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In a recent work Brunner and Vertesi [Phys. Rev. A 86, 042113 (2012)] the question of persistency of
entanglement and nonlocality of multiparty systems under particle loss has been addressed. This question is
of immense importance considering the practical realization of the information theoretic tasks which make
use of the power of quantum correlations. But in the multipartite scenario more interesting cases arise since
subsystems can also possess genuineness in correlation which is prevalently inequivalent to the bipartite scenario.
In this paper we investigate the persistency of such genuine correlations under particle loss. Keeping in mind the
practical importance, considerable attention has been devoted to find the multiparty states which exhibit maximal
persistency of genuine correlations.
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I. INTRODUCTION

Correlations play a fundamental role in quantum infor-
mation science. Entanglement [1], quantum steering [2], and
nonlocality [3] are considered as prime features of quan-
tum correlations. Quantum entanglement is a physical phe-
nomenon that occurs where many particles are generated or
interacted in such a fashion that the quantum state of each
particle cannot describe the full system separately but it can
be described holistically only. This kind of quantum state
can be used to demonstrate nonlocality where the statistics
generated from each subsystem cannot be reproduced by any
local realistic theory analogous to classical physics [4]. Bell
nonlocal correlation along with entanglement are found to be
key resources for many information processing tasks such as
teleportation [5], dense coding [6], randomness certification
[7], key distribution [8], dimension witness [9], Bayesian
game theoretic applications [10], and so forth. Quantum steer-
ing [2] is a scenario where one party can remotely prepare the
state of another party who are spatially separated, by apply-
ing a suitable choice of measurements. This curious feature
has also found applications in one-sided device independent
cryptography [11]. In a recent work [12] it has been shown
that entanglement, steering, and nonlocality are inequivalent
notions under general quantum operations.

Entanglement, steering, and nonlocality are well under-
stood in the bipartite scenario. But for more than two parties
complexity increases, resulting in the multipartite case being
richer in essence [1]. In the recent past a considerable number
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of attempts have been made to understand the genuine mul-
tipartite correlations, which are remarkably different from
their bipartite counterpart. An n-partite entangled state will be
called genuinely entangled (GE) [13] if and only if the state
is not separable with respect to any m partition (m � n) of
the subsystems. Being a useful resource for computation [14],
simulation [15], and metrology [16], the study of genuine
multipartite entanglement is a field of recent attraction. It
is even useful for the dinning cryptography problem [17].
Similarly multipartite nonlocality is also not very easy to
understand compared to the bipartite cases. Here also one
can define a multiparty correlation to be genuinely nonlocal
(GNL) if and only if it is incompatible with any local-realistic
theory with respect to any bipartite cut. It has been found
to be an important resource in a number of information pro-
cessing tasks [3]. Extension of quantum steering phenomena
to the multipartite scenario has also been recently explored
[18,19]. Even genuineness of steering found some importance
in a number of recent works. So any kind of robustness or
preservation to losses of these nonclassical features is really
an important issue in case of practical implementation of
information processing tasks.

The idea of persistency of entanglement and nonlocal fea-
tures of quantum correlations under the particle loss scenario
(i.e., the minimal number of particles to be lost for those
nonclassical features to vanish completely) has gained interest
in recent times [20–23]. Here the loss of particles renders
the situation where the information about particles becomes
inaccessible. For example, one can consider the multiparty
quantum cryptography protocols where a number of parties
are not willing to cooperate. Hence the idea of persistency
of quantum correlations is crucial to the implementation of
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such information theoretic tasks. In [20] persistency of corre-
lation was first defined as the possibility of obtaining residual
correlation when a selective measurement is performed on a
subsystem. But Brunner and Vertesi [21] have investigated
the persistency of entanglement and nonlocality in a stronger
scenario where a subsystem is lost completely in comparison
to the earlier definition of persistency as in [20] for a number
of special multipartite classes such as cluster states. The
authors have also discussed the possibility of maximal per-
sistency of entanglement and nonlocality for W class states.
Recently Diviánszky et al. [22] have provided a simple upper
bound on the persistency of nonlocality for W states and any
permutation-symmetric state with two settings per party. A
similar notion of persistency can also be defined for quantum
steering, a weaker notion of nonlocality. This is important
since the persistency of steering is required while considering
a star-type network for one-sided device independent quantum
key distribution under particle loss [11].

Keeping in mind the usefulness of genuine correlation in a
multiparty scenario a pertinent question is of the persistence
of GE along with GNL and similarly for genuine steering
(GS) in different classes of multiparty states. In this paper we
define the notion of persistency of genuine correlation and
hence study the capacity of different classes of multiparty
states to persistent genuineness. We further investigate the
possibility of achieving maximum persistency of correlations
within these classes of multipartite states, which is of practical
interest.

In the following sections we first (Sec. II) provide a moti-
vation for considering the concept of persistency for genuine
correlations. In Sec. III we briefly provide the relevant defini-
tions and notations. Section IV consists of our results regard-
ing the persistency of genuine correlation for a varied class
of multipartite states and the possibility of achieving maximal
persistency for certain classes of multiparty states. We con-
clude with Sec. V where we discuss the implications of our
paper in understanding multipartite correlations and further
scopes for generalization of the results presented in this paper.

II. MOTIVATION

Given that one can quantify genuine correlation of any
multiparty state, then a common intuition while studying
persistency of correlation under particle loss is that whichever
multiparty state has the higher amount of genuine entangle-
ment will be more persistent. For example, when one takes
the entanglement measure to be the entropy of entanglement,
or the Tsallis and Rényi entropy of entanglement, the four
qubit |M〉 [24] and |L〉 [24] states maximize the average
entropy of entanglement. As we show later, both the states
have persistency of genuine entanglement higher than that
of the four qubit Greenberger-Horne-Zeilinger (GHZ) state,
which has a lesser amount of entanglement according to that
measure. But what we find out in this paper is quite contrary
to this intuition. We show that there exist states with less en-
tanglement (in the sense of a valid measure of entanglement)
that can have maximal persistency of entanglement whereas a
class of higher entangled states has minimal persistency.

