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Abstract

Background: Differences in the expression of variants across ethnic groups in the systemic lupus erythematosus
(SLE) patients have been well documented. However, the genetic architecture in the Thai population has not been
thoroughly examined. In this study, we carried out genome-wide association study (GWAS) in the Thai population.

Methods: Two GWAS cohorts were independently collected and genotyped: discovery dataset (487 SLE cases and
1606 healthy controls) and replication dataset (405 SLE cases and 1590 unrelated disease controls). Data were
imputed to the density of the 1000 Genomes Project Phase 3. Association studies were performed based on
different genetic models, and pathway enrichment analysis was further examined. In addition, the performance of
disease risk estimation for individuals in Thai GWAS was assessed based on the polygenic risk score (PRS) model
trained by other Asian populations.

Results: Previous findings on SLE susceptible alleles were well replicated in the two GWAS. The SNPs on HLA class
II (rs9270970, A>G, OR = 1.82, p value = 3.61E−26), STAT4 (rs7582694, C>G, OR = 1.57, p value = 8.21E−16), GTF2I
(rs73366469, A>G, OR = 1.73, p value = 2.42E−11), and FAM167A-BLK allele (rs13277113, A>G, OR = 0.68, p value =
1.58E−09) were significantly associated with SLE in Thai population. Meta-analysis of the two GWAS identified a
novel locus at the FBN2 that was specifically associated with SLE in the Thai population (rs74989671, A>G, OR =
1.54, p value = 1.61E−08). Functional analysis showed that rs74989671 resided in a peak of H3K36me3 derived from
CD14+ monocytes and H3K4me1 from T lymphocytes. In addition, we showed that the PRS model trained from the
Chinese population could be applied in individuals of Thai ancestry, with the area under the receiver-operator curve
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(AUC) achieving 0.76 for this predictor.

Conclusions: We demonstrated the genetic architecture of SLE in the Thai population and identified a novel locus
associated with SLE. Also, our study suggested a potential use of the PRS model from the Chinese population to
estimate the disease risk for individuals of Thai ancestry.

Keywords: Genome-wide association study, Thai population, Systemic lupus erythematosus, Genetic susceptibility,
Single nucleotide polymorphisms, Polygenic risk score

Background
The systemic lupus erythematosus (SLE) is a systemic
autoimmune disease characterized by loss of tolerance
to self-antigens, inappropriate immune activation, and
inflammation [1]. The severity is various depending on
affected organs [2]. Genetic susceptibility has been
widely accepted as one of the critical factors driving dis-
ease development [2]. Recently, the genetic architecture
of SLE has been examined worldwide [3]. Using GWAS,
more than 90 loci have been found associated with SLE
across at least four ethnic groups, including Han Chin-
ese, European, North America, and Africa [4, 5]. The
strongest signal was identified at the HLA class II allele,
which replicated in all of the different populations [4].
These findings indicate critical biological mechanisms
underlying the disease, which will be the candidate in
further functional studies [6].
However, heterogeneity of disease between different

ethnicities drives a question of whether genetic back-
ground in different ancestries could affect the clinical
manifestations. It is known that Asian SLE patients have
higher disease severity compared to Europeans [2]. How-
ever, only a few studies on SLE associations that were
based on candidate genes were performed in the Thai
population [7–11]. In this study, we conducted GWAS
using the SLE samples collected from two tertiary refer-
ral hospitals in Thailand. We aim to replicate known
SLE-associated variants in the Thai population and iden-
tify novel SNPs associated with SLE.

Methods
Sample collection and preparation
We calculated the power of our study by using an online
tool called Genetic association study (GAS) Power Cal-
culator [12]. With 800 cases and 1600 controls at 5E−08
significant level, we obtained 0.934 expected power for
the study. The EDTA blood samples from SLE patients
(n = 487) were collected at King Chulalongkorn Memor-
ial Hospital as cases for the discovery phase. All proce-
dures were approved by the ethical committee from the
Faculty of Medicine, Chulalongkorn University (COA
no. 923/2017). For the replication cohort, the samples
(n = 405) were collected from the Rheumatology clinic,
Ramathibodi Hospital, with ethical approval from the

