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ABSTRACT 
This study introduces the dynamic congestion pricing (DCP) problem with the consideration 

of the actual travel distance and time delay (i.e., a joint distance and time-delay toll, JDTDT) 

in a dynamic network, which is more equitable and effective compared with existing tolling 

scheme such as flat tolling. The nonlinear distance-based toll is approximated by a stepwise 

linear toll function and the congestion-based toll is measured by the delay inside the cordon 

charging area. The system dynamics can be reflected in two aspects: (a) travelers’ path choice 

decisions follow the dynamic user equilibrium (DUE) principle and (b) the joint distance and 

time-delay toll takes a time-varying pattern. The dynamic traffic flow component is 

represented by the path-based cell transmission model (CTM). A new averaging scheme is 

proposed to estimate the en-route travel time for the travelers departing at the same time of 

each path with the output of path-based CTM. In our proposed averaging approach, two new 

arriving time indexes are introduced, to calculate the en-route travel time. To better depict the 

dynamic congestion pricing problem, a multi-period demand scheme is adopted during the 

entire modeling horizon. Then, a bi-level programming model for the DCP is formulated to 

obtain the optimal toll value. The aim of the upper level is to optimize the total system travel 

time, and the lower level depicts travel behaviors based on the DUE theory, which is modeled 

as a variational inequality problem and solved with a self-adaptive gradient projection (SAGP) 

algorithm. A hybrid SAGP and artificial bee colony algorithm is developed to solve the 

proposed bi-level model. Finally, four numerical tests are conducted to verify the proposed 

methodology. Results indicate that the percentage reductions of the minimum total system 

travel time in the dynamic JDTDT scheme are 6.28%, 4.30% and 7.45% compared to that 

obtained by the static joint JDTDT, the dynamic joint distance and time toll, and the dynamic 

pure distance toll, respectively.  
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1 Introduction 

As one of the demand side strategies for transportation management, congestion pricing is 

widely recognized among economists as an effective economic measurement to ease the traffic 

congestion problem and improve the system performance in urban areas, and also has received 

more and more attention both academically and practically. Studies of congestion pricing focus 

on the first-best pricing as well as the second-best pricing. In the transportation network 

modeling and analysis, most studies consider that every link in the network is tolled as the 

first-best pricing scheme (e.g., Yang and Huang 1998; Sumalee and Xu 2011), while only a 

subset of the links in the network is tolled as the second-best pricing scheme (e.g., Liu and 

McDonald 1999; Verhoef 2000, 2002; Zhang et al. 2011; Liu, Meng, and Wang 2014; Di, Liu, 

and Ban 2016; Han, Wang, and Zhu 2017); interested readers can get a comprehensive review 

from Yang and Huang (2005). 

 

One of the critical issues in congestion pricing is to determine the charging rates. Most of the 

actualized congestion pricing policies adopt the flat-toll method in a cordon-based toll scheme, 

including the pay-per-entry charge as well as the daily licensing charge, in disregard of the 

actual travel distance inside the cordon charging area. Consequently, this toll method may 

cause unfair charging problems due to undercharging for long journeys and overcharging for 

short ones, and the disruptive problems because it may increase the congestion level on the 

boundary routes immediately outside the cordon (May et al. 2008). Moreover, it is not 

thoroughly compelling for easing traffic congestion with the flat-toll method, because a portion 

of drivers may designedly utilize more road segments inside the cordon charging area to 

maximize the utility of their defrayed toll (Meng, Liu, and Wang 2012). This may actually 

increase the congestion phenomena inside the cordon area. Therefore, in order to give full play 

to congestion pricing in alleviating urban traffic congestion, and improve the fairness and 

effectiveness of congestion pricing, it is necessary to consider the travel distance (or usage) 

inside the cordon charging area and establish the distance-based congestion toll scheme. Meng, 

Liu, and Wang (2012) and Liu et al. (2017) addressed the optimal distance-based congestion 

pricing problem and adopted a piecewise linear function to formulate the nonlinear distance-

based toll. It is worth noting that the distance-based pricing scheme will be the next generation 

of Electronic Road Pricing (ERP) system in Singapore (Land Transport Authority of Singapore 

2013).  

 

However, as claimed in Liu, Wang, and Meng (2014), the distance-based pricing model still 

has its limitation: travelers would wittingly select the shorter routes to reduce their toll in the 

pricing cordon, regardless this route is highly congested. In order to cope with this problem, 

they proposed a joint distance and time toll (JDTT) scheme. Nevertheless, there is an overlap 

between the distance toll and time toll in terms of the free flow travel time. For example, a 

traveler went through a charging cordon along with a particular route, spending 15mins and 

traveling for 6km inside the cordon. However, it only takes him 12mins with the same route 

when the network is in a free-flow state. In the part of distance-based toll, it has already 

contained the toll in the free-flow traffic state because the total length of the experienced route 

is fixed and related to the constant free-flow travel time. This overlap implies that there is an 

overcharge in JDTT and leads to sub-optimality. Thus, this part should be cut out. To this end, 

the time-based toll should be replaced by a time-delay-based toll scheme. In this paper, we 
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extend the JDTT to the joint distance and time-delay toll (JDTDT), which is more efficient 

than the JDTT. 

 

As for the congestion toll problem, most studies focus on deterministic processes in static 

transport networks. Nevertheless, there are significant limitations of congestion pricing based 

on static traffic assignment (Chiu et al. 2011; Chung et al. 2012; Dong and Mahmassani 2013). 

Static models only focus on travelers’ static path choice decisions, and the static user 

equilibrium ignores the time-dependent nature of traffic flows. Moreover, the influence of the 

current toll on the congestion level in future is not taken into consideration in static pricing 

models (Wie and Tobin 1998). Furthermore, due to the inherent dynamics of a transportation 

system, the travel behavior of people will change as the external circumstances change. 

Therefore, it is important to introduce the dynamic traffic assignment (DTA) theory for the 

application of the JDTDT scheme. This study formulates the JDTDT problem using DTA 

theory.  

