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ARTICLE INFO ABSTRACT

Keywords: Background: Rumination is a central feature of major depressive disorder (MDD). Knowledge of the neural
Rumination structures that underpin rumination offers significant insight into depressive pathophysiology and may help to
Depression develop potential intervention strategies for MDD, a mental illness that has become the leading cause of dis-

Attentional control
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ability worldwide.

Methods: Using resting-state fMRI and graph theory, this study adopted a connectome approach to examine the
functional topological organization of the neural network associated with rumination in MDD. Data from 96
participants were analyzed, including 51 patients with MDD and 45 healthy controls.

Results: We found altered functional integration and segregation of neural networks associated with depressive
rumination as indicated by reduced global and local efficiency in MDD patients compared with controls.
Interestingly, these metrics correlated positively with depression severity, as measured by the Hamilton
Depression Rating Scale. Moreover, mediation analysis indicated that the association between network metrics
and depression severity was mediated by the ruminative tendency of patients. Disrupted nodal centralities were
located in regions associated with emotional processing, visual mental imagery, and attentional control.
Conclusion: Our results highlight rumination as a two-edged sword that reflects a disease-specific neuro-
pathology but also points to a functionality of depressive symptoms with evolutionary meaning.

1. Introduction

Major depressive disorder (MDD) is a considerably disabling mental
illness. According to the World Health Organization (WHO,
2017), > 300 million people worldwide suffer from MDD. MDD is as-
sociated with an enormous economic cost that ranks as the highest
among brain disorders (Smith, 2011). However, knowledge about de-
pressive pathophysiology is still limited. Although it is diagnosed as a
single entity, MDD is highly heterogeneous (Uher et al.,, 2014;

Zimmerman et al., 2015). Though it is not recognized in the criteria for
MDD, studies indicate that depressive rumination—defined as an un-
controllable and recurrent focus on the depressive state—is a central
psychological engine precipitating feature of MDD (Hamilton et al.,
2015; Lyubomirsky et al., 2015; Papageorgiou and Wells, 2004). Ru-
mination exacerbates and prolongs depression while predisposing/
precipitating depression in vulnerable individuals. Rumination affects
depression via four mechanisms (Nolen-Hoeksema et al., 2008). First,
rumination increases negative thoughts induced by the depressed
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mood. Second, rumination increases pessimistic and fatalistic thinking
and thereby interferes with effective problem-solving. Third, rumina-
tion hinders conditioned behavior, which increases stress. Finally, in-
dividuals with a ruminative tendency experience less social support,
which further intensifies the depressed mood (Watkins, 2008), prolongs
depressive episodes (Nolen-Hoeksema et al., 2008), and increases the
risk of relapse (Nolen-Hoeksema, 2000).

Although rumination can be regarded a normal variant of cognition,
its exaggerated form in depression may be rooted in impaired attention
disengagement (Koster et al., 2011; Southworth et al., 2017). Selective
attention to task-relevant information is impaired in MDD patients
(Koster et al., 2011). Neurophysiological data demonstrate that conflict
monitoring decreases with the number of depressive episodes
(Vanderhasselt and De Raedt, 2009). Moreover, cognitive training
modifies negative attention bias and is associated with changes at the
neural level, as well as the clinical level (Beevers et al., 2015). Im-
portantly, the neural basis of depressive rumination may represent trait-
based risk factors for relapse in MDD. For example, Jacobs et al. (2014)
found that functional connectivity strength between the subgenual
anterior cingulate and posterior cingulate gyrus correlated negatively
with rumination in remitted MDD. Peters et al. (2016) found that the
functional connectivity between the amygdala and the posterior cin-
gulate cortex mediates the association between rumination and residual
clinical symptoms in remitted MDD. Thus, studying the neural basis of
depressive rumination provides important insights into the mechanisms
predisposing and maintaining MDD (Holmes and Patrick, 2018) and
may guide the development of new treatments (Young and Craske,
2018).

Recent advances in functional neuroimaging methodology—in
particular, the analysis of the brain connectome using graph theo-
ry—allow for the characterization of the functional organization of
brain networks at different levels of complexity (Bullmore and Bassett,
2011; Fadok et al., 2018). By modeling the brain as a connectome,
topological network metrics defined by graph theory can test if the
interaction between neural populations is optimal or redundant
(Vecchio et al., 2017). These metrics include functional segregation
(how optimized the network is for specialized processing) and func-
tional integration (how well the network can combine specialized in-
formation across distributed regions Sporns et al., 2004). Thus, ex-
amining network properties using graph theory may help to
differentiate the neural networks associated with depressive rumination
in MDD patients from those associated with rumination in healthy
controls (HCs; Bi and He, 2014).

