice, TKD mutant clones could
emerge upon engrafting, suggesting that they might exist before treatment and were selected upon
continuous exposure to inhibitor ineffective against them [10]. Nevertheless, TKD mutations only
occur in 3%–60% of patients who relapsed during or after treatment with FLT3 inhibitors, and the
rates are much lower in the new generation of FLT3 inhibitors e.g., crenolanib [33] and gilteritinib [34].
Moreover, in patients who relapsed after quizartinib monotherapy, single-cell analyses showed that
TKD mutations occurred in up to 50% of leukaemia cells in individual patients, suggesting that they
might not account entirely for the relapse [32]. Furthermore, relapses do occur upon treatment with
new generation FLT3 inhibitors (e.g., gilteritinib and crenolanib) that showed inhibitory effects on
TKD-mutant FLT3 proteins. Therefore, TKD mutations could only partially explain leukaemia relapse
after FLT3 inhibitors. Non-TKD mediated resistance is discussed as followed.

Table 2. FLT3-TKD mutations conferring clinical resistance to FLT3 inhibitors.

TKD Mutations FLT3 Inhibitor Resistance

N676K Resistance to midostaurin [35]

D835 I836 Y842 Resistance to type II FLT3 inhibitors [36,37]
(sorafenib, quizartinib, ponatinib)

F691L Resistance to crenolanib, but not to ponatinib [38] and pexidartinib [39]
K429E Resistance to crenolanib [33]



Int. J. Mol. Sci. 2020, 21, 1537 5 of 13

4.2. Emergence of Non-FLT3 Mutations

Non-FLT3 mutant clones have been shown to expand or emerge at relapse in FLT3-ITD AML
during FLT3 inhibitor treatment. Next-generation sequencing of paired samples (drug-naïve sensitive
and relapse drug-resistant samples) from R/R FLT3-ITD AML patients who relapsed from FLT3
inhibitors crenolanib [33] or gilteritinib [34] demonstrated the emergence or expansion of leukaemia
clones either as subclones of the FLT3-ITD clone or new wildtype FLT3 clones. These clones carried
mutations of TP53, RAS pathway (NRAS, KRAS, BRAF, PTPN11, CBL), IDH1/2, ASXL1 or TET2. The
emergence of these mutations, particularly when they occurred in wildtype FLT3 clones, demonstrated
FLT3-independent leukaemia cells that were selected under the pressure of FLT3 inhibitors to which
they were resistant. Complete loss of FLT3-ITD clone has been reported in up to 30% of cases [33,34].

5. Adaptive Cellular Mechanisms

In addition to the emergence of resistant clones, FLT3-ITD AML cells may adapt to FLT3 inhibitors
and develop cellular mechanisms that circumvent FLT3 blockade. They include upregulation of FLT3
ligand, change in intracellular acidity and upregulation of other protein kinases. These are discussed
as follows:

5.1. Upregulation of FLT3 Ligand

Despite the ligand independence of FLT3-ITD signalling, FLT3L has been shown to confer
resistance to FLT3 inhibitors in AML [40]. FLT3L exists in soluble and membrane-bound form, the latter
being expressed on stromal cells. Serum level of FLT3L was shown to increase after chemotherapy
induction [40] and FLT3 inhibitor treatment [23]. FLT3L-mediated resistance to FLT3 inhibitors might be
mediated through its binding to FLT3-WT receptor and activation of downstream MAPK pathway [41].

5.2. Increase in Intracellular pH

Microarray analysis of paired FLT3-ITD AML samples before sorafenib treatment and at subsequent
relapse showed up-regulation of a gene encoding tescalcin (TESC) [42]. TESC plays a pivotal role in the
maturation of sodium/hydrogen exchanger type 1 (NHE1). The latter, when activated, extrudes H+ in
exchange for Na+ intake. The resulting intracellular alkalinisation provides proliferative and survival
benefits to the blasts, and confers resistance by decreasing intracellular sorafenib concentration via
acid–base partitioning.

5.3. Upregulation of other Cooperative Kinases

Upregulation of other oncogenic kinases has been shown in primary FLT3-ITD AML upon
development of resistance to FLT3 inhibitors and may play a pathogenetic role. For instance,
expression of PIM (proviral integration site for moloney murine leukaemia virus) kinase, a target of
FLT3-ITD signalling, has been shown to increase in primary AML cells at resistance to sorafenib [43].
Overexpression of PIM-2 in MOLM-14 (a FLT3-ITD AML cell line) and FLT3-ITD knock-in mouse model
has been shown to confer resistance to quizartinib [43]. Also, expression and phosphorylation of AXL
receptor tyrosine kinase was increased in PKC412(midostaurin)-resistant primary AML blasts and AML
cell line [44] and its upregulation has been implicated in stroma-mediated resistance to quizartinib [45].
Pharmacological inhibition and knockout of AXL have been shown to restore sensitivity to FLT3
inhibitors-resistant AML cell lines [44]. Importantly, AXL is a therapeutic target of gilterinib [46].
Furthermore, the persistence or even up-regulation of PI3K/AKT/mTOR and MAPK/ERK pathways
were shown in both FLT3 inhibitors-resistant FLT3-ITD AML cell lines and primary AML blasts despite
inhibition of FLT3 phosphorylation by FLT3 inhibitors, suggesting that at resistance, some AML cells
become independent of FLT3 signalling [47,48]. The use of inhibitors to target these compensatory
pathways in combination with FLT3 inhibitors has been proposed [48] and the clinical benefits remain
to be evaluated.
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6. Microenvironment Protection