 

The dynamic congestion pricing problem is usually formulated as a bi-level programming 

model, with the upper level of optimizing the total system performance and the lower level for 

modeling the dynamic path choice of each individual. The lower level problem can be 

formulated as a dynamic user equilibrium (DUE) problem, which is to determine the route 

flow pattern such that the total generalized costs incurred by travelers for each OD pair 

departing at any time are equal and minimal (Ran and Boyce 1996; Szeto and Lo 2004). In the 

DUE problem, two issues of crucial importance are flow dynamics and flow propagation 

constraints. In other words, how to obtain the actual path travel times from path flows is a 

crucial problem. Numerous studies are conducted in this field (e.g., Ban et al. 2008; Han, 

Piccoli, and Friesz 2015; Han, Piccoli, and Szeto 2016; Huang and Lam 2002; Long et al. 2013; 

Long et al. 2016; Zhan and Ukkusuri 2017). In this paper, the dynamic traffic flow component 

is represented by a path-based CTM (Doan and Ukkusuri 2012; Ukkusuri, Han, and Doan 2012; 

Doan and Ukkusuri 2015). Compared to the original CTM (Daganzo 1994, 1995), the main 

advantages of the path-based CTM are as follows: (a) cells and cell connectors can be traced 

in different paths, (b) the flows at merging and diverging links can be uniquely determined 

without exogenous turning ratios, and (c) the waiting time of each cell occupancy is no longer 

needed. For the sake of avoiding calculating the inverse function (Lo and Szeto 2002), a new 

averaging scheme is proposed to estimate the en-route travel time for the traffic departing 

simultaneously of each path with the output of path-based CTM. In our proposed averaging 

approach, two new arriving time indexes are introduced, making it more concise to calculate 

the en-route travel time. Besides, compared with other cell-based dynamic traffic assignment 

models adopting a uniform demand as an input during the entire modeling horizon (e.g., Lo 

and Szeto 2002; Doan and Ukkusuri 2015), a multi-period demand scheme is adopted as input 

to better depict the dynamic congestion pricing problem. 

 

The DUE problem is modeled as a variational inequality (VI) problem, which is the lower level 

for the dynamic congestion pricing problem, while the upper level is to minimize the total 

system time. It is well known that the bi-level programming problem is NP-hard and 

cumbersome to solve (Jeroslow 1985; Gao, Wu, and Sun 2005; Rahmani, Jenelius, and 

Koutsopoulos 2015; Rahmani and MirHassani 2015; Kheirkhah, Navidi, and Bidgoli 2016). 

Therefore, a hybrid self-adaptive gradient projection (SAGP) and artificial bee colony (ABC) 
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algorithm is proposed to solve the proposed bi-level model, with the SAGP to solve the VI 

problem for the lower level and ABC for solving the dynamic JDTDT problem for the upper 

level. Noting that the system dynamics can be reflected in two aspects: (a) travelers’ path 

choice decisions follow the DUE principle and (b) the JDTDT is extended from the static 

pattern to the time-varying pattern, which can be handled by changing the toll value every 

discrete time interval (e.g., 30 min in the ERP system at Singapore). At the end of each time 

interval, the travel demand changes, and thus a new JDTDT is levied.  

 

This paper aims to solve the dynamic congestion pricing problem taking into consideration the 

actual travel distance and congestion level inside the cordon charging area. The contributions 

of this paper are threefold. The first one is that we originally propose an integrated modeling 

methodology for the novel optimal joint distance and time-delay toll design problem, and 

extend it from static to dynamic transportation networks. The second one is that we propose a 

new averaging scheme to estimate the en-route travel time in the dynamic network loading 

process for the traffic departing simultaneously of each path with the output of path-based 

CTM for a general transportation network. The last one is that a hybrid self-adaptive gradient 

projection and artificial bee colony algorithm is developed to solve the proposed bi-level 

programming model. 

 

The following sections are structured as follows: the next section introduces the distance-based 

toll, the congestion-based toll, the JDTDT and the path-based CTM. Section 3 presents the 

time-varying JDTDT and the DUE conditions; then a bi-level programming model is built for 

the dynamic JDTDT problem. Section 4 develops a hybrid SAGP and ABC algorithm to solve 

the proposed model. Section 5 presents the numerical results, and finally, Section 6 concludes 

this paper. 

 

2 Problem Description 

As for a strongly connected transportation network ( , )G N A= , we use N  and A  denote the 

sets of nodes and directed links, respectively. W  represents the set of all origin-destination 

(OD) pairs. 
wP  denotes the set of paths connecting an OD pair w W  and wq  denotes the 

travel demand between OD pair w W . The modeling period is subdivided into time intervals 

for departure and also charging interval for charging tolls. Other notations are summarized in 

alphabetical order in Table 1. 

 

Table 1: Notations (in alphabetical order)  

Notation Definition 

d  index of charging intervals for charging a time-varying toll 

,

w

p tf  flow during time interval t  on path p  of OD pair w  

,p th  departure rate during time interval t  on path p   

i  cell index  
( , )i j  indices for links 

l  travel distance inside the cordon charging area 

p  wp P   
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Notation Definition 
wq  total demand between OD pair w  

 origin cell 
s  sink cell  
t  index for time intervals 

 w W  

,

i

p tx  occupancy of cell i  at the beginning of time interval t  of path p   

i

tx  ,

i i

t p t

p

x x=  

,i j

tx  
aggregated occupancy of diverging cell i   at the beginning of time 

interval t  which will go to cell j   
i

tx  occupancy of cell i  at the beginning of time interval t  
,

,

i j

p ty  flow on path p  from cell i  to cell j  at the beginning of time interval t   