Rumination involves a broad range of cognitive and affective pro-
cesses including self-referential processing, autobiographical memories,
and emotion regulation (Cooney et al., 2010; Sin et al., 2018). Rumi-
nation thus activates a distributed and partly overlapping network of
brain regions serving these processes. The default mode network (DMN)
includes the ventral-medial prefrontal cortex and posterior cingulate
gyrus extending to the precuneus and medial temporal gyrus, and it is
implicated in self-referential processing (Raichle, 2015). Indeed,
Cooney et al. (2010) demonstrated significantly stronger neural activity
in the DMN during rumination in MDD patients compared to HCs.
Significant neural correlates of rumination apart from the DMN include
task-positive networks (e.g., fronto-parietal network) and the amyg-
dala. Hamilton et al. (2011) reported that task-positive networks were
associated with rumination in people with MDD. Levels of self-reported
rumination were also positively correlated with sustained activation of
the amygdala in response to emotional stimuli in people with MDD
(Burkhouse et al., 2017). Cooney et al. (2010) reported significantly
stronger activation of the amygdala in MDD patients compared to
controls during experimentally induced rumination. Kiihn et al. (2012)
found that depressive rumination correlated negatively with gray
matter density and resting state activity in the inferior frontal gyrus and
anterior cingulate cortex. Interestingly, Connolly et al. (2013) found the
above-mentioned two regions show lower resting state functional
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connectivity, which is associated with ruminative tendency in adoles-
cents with a first-episode depression. Furthermore, Piguet et al. (2014)
found that subjects with high ruminative tendency have more sponta-
neous neural activity in the left entorhinal region, a key region for
memory. Taken together, previous studies point to a link between ru-
mination and DMN, with an imbalance between the recruitment of
externally directed attention/executive control networks (in fronto-
parietal cortices) and internally directed self-referential/memory net-
works (in midline and limbic brain systems). However, the organization
and interaction on a network level of brain areas associated with de-
pressive rumination remains to be investigated.

This study examined the functional topological organization profile
of the neural network of rumination in MDD using resting state func-
tional magnetic resonance imaging (fMRI) and graph theory. First, we
defined a neural network based on rumination-induced brain activa-
tion, as done previously (Burkhouse et al., 2017; Cooney et al., 2010).
We then used graph theory to estimate the topological properties of the
rumination network at a regional and a global level by applying the
identified nodes of the rumination network to the resting-state fMRI
data. Finally, we assessed the association between topological proper-
ties and clinical variables (e.g., ruminative tendency and depression
severity). We hypothesized that there would be alterations in the
functional integration and segregation of the rumination network in
MDD patients compared to HCs. Furthermore, we hypothesized that the
alterations would correlate with the severity of the depressive symp-
toms and that these correlations are mediated by depressive rumina-
tion.

2. Material and methods
2.1. Participants

The initial sample consisted of 100 right-handed participants in-
cluding 53 patients with MDD and 47 sex- and age-matched HCs.
Patients were diagnosed according to DSM-5 criteria (Uher et al., 2014)
by their case psychiatrists (KGL, YD, and XJH). All of the patients had
17 or more scores on the HAMD-21 (Cusin et al., 2009). The exclusion
criteria were patients with other psychiatric disorders (except for
MDD), a history of organic brain disorder, neurological disorders,
mental retardation, cardiovascular diseases, alcohol or substance abuse,
pregnancy, or any physical illness. None of them had received elec-
troconvulsive therapy within six months prior to data collection. For
study inclusion, patients were diagnosed and screened by a psychiatrist
and were scanned within one week after inclusion. Most patients (36/
53) experienced chronic illness duration (> 12 months) and all patients
received antidepressant pharmacological treatment (see Table 1) at
least 7 days prior to inclusion.

HCs were recruited through local advertisements and screened
using the Structured Clinical Interview for DSM5 Nonpatient Edition to
rule out the presence of current or past psychiatric disorders. Further
exclusion criteria for HCs were any history of psychiatric disorders in
first-degree relatives and current or past significant medical or neuro-
logical illness. Ethical approval was obtained from the Institutional
Review Board of the Guangzhou Brain Hospital. All experimental pro-
cedures were conducted according to the Declaration of Helsinki.

All the participants were right-handed according to their self-re-
porting and had no brain abnormalities according to conventional MRI
by an experienced radiologist (WJZ). All the subjects gave written
consent prior to study inclusion and were compensated for their par-
ticipation (¥ 150).

