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Abstract

Computational analyses of gradient-elasticity often require the trial solution to be C1 yet constructing

simple C1 finite elements is not trivial. Further to the recent success of devising 24-dof 4-node

quadrilateral elements for 2D gradient-elasticity analyses, this paper develops two 48-dof 4-node

tetrahedral elements for 3D gradient-elasticity analyses by generalizing the discrete Kirchhoff method

and a relaxed hybrid-stress method. Displacement and displacement-gradient are the only nodal dofs.

Both methods start with the derivation of a C0 quadratic-complete displacement interpolation from

which the strain is derived. In the first element, displacement-gradient at the mid-side points are

approximated and interpolated together with those at the nodes whilst the strain-gradient is derived

from the displacement-gradient interpolation. In the second element, the assumed constant double-

stress modes are employed to enforce the continuity of the normal derivative of the displacement.

The whole formulation can be viewed as if the strain-gradient matrix derived from the displacement

interpolation matrix is refined by a constant matrix. Both elements are validated by the individual

element patch test and other numerical benchmark tests. To the best knowledge of the authors, the

proposed elements are probably the first non-mixed/penalty 3D elements which employ only

engineering nodal dofs for gradient-elasticity analyses.
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1.  Introduction

In the conventional elasticity theory, strain is usually employed as the only deformation measure and

the intrinsic length of the material does not present in the material parameters. It is suitable for

applications when the characteristic length of the deformation is considerably larger than the intrinsic

length. However, when the characteristic length is comparable to the intrinsic length such as in

artificial cellular/foam materials and micro/nano-devices [1-6], size effect may arise and even

dominate the deformation behaviour of structures. To take the size effect into account, various

gradient-enhanced theories including but not restricted to non-local elasticity theory [7], strain-

gradient theory [6] and couple-stress theory [8] have been proposed. A bottleneck for many gradient-

enhanced theories to gain wider acceptance and applications is probably the C1 requirement on the

basis functions. While meshless and isogeometric methods can construct highly continuous basis

functions [2, 9-15], special techniques are usually required to enforce the boundary conditions.

Furthermore, the domains of influence of the highly continuous basis functions in these methods are

larger, leading to less sparse system matrices and long computing time. Meanwhile, the Boundary

Element Method (BEM) has been used successfully for gradient elasticity [16, 17]. To date, the finite

element method (FEM) remains to be the most commonly-used tool for engineering analyses of solids

and structures. Unfortunately, the existing C1 finite element models pose strict requirement on the

mesh topology [18-20] possess second/third order derivatives of the interpolated variable as the nodal

dofs and/or employ heterosis nodes [21]. For instance, Agyris’s 3-node and 6-node triangles use (u,

u,x, u,y, u,xx, u,xy, u,yy) and u,n, the displacement gradient along the outward normal direction, as the

dofs at the corner and mid-side nodes, respectively [22]. Though the geometry requirement can be

relaxed by using mapped meshes or smoothing the mesh, the former is restrictive and the latter

requires special pre-processing treatment [18-20].

      To circumvent the C1 requirement, several non-conventional elements for gradient-enhanced

theories have been developed in both 2D and 3D analyses. Zervos [23] introduced different 2D and

3D isoparametric elements. In his models, displacement and micro-deformation fields were

interpolated independently. The penalty approach was used to enforce the kinematic constraint

between the two fields. Zybell et al. [24] proposed a mixed brick element in which the kinematic

constraint between displacement and gradients were enforced by the Lagrange multiplier method.

Moreover, the discrete Kirchhoff (DK) method, which was first proposed for formulating thin-plate

elements, has also been used to devise elements for strain-gradient/couple-stress theories [25, 26]. By

using the DK method, kinematic constraints were enforced in a discrete manner. Recently, a 4-node

quadrilateral DK4 element was devised for 2D strain-gradient problem [27]. Unlike the previous DK

elements, the displacement and displacement-gradient interpolations in DK4 are closely related.



Besides, the 4-node quadrilateral relaxed-hybrid (RH4) element in reference [27] achieved the weak

C1 continuous requirement by using a variant of the refined direct stiffness method (RDSM) proposed

for thin plate element formulation [26]. Instead of using a relaxed three-field hybrid functional for

the variational justification in [26], RH4 uses a simpler two-field relaxed hybrid functional which is

also simplified by invoking C0 feature of the displacement interpolation. Both elements pass the

constant double-stress patch test and are convergent in all numerical examples.