,i j

ty  flow from cell i  to cell j  at the beginning of time interval t   

DC  set of diverging cells 

MC  set of merging cells 

RC  set of source cells 

SC  set of sink cells 

OC  set of ordinary cells 

DE  set of diverging links 

ME  set of merging links 

OE  set of ordinary links 
iN  jam density of cell i   

 set of paths between OD pair  
iQ  maximum flow out of cell i   

T  maximum time horizon 

dT  d th charging interval of time-varying tolls, 
dT T  

 set of all OD pairs 

  value-of-time 
  positive pricing rate with the time spent in the congestion 

(or , )i j k

p p p    
if cell (or , )i j k   is on path p  , then (or , ) 1i j k

p p p =    ; otherwise 

(or , ) 0i j k

p p p =    

,

w

p t  
travel time of path p  connecting OD pair w  for flow departing during 

time interval t   

1  predetermined weight for distance-based toll 

2  predetermined weight for congestion-based toll 

,

r

p t  
cumulative traffic on path p  departing from cell r  at the beginning of 

time interval t  

r

w

wP w W

W
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Notation Definition 

,

s

p   
cumulative traffic on path p  arriving at cell s  at the beginning of time 

interval t  

  an infinitesimal number ( 0 ) 

  ratio of the backward speed to the free-flow speed 
w

t  minimum cost during time interval t  of OD pair w   

( , )l   joint distance and time-delay toll function 

( , )d l   
time-varying joint distance and time-delay toll function for the charging 

interval d   

( )t  congestion-based toll function 

( )l  distance-based toll function 

1  minimum time index value which fulfills 
1, , 1

s r

p p t−   

2  minimum time index value which fulfills 
2, ,

s r

p p t   

1

i

−  set of predecessors of cell i   

i  set of successors of cell i   

t  delay  

,

w

p t  
generalized travel cost of the flow on path p   between OD pair w  

departing during time interval t   

  set of feasible vectors of path flows 

 

2.1 Distance-based toll  

As shown in the left of Figure 1, the distance-based toll function can be described as a 

continuous nonlinear function. However, it is difficult to analytically deduce and solve this 

type of function. A general solution method is to approximate the nonlinear function with a 

stepwise linear function according to the travel distance l  in the cordon. Assuming that the 

minimal and maximal length inside the cordon charging area are 0l  and Kl , we can divide the 

travel distance into K equal intervals and the distance-toll function of each interval can be 

expressed by the two endpoints as shown in Figure 1. This piecewise linear approximation 

method follows that in Meng, Liu, and Wang (2012).  

 

Suppose that the vertexes of travel distances are 0 1( , , , , , )T

k Kl l l l l= , and the corresponding 

toll values are ( )0 1, , , , ,
T

k K    = . Let 
w

pl  be the distance length of path wp P  inside 

the cordon pricing area. Suppose  
w

pl  lies in the k th interval of the distance toll function. Then 

we can approximate the distance-toll of path wp P  inside the cordon pricing area by the 

following function: 

 ( )1

1 1

1

( )

w

p kw w

p p k k k

k k

l l
l

l l

−

− −

−

−
= = + −

−
       (1) 
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Figure 1: Stepwise linear toll function. 

 

2.2 Time-delay-based toll 

As mentioned before, the distance-based pricing model still has its limitation because travelers 

would wittingly select their shortest routes to reduce their toll, regardless of the congestion 

level of their routes. This may violate the intention of encouraging detour under congestion 

pricing. Liu, Wang, and Meng (2014) adopted a JDTT scheme to deal with this problem. 

However, there is an overlap between the distance-based toll and time-based toll in terms of 

the free flow travel time, which implies an overcharge. Here, we propose a JDTDT scheme to 

handle the overcharge problem. Note that the difference between the actual travel time and the 

free flow travel time is the delay, which indicates the congestion level in the network. The 

congestion-toll 
w

p  of path wp P  between OD pair w  is 

 ( )w w w

p p pt t=  =      (2) 

where 
w

p  is assumed to be proportional to the delay 
w

pt  of path wp P  inside the cordon 

charging area and   is the charging rate with the time spent in the congestion. Hence, the 

congestion-based toll problem becomes to determine the optimal   inside the cordon pricing 

area. It is worth noting that the calculated delay in this manuscript is actually a ‘future’ delay, 

rather than a ‘current’ delay. The delay is calculated by the difference between the en-route 

travel time inside the charging cordon and the free flow travel time, and the en-route travel 

time is calculated by the difference between the time leaving outside the charging cordon and 

the time entering the charging cordon. Thus, the delay is a real one, not a predicted one, and 

the time-delay-based toll will be charged based on the real delay experienced by the travelers. 

 

2.3 Joint distance and time-delay toll (JDTDT) 

Based on the distance-toll and congestion-toll proposed above, we can formulate the JDTDT 

function τ , which is expressed as a weighted sum of the distance-toll   and the time-delay-

toll  , namely 

 1 2( , ) ( ) ( )w w w w

p p p pl l t= = +          (3) 
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where 1θ   and 2θ   are the predetermined weights of distance-toll and congestion-toll. It is 

evident that the JDTDT problem is uniquely determined by the nonlinear distance-toll function 

and the congestion-toll charging rate  . When the weight of distance-toll 1  equals zero, then 

the JDTDT reduces to a pure congestion-toll scheme; similarly, when the weight of congestion-

toll 2   or the congestion-toll charging rate    equals zero, the JDTDT reduces to a pure 

distance-toll scheme. Consequently, the proposed JDTDT in this paper is a generalized version 

of the congestion pricing scheme, which includes the pure distance-toll scheme as well as the 

congestion-toll scheme. In Section 5, we will compare different kinds of toll schemes and 

evaluate the performance of each toll scheme. 

 

2.4 Path-based cell transmission model 

Cell transmission model (CTM) is initially proposed by Daganzo (1994, 1995) to investigate 

the dynamic traffic assignment problem. It has been verified that CTM is capable of capturing 

the traffic dynamics (e.g., the queue spillback, queue formulation, and queue dissipation) (Lo 

and Szeto 2002). After discretizing the road segments into cells and time into intervals, then 

the CTM can be formulated as follows: 

 1, , 1

1

i i i i i i

t t t tx x y y− +

+ = + −   (4) 

  , 1 1 1 1min , , ,i i i i i i i

t t ty = x Q Q N x+ + + +  −    (5) 

where i

tx  is the occupancy of cell i  at the beginning of t , , 1i i

ty +  is the flow from the upstream 

cell i  to the downstream cell 1i +  at the beginning of t , 
iQ  is the maximum flow out of cell 

i , 1iN +  is the jam density of downstream cell 1i + , and   is the ratio of the backward 

shockwave speed to the forward speed (i.e., free-flow speed). Note that the cell length usually 

adopts the free flow travel distance in one time interval.  