In case of multiparty nonlocality another important notion
is that of monogamy. This states that all the reduced systems

of a parent multiparty nonlocally correlated state obtained
by tracing out every other party cannot show nonlocality
[25–27]. While considering particle loss, the residual systems
that can be achieved by tracing out every other party in the
system are either nonlocal or not. If all of them show some
nonlocality (by violation of some nonlocal inequality) then the
notion of monogamy fails but the persistency of nonlocality is
maintained. Thus one can consider the concept of monogamy
for multiparty states as complementary to the persistency of
nonlocality.

Another question that naturally arises in the GNL scenario
is whether the possibility of performing local filtering oper-
ations can strictly enlarge the genuine nonlocality-persistent
states on par with similar results obtained by the authors of
[21] in case of nonlocality and hidden nonlocality. We answer
this question in the affirmative and also present examples
where the persistency of genuine nonlocality is 1, i.e., min-
imum possible, but when allowed to perform local filtering
operations the persistence of “hidden” genuine nonlocality
can be maximum.

From a practical perspective the question of achieving
maximum persistency is very crucial. To understand this let
us consider a star network. A simple futuristic banking system
is an example of a star network, where the central body bank
tries to maintain quantum correlation with multiple customers.
Now it is quite unexpected that since one of the customers
leaves the system by closing her account the existing quan-
tum correlation between the bank and other customers gets
destroyed. So, the multipartite state shared in the star network
should be something which has a higher persistency under
particle loss. In this sense achieving maximum persistency is
ideal.

With these motivations in mind we move on to present our
results. But before that let us discuss a few definitions and
relevant tools.

III. DEFINITIONS AND TOOLS

Let ρ be a quantum state of N systems. Taking partial trace
over k < N systems j1, . . . , jk ∈ {1, . . . , N}, let the reduced
state be denoted as

ρ( j1,..., jk ) = Tr j1,..., jk (ρ). (1)

Definition 1 [21]. The strong persistency of entanglement
of any quantum state ρ, denoted by PE (ρ), is defined as the
minimal number of parties k (say) such that the corresponding
reduced state ρ( j1,..., jk ) becomes fully separable, for at least
one set of subsystems { j1, . . . , jk}.

In [21] the authors defined this stronger notion of persis-
tency, and tried to relate it with the slightly different concept
of persistency of entanglement introduced in [20]. Throughout
this paper we have adopted this “stronger” notion of persis-
tency, which deals with the complete loss of information of
particles.

While checking for persistency of entanglement, when one
considers mixed multipartite states there does not exist any
necessary and sufficient criterion to detect entanglement. But
in literature there are certain sufficient conditions [13,28]
which can be used to witness entanglement conclusively. For
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our purpose we make use of the criterion in [28] to detect the
presence of entanglement for more than two parties.

Definition 2 [21]. The persistency of nonlocality of any
quantum state ρ, denoted by PNL(ρ), is defined by demanding
that at least one of the reduced states, say ρ( j1,..., jk ), becomes
local, i.e., that the probability distributions obtained from
local measurements on ρ( j1,..., jk ) do not violate any Bell in-
equality. Formally this means that the probability distribution

p(a1 . . . aN |x1 . . . xN ) = Tr
(
ρMx1

a1
⊗ . . . ⊗ MxN

aN

)
(2)

admits a hidden variable model for general local measurement
operators Mxi

ai
, with Mxi

ai
= 1 if i = j1, . . . , jk (the systems

that have been traced out) and
∑

ai
Mxi

ai
= 1 otherwise. Here

xi and ai denote the measurement setting and its outcome,
respectively, of party i.

To detect nonlocality of reduced tripartite states, we have
considered the whole set of 46 facet inequalities of the
Bell-local polytope which serves as necessary and sufficient
conditions in the two input–two output Bell scenario (see
supplementary material of [29]). On the other hand, for detect-
ing bipartite nonlocality, Bell–Clauser-Horne-Shimony-Holt
[30] and I3322 inequalities [29,31] are considered as these are
the only possible inequivalent facets for the three input–two
output Bell scenario.

In this context one can also consider the concept of hidden
nonlocality [32].

Definition 3 [21]. One can also demand that at least one
of the reduced states, say ρ( j1,..., jk ), is local even after the
remaining parties have performed a local filtering. In this case,
persistency of nonlocality is denoted by PHNL(ρ).

For any state ρ, the above three notions of persistency
maintain the following relation:

N − 1 � PE (ρ) � PHNL(ρ) � PNL(ρ) � 1. (3)

The second inequality comes from the fact that (i) entangle-
ment is necessary for having quantum nonlocality and (ii)
there exist entangled states which are local [33]. The third
inequality follows from the fact that there exist local quantum
states featuring hidden nonlocality [32].

In a similar spirit we define the concept of persistency of
steering as follows.

Definition 4. The persistency of steering of ρ, PS (ρ), is
defined as the minimal k such that the reduced state ρ( j1,..., jk )

becomes fully unsteerable, for at least one set of subsystems
j1, . . . , jk .

Then the revised hierarchy of the persistency of a state ρ

will be given by

N − 1 � PE (ρ) � PS (ρ) � PNL(ρ) � 1. (4)

The second inequality follows from the fact that entangle-
ment is necessary for having quantum steering and there
exist entangled states which are unsteerable [12]. The third
inequality follows since quantum steering is necessary for
having nonlocality and there exist steerable states which are
local [2,12].