2.2. Psychometric measures
Depressive symptoms were assessed using the 21-item version of the

Hamilton Depression Rating Scale (HAMD-21) on the day of the fMRI
measurement. Participants also completed the Ruminative Response
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Table 1
Demographic and clinical characteristics of MDD and HC.
MDD Mean HC Mean (SD) t/X2, p
(SD)
Age 31.9 (9.96) 28.93 (10.88) t=1.43,p=.15
Sex 31F/22M 27 F/20 M X? =0.03,p = .85
Years of education 12.88 (3.51) 13.46 (3.16) t= —-0.87,p =.38
HAMD 33.59 (8.17) 2.10 (3.57) t=24.43,p < .001
HAMA 18.61 (7.63)  1.44 (2.68) t = 14.64,p < .001
RRS total 57.42 37.53 (9.23) t=961,p < .001
(11.26)
RRS depressive 30.74 (6.65) 18.95 (5.15) t=9.84,p < .001
RRS brooding 14.59 (3.03)  9.57 (2.66) t=877,p < .001
RRSpondering 11.91 (3.04) 9(2.38) t=>527,p < .001
Stroop-Congruent
Reactions time 1043 (197) 1131(183) t=212,p = .03
Accuracy 0.76 (0.18) 0.85 (0.14) t= —248,p = .01
Stroop-Incongruent
Reaction time 1229 (192) 1101 (215) t =296,p = .003
Accuracy 0.78 (0.22) 0.87 (0.14) t= —2.28,p = .02
Illness duration 33.70
(months) (36.54)
Medication (N)
SSRI 40
Antipsychotics 13
Traditional Chinse 3
Medicine
Other 2

Notes: MDD, major depressive disorder; HC, healthy controls; SD, standard
deviation; HAMD/HAMA, Hamilton Depression Rating Scale/Hamilton anxiety
scale; RRS, ruminative response scale; SSRI, selective serotonin reuptake in-
hibitor.
Bold and italic font indicates the areas showing group differences between MDD
and HC.

Scale (RRS), a self-assessment widely used to measure ruminative ten-
dency (Treynor et al., 2003). The Chinese version of RRS was used (Han
and Yang, 2009). Moreover, all participants completed a computer
version of the Stroop color word task to determine participants' inter-
ference-control ability as described previously (Zhang et al., 2017).

2.3. Imaging data acquisition and preprocessing

All neuroimaging data were acquired on a 3 Tesla MRI system
(Achieva X-series, Philips Medical Systems, Best, Netherlands) using an
eight-channel SENSE head coil at the Guangzhou Brain Hospital
Department of Radiology.

BOLD-weighted fMRI images were acquired using a gradient-echo
echo-planar imaging (GRE-EPI) sequence with (a) repetition
time = 2000 ms, (b) echo time = 30 ms, (c) flip angle = 90°, (d)
matrix = 64 X 64, (e) field of view = 220 mm X 220 mm, (f) slice
thickness = 4 mm with interslice gap = 0.6 mm, and (g) 33 interleaved
axial slices. The resting state fMRI consisted of 240 volumes obtained in
about 8 min. During the resting fMRI scanning, all lights in the scanner
room were switched off, and the subjects were instructed to close their
eyes, to keep still, and not to think about anything but also not to fall
asleep. In addition, T1-weighted images were acquired with an inter-
leaved sequence (188 sagittal slices, TR/TE/flip angle = 8.2 ms/
3.7 ms/7°, matrix = 256 x 256 mm?, FOV = 256 X 256 x 188 mm,
and voxel size = 1 x 1 x 1 mm°>).