Faculty of Medicine, Mahidol University (MURA no.
2015/731, EC no. 590223, Protocol-ID 12-58-12). All pa-
tients were carefully recruited regarding the criteria from
the American College of Rheumatology (ACR) [13]. Pa-
tients’ demographic data from both datasets have been
summarized in Table 1. For healthy controls (n = 1606)
and unrelated disease controls including breast cancer,
periodontitis, tuberculosis, drug-induced liver injury,
epileptic encephalopathy, dengue hemorrhagic fever,
thalassemia, and cardiomyopathy (n = 1590), data were
provided from the Department of Medical Science, Min-
istry of Public Health, Thailand.

DNA extraction
Buffy coats were extracted using the QIAGEN® EZ1®
DNA blood kit (QIAGEN GmbH, Hilden, Germany).
We used 200 μl of a buffy coat as recommended by the
manufacturer’s instruction. Buffy coat samples were
transferred into tube or sample cartridge for EZ1 Ad-
vanced XL (QIAGEN GmbH, Hilden, Germany) and ex-
tracted using EZ1® Advanced XL DNA Buffy coat
protocol. From this protocol, DNA was eluted at 200 μl.
DNA was diluted and quantitated using Qubit™ dsDNA
BR Assay Kit according to the manufacturing protocol
(Invitrogen, Thermo Fisher Scientific, MA, USA).

Genotyping and quality control
Genotyping was performed using Infinium Asian Screen-
ing Array-24 v1.0 BeadChip with 659,184 SNPs (Illu-
mina, San Diego, CA, USA) at the Department of
Medical Sciences (DMSC, Ministry of Public Health,
Thailand) based on the protocol recommended by the
manufacturer. The Genome Studio data analysis soft-
ware v2011.1 (Illumina, San Diego, CA, USA) was used
for calling genotypes. Samples and SNP markers were
tested for quality control (QC) using PLINK genomic
analysis software (v1.90b5.4) [14]. Individuals with auto-
somal genotype call rate ≤ 0.98, gender inconsistency
based on heterozygosity rate of X chromosome (mal-
eTh = 0.8, femaleTh = 0.2), and genome-wide estimates
of identity-by-descent (pihat) ≥ 0.185 (3rd generation)
were excluded from analysis. SNPs with more than 5%
missing genotyping rate or significant deviation of
Hardy-Weinberg equilibrium (p value ≤ 1 × 10−8) were

Tangtanatakul et al. Arthritis Research & Therapy          (2020) 22:185 Page 2 of 13



also removed. After quality control (QC), we obtained a
dataset of 2041 individuals with 421,909 variants for the
discovery phase and 1955 individuals with 446,139 vari-
ants for replication. The flow diagram of the analysis
process is shown in Fig. 1a.

GWAS data imputation
Pre-phasing was performed using SHAPEIT [16]. After
that, genotype data for individuals was imputed to the
density of the 1000 Genomes Project Phase 3 reference
using IMPUTE2 [17]. After all the QC processing, 6,657,
806 were left for further analysis. The processed data
were publicly available at http://2anp.2.vu/GWAS_SLE_
Thailand.

Association study, meta-analysis, and statistical analysis
The association studies were conducted by using SNPT
EST [18], and the factored spectrally transformed linear
mixed models (FaST-LMM v.0.2.32) program [19]. The
results from FaST-LMM were analyzed and visualized
by RStudio to obtain genomic inflation factor (λ),
quantile-quantile plot, and Manhattan plot [20]. The
SNPs with p value ≤ 1 × 10−5 were plotted to obtain the
regional plot by using LocusZoom [21]. Haplotype block
and linkage disequilibrium structure were analyzed by
Haploview software version 4.2 [22]. The characterized
SLE susceptible loci were downloaded from a previous
study [23] and GWAS catalogue (the NHGRI-EBI cata-
logue of published genome-wide association studies).
Meta-analysis was studied based on the inverse variant

strategy in the METAL program [24]. The genetic inher-
itance pattern was calculated from the frequency of dif-
ferent genotyping on risk alleles using R-Bioconductor.
Simultaneously, functional annotation was predicted by
using SNPnexus, which applied data from the Reactome
database [25]. The histone markers and transcription
factor binding sites were predicted from an online tool
called HaploReg V4.1 [26].