 

Eqs. (4)-(5) provide a fundamental principle of CTM for a series of cells connected together. 

To make this model appropriate for general transportation networks with multiple OD pairs, 

the following features are necessary: (a) generalization for merge and diverge junctions, (b) 

modeling the traffic for each OD pair and (c) keeping the first-in-first-out (FIFO) characteristic. 

In order to avoid the exogenous turning ratios in the original CTM (Daganzo, 1994, 1995), 

Ukkusuri, Han, and Doan (2012) and Doan and Ukkusuri (2015) proposed a path-based CTM 

to determine the traffic flows at the merging and diverging cells. Besides, it is also complicated 

to keep track of the waiting time of each cell occupancy in the original CTM. In this paper, we 

use the path-based CTM to model the cell update as well as flow propagation process. In the 

path-based CTM, the cell occupancies and flows in cells and links are modeled in terms of 

path. Compared to the original CTM, the main advantages of the path-based CTM are (a) cells 

as well as cell connectors are modeled in terms of path, (b) the flows at merging and diverging 

links are modeled without exogenous turning ratios, and (c) the waiting time of each cell 

occupancy is no longer needed explicitly. Figure 2 depicts different types of cells and links in 

the cell representation networks. For each type of cell and link, path-based CTM can be 

expressed as follows: 
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Initialization 

 
,0 0 , ,i w w

px i C p P P P=       (6) 

 ,

,0 0 ( , ) , ,i j w w

py i j E p P P P=       (7) 

Source cells 

 
,

, , 1 , 1 , 1( ) , , 1, ,i i i i j

p t p p t p t p t R ix h x y i C j t T− − −=   + −    =   (8) 

Ordinal cells 

 
, , 1

, , 1 , 1 , 1( ) , , , 1, ,i i i k i i j

p t p p t p t p t O i ix x y y i C k j t T−

− − −=   + −    =  =   (9) 

Merging and diverging cells 

 
, , 1

, , 1 , 1 , 1( ) , , , 1, ,i k i j i k i i j

p t p p p p t p t p t M D i ix x y y i C C k j t T−

− − −=     + −    =  =   

 (10) 

Sink cells 

 
, 1

, , 1 , 1( ) , , 1, ,i i i k i

p t p p t p t S ix x y i C k t T−

− −=   +    =   (11) 

Ordinary links 

( )( ) ,,

, min , , , ( , ) , , 1, ,

i

p ti j i i i j j j

p t p t t O ii

t

x
y x Q Q N x i j E j t T

x

 
=    −     = 

+  
  (12) 

Diverging links 

 

( )( )
( )( )( )

,, ,

, ,,
min , , min 1,

min , ,

, , 1, ,

i

ii
p ti j i j i j j j j

p t p p t t i ji j j j j
tt t

j

D i

xQ
y x Q N x

xx Q N x

i C j t T

   



  
  

=     −    
+ − +   

   

   =

      

                                                                                                                         (13) 

Merging links 

 
( )

( )( )
( )( )

1

,,

,

1

min ,
min , min 1,

min ,

, , 1, ,

i

i i i k
t p tk i k i k k

p t p p t kk k
tt

k

M i

Q N x x
y Q x

xQ x

i C k t T

−

 



−

  
 −  

=       
++   

   

   =

   (14) 

 

 
Figure 2: Different types of cells and links in cell representation networks. 
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Eqs. (6) and (7) assume that the initial cell occupancies and outflows equal to zero. Actually, 

it is also possible to start the CTM loading by other nonzero values in terms of the actual traffic 

conditions. Eqs. (8)-(11) depict the path-based (disaggregate) cell updating procedure, and Eqs. 

(12)-(14) are the path-based (disaggregate) flow propagation constraints. Noting that the 

turning ratio in the path-based CTM is not exogenous, but uniquely determined by the supply 

and demand of upstream and downstream cells. The details can be found in Ukkusuri, Han, 

and Doan (2012) and are not repeated here. 

 

To avoid the discontinuity in the flow propagation process, Lebacque and Khoshyaran (2005) 

claimed that the node flow solutions should respect the invariance principle. This principle 

states that when the flows are under supply/demand constraints, the node flow solutions should 

be invariant to the increases in the demand/supply. Those solutions violating the invariance 

principle may result in unrealistic dynamics on the links, i.e., the likelihood of waves 

propagating in the wrong directions. Most of the traffic flow models for merging and diverging 

junctions in the literature (e.g., the exogenous ratio distribution in Daganzo 1995, the demand 

proportional distribution in Jin and Zhang 2003, the capacity proportional distribution in Ni 

and Leonard 2005, just to name a few) do not satisfy the invariance principle, while only a few 

studies in recent tend to respect the invariance principle (Lebacque and Khoshyaran 2005; 

Corthout et al. 2012; Flötteröd and Rohde 2011; Jin 2010; Tampère et al. 2011; Jabari 2016). 

 

To ensure the invariance principle, the distribution of supply must be independent of the ratio 

of the demands (Tampère et al. 2011). As for the merging and diverging cells in the path-based 

CTM, it does not exist the distribution problem because it is impossible for different incoming 

(or outgoing) cells of one particular receiving (or sending) cell that are in the same path. 

Besides, as claimed in Tampère et al. (2011), the invariance principle for supply in the 

diverging links is automatically satisfied because the solution is derived by distributing the 

supply rather than the demand. Thus, only the merging links need to be considered for the 

invariance principle in the path-based CTM. It is obvious that when we calculate 
,

,

k i

p ty  of the 

merging links, the endogenous ratio of 
( )
( )( )

1

min ,

min ,

i

k k

t

k k

t

k

Q x

Q x
−

 



+
 is demand-dependent, thus 

may violate the invariance principle. However, the main focus of this paper is on the joint 

distance and time-delay based dynamic congestion pricing, rather than the first-order node 

model of the dynamic network loading problem. In the future research, it is necessary to 

investigate the node models of the dynamic network loading process taking into considerations 

of the invariance principle and then study the dynamic congestion pricing problem with this 

more realistic dynamic network loading process. 