      In this article, the formulations devised for the 2D elements DK4 and RH4 in reference [27] are

extended to devise two 3D 4-node tetrahedral elements for strain-gradient elasticity analyses. Same

as the 2D elements, the nodal dofs in the 3D elements include only the displacement u and the

displacement gradients (u,x, u,y, u,z). In both elements, displacements along the six element edges are

constructed by using the cubic Hermite interpolation. The C0 displacement along the element edges

is extended to the element domain by interpolating the displacements at the 4 nodes and 12 edge

points. The interpolation functions are modified from those of the 20-node complete cubic tetrahedral

element.  In the first element DKT4 formulated by the generalized DK method, the displacement-

gradient is interpolated by using the displacement gradients at the 4 nodes and 6 mid-edge points.

The interpolation functions are the same as those of the 10-node complete cubic quadratic tetrahedral

element. At the mid-edge point, the tangential displacement gradient is derived from the cubic

Hermite interpolation of the displacement whilst the normal gradients are linearly interpolated from

the two nodes defining the element edge. Strain and strain-gradient are derived from the displacement

and displacement-gradient interpolations, respectively. In the second element RHT4 formulated by a

relaxed-hybrid functional, both the strain and the strain-gradient are computed from the displacement

interpolation. However, a refinement term arising from a relaxed-hybrid functional to the matrix

relating the strain-gradient and the nodal dofs is incorporated for fulfilling the constant double-stress

patch test. The method can be regarded as a variant of the refined direct stiffness method [27, 28] but

the variational justification and the element formulation are simpler. The consistency of the two

proposed elements is verified through the individual element test (IET) [29]. Both elements are

validated by various numerical tests. To the best knowledge of the authors, the proposed elements are

probably the first non-mixed/penalty 3D elements which employ only displacement and

displacement-gradient as the nodal dofs for gradient-elasticity analyses.

2.  Potential Energy Functional for 3D Gradient Elasticity

The potential energy functional and its variation for a plane element modelling the gradient elastic



material have been presented in [27]. Those for a 3D element domain We can be expressed as:
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where W is the strain energy density function, eij is the strain, kijk  is the strain-gradient, sij = ¶W/¶eij

is the stress, mijk  = ¶W/¶kijk  is the double-stress and Pe is the element load potential. Restricting

ourselves to linear strain-gradient elasticity, and invoking the kinematic relations eij = (ui,j + uj,i )/2

and kijk = (uk,ij + uj,ki )/2 = ejk,i in which ui is the displacement, (1a,b) can be expressed in matrix-

vector form as
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are the displacement vector, vector of strain components, strain-displacement operator, vector of

stress components and vector of double-stress components, respectively. Moreover, Ce and Cg are the

material matrices and 11 22 33 23 32 13 31 12 21{ , , , ( ), ( ), ( )}i T
i i i i i i i i im m m m m m m m m= = = =m . For instance, a

simple form of gradient-elasticity adopts 2 .{ , , }g l diag e e e=C C C C  in which l is intrinsic length of

the material. Using the divergence theorem, (2b) can be expressed as
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By decomposing the gradient of the virtual displacement into surface and normal gradients, the



boundary integral in (3) for elements defined by planar boundary facets can be expressed as [19, 30]:
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k i j ijkn n mm =  and u,n is the normal gradient of the displacement. Thus, the element load potential is
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in which t  and μ are the prescribed traction and double-traction over the portions e
tG  and e

mG  of ¶We,

respectively. It can be seen in (4) that u and u,n need to be C0 at the inter-element boundary for

enforcing the reciprocities of t and m, respectively. In other words, u is required to be C1.

3.  C0 Displacement Interpolation

In this section, a C0 quadratic-complete displacement interpolation will be derived for the two 48-dof

4-node tetrahedral elements. The C1 requirement on the displacement will be dealt with in the next

two sections. The 12 nodal dofs of the element are u, 1,u , 2,u  and 3,u in which u is the displacement

vectors and the others form the displacement-gradient with respect to the global Cartesian coordinates

(x1, x2, x3).