The notions described above have a large impact from an
operational angle, specifically for characterizing robustness
of multipartite quantum correlations when the corresponding
quantum state is subjected to particle loss. In this context it
will be interesting to focus on PNL(ρ) and PS (ρ) as they repre-

sent a lower bound on PE (ρ) that can be obtained in a device
independent and semi-device independent way, respectively.

In case of more than two parties one has different notions
of correlation. The concept of genuine correlation provides an
interesting paradigm to understand correlation in the multipar-
tite scenario by excluding the possibility of bipartite correla-
tions. At this point let us provide the definitions for genuine
entanglement, nonlocality, and steering. For simplicity we
define these notions for three parties but the reader can easily
extend these definitions for a higher number of parties.

Definition 5. A quantum state is biseparable if it can
be written as ρABC = ∑

λ pλ
A(BC)ρ

λ
A ⊗ ρλ

BC + ∑
μ pμ

B(AC)ρ
μ
B ⊗

ρ
μ
AC + ∑

ν pν
C(AB)ρ

ν
C ⊗ ρν

AB where pλ
A(BC), pμ

B(AC), and pν
C(AB)

are probability distributions. Finally a state is genuine mul-
tipartite entangled, if it is not biseparable.

There does not exist any necessary and sufficient criterion
to detect genuine entanglement of mixed multipartite states.
But several sufficient conditions for witnessing genuine en-
tanglement have been proposed [13,28]. Here we make use of
the sufficient criteria given in [28] for our purpose.

Now let us consider the correlation scenario among three
parties with inputs and outputs as {X,Y, Z} and {a, b, c},
respectively. Then one can have the following definition for
genuine nonlocal correlations [34].

Definition 6. Suppose that P(abc|XY Z ) can be written in
the form

P(abc|XY Z ) =
∑

λ

qλPλ(ab|XY )Pλ(c|Z )

+
∑

μ

qμPμ(ac|XZ )Pμ(b|Y )

+
∑

ν

qνPν (bc|Y Z )Pν (a|X ), (5)

where the bipartite terms are nonsignaling and {qλ}, {qμ}, and
{qν} are valid probability distributions. Then the correlations
are NS2 local. Otherwise, we say that they are genuinely three-
way nonlocal.

To check the genuine three-way nonlocality of reduced
tripartite states, we have used the necessary and sufficient
criteria provided by the whole set of 185 facet inequalities
of the NS2 local polytope in the presence of binary input and
output (see Supplementary Material of [34]).

In a recent work [19] the concept of genuine steering
among three parties has been defined as follows.

Definition 7. Suppose that P(abc|XY Z ) cannot be ex-
plained by the following nonlocal local hidden states (LHS)-
local hidden variables (LHV) (NLHS) model:

P(abc|XY Z ) =
∑

λ

pλP
(
ab|XY, ρλ

AB

)
Pλ(c|Z )

+
∑

λ

qλP
(
a|X, ρλ

A

)
P
(
b|Y, ρλ

B

)
Pλ(c|Z ), (6)

where P(ab|XY, ρλ) denotes the nonlocal probability dis-
tribution arising from two qubit state ρλ

AB, P(a|X, ρλ
A ) and

P(b|Y, ρλ
B ) are the distributions arising from qubit states

ρλ
A and ρλ

B, and {pλ} and {qλ} are probability distributions.
Then the quantum correlation exhibits genuine steering from
Charlie to Alice and Bob. This definition also holds for any
party permutation.
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Based on the definitions of genuine correlation presented
above, one can also define the following quantities regarding
the persistency of genuineness in correlations.

Definition 8. Persistency of genuine entanglement (PGE),
nonlocality (PGNL), and steering (PGS) for a quantum state
is defined as the minimum number of particles lost so that
at least one of the reduced states is no longer genuinely
entangled, nonlocal, and steerable respectively.

Definition 9. Persistency of genuine nonlocality under lo-
cal filtering operation (PHGNL) for a quantum state is defined
as the minimum number of particles lost so that at least one of
the reduced states is no longer genuinely nonlocal under local
filtering operations.

One can clearly see that PGE � PGS � PGNL. The first
inequality follows from the fact that genuine entanglement is
necessary for genuine steering. The second inequality comes
from the requirement that genuine steering is necessary for
genuine nonlocality. Thus, operationally, persistency of gen-
uine nonlocality and genuine steering of a state provide a
lower bound to the persistency of genuine entanglement of
the state in a device independent and semi-device independent
way, respectively.

IV. RESULTS

In this section we present our results regarding persistency
of genuine correlations for a number of classes of multiparty
states. These states are important for different information
theoretic tasks. Hence the robustness of genuine correlation
under particle loss for these states is of practical importance.

A. Study of a generic class of four qubit states regarding
persistency of multipartite correlation

A generic class of four qubit states is one of the nine groups
into which four qubit states can be classified [35]. This class
of states is dense in the space of four qubits H4 ≡ C2 ⊗ C2 ⊗
C2 ⊗ C2 under the action of stochastic local operations with
classical communication. The generic class is given by

A ≡ {z0u0 + z1u1 + z2u2 + z3u3| z0, z1, z2, z3 ∈ C}
where

u0 ≡ |φ+〉|φ+〉, u1 ≡ |φ−〉|φ−〉,
u2 ≡ |ψ+〉|ψ+〉, u3 ≡ |ψ−〉|ψ−〉.

A pure state of four qubits |ψ〉 ∈ A can be written in compu-
tational basis as the following:

|ψ〉 = z0 + z3

2
(|0000〉 + |1111〉) + z0 − z3

2
(|0011〉 + |1100〉)

+ z1 + z2

2
(|0101〉 + |1010〉) + z1 − z2

2
× (|0110〉 + |1001〉).