Polygenic risk score calculation
Lassosum [27] was used to calculate PRS for individuals.
The summary statistics for SLE association in East
Asians [28], involving 2618 cases and 7446 controls with
Chinese ancestry, were used to train the model. The area
under the ROC curve (AUC) was calculated using R
package pROC [29].

Results
Known SLE associations found in the Thai population
In the discovery dataset, the association studies were ini-
tially performed using healthy controls (n = 1606) and
SLE patients (n = 487) collected from King Chulalong-
korn Memorial Hospital. Regarding the result, we found
that variants at the HLA class II regions were strongly
associated with SLE (p value < 5E−08). Similarly, GWAS
from 405 SLE cases and 1590 non-immune-mediated
disease controls found variants at the HLA class II re-
gions reached the genome-wide significant threshold (p
value < 5E−08). Our findings were consistent with previ-
ous reports in other ethnic groups [30]. Inflation factors

Table 1 SLE patients’ characteristics of both observatory and replication datasets

Patients’ characteristics Clinical cases

Observatory cohort n = 455a Replication cohort n = 371a

n (%) n (%)

Age of onset (mean ± SD) 30.38 ± 13.68 30.39 ± 11.43

Sex

Female 425 (93.41%)b 337 (90.84%)c

Male 26 (5.71%)b 27 (7.28%)c

Clinical aspects

Hemologic disorders 243 (53.41%)b 136 (36.66%)c

Neurological disorders 62 (13.63%)b 33 (8.89%)c

Ulcer 115 (25.27%)b 52 (14.02%)c

Discoid rash 161 (35.38%)b 49 (13.21%)c

Malar rash 142 (31.21%)b 82 (22%)c

Arthritis 133 (29.23%)b 148 (39.89%)c

Renal disorders 284 (62.42%)b 149 (40.16%)c

ANA 350 (76.92%)b 214 (57.68%)c

aThe sample number after quality control processes
bThe percentages of unknown clinical data (n/a) in the observatory dataset are listed here. Sex = 0.88%, hematologic disorder = 1.76%, neurological disorder =
2.20%, ulcer = 4.18%, discoid rash = 3.96%, malar rash = 5.71%, arthritis = 4.18%, renal disorders = 1.76%, and ANA = 9.89%
cThe percentages of unknown clinical data (n/a) in the replication dataset are listed here. Sex = 0.00%, hematologic disorder = 36.93%, neurological disorder =
37.2%, ulcer = 37.4%, discoid rash = 37.2%, malar rash = 37.47%, arthritis = 37.2%, renal disorders = 37.74%, and ANA = 36.93%
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from both datasets were calculated as reported in Sup-
plementary figure 1.
Subsequently, a meta-analysis of the two Thai GWAS

was carried out, and we systematically examined associa-
tions across the 90 known SLE-associated loci, which were
collected from the GWAS catalogue (https://www.ebi.ac.
uk/gwas/) and previous review articles [23]. Of these loci,
the HLA-DQA1, HLA-DRB1, STAT4, FAM167A-BLK, and
GTF2I loci have reached the genome-wide significant
threshold (p value < 5E−08; Fig. 1b, Table 2) in Thai popu-
lation, and the variants at the PROS1C1, NOTCH4, HCP5,
C6orf10, TAP2, TNFSF4, RasGRP3, TERT, TNPO3-IRF5,

CXCR5, GPR19, SLC15A4, and ITGAM loci showed sug-
gestive evidence of associations with SLE (p value < 5E
−05, Supplementary Table 1). These loci have been found
in several ancestries, including Han Chinese, Korean,
North American, European, African, and Hispanic popula-
tions [31, 32].
We noticed that some of the previously characterized

nonsynonymous polymorphisms also showed certain evi-
dence of association (p value < 0.05) in Thai population,
such as rs11235604 (ATG16L2, R58W), rs13306575
(NCF2, R395W), rs1990760 (IFIH1, A946T), rs3734266
(UHRF1BP1, Q454L), rs2841280 (PLD4, E27Q), and

Fig. 1 Quality control and dataset preparation flow diagram of both discovery and validation datasets. The flow diagram was modified from the
PRISMA flow diagram [15] (a). Manhattan plot on the meta-analysis result of the two SLE GWAS datasets in the Thai population using R-
Bioconductor package qqman (b)
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rs2230926 (TNFAIP3, F127S). Details of these associa-
tions are summarized in Table 3. All significant variants
were calculated for Hardy-Weinberg equilibrium, as re-
ported in Supplementary Table 2.