The BOLD fMRI data were preprocessed using SPM12 (http://www.
fil.ion.ucl.ac.uk/spm/) and DPARSF (V4.3.170105, Yan, 2014). The
first five volumes of each dataset were discarded to allow for MR signal
equilibrium. The remaining images were corrected for slice timing
differences, realigned to the first volume, and spatially normalized to a
standard EPI template (Calhoun et al., 2017). Further preprocessing
steps included resampling to a voxel size of 3 X 3 x 3 mm?®, linear
detrending and temporal band-pass filtering (0.01-0.08 Hz), and
smoothing with a 6 mm Gaussian kernel. Moreover, we regressed out
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the Friston-24 parameters of head motion (six head motion parameters,
six head motion parameters one time point before, and the twelve
corresponding squared items; (Power et al., 2012; Satterthwaite et al.,
2013) and the signals of the white matter and cerebrospinal fluid. With
respect to global signals, we referred to the Global Negative Index (GNI)
(Chen et al., 2012) to determine whether global signal regression was
needed for the current study. This index recommends against per-
forming global signal regression analysis when GNI is 3 or above. After
examination of GNI profiles, which were estimated using the publicly
available Matlab code (by Chen Gang, https://www.mathworks.com/
matlabcentral/fileexchange/36864-determine-the-necessity-for-global-
signal-regression), we found all participants had a GNI > 3. Further-
more, a t-test revealed no significant difference between MDD patients
and HCs (p = .18). We thus refrained from performing global signal
regression analysis in our preprocessing analysis given the risk of in-
troducing bias (e.g., Weissenbacher et al., 2009). The GNI profile of
each subject can be found in Fig. S4a in the Supplement. Regarding
head motion on the signal, two steps were adopted to largely extend
controlling the effects of head motion. First, if Power frame displace-
ment was found to be > 0.5, then that time point was deemed a “bad”
time point, and the time points before and after that bad time point
were scrubbed using each of the bad time points as a regressor (Power
et al., 2012). Furthermore, a t-test revealed no significant difference in
mean frame displacement (FD) between the two groups (p = .18, Fig.
S4 in the Supplement). Correlation analysis also did not find any sig-
nificant relationship between the FD and self-reported rumination
scores (p > .05). Second, only if the subjects satisfied our criteria for
head motion, displacement of < 3 mm in any plane and rotation of < 3°
in any direction were included. Four participants were excluded be-
cause of motion artifacts. Hence, a total of 51 MDD patients and 45 age-
and gender-matched HC subjects were entered into the final data ana-
lysis.

2.4. Rumination network construction and analysis

2.4.1. Node definition

Power et al. (2012) proposed that a functional atlas is a more
powerful approach than that based on an anatomical atlas approach in
detecting the dynamic functional organization of the rumination net-
work. Following this line of thought, we defined the ruminative neural
network based on the activation map of a rumination induction task
(Burkhouse et al., 2017; Cooney et al., 2010). Participants had to briefly
engage in a state of rumination by means of mood induction and ru-
mination induction instructions (detailed information on the rumina-
tion-induction task can be found in the Supplement).

General linear modeling method was applied to delineate the acti-
vation patten of the rumination condition so as to further understand
the ruminative network on the basis of the activation pattern elicited by
the rumination induction task. We built nonoverlapping spheres around
each peak voxel in the map (Ekman et al., 2012; Xu et al., 2016).
Briefly, we started by building the first sphere (radius = 6 mm) around
the most significant peak as the first node of the network; we then
moved on to the voxel with the second highest value to construct the
second sphere. A node was excluded if it overlapped with any of the
previously generated nodes or extended beyond the gray matter mask
(> 0.4, mask provided by SPM12). This process was iterated until the
last voxel in the activation map and resulted in 49 regions of interest
(ROIs). In addition, previous work suggested that the anterior cingulate
gyrus and amygdala play an essential role in distinguishing the rumi-
nation state from other mental states (Milazzo et al., 2014). Therefore,
we also included the bilateral anterior cingulate (4, 31, —10 and — 4,
31, —10) following previous work (Craddock et al., 2009) and the bi-
lateral central-medial amygdala as defined by cytoarchitectonic map-
ping (Amunts et al., 2005). Since the imaging data of eight subjects did
not cover the whole cerebellum in the resting state scan, we only de-
fined ROIs in the cerebral cortex. In total, 53 ROIs (spheres of 6 mm
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radius around the most significant peak voxels) were defined to re-
present the nodes of the rumination network (see Table S3).

2.4.2. Edge definition

We extracted the time series for each ROI by averaging the time
course of included voxels. A linear regression analysis was performed to
remove the effects of nuisance signals from white matter, cerebrospinal
fluid, and head-motion parameters. Subsequently, we used the residuals
of the time series for each ROI to calculate a Pearson's correlation
coefficient as the functional connectivity. To enhance data distributions
for a parametric statistical analysis, Fisher r-to-z transformation was
performed. Thus, a 53 X 53 functional connectivity matrix was derived
of each subject, representing the rumination network under resting
state. The whole procedure of functional connectome construction is
shown in Fig. S5 in the Supplement.

2.4.3. Graph theory analysis

Graph theoretical analysis was done using the GRETNA toolbox
(Wang et al., 2015a, 2015b) in Matlab (R2015a). We evaluated the
rumination network's functional network organization at the level of
functional segregation and functional integration (Sporns, 2013).
Functional segregation is characterized by the clustering coefficient
(Cp) and by local efficiency (Ej,.), whereas functional integration is
measured by the characteristic path length (average shortest path
length, Lp) and global efficiency (Egop). For an estimate of nodal cen-
tralities, we characterized nodal strength (S;), regional global efficiency
(Enod), and the regional clustering coefficient (C;). Moreover, we esti-
mated the small-world attributes (o) that reflect an optimal balance of
integration and segregation of a network. The formula of each metric is
depicted in the Supplement or in Rubinov and Sporns (2010).