The four qubit entanglement monotone that is invariant un-
der any permutation of the four qubits, the Wong-Christensen
four-tangle [36], is defined as the following. Letting |ψ〉 ∈
H4 ≡ C2 ⊗ C2 ⊗ C2 ⊗ C2, the four-tangle is defined by [36]

τABCD ≡ |〈ψ |σy ⊗ σy ⊗ σy ⊗ σy|ψ∗〉|2. (7)

As a measure for pure bipartite entanglement we first take the
tangle or the square of the I concurrence [37]. Denoting the
four qubits by A, B,C, and D, one can define [24]

τ1 ≡ 1
4 (τA(BCD) + τB(ACD) + τC(ABD) + τD(ABC) ), (8)

τ2 ≡ 1
3 (τ(AB)(CD) + τ(AC)(BD) + τ(AD)(BC) ), (9)

where τA(BCD) is the tangle between qubit A and qubits B,C,
and D. Similarly, τ(AB)(CD) is the tangle between qubits A and
B and qubits C and D. The reader can note that the maximum
value possible for τ1 is 1 and the maximum value possible for
τ2 is 3/2.

1. τmin and M classes

A normalized state |ψ〉 ∈ H4 is maximally entangled (i.e.,
τ2(|ψ〉) = 4/3) if and only if up to local unitary |ψ〉 ∈ M,
where M is the set of states in A with zero four-tangle [38].

As defined earlier a pure state ψ = ∑3
j=0 z ju j in A de-

pends on four complex parameters z j ( j = 0, 1, 2, 3). The
condition that the four-tangle τABCD(ψ ) = |∑3

j=0 z2
j |2 = 0

implies that the states in the maximally entangled class M
are characterized by four real parameters. The reduction in
number of parameters is due to the normalization condition
and ignoring the global phase. When written in its polar form
z j = √

p jeiθ j (with non-negative p j and θ j ∈ [0, 2π ]) one can
denote the class M as follows:

M =
⎧⎨
⎩

3∑
j=0

√
p je

iθ j u j

∣∣∣∣∣∣
3∑

j=0

p j = 1,

3∑
j=0

p je
2iθ j = 0

⎫⎬
⎭. (10)

For example, cluster states [20] and |M〉 [24] and |L〉 [24]
states belong to this class.

Another important set of the states in A, denoted by Tmin,
with the minimum possible value τ2 = 1, can be characterized
as follows:

Tmin ≡ {ψ ∈ A|τ2(ψ ) = 1}

=
⎧⎨
⎩

3∑
j=0

x ju j

∣∣∣∣∣∣
3∑

j=0

x2
j = 1, x j ∈ R

⎫⎬
⎭. (11)

For example, the four qubit GHZ state and well-known Dicke
state |D2

4〉 [39] belong to Tmin. In this sense, the GHZ state and
|D2

4〉 are states in A with the least amount of entanglement.

2. Persistency of entanglement and genuine entanglement

a. PE and PGE of the τmin class. From the criteria presented
in [28] one can provide the following conditions for PGE and
PE for the four qubit states in the τmin class.

Condition 10. PGE > 1 if

2
∣∣x2

2 − x2
3

∣∣ > 2
[
x2

2 + x2
3

] + (x0 + x1)2 + 2
[
x2

0 − x2
1

]
− 8 min{|x0|, |x1|} max{|x2|, |x3|}.

Condition 11. PE > 1 if
(1) for sgn(x0x1) = 1∣∣x2

2 − x2
3

∣∣ >
[
x2

0 − x2
1

] + 4 min{|x0|, |x1|} max{|x2|, |x3|},
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(2) for sgn(x0x1) = −1∣∣x2
2 − x2

3

∣∣ >
[
x2

0 − x2
1

] − 4 min{|x0|, |x1|} max{|x2|, |x3|}.
At this point one might wonder whether the τmin class

contains states with minimal persistency of entanglement. Let
us consider the following example of the state |GHZ4〉 =

1√
2
[|0000〉 + |1111〉]. It is straightforward to show that both

PE and PGE of |GHZ4〉 are 1. This implies that even for the
same value of the entanglement measure τ2 throughout the
τmin class there exist states which have different capabilities
of persisting entanglement and genuine entanglement.

b. PE and PGE of the M class. Intuitively it can be expected
that M class states being maximally entangled might have
greater persistency of entanglement compared to the states in
the τmin class. Let us take the example of cluster states. Cluster
states [20] form a class of multiparty entangled quantum states
with surprising and useful properties. The main interest in
these states draws from their role as a universal resource in
the one-way quantum computer [14]: Given a collection of
sufficiently many particles that are prepared in a cluster state,
one can realize any quantum computation by simply measur-
ing the particles, one by one, in a specific order and basis.
By the measurements, one exploits correlations in quantum
mechanics which are rich enough to allow for universal logical
processing. A four party cluster state is given by the following:

η4 = 1
2 [|0000〉 + |0011〉 + |1100〉 − |1111〉].

The tripartite reduced states can be written in a biseparable
form [21]. Thus PGE = 1 for cluster states. This is in con-
trast to the states in the τmin class which are less entangled
according to the measure τ2 but can have PGE > 1 according
to Conditions 10 and 11.

3. Persistency of nonlocality and genuine nonlocality

Now let us come to the question of persistence of nonlo-
cality for states in the τmin class.