BM niche has been shown to nurture normal haematopoietic stem cell and progenitor cells and
maintain steady state haematopoiesis. Mechanistic studies in mouse marrow demonstrated close
interaction between osteoblasts and haematopoietic stem and progenitor cells (HSPC), suggesting a
physical niche that provides signals to guide HSPC cell-fate decision [49]. Similar niche for AML may
exist [50,51] and protect leukaemia cells from the inhibitory effects of FLT3 inhibitors. A number of
mechanisms have been proposed (Figure 2).

Figure 2. Mechanisms involved in microenvironment-mediated resistance to FLT3 inhibitors.
1. FLT3L/FLT3R-WT 2. FGF2/FGFR1 axis 3. SDF1/CXCR4 axis 4. CYP3A4-mediated degradation of
FLT3 inhibitors (FLT3i) 5. GM-CSF or IL3/IL3R axis.

6.1. Cytokines

BM stromal cells have been shown to secrete a repertoire of cytokines that protect the blasts from
the cytotoxic effect of chemotherapy as well as FLT3 inhibitors. In addition to the FLT3L aforementioned,
GM-CSF and IL-3 have been shown to protect primary FLT3-ITD AML cells and MV4-11 (a FLT3-ITD
AML cell line) from crenolanib through activation of STAT5 pathway [52]. BM stromal cells also secrete
fibroblast growth factor 2 (FGF2) that binds to FGFR1 in FLT3-ITD AML cells and promotes resistance
to FLT3 inhibitors via activation of downstream MAPK pathway [53,54]. FGF2 might also bind to
FGFR1 on stromal cells in an autocrine and paracrine fashion to stimulate more FGF2 secretion and
stromal growth. Intriguingly, quizartinib has been shown to induce FGF2 expression in stromal cells of
FLT3-ITD AML patients [53,54] and whether this may account for the subsequent clinical resistance
to FLT3 inhibitor would have to be further investigated. Stromal-cell derived factor 1 (SDF-1) and
CXCR4 axis plays a pivotal role in BM homing of HSPC. FLT3-ITD AML has been shown to highly
express CXCR4 [55], suggesting the SDF-1/CXCR4 axis may play a pathogenetic role in this AML
subtype. SDF-1 antagonist has been shown to sensitise FLT3-ITD transduced Ba/F3 cells (a murine
pro-B lymphoid cell line) to the inhibitory effects of sorafenib when co-cultured with protective MS5
stromal cell line [56]. Activation of p53 pathway in stromal cells has been shown to reduce SDF-1
expression and abrogates the protective effect of stromal cells [57], providing a potential target for
therapeutic intervention.

6.2. CYP3A4 in BM Stromal Cells

Cytochrome P450 3A4 (CYP3A4) is important for the metabolism and elimination of drugs and
xenobiotics in human body. It is expressed primarily in hepatocytes and BM stromal cells and for the
latter it might inactivate tyrosine kinase inhibitors [58] in the BM milieu. Knock-down of CYP3A4
in stromal cells or pharmacologic inhibition of CYP3A4 has been shown to ameliorate the protective
effects of stromal cells both in co-culture system and in xenotransplantation model [59].
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7. Clinical Strategies to Overcome Drug Resistance in FLT3-ITD AML

The mechanisms aforementioned provide the theoretical bases on which clinical trials can be
designed to overcome drug resistance to FLT3 inhibitors. However, the precise mechanisms of drug
resistance are likely to vary between patients and multiple mechanisms may co-exist, adding to the
complexity of trial design. In clinical practice, a number of strategies have been developed to improve
the treatment outcome of FLT3-ITD patients.

7.1. Upfront FLT3 Inhibitors in Combination with Chemotherapy

Until recently, induction chemotherapy, the “7+3” regimen, has been the standard of care for fit
patients of all AML subtypes including FLT3-ITD AML. In a Phase III randomised placebo-controlled
study, addition of midostaurin to induction and consolidation chemotherapy, followed by maintenance
treatment in FLT3-mutated AML was shown to improve overall survival [2]. The results led to FDA
approval of midostaurin for the upfront treatment of FLT3-mutated AML. Benefits of sorafenib when
added to conventional chemotherapy have also been demonstrated [60,61]. Clinical trials incorporating
quizartinib (NCT02668653), crenolanib [62] and gilteritinib (NCT02236013, NCT02310321) to standard
chemotherapy are underway.