2.5. Statistical analysis

We used a nonparametric permutation test to assess differences in
network parameters between groups (Yang et al., 2017; Zhang et al.,
2015). Cohen's d was calculated to determine effect sizes. Moreover,
connectivity matrices of each group were entered into the Network-
Based Statistics (NBS) Toolbox including age and gender as nuisance
variables (Zalesky et al., 2010). Connections with p values passing a
significant nonzero threshold (p < .01, Bonferroni corrected) in each
group were preserved and a union mask was generated that covered all
significant connections in either group. The primary threshold of the
individual-connection level was set at p < .01 with an extent-based
correction for multiple comparisons, 10,000 permutations, and an
overall corrected a < 0.05. Connectivity components showing dif-
ferences between MDD patients and HCs, including those identified by
NBS, were subjected to a linear regression analysis to investigate their
relationship with clinical variables of depression severity, rumination
tendency, and cognitive performance. In addition, we performed a
mediation analysis (the mediation package as implemented in the sta-
tistical software R) to determine whether the relationship between
network metrics and depression severity is mediated by the ruminative
tendency of patients.

2.6. Evaluation of network properties using whole-brain data

To determine whether the results were confined to the selection of
nodes defined by the rumination-induction task, we reran the same
analysis using 142 ROIs (Dos atlas) covering most of the brain (ex-
cluding the cerebellum) as defined previously (Dosenbach et al., 2010).
It is noteworthy that 42 ROIs defined from the rumination-induction
task overlapped with the Dos atlas (see Table S3 in Supplementary).
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3. Results
3.1. Demographic and behavioral data

Demographic data are depicted in Table 1. No significant differ-
ences were observed between MDD patients and HCs in demographic
variables including gender, age, or years of education (P > .05). As
expected, patients had significantly higher scores in the HAMD and RRS
and exhibited significantly longer reaction times and lower accuracy
rates in the Stroop task compared to HCs (Ps < .05).

3.2. Neural correlates of rumination

The rumination-induction task successfully induced rumination in
all participants as indicated by higher self-sadness and self-focus under
the rumination condition (p < .05, see Fig. S2 in the Supplement).
Furthermore, rumination induction was associated with significant ac-
tivation in the bilateral middle occipital gyri extending to the cere-
bellum, the bilateral inferior parietal lobule, the right inferior frontal
gyrus extending to the insula, and subcortical areas including the
parahippocampus, thalamus, and amygdala (see Fig. S3 in the
Supplement). These findings are in line with that observed in previous
studies (Burkhouse et al., 2017; Cooney et al., 2010) and add to the
literature on the neural network underpinning rumination.

3.3. Altered network metrics in MDD patients

The rumination network derived from the activation patterns of the
rumination-induction task as described above exhibited small-world-
ness (¢ > 1) in both groups (Fig. S6 in the Supplement) across a wide
range of density from 0.15 to 0.45. Group comparisons demonstrated
that MDD patients exhibited a decreased -clustering coefficient
(Cpp = .037, Cohen d = 0.36), a decreased local (Ejoc, p = .029, Cohen
d = 0.40) and global efficiency (Egiopp = .013, Cohen d = 0.47), and
an increased characteristic path length (L,p = .006, Cohen d = 0.52)
compared to HCs (Fig. 1).

Examining group differences at the regional level revealed decreases
in nodal strength, nodal efficiency, and the nodal clustering coefficient
in MDD patients in the bilateral amygdala, the right precuneus, the
middle occipital gyrus, the left inferior parietal lobule, and the right
superior parietal lobule. In only one region, the right middle frontal
gyrus, was there an increase in the nodal-clustering coefficient in MDD
patients compared to HCs (Table 2 and Fig. 2). Areas identified as hub
nodes in controls but not in patients included the right precuneus and
right inferior parietal lobe (Fig. 2).

The NBS analysis revealed 50 links displaying a decreased func-
tional connectivity in MDD patients compared with HCs (p = .0371;
Table S4 & FigureS7a in the Supplement). Reduced connectivity was
found in the frontal limbic circuits, including the inferior frontal gyrus,
amygdala, putamen, and regions of the DMN, such as the middle tem-
poral gyrus, precuneus, and areas in the occipital and parietal lobes.
Affected connections tended to interconnect different functional sys-
tems (e.g., parietal-occipital, frontal-occipital, and occipital-sub-
cortical). The functional connectivity strength from the links identified
by NBS showing as decreased in MDD patients were significantly cor-
related with global network metrics (i.e., Egiob, Eioc, and Lp) exhibiting
group differences in the MDD group (Ps < .05, Fig. S7 b, ¢, & d in the
Supplement).