Theorem 12. PNL(ρ) = 1 for all four qubit states ρ ∈ τmin.
Proof. Let us consider a four qubit state ρ ∈ τmin. Upon

loss of the ith particle the reduced states are

ρ3
i = ∣∣ψ3

i

〉〈
ψ3

i

∣∣ + ∣∣φ3
i

〉〈
φ3

i

∣∣
for i = 1, 2, 3, 4 where |ψ3

i 〉 = |W̃ 3
i 〉 + x0+x1

2 |111〉, |φ3
i 〉 =

σ⊗3
x [|W̃ 3

i 〉 + x0+x1
2 |111〉], and

∣∣W̃ 3
1

〉 = x2 − x3

2
|001〉 + x2 + x3

2
|010〉 + x0 − x1

2
|100〉,

∣∣W̃ 3
2

〉 = x2 + x3

2
|001〉 + x2 − x3

2
|010〉 + x0 − x1

2
|100〉,

∣∣W̃ 3
3

〉 = x0 − x1

2
|001〉 + x2 − x3

2
|010〉 + x2 + x3

2
|100〉,

∣∣W̃ 3
4

〉 = x0 − x1

2
|001〉 + x2 + x3

2
|010〉 + x2 − x3

2
|100〉. (12)

To check the nonlocality of these reduced tripartite states let
us consider all 46 facets of the three qubit local polytope
[29]. One can check that all the reduced states ρ3

i violate
only the fourth facet (the same numbering as in [29] has
been used for convenience) for different values of the real
parameters {xi}3

i=0. At the same time it can also be shown (see

Appendix A) that all reduced states cannot violate the fourth
facet for a common set of parameter values. This implies that
the nonlocality of any ρ ∈ τmin cannot persist upon loss of
even one of the particles. Hence the theorem. �

At this point we make the following observation.
Observation 13. For all four qubit states ρ ∈ τmin

monogamy of nonlocality holds for the reduced three qubit
states in the sense that depending on the state parameters
at most two three qubit reduced states can demonstrate
Bell nonlocality (in the two input–two output scenario)
simultaneously.

In this connection, note that similar monogamy of Bell-
nonlocality conditions was derived in [25] where the authors
considered the reduced two qubit states obtained by tracing
out particles from n qubit systems.

From Theorem 12 one can immediately arrive at the fol-
lowing corollary regarding the persistency of genuine nonlo-
cality.

Corollary 14. PGNL(ρ) = 1 for all four qubit states ρ ∈
τmin.

At this stage a pertinent question would be whether a
weaker form of nonlocality can persist upon loss of particles
for states in the τmin class. We deal with this question in the
next subsection considering quantum steering as a weaker
form of nonlocality.

4. Persistency of steering and genuine steering

Observation 15. There exist states ρ ∈ τmin such that
PS (ρ) is maximal, i.e., 3.

This can be seen in a straightforward way. If one can
show that there exist two qubit reduced states which can
demonstrate steering, this in turn implies that there exist states
in the τmin class with maximal persistency of steering. Upon
loss of two particles the bipartite reduced states take the
following forms:

ρ2
i = ∣∣η2

i

〉〈
η2

i

∣∣ + ∣∣ξ 2
i

〉〈
ξ 2

i

∣∣ + σ⊗2
x

∣∣η2
i

〉〈
η2

i

∣∣σ⊗2
x + σ⊗2

x

∣∣ξ 2
i

〉〈
ξ 2

i

∣∣σ⊗2
x

for i = 1, 2, 3, where
∣∣η2

1

〉 = x0 − x1

2
|00〉 + x0 + x1

2
|11〉,

∣∣η2
2

〉 = x2 + x3

2
|00〉 + x0 + x1

2
|11〉,

∣∣η2
3

〉 = x2 − x3

2
|00〉 + x0 + x1

2
|11〉,

and ∣∣ξ 2
1

〉 = x2 − x3

2
|01〉 + x2 + x3

2
|10〉,

∣∣ξ 2
2

〉 = x2 + x3

2
|01〉 + x0 − x1

2
|10〉,

∣∣ξ 2
3

〉 = x2 + x3

2
|01〉 + x0 − x1

2
|10〉.

Now there exist states ρ4 ≡ {x0, x1, x2, x3} such that ρ2
i is

steerable for i = 1, 2, 3 (see Appendix B). The existence of
such states can be depicted in the parameter space as shown
in Fig. 1. For example Dicke state |D2

4〉 [39] belongs to this
class and exhibits maximal persistency of steering (see Table I
in Appendix C).
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FIG. 1. The shaded regions represent the states belonging to the
τmin class which exhibit maximum persistency of steering i.e., PS = 3
in the parameter space {x0, x1, x2}.

B. Achieving maximal persistency

Let us now consider the cases of achieving maximal per-
sistency of correlations. For example, when one considers
nonlocality demonstrated by multiparty systems, maximal
persistency of nonlocality is interesting since it signifies the
robustness of nonlocality under particle loss and the failure of
monogamy of nonlocality between distant parties.

1. Maximal persistency of genuine nonlocality

In [21] the authors could not present any state with local
dimension 2 which has maximum persistency of nonlocality.
This can partly be understood as the strength of monogamy
principle for nonlocality [25,26]. This implies that the demon-
stration of maximal persistency of genuine nonlocality will be
harder. But there exist multipartite states with local dimension
2 which can demonstrate maximal persistency of genuine non-
locality when local filtering is allowed. This is to say PHGNL

for such states are maximal. Let us consider the following
example.

Example 16. An n-partite state |W N 〉 is given by [40]

|W N 〉 = 1√
N

[|0 . . . 01〉 + |0 . . . 10〉 + . . . + |10 . . . 0〉].