Identification of novel loci associated with SLE
Excluding the variants at the known SLE-associated
loci, we discovered a novel variant on FNB2
(rs74989671, OR = 1.54, p value = 1.61E−08) specific-
ally associated with SLE in Thai population (Figs. 1b
and 2a, Table 2) when comparing the association in
Europeans (OR = 0.998, p value = 0.979) and in Chin-
ese populations (OR = 0.982, p value = 0.692) [28].
Further analyses based on different genetic inherit-
ance models suggested that the disease risk was asso-
ciated with the copy number of risk alleles that the
individuals carried (additive model) (Table 4). Three
SNPs on FBN2 loci (rs74989671, rs35983844,
rs6595836) showed linkage disequilibrium (LD r2 =
0.82) (Fig. 2b, Supplementary Table 1). Of these vari-
ants, rs74989671 was found to locate within the peak
of H3K36me3 derived from CD14-positive monocytes
and H3K4me1 (associated with active enhancers) de-
rived from the primary T cells (Fig. 2c).

In addition, we found variants at the ATP6V1B1,
MIR4472-2, MYO5C, ADCY5, and DGKG, showing
suggestive evidence of associations with SLE in Thai
population (p value < 5E−05) (Supplementary Figure
2, Supplementary Table 1). Though these polymor-
phisms are likely to associate with Thai SLE pa-
tients, an independent GWAS dataset of SLE
patients with Thai background is needed for further
validation.

In silico functional annotation of SLE-associated variants
in Thai population
To understand the biological meaning underlying the
SLE-associated loci in the Thai population, we per-
formed the pathway analysis using the SNPnexus pro-
gram [25]. Variants with p value < 5E−05 were
involved in this study. Notably, we found that 50% of
all variants were located within the coding region, by
which 10% is nonsynonymous polymorphisms. Path-
way analysis results revealed that SLE-associated vari-
ants were highly enriched in the regulation of
interferon signaling, PD-1 signaling, MHC-class II
antigen presentation, TCR/BCR signaling, cytokine
signaling, TNF signaling, NOTCH4 signaling, calcium-

Table 2 List of significant variants at individual locus from the meta-analysis

HAPa dbSNPb CHRc BPd RAe MAF
affected

MAF
unaffected

Locus Locus
upstream

Locus
downstream

Discovery
dataset

Replication
dataset

Meta-
analysis

phet
f

OR
(95%
CI)

p OR
(95%
CI)

p OR p

q32.3 rs7574865 2 191,
099,
907

A 0.47 0.36 STAT4 1.54
(1.33–
1.79)

1.45E
−08

1.61
(1.37–
1.89)

7.45E
−09

1.57 8.218E
−16

0.69

q23.3 rs74989671 5 128,
398,
268

G 0.16 0.11 FBN2 1.52
(1.24–
1.86)

4.31E
−05

1.58
(1.26–
1.98)

7.61E
−05

1.54 1.611E
−08

0.81

p21.32 rs9270970 6 32,
605,
797

G 0.42 0.30 HLA-
DRB1

HLA-DQA1 2.02
(1.73–
2.35)

8.71E
−20

1.63
(1.39–
1.93)

4.15E
−09

1.83 3.617E
−26

0.07

q11.23 rs73366469 7 74,
619,
286

G 0.14 0.09 RP5-
1186P10.2

GTF2I 1.8
(1.45–
2.24)

1.09E
−07

1.65
(1.3–
2.1)