3.1 Interpolation Functions for the 16-node Tetrahedron

      Figure 1(a) shows the 20-node tetrahedron in its volumetric coordinates x1, x2, x3 Î [0,1]. The

interpolation basis is complete in the third order. With respect to the node numbering scheme, the

interpolation functions can be expressed as
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where x4 = 1 - x1 - x2 - x3 and ηi = 3xi -1. In the absence of node 17 to node 20 which are face bubble

nodes, the 20-node element reduces to the 16-node element, see Figure 1(b). By cyclic symmetry, the

reduction allows the interpolation functions N1 to N16 of the 16-node tetrahedron to be expressed as:
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The Kronecker delta property of the interpolation functions leads to two independent equations on a

and b which are solved to be

a = -9/2  and b = 27/4. (8)

It is trivial that the interpolation basis is quadratic-complete with some incomplete cubic terms.

(a)                                                                           (b)

Figure 1. (a) The 20-node tetrahedron, node 17 which is not shown is at the centroid of the face
defined by nodes 1, 2 and 3. (b) The 16-node tetrahedron. x1, x2, x3 Î [0,1] are the volume coordinates.

      For clarity, the edge nodes will be termed as edge points and the corner nodes will simply be

termed as nodes from here onwards. The edge points do not possess its own independent dofs.

3.2 Displacement at Edge Points

      Figure 2 shows an arbitrary element edge bounded by nodes i and j whilst p and q are the edge-



points equally divide the straight edge into three segments. Furthermore, s is the running coordinate

from node i to node j. Using the Hermite interpolation, the displacement u along the edge in terms of

the nodal dofs at i and j is

2
2 2 22 2( 1)( 1) (1 ) , ( ) (3 ) ( 1) ,i s i j s j

s s s s s s ss
L L L L L L L

= + - + - + - + -u u u u u( ) ( ) . (9)

where | |j iL= -x x  is the length of the element edge. Thus, the displacements at points p and q are

/3

2 /3

| 20 7 4 21 ( , , )
| 7 20 2 427

p s L
i j s i s j

q s L

=

=

ì ü ì ü ì ü ì ü ì ü ì ü
= = + + -í ý í ý í ý í ý í ý í ý

î þ î þ î þ î þî þî þ

u u
u u u u

u u
( ) ( ) . (10)

      (a)              (b)
Figure 2. (a) An element edge bounded by nodes i and j; p and q are the edge points dividing the

edgeinto three equal segments; m is the mid-edge point; (er, es, et) is a local orthogonal
triad of the element edge. (b) A local orthogonal triad (en, es, et) of an element face;

en is normal to the element face.

On the other hand, ,su  can be derived from the displacement-gradient through
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where si is the component of the unit vector 1{ } ( )s i j is
L

= = -e x x .

3.3 Displacement inside the Element

      From (9), (10) and (11), the displacements at all the 12 edge points in Figure 1(b) can be

determined in terms of the nodal dofs. They together with the 4 nodal displacements are interpolated

using the interpolation functions derived for the 16-node tetrahedron, see (7) and (8). The resulting



C0 displacement would be expressed symbolically as
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where N is the displacement interpolation matrix, d is the element vector of nodal dofs and ( )i denotes

the parenthesized vector at the i-th node.

4.  The Generalized Discrete Kirchhoff Element

Thin plate bending is perhaps the most well-known problem that imposes the C1 requirement in the

trial function space. Among the commonly used finite element methods for thin plate analyses, the

DK method offers a simple and high practicable approach for element formulation that can avoid the

C1 interpolation [31-33] and secure the constant moment patch test. In the method, the nodal dofs are

the transverse deflection and the rotation of the director. By imposing the Kirchhoff constraint at the

nodes, the third order Hermite interpolation for the deflection can be constructed along each edge.

The mid-edge director rotation about the edge normal is derived from the interpolation and the

Kirchhoff constraint. The mid-edge director rotation about edge tangent is linearly interpolated from

the two end nodes defining the edge. The director rotation field from which the curvature can be

derived is then interpolated using the rotation of the director at the nodes and the mid-edge points.

The DK method has been generalized to derive 4-node quadrilateral elements for plane gradient

elasticity [25-27]. In this section, it will be generalized to derive the displacement-gradient for the 4-

node tetrahedral element for 3D gradient-elasticity analyses.

4.1 Displacement Gradient at Mid-Edge Points

      Figure 2(a) also shows the mid-edge point m and the orthogonal triad formed by unit vectors er =

{ri}, es = {si} and et = {ti}. Further to (11), displacement derivatives with respect to (x1, x2, x3) and

(r,s,t) are related through
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Following the idea of the discrete Kirchhoff element, u,s at m is derived from (9) and (13a) as
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whilst the other two displacement derivatives are linearly interpolated at nodes i and j, i.e.
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Using (14), (15) and (13b), the displacement-gradient [u,1 u,2 u,3] at point m can be derived in terms

of the dofs at nodes i and j. It can be easily shown that the derived (u,1)m (u,2)m and (u,3)m are

independent of the choices of er and et. Similarly, the displacement-derivatives with respect to (x1, x2,

x3) at other mid-edge points can be derived in terms of the nodal dofs.