Now consider any reduced state of three parties obtained by
losing (N − 3) parties. These states are of the form

ρ(p) = p|W 3〉〈W 3| + (1 − p)|000〉〈000| (13)

where p = 3
N . These reduced states do not demonstrate gen-

uine nonlocality for two settings per site since they do not vio-
late any of the 185 inequalities given in [34]. Thus persistency
of genuine nonlocality for W N cannot be maximum. Now take

the local filtering of the form[
ε 0
0 1

]

where 0 � ε � 1. After local filtering the state becomes

ρ(p, ε) = pε4

pε4 + (1 − p)ε6
|W 3〉〈W 3|

+ (1 − p)ε6

pε4 + (1 − p)ε6
|000〉〈000|. (14)

Now consider the Bell quantity

B16 = 〈A0B0〉 + 〈A1B0〉 + 〈A0B1〉 − 〈A1B1〉 − 2〈C0〉
+〈A0B0C0〉 + 〈A1B0C0〉 + 〈A1B1C0〉
+2〈A1C1〉 + 2〈B1C1〉 (15)

where B16 � 4 is the 16th facet inequality as given in [34].
The maximum value of B16 obtainable from a state of the form
(14) is

B16(p, ε) = p(4.72678) + 2ε2(p − 1)

ε2(1 − p) + p
. (16)

By choosing ε → 0, this value can reach up to 4.72678 for any
value of p. This implies PHGNL(W N ) � (N − 2). In [21] it has
already been shown that the bipartite reduced states of |W N 〉
exhibit hidden nonlocality. Thus one has PHGNL(W N ) = (N −
1), i.e., maximal persistency of genuine correlation under
local filtering.

But it would be more interesting to find the persistency
of genuine nonlocality when local filtering is not considered,
since the three qubit reduced state ρ(p) does not violate any
of the 185 facets for detecting genuine nonlocality under two
measurement settings for all parties. On the basis of this
evidence we make the following conjecture.

Conjecture 17. PGNL(W N ) < N − 2 for all N-partite W
states with local dimension 2.

In the next subsection we ask the question whether a
weaker form of genuine nonlocality, namely, genuine quan-
tum steering, can achieve maximal persistency.

2. Maximal persistency of genuine steering

Here we present a four qubit state which exhibits maximum
persistency of genuine steering. We present our argument
below. Let us consider the state |W 4〉. Remember that this
state does not achieve maximal persistency of nonlocality or
genuine nonlocality. Upon loss of one particle the three qubit
reduced state takes the form (15), where p = 3

4 . This state vi-
olates the following three-setting genuine steering inequality
(see Appendix D):

|〈D0C0〉 + 〈D1C1〉 + 〈D2C2〉| � 3 (17)

where

D0 = A0B0 + A1B1 + A2B2, (18)

D1 = A0B2 − A1B0 + A2B1, (19)

D2 = A0B1 − A1B2 + A2B0, (20)
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PERSISTENCY OF GENUINE CORRELATIONS UNDER … PHYSICAL REVIEW A 102, 022401 (2020)

and {Ai}, {Bj}, and {Ck} for (i, j, k = 0, 1, 2) are measurement
settings of Alice, Bob, and Charlie, respectively. Thus one
has PGS(W 4) � 2. Now for loss of two parties the two qubit
reduced state of |W 4〉 is of the form

ρ2(p) = p|W 2〉〈W 2| + (1 − p)|00〉〈00| (21)

where p = 1
2 . We know that this state has a local model

under projective measurements [41]. But nonetheless this
state exhibits steering because it violates a sufficient criterion
[42] for steering. Hence |W 4〉 has maximum persistency of
genuine steering, i.e., PGS(W 4) = 3. This trivially implies the

persistency of steering of the |W 4〉 state is also maximum.
Note that this is a typical example where PS (ρ) > PNL(ρ).

3. Maximal persistency of genuine entanglement

Now let us come to the question of maximum persistency
of genuine entanglement. Let us consider the four qubit τmin

class of states. States belonging to this class will have maxi-
mum persistency of genuine entanglement i.e., PGE = 3 under
the following conditions.

Condition 18. PGE > 1 and Si > 0 for i = 1, 2, 3 where

S1 = 2 max
{∣∣− 1

2 (x0 + x1)(−x2 + x3)
∣∣ − 1

4 ((x0 − x1)2 + (x2 + x3)2),∣∣ 1
2 (x0 − x1)(x2 + x3)

∣∣ − 1
4 ((x0 + x1)2 + (x2 − x3)2)

}
,

S2 = 2 max
{∣∣ 1

2 (x0 + x1)(x2 + x3)
∣∣ − 1

4 ((x0 − x1)2 + (x2 − x3)2)∣∣− 1
2 (x0 − x1)(−x2 + x3)

∣∣ − 1
4 ((x0 + x1)2 + (x2 + x3)2)

}
,

S3 = 2 max
{∣∣ 1

2 (x2 + x3)(x2 − x3)
∣∣− 1

4 ((x0 − x1)2 + (x0 + x1)2)∣∣ 1
2 (x0 + x1)(x0 − x1)

∣∣ − 1
4 ((x2 + x3)2 + (x2 − x3)2)

}
. (22)

We depict the states with maximum persistency of genuine
entanglement in the τmin class in the parameter space in Fig. 2.
For example, the four qubit Dicke state |D2

4〉 [39] belongs to
the τmin class and it satisfies all the above conditions and hence
PGE(D2

4) = 3.
The conditions for states in the τmin class to have maximum

persistency of entanglement are the following:

FIG. 2. The shaded regions represent the states belonging to the
τmin class which exhibit maximum persistency of genuine entangle-
ment, i.e., PGE = 3 in the parameter space {x0, x1, x2}.

Condition 19. Si > 0 for i = 1, 2, 3.
The states with PE = 3 belonging to the τmin class have

been shown in Fig. 3.

FIG. 3. The shaded regions represent the states belonging to the
τmin class which exhibit maximum persistency of entanglement, i.e.,
PE = 3 in the parameter space {x0, x1, x2}. Comparison of the shaded
regions in this figure with those of Fig. 2 shows that these regions
contain the regions given in Fig. 2.
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V. DISCUSSIONS

In a couple of recent studies [20,21] the concepts of persis-
tency of entanglement and nonlocality were introduced. This
new concept is fundamental to the understanding of quantum
correlations and at the same time important from a practical
perspective since it deals with the scenario where information
about some of the parties can be completely lost. In particular,
to date various experimental investigations of behavior of
quantum entanglement of multiqubit states [23] under particle
loss have been investigated.