 

3 Mathematical Model 

In order to formulate the cell-based dynamic JDTDT problem, we first introduce the time-

varying JDTDT problem, and then the DUE conditions and the VI formulation for the lower 

level problem is introduced. Finally, a bi-level programming model of this problem is proposed 

in this section. 
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3.1 Time-varying JDTDT 

In Section 2, we have described the JDTDT scheme for static networks; here we will extend it 

to a time-varying scheme. It is impractical to change the toll value at every moment because 

travelers cannot respond to such frequent change of the toll value. An alternative is to change 

the toll value every half hour, which is a comparatively reasonable time interval for travelers 

to make responses to the change and currently adopted in the ERP system of Singapore. At the 

end of each time interval, the travel demand changes, and a new toll value is levied. Note that 

we adopt a multi-period demand scheme as an input to better depict the dynamic congestion 

pricing problem in this paper. 

 

For simplicity, we only consider the morning commute traffic in this study. Hence, the whole 

modeling period can be set from 7:30 am to 9:30 am, which means a total of 120 minutes for 

the charging time length. As claimed before, the toll value changes every half hour, so there 

will be four charging intervals and thus four different toll patterns during the entire charging 

duration. For the thd  subinterval, the JDTDT can be expressed as: 

 , 1 2( , ) ( ) ( )w w w w

p d d p d p d pl l t      = =  +     (15) 

 

Note that the specific time when vehicles arriving at the charging cordon can be determined 

according to the travel time from the origin to the charging cordon, thus we can calculate the 

correct charging interval d  as follows: 

 
( )

30

t t
d

+  
=  
 

  (16) 

where ·    is the smallest integer greater than or equal to the number in the brackets, t  and  

are the travel time from the origin to the charging cordon and the time interval length (unit of 

minute) in the CTM, respectively. 

 

3.2 Dynamic user equilibrium problem 

The equilibrium conditions of an ideal DUE state can be stated as follows: the total generalized 

costs incurred by travelers for each OD pair departing simultaneously are equal and minimal. 

Mathematically, it can be formulated as 

 ( ), , ,( ) 0, , ,w w w w w

p t p d p t tf w W p P t T − =        (17) 

 , 0, , ,w w w

p t t w W p P t T−        (18) 

where  

 , , , , , ,w w w w

p t p t p d w W p P t T=  +         (19) 

 

Note that the path flow ,

w

p tf  is a function of the toll value ,

w

p d . Thus, the DUE problem is to 

find a feasible  , , , ,w w

p tf w W p P t T=      f f  which satisfies Eqs. (17)-(18) and the 

demand-flow incidence relationship as well as non-negativity constraints: 
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, ,( ) ,

w

w w w

p t p d t

p P

f q w W t T


=       (20) 

 ( ) , f τ 0 u 0   (21) 

where u  is a column vector of w

t , i.e.,  , ,w

t w W t T=    u u  . 

 

The DUE problem introduced in Eqs. (17)-(21) is equivalent to a finite dimensional VI 

problem: 

 ( )* *( ) ( ) 0 ( )
T

−    f τ f τ Ψ f τ   (22) 

where the superscript *  represents the optimal solution, Ψ  is the column vector of ,

w

p t , i.e., 

 , , , ,w w

p tψ w W p P t T=      Ψ Ψ , and   is the set of feasible vectors of path flows, 

which fulfills the demand-flow incidence relationship in Eq. (20) and non-negativity condition 

in Eq. (21).  

 

Ran and Boyce (1996) demonstrated the equivalence between the DUE problem (17)-(21) and 

the VI problem (22), and Lo and Szeto (2002) discussed the existence as well as the uniqueness 

of the solution of this proposed VI problem. Those interested in the detailed proofs may refer 

to their studies. 

 

A vital issue of solving the DUE problem in Eq. (22) is to dynamically model the travel times 

as a unique mapping function of path flows. As for traditional static traffic assignment 

problems, the link performance function (e.g., Bureau of Public Roads, known as the BPR 

function) is widely adopted to describe travel times from traffic volumes. However, the static 

BPR-type function can only express the steady-state link travel time as a mapping function of 

the traffic volume on that link, without consideration of the oversaturation, queue spillback or 

peak spreading. By encapsulating the CTM in DUE, Lo and Szeto (2002) proposed an 

averaging scheme to calculate the actual path travel time from the output of CTM so that the 

whole traffic departing simultaneously has one uniquely determined average en-route travel 

time (AERTT) 
,

w

p t . However, this method needs to calculate an inverse function to obtain the 

AERTT. Based on the path-based CTM, a more concise approach to obtain the AERTT is 

proposed in this paper. 

 

According to the CTM discussed before, we know that the output of CTM is the cell 

occupancies of traffic at each time interval. Then, the cumulative traffic departing from the 

origin cell r on path p at the beginning of time interval t is the sum of the cumulative traffic 

departing from cell r on path p at the beginning of time interval 1t −  and the outflow of cell r 

on path p during time interval t, and the cumulative traffic arriving at the sink cell s on path p 

at the beginning of time interval   is the sum of the cumulative traffic arriving at cell s on 

path p at the beginning time interval 1 −  and the inflow of cell s on path p during time 

interval  , namely, 

 ,

, , 1 , , , , ,r r r j

p t p t p t R iy r C j t 1 T−= +    =    (23) 

 , 1

, , 1 , , , , ,s s k s

p p p S sy s C k 1 T−

−= +    =       (24) 
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Figure 3: The cumulative vehicle counts. 