4.2 Interpolated Displacement-Gradient

      The displacement-gradient at the four nodes and six mid-edge points can be interpolated by using

the interpolation functions of the commonly used complete quadratic ten-node tetrahedron.

Symbolically, the displacement-derivatives can be expressed as

1 1, =u Nd; 1f  , 2
2 2, =u N d;f , 3

3 3, =u Nd;f (16)

which are denoted as f1, f2 and f3 to emphasis that they are not compatible to the interpolated-

displacement in (12). Since (u,r)m and (u,t)m in (15) are exact for linear displacement-gradient, the

interpolated displacement gradient [f1, f2, f3] is also exact for liner displacement-gradient.

4.3 Element Formulation

      With u,1 = f1 , u,2 = f2 and u,3 = f3 approximately satisfied, u,1 , u,2  and u,3 are replaced by f1 ,

f2 and f3, respectively, in computing the strain-gradient in (2a), which becomes
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Thus, the C1 requirement on u becomes the C0 requirement on f1 , f2and f3. By incorporating the

interpolations in (12) and (16),
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in which the element stiffness matrix kDK of the generalized Discrete Kirchhoff element DKT4 arising

from the integration is self-defined. For the element, the strain-displacement matrix is LN and the

strain-gradient-displacement matrix is [(LN1)T (LN2)T (LN3)T]T.

4.4 Generalized Individual Element Patch Test

      The consistency of the generalized DK element can be verified by the individual element test

(IET) which was proposed by Bergan and Hanssen in late 1970’s [34] with the underlying goal to

establish a test for element design. IET demands pairwise cancellation of tractions among adjacent

elements under the same uniform stress state. It has been shown that the satisfaction of IET plus the

proper rankness of the element stiffness matrix can secure the Forms A, B and C patch tests [29].

      In the present strain gradient elasticity, a quadratic displacement uQ leading to equilibrating stress

and double-stress is considered, i.e.
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are linear in (x1,x2,x3) and constant, respectively. Let dQ be the element displacement vector prescribed

according to Qu , 1,Qu , 2,Qu  and 3,Qu . Since N in (12) can reproduce the quadratic Qu  whilst N1, N2

and N3 in (16) can reproduce the linear 1,Qu , 2,Qu and 3,Qu ,
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In the above manipulation, no domain integrand is left after the integration by parts due to (19) and

the constant nature of the double-stress. It should also be remarked that the transformation from



domain to boundary integral is analytical. When numerical integration is used, the domain integration

rules must be able to evaluate the integrals exactly. For the present element, one must use at least the

5-point and 4-point integration rules for the domain integrals involving Qσ  and 1 2 3( , , )Q Q Qm m m ,

respectively.

      Using the derived N, N1, N2 and N3, the interpolated u, f1, f2 and f3 along an element edge depend

only on the dofs of the nodes along the same element edge, pairwise cancellation of the generalized

boundary forces occur when (20) is assembled into the global equation. As far as the employed

integration rule for evaluating kRH satisfies the orders in the last paragraph and leads to a rank

sufficient kRH, the element passes IET and, thus, the generalized patch test. Interested readers may

consult Reference [29] for further details of the IET.

5.  The Relaxed-Hybrid Element

In the section, a relaxed hybrid variation functional which contains independent domain displacement,

boundary displacement and stress for conventional elasticity is first reviewed for completeness.

5.1 The Relaxed Hybrid Functional for Conventional Elasticity

     For conventional elasticity, the elementwise Hellinger-Reissner functional and its variation [35]

with independently assumed stress σ) and assumed compatible displacement u are:
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If the displacement is not compatible, an independently assumed boundary compatible displacement

u%  can be introduced to form the following functional:
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which enforces the strain compatibility, stress equilibrium, the equality of u and u% as well as the



traction reciprocity in a weak sense. In the formulation, the assumed σ) can be divided into constant

modes cσ
)

 and non-constant modes nσ
)

. With the patch test fulfilment unaffected, enforcement of the

traction reciprocity can be relaxed by using only cσ
)

 in the boundary integral term in (22), i.e.,
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5.2 The Relaxed Hybrid Functional for Gradient Elasticity