2.84E
−05

1.73 2.42E
−11

0.61

p23.1 rs13277113 8 11,
491,
677

G 0.26 0.32 FAM167A BLK 0.64
(0.54–
0.76)

2.16E
−07

0.74
(0.61–
0.88)

8.76E
−04

0.68 1.58E
−09

0.27

q24.33 rs1385374 12 128,
816,
149

A 0.20 0.15 SLC15A4 1.54
(1.28–
1.85)

5.76E
−06

1.37
(1.12–
1.69)

2.36E
−03

1.46 7.62E
−08

0.43

p11.2 rs1143679 16 31,
265,
490

A 0.07 0.03 ITGAM 1.67
(1.21–
2.28)

1.39E
−03

2.27
(1.6–
3.23)

2.55E
−06

1.91 5.81E-
08

0.2

aHaplotype
bdbSNP from single nucleotide polymorphisms database (NCBI)
cChromosome
dPosition
eRisk alleles
fp value of heterogeneity
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activated potassium channels, and cell-cell junction
organization pathways. Furthermore, we found that
extracellular matrix organization was significant in
our results (Fig. 3). It indicated that Thai SLE pa-
tients might have a higher risk of fibrosis-associated
inflammation.

Polygenic risk score prediction for the individuals
To apply the GWAS result to predict the Thai SLE out-
come, we also tested the hypothesis of whether the PRS
models trained by individuals with Chinese ancestry
could be applied for Thai SLE patients. We calculated
PRS for individuals in the Thai GWAS, based on the

Table 3 List of known SLE susceptible SNPs in Thai SLE patients

dbSNPa CHRb BPc RAd Locus Annotation MAF affected MAF unaffected OR SE p

rs35426045 1 161,649,724 A FCGR2B Intergenic 0.80 0.75 1.38 0.09 1.83E−04

rs1234315 1 173,209,324 A TNFSF4 Intergenic 0.53 0.46 1.27 0.07 1.02E−06

rs2205960 1 173,191,475 T TNFSF4 Intergenic 0.27 0.22 1.26 0.08 2.37E−03

rs34889541 1 198,594,769 A ATP6V1G3, Intergenic 0.10 0.13 0.75 0.11 7.66E−03

rs1418190 1 173,361,979 T LOC100506023 ncRNA_intronic 0.59 0.56 1.18 0.07 1.55E−02