 

Figure 3 depicts the cumulative vehicle count curves 
,

r

p t  and 
,

s

p   on path p between the 

origin node r  and destination node s  (say OD pair w ). In reality, the entire ,

,

r j

p ty  departing 

from cell r on path p during time interval t may not arrive at the destination s at the same time 

when time is discretized. This is illustrated in Figure 3, with the abuse use of notations that t 

also means the beginning of a time interval (similar for  ). As shown in Figure 3, the fastest 

travelers have an en-route travel time of  , while the slowest travelers have an en-route travel 

time of 2+ . In this paper, we also adopt the AERTT to represent the actual en-route travel 

time of the whole traffic departing simultaneously on this path. Firstly, we introduce two 

arriving time indexes 1  and 
2 , where 1  is the minimum time index value which fulfills 

1, , 1

s r

p p t−  , and 
2  is the minimum time index value which fulfills 

2, ,

s r

p p t  . Then, the 

AERTT can be expressed as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

2 1

1 1 2

1 2 1

1 , , 1 2 , ,

2 1,

,

1
,

,
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1
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,
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0

1

1

s r r s

p p t p t p

r j

p t

w

p t
s r k s r s

p p t p n p t p

n

r j

p t

t if

t t
if

y

t n t y t

y
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−
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− +

=

− − =


−  − + −  −
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

= 
 −  − + + −  + −  −  


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

− 



 

 

  

  

     
 




      



 

 

 (25) 

 

3.3 Bi-level programming model 

The objective of the dynamic congestion pricing problem in this paper is to determine the time-

varying JDTDT which satisfies the DUE principle by optimizing the total system performance. 

This can be mathematically formulated as a bi-level programming model, the upper level of 
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which is to optimize the total system performance and the lower level is to achieve a DUE 

state, which can be expressed as a VI formulation. The details of this bi-level model are given 

as follows: 

 

Upper level 

 , , ,
( , , )

( )
w

w w w

p t p t p d
l

t T w Wp R

Min f
 

 
 

 
τ

 (26) 

where τ  is a nonnegative toll vector for Eq. (15), which is a combination of the distance-

based toll ( 0 d K    ) and the congestion-based toll ( 0d  ). 

 

Lower level 

The DUE problem is formulated by a VI problem (22). 

 

4 Solution Algorithms 

It is well known that the bi-level programming problem is NP-hard and cumbersome to solve, 

see Jeroslow (1985), etc. A hybrid SAGP and ABC algorithm is developed to solve the 

proposed bi-level model, with SAGP to solve the VI problem of the lower level and ABC to 

solve the time-varying JDTDT problem of the upper level. 

 

4.1 Self-adaptive gradient projection algorithm 

There are many solution algorithms for solving VI problems, we choose the SAGP algorithm 

because it can automatically calculate and obtain an appropriate step size based on the results 

of previous iterations, and relieve the computational burden due to the projection process on a 

nonnegative orthant (Chen, Zhou, and Xu 2012). Generally, the SAGP algorithm is used for 

solving static traffic equilibrium problems, and in this paper we will modify and extend this 

algorithm to solve the DUE problem. The procedure of the SAGP algorithm is summarized 

below: 

Step 0: Set (0,1) , [0.5,1]u , 0  , 
max 0  , 

0 0   and 
0 f ; set 

0 0 =   

and 0k = . 

Step 1: Find the smallest nonnegative integer 
kl  such that 1

kl

k k u+ =    and update the 

non-shortest path flows: 

 , , 1 ,max 0, , , ,w w w w w

p k p k k p k kf f F p P p p w W+
 = −         (27) 

which satisfies the following constraint: 
2 2

222 1
1 1 1 1 2

( ) ( )
(2 ) ( ) max ( , ) ,0

( )

T k k
k k k k k k k k

k

e+
+ + + +

  − 
−  − − −   

 
f f F F f   (28) 

where w

kp  is the shortest path between OD pair w  in the thk  iteration; 
, , ,

w w w

p k p k p kF =  − , kF  

is the vector of 
,( , , )w T

p kF ; kf  is the vector of 
,( , , )w T

p kf ; and 

| | | | | |( , ) [ ( )]P R Sk k k k k kR
e P − 

+

 = − −f f f F f . Then, update the shortest path flows: 

 
, 1

,

, 1,w k
w

w k

w w w

p p k

p P
p p

f q f w W
+ +




= −     (29) 
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and set 
, 1 , 1 ,, ,w w w

p k p k w kf f p P p p w W+ +=    ，  

Step 2: If the inequality condition of (30) is fulfilled, then select 

1
1 maxmin ,k

k
u

+
+

 
 =  

 
; otherwise 

1 1k k+ + =  . 

 

2 2

1 1 1 1

2 2
21

2

0.5 ( ) ( ) ( ) || ||

( ) ( )
max || ( , ) || ,0

( )

T

k k k k k k k k

k k
k k

k

e

+ + + +

+

 − − −  −

  − 
  

 

f f F F F F

f
  (30) 

Step 3: If a predetermined convergence criterion is satisfied, then stop with 
1k+f  as the 

final solution; otherwise, set 1k k= +  and go to step 1. 

 

4.2 Artificial bee colony algorithm 

The ABC algorithm was proposed by Karaboga (2005) for solving unimodal and multi-modal 

numerical optimization problems. Recent years, the ABC algorithm has attracted more and 

more attention in transportation studies (e.g., Chen et al. 2015; Huang et al. 2016; Szeto, Wu, 

and Ho 2011). Unlike the existing evolutionary algorithms such as the particle swarm 

optimization algorithm and the genetic algorithm, the local search mechanism in the ABC 

algorithm is much better, and this can enhance the quality of solutions. The procedure of the 

ABC algorithm is shown below: 

 

Step 1: Set the colony size cN , the number of employed bees eN , the number of 

onlookers o c eN N N= = ; set the counter limit; set the iteration counter 1I = , and its maximum 

value  maxI .  

Step 2: Generate randomly the initial solutions (i.e., food sources), and calculate the 

fitness for every employed bee. Initialize limit as zero. 

Step 3: Conduct a neighborhood search according to the current solution, and evaluate 

the fitness of the newly generated neighbor solution. If the neighbor solution is better, then 

substitute the current solution with the newly generated neighbor solution, and reset limit as 

zero; otherwise, do not change the current solution but increase limit by one.  

Step 4: Each onlooker chooses a solution in terms of the roulette wheel selection 

method. More specifically, generate a random number R  which is uniformly distributed 

between [0,1) ; if the chosen probability is larger than R , then the onlooker will conduct a 

neighborhood search to find a neighbor solution and evaluate its fitness. If the neighbor 

solution is better, then substitute the current solution with the neighbor solution and reset limit 

as zero; otherwise, do not change the current solution but increase limit by one. 