      By introducing independently assumed double-stress components 1m) , 2m)  and 3m)  into the

potential energy functional given in (2) for gradient elasticity, we have
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By invoking the divergence theorem, its variation is
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On the element face, local Cartesian coordinates n, s and t are defined with unit vectors en = {ni}, es

= {si} and et = {ti}, respectively, where en is pointing along the outward normal direction whilst es

and et are two arbitrary tangential directions, see Figure 2(b). Similar to (13), one gets the following

relations on the displacement-gradients defined with respect to (x1, x2, x3) and (n,s,t)
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(27b) allows the second boundary integrand in (26) to be expressed in terms of the derivatives of u

with respect to (n,s,t), and (26) can be re-written as

[ ( ) ]
1 1

1
2 1 2 1 2 3

2 1 2 3
3 3

3

,
( , ) ( , , , )

,e

T

e T T
g d

d
d d d

d

-

W

ì ü ì üì ü
ï ï ï ïï ïP = - - - - - Wí ý í ý í ý
ï ï ï ï ï ï

î þî þ î þ
ò

m Lu m
m Lu C m u L σ m m m
m Lu m

) )
) ) ) ) )
) )



1 1 1

1 2 3 2 2 2
1 2 3

3 3 3

[ ( ) )] ( ) , ( ) , ( ) , ]
e

T T T T
n n s s t tn dd d d d

¶W

ì ü ì ü ì ü
ï ï ï ï ï ï

+ + + + Gí ý í ý í ý
ï ï ï ï ï ï
î þ î þ î þ

ò
m m m

υ m m m u υ u υ u υ um m m
m m m

(s - , - , - ,

) ) )
) ) ) ) ) )

) ) )

ePd- . (28)

where
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and ( )υ o  has been defined under (3). If u is C0, its tangential derivatives u,s and u,t would also be C0.

The only concern would be the compatibility of the normal derivative u,n. Thus, by comparing with

(21) , the gradient elasticity counterpart of (24) could be written as:
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in which nu%  is an assumed compatible displacement-derivative along n; 1m) , 2m)  and 3m) are the

assumed double stresses whilst 1
cm) , 2

cm)  and 3
cm)  represent their constant modes, respectively. A Hu-

Washizu functional similar to the above e
RHP  was employed to justify the refined direct stiffness

method (RDSM) for thin plate elements [36] whose element stiffness matrices can be computed

simply by augmenting a refinement term to the B-matrix which relates the curvature and the element

vector of dofs. However, the C0 feature of deflection is not fully invoked in RDSM and a more

succinct justification using the two-field functional in (29) will be presented in the next subsection

for 3D gradient-elasticity. A 2D counterpart of the functional in (29) has been employed to formulate

triangular and quadrilateral elements for plane gradient-elasticity by the corresponding author and his

coworker [27].

5.3 Element Formulation

      A compatible nu%  can be obtained by linear interpolation of ,nu  which can be obtained via (27a)

at the three nodes on each element face. The scheme can be symbolically expressed as

n n=u N d%% . (30)

Without loss of generality, the C0 displacement in (12) can be expressed as



o o c c n n= = + +u Nd Nα Nα Nα (31)

in which
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and as are linear combinations of the 48 dofs in the element vector of dofs d. Here, oα embraces the

12 constant and linear displacement modes whilst cα  embraces the 18 quadratic displacement modes

in the basis of u. The vanished nature of integrals of (LNn),i can always be attained via Schmidt-

orthogonalization. Through deriving the strain-gradient and taking integration, (31) gives

c gn n g+ =α B α B d   and
1

e
c ge d

W

= W×
W òα B d (32)

where

1

2

3

( ),
( ),
( ),

n

ngn

n

é ù
ê ú= ê ú
ê úë û

LN
LNB
LN

 ,
1

2

3

( ),
( ),
( ),

g

é ù
ê ú= ê ú
ê úë û

LN
LNB
LN

 ,
e

gnd
W

W =ò B 0   and
e

e d
W

W = Wò .

For the assumed double-stresses, one can take

1

2

3

c

g cc

c

ì ü
ï ï

=í ý
ï ï
î þ

m
C βm

m

)
)
)

  and

1

2
18

3

[ , ] c
g gn

n

ì ü
ì üï ï

=í ý í ý
î þï ï

î þ

m
β

C I Bm
β

m

)
)
)

(33a,b)

Substituting (30), (31) and (33) into (29), one gets
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in which the relations in (32) have been invoked.