Besides defining the same notion for quantum steering, our
paper extends the concept of persistency to genuine correla-
tions which are inherently multipartite in nature. We also dis-
cuss the possibility of achieving maximum persistency of gen-
uine correlations with several important classes of multipartite
states. As we have emphasized in the subsequent sections,
maximum persistency of correlation becomes indispensable
in certain multiparty quantum cryptography protocols.

It is also instructive to relate these notions of persistency
with slightly different concepts of persistency of a selected
property: the maximum number of parties that can be traced
out from a quantum state ρ so that the selected property is still
present in at least one of the reduced states. This issue will be
addressed in our future work.

Now we point out some of the questions which this paper
leaves open. A thorough understanding of the persistency of
correlation for the four qubit states can enable one to classify
the whole class of four qubit states in terms of persistency.
Moreover, by using our method, one can also extend the
study of persistency of correlation for multiparty systems of
higher dimension (>2). Another interesting question is to find
multiparty qubit states which have maximal persistency of
genuine nonlocality.
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APPENDIX A: VIOLATION OF THE FOURTH
FACET AS IN [29]

In the main text (Theorem 12), it is shown that all the
reduced states given in Eq. (12) cannot violate the fourth facet
for a common set of state parameter values. Here, we provide
all details for the discussion in Theorem 12.

The maximum violation value for each reduced state (12)
for the fourth facet in [29] is as follows:

BMax
(
ρ3

1

) = max
[
2
√((−1 + 2x2

1

)2 + (−1 + 2x2
0

)2

2
√(−1 + 2x2

0 + 2x2
1

)2 + (
1 − 2x2

0

)2

2
√(−1+2x2

0+2x2
1

)2+(−1+2x2
1

)2]
, (A1)

BMax
(
ρ3

2

) = max
[
2
√((

1 − 2x2
0 − 2x2

2

)2 + (
1 − 2x2

1 − 2x2
2

)2

2
√(

1 − 2x2
1 − 2x2

0

)2 + (
1 − 2x2

2 − 2x2
0

)2

2
√(

1 − 2x2
0 − 2x2

1

)2 + (
1 − 2x2

2 − 2x2
1

)2]
,

(A2)

BMax
(
ρ3

3

) = max[4
√

(x0x2 + x1x3)2 + (x1x2 + x0x3)2

4
√

(x0x1 + x2x3)2 + (x1x2 + x0x3)2

4
√

(x0x2 + x1x3)2 + (x1x0 + x2x3)2], (A3)

BMax
(
ρ3

4

) = max[4
√

(x0x1 − x2x3)2 + (x0x2 − x1x3)2

4
√

(x0x2 − x1x3)2 + (x1x2 − x0x3)2

4
√

(x1x2 − x0x3)2 + (x1x0 − x2x3)2. (A4)

All these reduced states exhibit nonlocality only when
each of BMax(ρ3

i ) > 2(i = 1, 2, 3, 4). It is impossible that all
reduced states violate fourth facet inequality. Hence the result
PNL = 1.

APPENDIX B: EXISTENCE OF MAXIMALLY PERSISTENT
STEERABLE STATES

In this section, we present the existence of states with
PS = 3.

The following conditions on the state parameters are ob-
tained from the conditions given as Eq. (22) in [42].

(1) Steering condition for ρ2
1 :

S
(
ρ2

1

)
:= max

[∣∣ − 1 + 2x2
0 + 2x2

2

∣∣ + ∣∣ − 1 + 2x2
1 + 2x2

2

∣∣
− 2

π

(√
1 − ( − 1 + 2x2

0 + 2x2
1

)2

+
√

1 − ( − 1 + 2x2
0 + 2x2

1

)2)
,∣∣ − 1 + 2x2

0 + 2x2
2

∣∣ + ∣∣ − 1 + 2x2
0 + 2x2

1

∣∣
− 2

π

(
2
√

(1)2 − ( − 1 + 2x2
1 + 2x2

2

)2)
∣∣ − 1 + 2x2

1 + 2x2
2

∣∣ + ∣∣ − 1 + 2x2
0 + 2x2

1

∣∣
− 2

π

(
2
√

1 − ( − 1 + 2x2
0 + 2x2

2

)2)]
. (B1)

(2) Steering condition for ρ2
2 :

S
(
ρ2

2

)
:= max

[
|2(x0x2 + x1x3)| + | − 2(x1x2 + x0x3)

− 2

π
(
√

1 − (2(x0x1 + x2x3))2

+
√

1 − (2(x0x1 + x2x3))2)

|2(x0x2 − x1x3)| + |2(x0x1 + x2x3)|
− 2

π
(2

√
(1)2 − (−2(x1x2 + x0x3))2)
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TABLE I. Persistency of entanglement (PE ), steering (PS), non-
locality (PNL), genuine entanglement (PGE), genuine steering (PGS),
and genuine nonlocality (PGNL) for various important classes of four
qubit states. Red colored values are optimal in the sense that these
values follow from necessary and sufficient conditions.