CPX-351, a liposomal preparation of cytarabine and daunorubicin at a fixed synergistic drug
ratio of 5:1, was recently approved as induction therapy in AML with MDS-related changes and
therapy-related AML. Patients with this AML subtype receiving CPX-351 showed a superior outcome
than those receiving conventional “7+3” [63]. FLT3-ITD AML cells have been shown to be sensitive to
this preparation in vitro [64]. The clinical benefits of FLT3 inhibitors in combination with CPX-351 in
AML with MRC or tAML carrying FLT3-ITD remain to be investigated.

7.2. Combination of FLT3 Inhibitors with Low Intensity Regimen

FLT3-ITD AML cells have been shown to exhibit high protein synthesis rate to maintain intracellular
level of short-lived oncogenic proteins [65]. The addiction to protein synthesis provided a target
for therapeutic intervention. A high-throughput ex vivo drug screening using primary AML cells
has identified omacetaxine mepesuccinate (OME) as an effective adjunct to FLT3 inhibitors in the
treatment of FLT3-ITD AML [65]. OME competes with t-RNA to bind to acceptor (A-site) of eukaryotic
ribosome, thereby inhibiting the elongation process of protein synthesis [66]. It suppresses FLT3
downstream signalling via inhibition of the synthesis of FLT3, a short-lived protein. OME showed
very acceptable toxicity profile even in the elderly but its monotherapy or combination with cytarabine
showed only modest effects on AML generally. However, in combination with sorafenib (SOME), it
induced remission (CR/CRi) in 72% of patients with R/R FLT3-ITD AML, with a deeper molecular
response and extended response duration (median overall survival and leukaemia-free survival being
43.6 and 22.4 weeks respectively) among responders [20]. A clinical trial evaluating its combination
with a more specific and potent FLT3 inhibitor quizartinib (QUIZOM) is in progress (NCT03135054).
Preliminary observations showed that it might confer superior response and better survival, and bridge
more patients to HSCT compared with SOME [67].

Furthermore, combination of FLT3 inhibitors including sorafenib, quizartinib and gilteritinib with
other low intensity treatment including azacytidine or decitabine, the hypomethylating agents, have
been shown to be synergistic in laboratories [68–70] and appeared to be effective in Phase II clinical
trials [19,71,72].

7.3. HSCT with FLT3 Inhibitor as Maintenance Therapy

HSCT is the mainstay of treatment for FLT3-ITD AML in complete remission after induction
chemotherapy or salvage treatments including FLT3 inhibitors [73–77]. However, post-HSCT relapse
remains a major cause of treatment failure and may occur in up to 75% of patients. Results from clinical
trials supported the proposition that maintenance with FLT3 inhibitors post-HSCT could reduce relapse
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and improve overall survival. In SORMAIN study, sorafenib maintenance significantly prolonged
relapse-free survival [16]. Laboratory study showed that sorafenib in the post HSCT setting might
increase serum IL-15 from residual FLT3-ITD cells that may enhance activities of allogeneic T-cells and
graft-versus leukaemia effect [78]. In RADIUS Trial, patients who received midostaurin maintenance
post HSCT and achieved significant FLT3 inhibition (<70% of baseline pFLT3) showed significant
improvement in relapse-free and overall survivals compared with those who achieved <30% inhibition
or those who received standard of care [79]. Post-HSCT maintenance with quizartinib in FLT3-ITD
AML in a phase I study also showed reduced relapse rate [80]. Whether the benefits of FLT3 inhibitor
post HSCT are related to its suppressive effects on residual FLT3-ITD AML cells or potentiation on
graft-versus-leukaemia effects would have to be further evaluated [81].

8. Conclusions

Despite the availability of effective FLT3 inhibitors in the treatment of FLT3-ITD AML, leukaemia
relapse remains to be a major cause of treatment failure. Incorporation of FLT3 inhibitor to upfront
induction and consolidation chemotherapy; combination of FLT3 inhibitor with low intensity regimen
as salvage treatment and the use of FLT3 inhibitor as post-HSCT maintenance may improve treatment
outcome of this AML subtype. Based on findings of laboratory studies, multiple mechanisms of drug
resistance have been proposed and it is likely heterogeneous among individual patients. They have
provided the important bases for development of clinical trials and might raise the potential need for
treatment personalisation.
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Abbreviations

AML Acute myeloid leukaemia
CR Complete remission
CRc Composite complete remission
CRi Complete remission with incomplete haematological response
CRp Complete remission with incomplete platelet count
FLT3L FLT3 ligand
HSCT Haematopoietic stem cell transplantation
HSPC Haematopoietic stem and progenitor cell
ITD Internal tandem duplication
OME Omacetaxine mepesuccinate
PR Partial response
R/R Relapse or refractory
TKD Tyrosine kinase domain
TKI Tyrosine kinase inhibitor
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