      With c c c=H β G d  and n n n=H β G d  substituted into the relaxed-hybrid functional in (34), the

latter becomes
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By invoking (36a),
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where the element stiffness matrix kRH for the relaxed-hybrid element RHT4 is self-defined. For the

element, the strain-displacement matrix is LN, which is the same as that of DKT4, and the strain-

gradient-displacement matrix is (Bg - BgR).

      It can be noted that the element stiffness matrix assumed a format similar to those derived from

RDSM [36, 37]. However, there are a few differences between the present approach and RDSM.

Firstly, the present approach starts from a C0 displacement which leads to the strain and strain-

gradient. On the other hand, two largely independent sets of displacement are employed to derive the

strain and strain-gradient in RDSM. Secondly, the refinement matrix analogous to BgR  in RDSM

involves the correction with respect to discontinuous u,n, u,s and u,t but the present BgR involves the

refinement with respect to discontinuous u,n only. Finally, the present proof is given for strain-

gradient elasticity problem via a relaxed two-field Hellinger-Reissner functional instead of the

simpler thin-plate problem via a more complicated relaxed three-field Hu-Washizu functional.

5.4 Generalized Individual Element Patch Test

      To examine whether kRH passes the individual element patch test, uQ and the derived quantities



in (19) are considered. Since N can reproduce the quadratic uQ and nN%  can reproduce the linear uQ,n,

( , )n n Q- =N N d 0%  and QgR =B d 0. Thus,
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Same as the first proposed element, one must use at least the 5-point and 4-point integration rules for

the domain integrals involving Qσ  and 1 2 3( , , )Q Q Qm m m , respectively. By invoking
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As N is compatible, N,s and N,t are also compatible. nN%  obtained by linearly interpolating u,n at the

nodes bounding each element edge is also compatible. Hence, pairwise cancellation of the generalized

boundary forces occurs when (20) is assembled. As far as the employed integration rule for evaluating

kRH satisfies the orders identified under (39) and leads to a rank sufficient kRH, the element passes

IET and, thus, the generalized patch test.

6.  Numerical Benchmark Tests

In this section, numerical examples are employed to test the accuracy of the two proposed 4-node 48-

dofs tetrahedral element models for strain-gradient analysis, namely

- DKT4: the generalized Discrete Kirchhoff element presented in Section 4,

- RHT4: the relaxed-hybrid element presented in Section 5.



Although the 4-point integration rule can be used to evaluate the element stiffness matrices associated

with the strain-gradient/double-stress in the two elements without jeopardizing the constant double-

stress patch test, they are evaluated by the 5-point integration rule for convenience. It has also been

checked that the element predictions remain practically intact when the 4-point integration rule is

employed to evaluate the matrices associated with the strain gradient/double-stress in these two

elements, respectively. In all examples, the material is assumed to be isotropic. The material matrices

are
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where
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Em
n

=
+

 ,
(1 )(1 2 )

Enl
n n

=
+ -

 ,

E is the elastic modulus, n is the Poisson’s ratio and l is the intrinsic length accounting for the material

size effect. The material constants are taken, rather arbitrarily, to be μ = 1, λ = 2 and l = 0.3 or 0.003.

The meshes are generated by ABAQUS and the formulations are implemented by using ABAQUS

user-defined element subroutine UEL. The following relative stress error norm Es, relative double-

stress error norm Em and the relative energy error norm Ew are defined to evaluate the element

accuracy and convergence:
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     The following ratio R for the strain energies associate with the strain and strain-gradient is also

computed:
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      All terms defined in (43) and (44) are evaluated by the 5-point integration rule. A large R implies

that the strain/stress dominates in the minimization of the potential energy functional. Thus, the strain-

gradient/double-stress would be more erroneous.

      The error for a field variable in the finite element analysis is well-known to be ∼O(hp+1-m) in

which h is the element size, p is the element interpolation order, and m is the derivative order of the

field variable. The present elements are complete quadrature but incomplete cubic in interpolation

order, that is, p = 2, whereas m= 1 for stress and m = 2 for the double-stress. For 3D analyses, h µ

(nDOF)−1/3 where nDOF is the number of nodal dofs. Thus,

( )2/3( )sE O nDOF -:  , ( )1/3( )mE O nDOF -: (45a,b)

      In the log-log plots for Es and Em against nDOF, the magnitudes of the slope are expected to be

2/3 and 1/3, respectively.