States PE PS PNL PGE PGS PGNL

Cluster state [20] 2 2 2 1 1 1
|L〉 [24] 2 2 2 2 2 1
|W 4〉 [40] 3 3 2 3 3 1
|D2

4〉 [39] 3 3 1 3 1 1
|M〉 [24] 2 2 2 2 1 1
|BSSB4〉 [43] 2 2 2 2 1 1
|YC〉 [44] 2 2 2 1 1 1
|D3

4〉 [39] 3 3 2 3 3 1
|χ4〉 [13] 2 2 2 2 2 1
Singlet state [45] 2 1 1 2 1 1

| − 2(x1x2 + x0x3)| + |2(x0x1 + x2x3)|

− 2

π
(2

√
1 − (2(x0x2 + x1x3))2)

]
. (B2)

(3) Steering condition for ρ2
3 :

S
(
ρ2

3

)
:= max

[
|2x0x2 − 2x1x3| + | − 2x1x2 + 2x0x3|

− 2

π
(
√

1 − (2x0x1 − 2x2x3)2

+
√

1 − (2x0x1 − 2x2x3)2)

|2x0x2 − 2x1x3| + |2x0x1 − 2x2x3|
− 2

π
(2

√
1 − (−2x1x2 + 2x0x3)2)

| − 2x1x2 + 2x0x3| + |2x0x1 − 2x2x3|

− 2

π
(2

√
1 − (2x0x2 − 2x1x3)2)

]
. (B3)

All of these three reduced states exhibit steering if S(ρ2
1 ) >

0, S(ρ2
2 ) > 0, and S(ρ2

3 ) > 0.

APPENDIX C: TABLE FOR PERSISTENCY OF
CORRELATIONS FOR VARIOUS FOUR QUBIT STATES

Here, we obtain the persistency of different correlations for
various important class of four qubit states (see Table I).

APPENDIX D: A GENUINE STEERING INEQUALITY
FOR THREE SETTINGS PER SITE

In this section, we provide a complete proof of the inequal-
ity presented in Eq. (17) of the main text.

Theorem 20. If any given quantum correlation violates the
steering inequality,

|〈(A0B0 + A1B1 + A2B2)C0〉 + 〈(A0B2 − A1B0 + A2B1)C1〉
+ 〈(A0B1 − A1B2 + A2B0)C2〉| � 3, (D1)

then the correlation exhibits genuine tripartite steering from
Charlie to Alice and Bob, where {Ai}, {Bj}, and {Ck} for

(i, j, k = 0, 1, 2) are two-output measurement settings of Al-
ice, Bob, and Charlie, respectively. Here measurements of
Alice and Bob demonstrate Einstein-Podolsky-Rosen (EPR)
steering without Bell nonlocality while measurements of
Charlie are uncharacterized.

Before proving the theorem, we first prove the following
lemma.

Lemma 21. Any LHS-LHS model satisfies the following
inequality:

|〈A0B0 + A1B1 + A2B2〉| � 1. (D2)

Proof. Let us denote

D0 = 〈A0B0 + A1B1 + A2B2〉. (D3)

For any separable state (due to linearity of the quantity D0,
without loss of generality one can consider product states
ρAB = ρA

⊗
ρB only for this purpose),

|D0| = |−→vA .−→vB |, (D4)

where −−→vA/B = (〈A0/B0〉, 〈A1/B1〉, 〈A2/B2〉). By the Cauchy
Schwarz inequality, we get

|D0| � |−→vA ||−→vB |. (D5)

Now,

|−→vA | =
√√√√ 2∑

i=0

〈Ai〉2. (D6)

Again,

〈Ai〉 = Tr(AiρA), (D7)

where ρA = TrB(ρAB). After simple calculation, we get

〈Ai〉 = −→ni .
−→r , (D8)

where −→r denotes the Bloch vector corresponding to the state
ρA and −→ni characterizes the measurement setting Ai = −→ni .

−→σ .

Using this relation [Eq. (D8)], Eq. (D6) gets simplified:

|−→vA | =
√√√√ 2∑

i=0

(−→ni .
−→r )2. (D9)

This on simplification becomes

|−→vA | = |−→r | � 1. (D10)

Similarly it can be shown that |−→vB | � 1. Hence Eq. (D5)
becomes

|D0| � 1. (D11)

�
Proof of Theorem. Before we start with the proof we intro-

duce the following notations:

D0 = 〈A0B0 + A1B1 + A2B2〉, (D12)

where Ai = −→
vA

i .−→σ , Bi = −→
vB

i .−→σ , and Ci = −→
vC

i .−→σ with −→σ =
(σx, σy, σz ) denote the Pauli observables. The other two
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expressions D1 [Eq. (D13)] and D2 [Eq. (D14)],

D1 = 〈A0B2 − A1B0 + A2B1〉, (D13)

D2 = 〈A0B1 − A1B2 + A2B0〉, (D14)

can be obtained from D0 [Eq. (D12)] under some specific
relabeling of inputs and outputs.

(1) For D1: a → a
⊕

2 x, where a ∈ {0, 1} and x ∈ {0, 1, 2}
and y → y

⊕
3 2 where y ∈ {0, 1, 2}. ⊕

j denotes addition
modulo j for any positive integer j.

(2) For D2: a → a
⊕

2 x and y → y
⊕

3 1.
With these notations, Eq. (D1) becomes modified as∣∣∣∣∣

2∑
i=0

〈DiCi〉
∣∣∣∣∣ � 3. (D15)

Now, as Alice, Bob, and Charlie are not in the same laboratory,
Alice and Bob do not know which version of the game to play.
So they play the average game

∑2
i=0 Di. Now there are two

possible cases.
(1) Alice and Bob share a separable state.
(2) Alice and Bob share a EPR-steerable state.
For case 1, let correlations of Alice and Bob admit a

LHS-LHS model, i.e., they share a separable state. Then, by
the lemma, we get Di � 1, ∀i ∈ {0, 1, 2}. Hence Eq. (D15) is
satisfied.

For case 2, now consider the case where the correlations
do not admit a LHS-LHV model (i.e., if the state is EPR steer-
able). By quantum predictions, the algebraic maximum of the
game is 3. For instance, if Alice and Bob share the entangled
state |ψ+〉, then for a particular measurement setting D0 = 3
whereas both D1 and D2 = 0. Hence the theorem. �
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