3.4. Relationship between connectivity metrics and clinical scores

Ruminative tendency (RRS total scores and RRS pondering scores)
showed a significant positive association with HAMD scores (Table S5
and Fig. S8 in the Supplement). Moreover, HAMD scores, RRS total
scores, and RRS pondering scores correlated positively with global
network metrics exhibiting decreases in MDD patients (i.e., Cp, Eioc,
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Fig. 1. Global network metrics of ruminative neural network. (a, b, ¢, and d) The area of curve of network metrics, clustering coefficient (Cp), local efficiency (Ejoc),
shortest path length (L), global efficiency (Egop), respectively. The error bar indicates + 1 standard error.

Egiob, and Ly, Ps < .05). In comparison, a negative correlation existed
between HAMD scores and the characteristic path length (Ps < .05,
Table S5 in the Supplement), a metric that increased in MDD patients
compared to HCs. Mediation analysis (Baron and Kenny, 1986) re-
vealed that ruminative tendency, especially pondering, mediated the
association between network metrics and HAMD (Fig. 3 and Fig. S8 in
Supplement). First, the proposed mediator of reflective pondering was
regressed on global network metrics. Indeed, global metrics could sig-
nificantly predict reflective pondering. Second, HAMD scores were re-
gressed on global network metrics, demonstrating that global network
metrics significantly predicted HAMD scores. Finally, HAMD scores
were regressed on global network metrics and reflective pondering
within the same regression model. Reflective pondering significantly
predicted HAMD, whereas the association between global network
metrics and HAMD decreased in strength in the presence of the med-
iator (all Ps < .05). Thus, mediation analysis demonstrated that re-
flective pondering partially mediates the association between global

metrics and HAMD scores.

No significant correlations were observed between cognitive per-
formance (i.e., reaction time and accuracy rate in Stroop task) and
network metrics, or between the duration/number of illness episodes
and network metrics (Table S5 in the Supplement).

3.5. Evaluation on a whole-brain level

No significant between-group differences were observed in global
network metrics defined previously as covering 142 nodes across the
whole brain (Dosenbach et al., 2010); Fig. S9 in Supplement). This
indicates that altered network metrics in MDD patients are confined to
networks associated with rumination.

4. Discussion

The results of this study demonstrate alterations in the functional
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Table 2
Regions showing significant group differences in the area of cure (AUC) of
nodal strength, efficiency and clustering coefficient.

Region Nodal strength  p (Cohen d) Nodal Cluster coefficient
(S efficiency
Nodal strength ~ Nodal efficiency Clustering coefficient
(S (Enod) (&)
HC > MDD
#02-MOG.R 0.065 (0.25) 0.012 (0.39) 0.002 (0.50)
#05-1PL.L 0.034 (0.37) 0.013 (0.43) 0.452 (0.06)
#06-10G.L 0.054 (0.28) 0.017 (0.37) 0.421 (0.04)
#07- ITG.L 0.205 (0.15) 0.017 (0.40) 0.075 (0.32)
#08-1TG.L# 0.009 (0.54) 0.002 (0.61) 0.490 (0.05)
#17-1PL.L 0.024 (0.41) 0.003 (0.54) 0.063 (0.26)
#22-SPL.R 0.063 (0.33) 0.016 (0.42) 0.135 (0.25)
#31-PCUN.R  0.022 (0.31) 0.008 (0.39) 0.371 (0.10)
#33-ITG.R 0.038 (0.41) 0.008 (0.50) 0.358 (0.02)
#52-Amy.L 0.266 (0.09) 0.198 (0.19) 0.006 (0.52)
#53-Amy.R 0.005 (0.61) 0.001 (0.72) 0.123 (0.42)
HC < MDD
#48-MFG.R 0.262 (0.06) 0.101 (0.19) 0.003 (0.62)

Notes: Bold and italic font indicates the areas showing group differences be-
tween MDD and HC. MOG. R, right middle occipital gyrus; IPL.L, left inferior
parietal lobule; IOG.L, left inferior occipital gyrus; ITG.L, left inferior temporal
gyrus; ITG.L/R, left/right inferior temporal gyrus; SPL.R, superior parietal lo-
bule; PCUN.R, right precuneus; Amy.L/R, left/right amygdala; MFG.R, right
middle frontal gyrus.