6.1 Constant Double-Stress Patch Test

      In this test, 1´1´1 cuboid in Figure 3 is considered. It is meshed into 35 elements with internal

nodes and elements away from the boundary of the cuboid. The following displacement is employed

for the constant double-stress patch test
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which leads to the equilibrating stress and double-stress below
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To prevent the rigid body motion, u1 = u2 = u3 = 0 is prescribed at node O, u2 = u3 = 0 is imposed at

node B and u3 = 0 is prescribed at node C. At the remaining dofs of the boundary nodes, natural

boundary conditions are prescribed according to analytical solution. Both DKT4 and RHT4 pass the

patch test by reproducing the displacement, stress and double-stress solutions exactly.

                          (a)                                                (b)                                              (c)

Figure 3. (a) The 1´1´1 cuboid employed for contant double-stress patch test. (b) The mesh
modelling the cuboid. (c) The mesh with some elements removed.

6.2 Third-Order and Fourth-Order Tests

      In these two examples, meshes with 36, 238, 1432 and 8481 elements, see Figure 4, are employed

to model the 4´4´1 rectangular prism in Figure 4. In this example, essential boundary conditions are

prescribed according to the following third-order and fourth-order displacement fields
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Both of them lead to equilibrating stress and double-stress fields.

      In the third-order test, R∼29.0 and 290 000 for l = 0.3 and 0.003, respectively. In the fourth-order

test, R∼6.78 and 67 800 for l = 0.3 and 0.003, respectively. For the two tests, Es and Em are plotted

against nDOF in Figures 5 and 6. Both models yield similar results and, as expected, they are more

accurate in the third-order than the fourth-order test. Es is markedly smaller than Em probably because

the strain is a lower order derivative of the displacement than the strain-gradient and R is large. In the

case of l = 0.003, the two element models yield nearly identical results. The observation is sensible

in the view that both elements use the same strain-displacement matrix LN and R is over 60 000 in

both tests. Using the data from the coarse stand finest meshes, the slopes for Es and Em in Figure 5

are ∼0.79 and ∼0.42, respectively, whilst those in Figure 6 are ∼0.77 and ∼0.41, respectively. The

convergence rates for Es and Em are higher than the estimations 2/3 and 1/3, respectively, in (45). Ew

is not plotted. For l = 0.3 in the third-order (fourth-order) test, Ew/Es increases from ∼1.2 (∼1.1) in

coarsest mesh to ∼3.4 (∼3.3) in the finest mesh. Thus, theconvergent rate of Ew isslightly lower than

that of Es. For l = 0.003, Ew is practically identical to Es due to the large R.

(a) (b) (c) (d)

Figure 4. A 4´4´1 rectangular prism is meshed into (a) 36, (b) 238, (c) 1432 and (d) 8481 elements.



(a)                                                                              (b)
Figure 5. (a) Es and (b) Em against nDOF for the third-order test, see (48a) and Figure 4.

(a)                                                                           (b)

Figure 6. (a) Es and (B) Em against nDOF for the fourth-order test, see (48b) and Figure 4.

6.3 Flat Panel with a Cylindrical Cutout

This example considers a unit thickness 8´8 square panel with a central cylindrical cutout. Owing

to symmetry, only one quarter of the problem is modelled and the 4´4´1 computational domain is

meshed into 176, 1097, 7789 and 50446 elements, see Figure 5. On the boundary planes D and C,

traction and double-traction derived from the following axial symmetric displacement field are

prescribed [38]:
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where
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2 2
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(r,q, x3) are cylindrical coordinates, a = 1 is the radius of the cutout, p is radial stress at r = ¥,

Kn is the n-th order modified Bessel functions of the second kind.

      Symmetric conditions are prescribed on the planes of symmetry B and E whilst traction-free and

double-traction-free conditions are prescribed on the remaining boundary.

(a)                        (b)

 (c)                                                             (d)

Figure 7. The 4´4´1 computational domain for a quarter of a square panel with a central circular
cutout of unit radius is meshed into (a) 176, (b) 1097, (c) 7789 and (d) 50446 elements.