rs13306575 1 183,563,302 A NCF2 Nonsynonymous 0.11 0.08 1.48 0.09 1.73E−02

rs13385731 2 33,701,890 C RASGRP3 Intronic 0.13 0.17 0.70 0.09 1.71E−05

rs6705628 2 74,208,362 T DGUOK-AS1 ncRNA_exonic 0.11 0.13 0.79 0.10 1.83E−02

rs1990760 2 163,124,051 T IFIH1 Missense 0.23 0.21 1.17 0.08 4.93E−02

rs10936599 3 169,492,101 T MYNN Synonymous SNV 0.52 0.56 0.84 0.07 6.95E−03

rs564799 3 159,728,987 T IL12A ncRNA_intronic 0.12 0.14 0.80 0.10 1.97E−02

rs10028805 4 102,737,250 A BANK1 Intronic 0.45 0.49 0.87 0.07 4.08E−02

rs7726159 5 1,282,319 A TERT Intron 0.43 0.40 1.25 0.07 5.00E−05

rs2736100 5 1,286,401 C TERT Intron 0.51 0.43 1.25 0.07 4.67E−05

rs10036748 5 150,458,146 T TNIP1 Intronic 0.66 0.61 1.16 0.07 3.04E−02

rs2431697 5 159,879,978 C PTTG1; MIR146A Intergenic 0.07 0.09 0.77 0.13 3.36E−02

rs548234 6 106,568,034 T PRDM1; ATG5 Intergenic 0.67 0.72 0.81 0.07 2.21E−03

rs2230926 6 138,196,066 G TNFAIP3 Missense 0.04 0.03 1.49 0.18 2.92E−02

rs3734266 6 34,823,187 C UHRF1BP1 Intronic 0.21 0.19 1.18 0.08 4.68E−02

rs4728142 7 128,573,967 A KCP; IRF5 Intergenic 0.19 0.13 1.61 0.09 1.34E−07

rs729302 7 128,568,960 C KCP; IRF5 Intergenic 0.25 0.30 0.77 0.07 3.32E−04

rs12531711 7 128,617,466 G IRF5; TNPO3 Intron 0.03 0.01 2.03 0.25 4.27E−03

rs4917014 7 50,305,863 G C7orf72; IKZF1 Intergenic 0.15 0.17 0.81 0.09 1.84E−02

rs7097397 10 50,025,396 A WDFY4 Missense 0.59 0.64 0.78 0.07 3.84E−04

rs4948496 10 63,805,617 C ARID5B Intronic 0.66 0.62 1.17 0.07 2.19E−02

rs1128334 11 128,328,959 T ETS1 UTR3 0.35 0.28 1.36 0.07 1.50E−05

rs2732552 11 35,084,592 C PDHX Intergenic 0.78 0.75 1.18 0.08 3.04E−02

rs11235604 11 72,533,536 T ATG16L2 Missense 0.04 0.05 0.70 0.17 3.93E−02

rs1385374 12 129,300,694 T SLC15A4 Intronic 0.21 0.15 1.46 0.09 7.62E−08

rs10845606 12 12,834,894 A GPR19 Intronic 0.32 0.37 0.75 0.07 3.19E−06

rs2841280 14 105,393,556 C PLD4 Nonsynonymous 0.52 0.45 1.91 0.07 5.81E−08

rs1143679 16 31,276,811 A ITGAM Missense 0.07 0.04 1.71 0.14 6.18E−08

rs11860650 16 31,315,385 A ITGAM Intronic 0.09 0.07 1.74 0.10 4.64E−03

rs1170426 16 68,603,798 T ZFP90 Intronic 0.69 0.73 0.82 0.07 5.91E−03

rs7444 22 21,976,934 C UBE2L3 UTR3 0.64 0.60 1.17 0.07 1.81E−02

rs463426 22 21,809,185 C HIC2; TMEM191C Intergenic 0.38 0.40 0.85 0.08 4.50E−02
adbSNP from single nucleotides polymorphisms database (NCBI)
bChromosome
cPosition
dRisk alleles
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training data from the Chinese population (2618 cases
and 7446 controls) [28]. Significantly, the PRS for SLE
cases were higher than controls (mean difference = 0.89;
p value = 2.2E−16; Fig. 4a), and the area under the
receiver-operator curve (AUC) achieved 0.76 for this
predictor. This analysis indicated the potential

application for the PRS in the Thai population, based on
the results from other Asian populations. Regarding the
analysis, this might be a clue for predicting an outcome
of SLE clinical characteristics in Thai SLE patients, and
it is a good source for further genetic analysis to identify
actual SLE pathogenesis in the different ancestry.

Fig. 2 Regional plot of novel SLE susceptible variants on FBN2 locus with their relative variants around FBN2 locus (a). Haplotype block of
significant variants on FBN2 locus with their correlation to show linkage disequilibrium between SNPs (b). The picture illustrated histone markers
overlapped with FBN2 SNP site (c)