organization of the neural network associated with depressive rumi-

nation. Compared to HCs, MDD patients exhibited network alterations
on a global and local level that were characterized by a deficiency of

(a) Nodal efficiency (E,0q)
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local information transfer (reduced clustering coefficient) and by
weakened functional connections in terms of a reduced segregation and
integration (decreased local and global efficiency). Alterations of in-
dividual nodes were predominantly found in systems involved in
emotional processing, visual mental imagery, and attentional control.
However, network metrics in MDD patients positively correlated with
the severity of depression as measured with the HAMD. The latter
finding apparently contradicts reductions in network metrics and might
indicate two separate features of functional network organization that
seem to counteract each other: one separates MDD patients from HCs,
whereas the other reflects the current depressive state of patients. In the
following discussion, we will try to reconcile these conflicting findings.

The rumination-induction task used in our study revealed robust
activations in cortical and subcortical regions commonly observed
during rumination, including the inferior parietal and inferior frontal
regions, the parahippocampus, the thalamus, and the amygdala
(Burkhouse et al., 2017; Cooney et al., 2010). Previous studies sug-
gested that rumination assessed by questionnaire (e.g., RRS) showed
close association with gray matter density of the parahippocampus and
frontal cortex (Wang et al., 2015a, 2015b). Moreover, Peters et al.
(2016) found that amygdala-related functional connectivity positively
correlated with RRS scores. Our present study revealed that network
metrics derived from the ruminative neural network, as well as scores of
self-focus during the rumination condition, positively correlated with
RRS scores. Taken together, these results indicate that the organization
profile of the ruminative neural network consisting of brain areas
tapped by rumination state may also reflect unscripted, or trait rumi-
nation.

Graph theoretical analysis of the rumination network revealed
small-world properties in both groups, which suggests that rumination

(d) Nodal strength of MDD (e) Nodal strength of HC
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Fig. 2. Group differences in nodal metrics and hubs in each group. (a, b, and c¢) Nodal metrics nodal efficiency (E,oq), nodal clustering coefficient (C;), and nodal
strength (S;) showing group differences, respectively (p < .018, corrected). Note that the node showing an increase in MDD is indicated by blue dots, while colored
dots show a decrease in MDD patients compared with HCs; (e, f) Nodal strength of each group. Hubs are coded with dark yellow. The brain display used software
developed by Xia et al. (2013). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Model of global metrics as a predictor of depressive severity mediated by reflective pondering. There are significant indirect effects of global metrics on
depressive severity measured by the Hamilton depressive rating scale (HAMD) via reflective pondering (a, b, ¢, and d). Path coefficients and corresponding p values
are shown next to arrows; path a indicates the relationship between global metrics and pondering; path b indicates the relationship between pondering and HAMD;

path c indicates the direct effect of global metrics on the HAMD.

is an independent mental regime with a unique organizational profile
(Kennair et al., 2017; Nolen-Hoeksema et al., 2008). However, group
comparisons demonstrated alterations in the integrity of the rumination
network in MDD patients compared to HCs as indicated by abnormal
functional integration and segregation. Compared to HCs, patients with
MDD exhibited decreases in local and global efficiency and in the
clustering coefficient and increases in characteristic path length. This is
in line with a recent study by Wang et al. (2017) who detected de-
creased global efficiency and increased characteristic path length in
MDD as well as bipolar II disorder (Wang et al., 2017). However, other
studies revealed opposing results. For instance, Zhang et al. (2011)
observed a lower path length and higher global efficiency in first epi-
sode drug-naive MDD patients. Moreover, several studies also found no
differences in global topological properties between patients with MDD
and HCs (Bohr et al., 2013; Lord et al., 2012; Peng et al., 2014). All of
our patients were medicated, but it is unlikely that medication explains
this inconsistency given that the results of Wang et al. are in line with
ours even though their patients were drug-naive or unmedicated for at
least 5 months prior to measurement (Wang et al., 2017). In order to
reconcile these contradictions, it is important to note that Zhang et al.
(2011) investigated first-episode major depression whereas our patients
as well as the patients in Wang et al. (2017) were ill for an average of 34
and 41 months, respectively. Indeed, most of our patients (36/53) ex-
perienced chronic illness duration (> 12 months) and all patients re-
ceived antidepressant pharmacological treatment (see Table 1) for at
least 7 days prior to study inclusion. Moreover, 15 of our patients were
classified as treatment refractory. Hence, HAMD scores in our study
may well reflect a degree of treatment resistance and treatment dura-
tion. Furthermore, our current study focused on a functional con-
nectome defined by nodes based on a rumination induction task, which
is a quite different approach compared to previous studies that covered
the whole brain (Bohr et al., 2013; Lord et al., 2012; Peng et al., 2014;
Wang et al., 2017; Zhang et al., 2011). Hence, factors pertaining to
illness duration, including adaptations on a behavioral and neural level,
sample difference, and methodological differences in constructing net-
works may be considered in explaining these discrepancies.