Step 5: According to the current solutions, choose the one with the highest fitness. If 

there exists one solution which cannot improve its fitness within limit iterations, and it is not 

the best solution with the highest fitness, then the corresponding employed bee will become a 

scout and conduct a neighborhood search again. Then, generate randomly a new solution and 

reset its limit to zero. 

Step 6: Set 1I I= + . If maxI I , then return to Step 3; otherwise, terminate the 

algorithm and output the best solution. 
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5 Numerical Examples 

We conduct four numerical tests here to assess the proposed methodology. These four tests 

include: a) the dynamic JDTDT; b) the static JDTDT; c) the dynamic JDTT; and d) the 

dynamic pure distance toll. Based on these four tests, we have three comparisons, i.e., 

comparing the dynamic JDTDT with the other three toll schemes, and to verify the 

effectiveness of the proposed dynamic JDTDT scheme in this paper. 

 

5.1 The dynamic JDTDT 

As shown in Figure 4, the test network in this paper is similar to the Nguyen-Dupius network, 

which has been used in the study of Szeto and Lo (2004) to solve the DUE problem. It has 13 

nodes and 19 links. The dashed line indicates a cordon charging area. The traffic demand and 

path information of the numerical network are tabulated in Table 2. The cell representation 

consisting of 63 cells is consistent with that used by Szeto and Lo (2004) except for the 

bottleneck in the network. It should be noted that the minimum and maximum length inside 

the cordon charging area is 3.2 km and 5.6 km, respectively, and the range is 2.4 km. Therefore, 

we assume that the piecewise linear toll function has 3 linear charging intervals with 4 vertices, 

and the length of each interval is 0.8 km.  

 

The numerical experiment is coded in Matlab R2016a running on a laptop with Inter(R) 

Core(TM) i7-5500U CPU @2.40GHz, 2.39GHz and 8.00G RAM, and the detailed input 

parameters include: 

 Free flow speed: 48 km/h 

 Backward shock-wave speed: 18 km/h 

 Jam density: 125 vehicles/km 

 Flow capacity: 1800 vehicles/h/lane 

 Number of lanes: 2 

 Each time interval length: 1 min 

 Modeling horizon: 2 hours in total, and 30 min (or 30 time steps) of each sub-period 

 The length of each cell: 0.8 km 

 

Other parameters: 1.0α = , 
1 0.6θ = , 

2 0.4θ = , 
min 1.0= , max 3.0= , 0.2= , 0.6u = , 

0.001 = , 
0 1.0 = , 40cN = , 20eN = , 2limit = , 

max 500I =  

 

Table 2: Dynamic traffic demand and paths for Nguyen-Dupius network 

OD Demand per time interval Path No. Node sequence 

07:30-

08:00 

08:00-

08:30 

08:30-

09:00 

09:00-

09:30 

(1, 2) 40 32 26 20 1 1-12-8-2 

2 1-5-6-7-8-2 

3 1-5-6-7-11-2 

4 1-5-6-10-11-2 

5 1-5-9-10-11-2 

6 1-12-6-7-8-2 

7 1-12-6-7-11-2 
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8 1-12-6-10-11-2 

(1, 3) 70 60 48 36 9 1-5-9-13-3 

10 1-5-6-7-11-3 

11 1-5-6-10-11-3 

12 1-5-9-10-11-3 

13 1-12-6-7-11-3 

14 1-12-6-10-11-3 

(4, 2) 64 52 40 30 15 4-9-10-11-2 

16 4-5-6-7-8-2 

17 4-5-6-7-11-2 

18 4-5-6-10-11-2 

19 4-5-9-10-11-2 

(4, 3) 64 52 40 30 20 4-9-13-3 

21 4-9-10-11-3 

22 4-5-9-13-3 

23 4-5-6-7-11-3 

24 4-5-6-10-11-3 

25 4-5-9-10-11-3 

 

Table 3: The objective value of different toll functions 

Toll Pattern Value of    Obj* Reduction of  

the Obj* 

Dynamic JDTDT 0.00 482,119 7.45% 

0.20 476,773 6.26% 

0.40 462,247 3.03% 

0.60 448,666 - 

0.80 459,677 2.45% 

0.99 478,602 6.67% 

Static JDTDT 0.00 483,621 7.79% 

0.20 478,514 6.65% 

0.40 476,837 6.28% 

0.60 477,423 6.41% 

0.80 479,224 6.81% 

0.99 480,149 7.02% 

Dynamic JDTT 0.00 482,119 7.45% 

0.20 473,832 5.61% 

0.40 469,793 4.71% 

0.60 467,968 4.30% 

0.80 472,821 5.38% 

0.99 478,787 6.71% 

Note: the last column is the reduction rate of the total system travel time, and this rate is 

calculated in terms of the difference between each Obj* and 448,666 divide by each Obj*. 
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(a) Nguyen-Dupuis network with toll cordon 

 
(b) Cell representation of Nguyen-Dupuis network 

Figure 4: Network structure. 
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Figure 5: The optimal distance toll function with different values of β . 

 

Figure 5 depicts the optimal toll functions with different values of β  and it is obvious that the 

distance tolls are nonlinear increasing functions of travel distance, which are consistent with 

the assumption. The second period has the highest charge mainly due to the congestion level 

in the cordon area. From the experiment results of the dynamic JDTDT in Table 3, we can see 

that the optimal one is 0.6β = , and the corresponding distance toll 

1.24 1.68 1.97 2.68

1.44 1.72 2.49 2.90

1.12 1.59 1.91 2.44

1.11 1.30 1.67 2.30

 
 
  =
 
 
 

, with each row containing the vertexes of the piecewise linear 

toll function for each sub-period among the whole modeling horizon from 07:30 to 09:30. The 
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convergence process of the dynamic JDTDT with 0.60 =  is shown in Figure 6. It is clear 

that the objective value converged in a stepwise form within less than 200 iterations.  

 
Figure 6: The convergence process of the dynamic JDTDT with 0.60 =  

 

It should be noted that the link flows of the entire network are zero when it is 07:30 in this 

case. However, this assumption is obviously unrealistic. A more realistic traffic demand 

should be input and the experiment should be tested in the future. 