     In this test, R = 41 and 206 000 for l = 0.3 and 0.003, respectively. Es and Em are plotted against

nDOF in Figure 8. The two element models yield close Es. On the other hand, RHT4 yields a slightly



smaller and larger Em than DKT4 when l = 0.3 and 0.003, respectively. Using the data of the coarsest

and finest meshes, the slopes of Es and Em are ∼0.69 and ∼0.32 which are again slightly higher than

and close to the estimations 2/3 and 1/3, respectively, in (45). Ew is not plotted. For l = 0.3, Ew/Es

increases from ∼1.4 in the coarsest mesh to ∼6.3 in the finest mesh. Thus, the convergent rate of Ew

is slightly lower than that of Es. For l = 0.003, Ew is practically identical to Es as R is large.

(a)                                                                            (b)

Figure 8. (a) Es and (b) Em against nDOF for the cylindrical cutout problem, see Figure 7.

6.4 Cube with a Spherical Void

This example considers an 8´8´8 cube with a central spherical void of unit radius. Owing to

symmetry, only one-eighth of the problem is modelled and the 4´4´4 computational domain is

meshed into 330, 2 091, 14 514 and 86 606 elements, see Figure 9. Over the 3 square boundary planes,

traction and double-traction derived from the following displacement solution are prescribed [39]:
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or, equivalently,
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 (r,q,j) are spherical coordinates, a = 1 is the radius of the void, p is radial stress at r = ¥.

      Symmetric conditions are prescribed over the three planes of symmetry whilst traction and

double-traction free conditions are prescribed over the boundary of the spherical void.

(a)                          (b)

(c)                                                                          (d)

Figure 9. The 4´4´4 computational domain for one-eighth of a cube with a central spherical cutout
of unit radius is meshed into (a) 1128, (b) 3969, (c) 4937 and (d) 86 606 elements.

      In this test, R = 270 and 760 000 for l = 0.3 and 0.003, respectively. Es and Em are plotted against



nDOF in Figure 10. The two element models yield close Es. On the other hand, RHT4 yields a slightly

lower Em than DKT4 when l = 0.3 but the two Em are close when l = 0.003. Using the data of the

coarsest and finest meshes, the slopes of Es and Em are ∼0.73 and ∼0.33 which are slightly higher

than and close to the estimations 2/3 and 1/3, respectively, in (45). Ew is not plotted. For l = 0.3, Ew/Es

increases from ∼1.2 in coarsest mesh to ∼5.0 in the finest mesh. Thus, the convergent rate of Ew is

slightly lower than that of the Es. For l = 0.003, Ew is practically identical to Es as R is large.

(a)                                                                         (b)
Figure 10. (a) Es and (b) Em against nDOF for the spherical void problem, see Figure 9.

8.  Closure

In this paper, two 4-node 48-dof tetrahedral elements for strain-gradient elasticity analysis are devised

based on the generalized discrete Kirchhoff and the relax-hybrid methods previously developed for

formulating plane elements for gradient-elasticity analyses [27]. All nodes possess 12 dofs which

include the displacement u and the displacement-gradient (u,1 , u,2 , u,3). To enable the elements to

pass the constant double-stress patch test, a C0 quadratic-complete displacement interpolation is first

constructed. The strain in both elements are derived by taking derivative of the displacement

interpolation. In the generalized discrete Kirchhoff element DKT4, the displacement-gradients at the

mid-edge points are obtained from the nodal dofs. They together with those at the nodes are

interpolated using the 10-node interpolation. The strain-gradient is then obtained by taking derivative

of the interpolated displacement-gradient. In the relaxed-hybrid element RHT4, the strain-gradient is

also derived from the displacement interpolation and the matrix relating the strain-gradient and the

element vector of nodal dofs is modified by a constant matrix for patch test fulfilment. Both elements

are validated by the generalized individual element patch test [29] and other benchmark problems.
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Since DKT4 and RHT4 differ only in the ways they derive the strain-gradient and the elastic energy

associated with the strain-gradient is often small compared with that with the strain, their predictions

are close especially when the intrinsic material length is small. To the best knowledge of the authors,

the proposed elements are probably the first non-mixed/penalty three-dimensional elements which

employ only engineering dofs for gradient-elasticity analyses. While the present paper only deals

with strain-gradient elasticity, the more general kind of gradient-elasticity in which the elastic energy

also depends on rotation-gradient can be accommodated readily [27]. Both DKT4 and RHT4 are

coded in Abaqus’s UEL user-defined element subroutines which can be requested from the

corresponding author.

      The methods of interpolation for the previously proposed plane elements have been successfully

applied to interpolate the plastic variables in the plane gradient-based plasticicity model [40]. It is

hoped that the methods of interpolation for the present 3D elements can equally be applicable to

gradient plastic/damage material models [22, 41, 42].
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