Neural adaptation may also explain the positive correlation between
global network metrics and depression severity. If observed reductions
in network metrics in MDD patients are not the cause of the disorder but

rather an adaptive process in response to the disorder, then it is con-
ceivable that the adaptation process is signaled by depression severity.
In other words, depression severity may decline the more adapted a
neural network is. Moreover, mediation analysis indicated that rumi-
nation, especially reflective pondering, mediated the relationship be-
tween network features and depression severity. Indeed, such media-
tion by rumination may be expected, since network nodes were based
on rumination-induced neural activations. However, our mediation
analysis also points to a functionality and usefulness of rumination with
evolutionary meaning. Such an adaptation might have evolved in order
to sustain analysis of complex problems and eventually overcome the
depressive mode in patients (Andrews and Thomson Jr, 2009).
Focusing on the regional metrics, nodal centralities in the bilateral
amygdala exhibited a significant decrease in MDD patients compared
with HCs. The amygdala is a pivotal area responsible for regulating
internal emotional states leading to appropriate behavior (Fadok et al.,
2018). Furthermore, rumination is generally triggered by internal (e.g.,
negative affect) or external events that conflict with an individual's
goals (Koster et al., 2011) and that are further processed by a visual
imagery system (Renner et al., 2017). Indeed, visual mental imagery is
more vivid in patients with MDD, which is also reflected by a stronger
recruitment of visual and somatic brain regions compared to HCs
(Burkhouse et al., 2017). This is in line with the current results,
showing altered nodal centralities in regions within the occipital lobe,
such as the left inferior occipital gyrus and the right middle inferior
occipital gyrus. Altered nodal centralities were also found in the par-
ietal lobe, including the left inferior parietal lobule, the right superior
parietal gyrus, and the right precuneus. These regions govern processes
related to attentional control (Dosenbach et al., 2007; Zhang et al.,
2017). A core hypothesis of rumination is “impaired attention disen-
gagement” (Koster et al., 2011), which places an individual at risk for
ruminative tendency. Moreover, the only region exhibiting increased
nodal centrality in the current study is the right middle frontal gyrus,
which is a core area of the DMN (Raichle, 2015; Whitfield-Gabrieli and
Ford, 2012). Dominance of the DMN that reflects passive self-relational
processes, such as autobiographical memory recall and a wandering
mind, is a key characteristic of maladaptive and depressive rumination
(Hamilton et al., 2015). Thus, current findings may yield important
insights into new psychotherapeutic interventions for MDD including
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selective attention training and visual mental-imagery training.

Several limitations of our study deserve mention. First, due to time
constraints on fMRI studies, our experimental rumination task was not
designed to distinguish the fine differentiation of subdomains of ru-
mination (e.g., reflective pondering vs. brooding). Second, the current
patient sample was not medication naive. Hence, we cannot exclude the
possibility that treatment partly affected our results. Third, a recent
study found that decreased functional connectivity within the DMN is
partly associated with the process of mind-wandering and depressive
rumination (Rosenbaum et al.,, 2017). Thus, future studies on the
neurophysiological correlates of depressive rumination should assess
spontaneous and induced rumination during the rsfMRI scanning.
Fourth, our study was cross-sectional in nature, precluding us from
testing the hypothesis that network metrics reflect an adaptive process
of disease progression. Future studies should compare drug-naive first-
episode and unmedicated recurrent MDD patients in order to find more
definite answers. Last but hardly the least, we were unable to imple-
ment structured interviews to establish clinical diagnoses for our clin-
ical participants due to resource constraints. We acknowledge that
there could be potential confounding variance introduced by classifying
our clinical participants based on semi-structured interviews. Future
studies should consider employing structured interviews that will pro-
vide valid and reliable clinical information.

5. Conclusions

In conclusion, our study demonstrates alterations in the functional
organization of the neural network associated with depressive rumi-
nation. These alterations may indicate a neural adaptation to the dis-
order, an adaptation that is inversely related to the severity of de-
pressive symptoms. This severity is mediated by rumination. Our data
therefore encourage viewing the role of rumination in depression as a
two-edged sword that reflects a disease-specific neuropathology but
also points to a functionality of depressive symptoms with evolutionary
meaning.
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