 

5.2 Comparisons 

To illustrate the superiorities of the dynamic JDTDT scheme, three controlled experiments (i.e., 

the static JDTDT, the dynamic JDTT, and the pure distance toll) are conducted here. The 

network structure in these three controlled experiments are the same as the dynamic JDTDT 

shown in Figure 4(a). As for the static toll pattern, the input demand in Table 4 is aggregated 

by the dynamic demand during the study period from 07:30 to 09:30, and the typical BPR 

(Bureau of Public Roads) type function is adopted to calculate the link travel times. 

 

Table 4: Aggregate demand during the study period from 07:30 to 09:30 

OD  Demand (veh) OD Demand (veh) 

(1, 2) 3540 (4, 2) 5580 

(1, 3) 6420 (4, 3) 5580 

 

(1) The dynamic vs. static JDTDT 

From the results of the static JDTDT in Table 3, it is obvious that the optimal value of   in a 

static JDTDT scheme is 0.40, which is different from the dynamic toll pattern. We can also see 

that the overall system performance of the transportation network under the dynamic toll 

pattern is superior to that under the static one, which is expected because the dynamic toll 

pattern based on the dynamic network modeling can better capture the system dynamics. 

Quantitatively, the total system travel time decreases by 6.28% when the JDTDT scheme is 
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implemented from a static pattern to a dynamic pattern. This percentage reduction of the total 

system travel time may not be significant, but when the dynamic JDTDT is implemented for a 

large-scale urban area, the total value of the total system travel time may decrease signally.  

 

(2) The dynamic JDTDT vs. JDTT 

The difference between the JDTDT and the JDTT is whether the travel time or delay inside the 

cordon charging area is adopted in the toll scheme. Other parameters of the dynamic JDTT 

scheme in the cell-based DTA and solution algorithms are the same as the dynamic JDTDT 

scheme. From the results of the dynamic JDTT shown in Table 3, we can see that the optimal 

value of   is also 0.60, which is the same as the optimal value in the dynamic JDTDT scheme. 

Compared to the dynamic JDTT scheme, the optimal value of the total system travel time 

decreases by 4.30% in the dynamic JDTDT scheme, indicating that the dynamic JDTDT is 

more efficient than the dynamic JDTT. This result also confirms the assumption of the 

overcharging problem in the JDTT scheme. 

 

(3) The JDTDT vs. pure distance toll 

Note that when 0 =  for either dynamic or static toll pattern, it becomes an entirely nonlinear 

distance toll scheme. An interesting phenomenon can be found for both dynamic and static toll 

patterns, i.e., the objective value of the pure distance-toll scheme (when 0 = ) is inferior to 

all the other cases, indicating that introducing the congestion-toll together with distance-toll 

leads to a better performance for the system. This phenomenon is in line with the real life of 

travelers who prefer to pay less for their trips inside the cordon charging area. When the pure 

distance-toll scheme is implemented, most travelers prefer to choose the shorter route(s) in the 

cordon to reduce their toll for the trip, regardless the route(s) is/are highly congested. However, 

after combining the congestion-toll with the distance-toll, the congestion effect will be 

incorporated into the payment of travelers. Thus, travelers reconsider the route choice under 

the JDTDT pattern. This clearly shows that the JDTDT encourages detour behaviours 

compared to a pure distance-toll for either the dynamic or static toll pattern, which is consistent 

with the principle of JDTDT. Similarly, we can obtain the reduction rate of the total system 

travel time in the dynamic JDTDT is 7.45% compared to the dynamic pure distance toll scheme. 

 

6 Conclusions  

This paper addressed a dynamic congestion pricing problem considering travelers’ actual travel 

distance and congestion level in the network. The proposed dynamic JDTDT scheme is more 

equitable than the traditional flat toll schemes, and more effective than the static JDTDT, 

dynamic JDTT, and the dynamic pure distance toll. The dynamic optimal toll design problem 

is formulated as a bi-level programming model, the upper level of which is to optimize the 

total system performance, and the lower level is a DUE problem. The path-based CTM is 

adopted in this paper to formulate the dynamic traffic flow propagation process, and a new 

averaging scheme is proposed to estimate the en-route travel time for the traffic departing 

simultaneously of each path. Then the DUE problem can be expressed as a VI. A hybrid SAGP 

and ABC algorithm is developed to solve this bi-level model. The validity of the proposed 

methodology is verified with four numerical tests. More specifically, based on the results of 

the comparison, we find that the reduction rates of the minimum total system travel time in the 

dynamic JDTDT scheme are 6.28%, 4.30% and 7.45% compared to the static JDTDT, the 
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dynamic JDTT and the dynamic pure distance toll, respectively. These percentage reductions 

may not be significant, but when the dynamic JDTDT is implemented for a large-scale urban 

area, the total volume of the total system travel time may decrease signally. 

 

This paper is an initial study of the cell-based dynamic congestion pricing problem. The traffic 

demand is assumed piecewise fixed and the path choice decisions are deterministic in this 

paper. For future researches, the demand can be extended to elastic and stochastic dynamics of 

travelers’ decision behaviors can be captured, and the toll framework can be extended to a day-

to-day dynamic setting. The optimal second-best toll can be approximated with a linear 

programming model based on the concept of toll set (see Hearn and Ramana 1998; 

Lawphongpanich and Hearn 2004; Chen, Zhou, and List 2011). The congestion pricing policy 

can be also integrated with public transit design and network design. In addition, in the cell-

based model, one link is divided to multiple cells, which largely increase the computing time 

for large urban transportation networks. This computing issue may be solved by the following 

two approaches: (a) parallel computing algorithms can be used, which are suitable for the cell-

based dynamic congestion pricing problems due to the good property of path-based CTM; (b) 

the link transmission model, which is another discrete version of the macro-simulation 

approach, can be introduced to this dynamic congestion pricing problem to reduce the 

computational cost. In the future work, we will evaluate the proposed dynamic JDTDT scheme 

in mesoscopic dynamic traffic simulation packages such as DTALite (Zhou and Taylor 2014; 

Xiong, Zhou, and Zhang 2018). 
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