Table 4 Analyses based on different inheritance models on the FBN2 locus

Locus SNPs Model Genotypes or alleles SLE n Control n OR 95% CI p

FBN2 Codominant GG 21 26 1.75 0.93–3.27 7.96E−02

rs74989671 Dominant AG 235 334 1.53 1.25–1.86 2.38E−05

AA 562 1219 ref ref ref

AG+GG 256 360 1.54 1.27–1.87 8.83E−06

AA 562 1219 ref ref ref

Recessive GG 21 26 1.57 0.84–2.93 0.161

AG + AA 797 1553 ref ref ref

Allelic A 277 386 ref ref ref

G 1359 2772 1.38 1.17–1.64 1.31E−04

FBN2 Codominant GG 655 1366 0.72 0.23–2.47 5.80E−01

rs76835745 Dominant AG 162 212 1.15 0.36–4 1.00

AA 6 9 ref ref ref

GG+GA 817 1578 0.78 0.25–2.66 0.60

AA 6 9 ref ref ref

Recessive GG 655 1366 0.63 0.5–0.79 5.43E−05

AA+GA 168 221 ref ref ref

Allelic A 174 230 ref ref ref

G 1472 2944 12.34 10.6–14.4 2.20E−16
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Discussion
The present study is the first largest GWAS cohort con-
ducted among Thai SLE patients. The highest significant
association in the region of HLA class II was consistent
with previous reports from other ethnic groups [30].
Since there are vast differences of HLA class II allele fre-
quency among populations and sophisticated genetic
structure, the study of the specific HLA class II haplo-
type is needed. Currently, there were two publications
reported about specific HLA haplotypes in Thai SLE pa-
tients. First, the fine genetic mapping of the HLA allele
from SLE patients in the northern part of Thailand has
identified the association of HLA-DRB5*01:01 and HLA-
DRB1*16:02 [34]. Secondly, HLA haplotype analysis
found HLA-DRB1*15:02 and HLA-DQ*05:01 associated
with Thai SLE patients [35]. Further study on the HLA
class II allele using whole-genome sequencing or exome
sequencing might be helpful to specify the impact of the
HLA class II allele on Thai SLE patients.
Apart from the HLA class II alleles, our study found

variants in STAT4, GTF2I, and BLK regions. For BLK
locus, this gene encoded for Src-tyrosine kinase, which
is an important signaling molecule under B cell develop-
ment [36]. This gene showed protein-protein interaction
with BANK1 (B cell-specific cytoplasmic protein in-
volved in B cell receptor signaling) and might plausibly
involve in dysregulation of the B cell receptor, which is a
common feature found in SLE patients [37]. For STAT4
and GTF2I alleles, these genes are encoded for the tran-
scription factors that mediate many immune-related
genes and inflammatory cytokine transcription machin-
ery. Both BLK and STAT4 loci have been reported as

SLE susceptible alleles in Thai SLE patients recently [7],
whereas GTF2I locus has firstly identified in our study.
Interestingly, the variants on STAT4 and GTF2I loci
were correlated with lupus nephritis (LN) in the various
SLE ancestries [32]. The GTF2I allele was likely to be
specific in Asian background, mainly Han Chinese [38].
Our analysis found several LN-susceptible loci such as

IRF5 [39, 40], ITGAM [9, 41], IKZF1 [42], and TNFSF4
[43]. While IKZF1 is a co-transcription factor with
STAT-4 mediated Th1 lymphocyte differentiation and
interferon pathways [44], the TNFSF4 locus, also called
OX40L, encoded for the TNF superfamily ligand, which
actively stimulates CD4+ T cell activation [43]. Study in
the Finnish and Swedish SLE patients found the correl-
ation of ITGAM with cutaneous discoid lupus erythema-
tosus (DLE) and LN as well as Ro/SSA auto-antibody
positive [45]. Not only LN, but we also found several loci
that have been verified in the specific sub-phenotype of
SLE patients. For example, our result found a variant on
ETS1, which previously showed association with juvenile
SLE, as well as a variant on RasGRP3, which was in-
volved in malar rash or discoid rash [42]. The recent
SLE susceptible loci identified in the cardiac manifest-
ation of neonatal lupus, NOTCH4, was found in our re-
sults [46].
Note that we found some of the known SNPs which

are nonsynonymous variants such as NCF2 [47], IFIH1
[48], TNFAIP3 [49], UHRF1BP1 [50], ATG16L2 [51],
and PLD4 [52]. A few pieces of evidence have revealed
the impact of those variants on various pathways includ-
ing neutrophil extracellular traps (NETs) formation [53],
sensor molecule to detect viral genome inside cells [54],

Fig. 3 Diagram plot showed enrichment pathway from functional annotation analysis of significant variants (p value < 5E−05) using SNPnexus
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a negative regulator for NF-kB transcription factors [55],
and a negative regulator of cell growth [56]. These path-
ways resembled with our functional enrichment path-
ways analysis. Interestingly, our results found
extracellular matrix organization (ECM) pathways asso-
ciated with Thai SLE patients. Previously, single-cell

transcriptome analysis in non-responder LN patients
highlighted the upregulated genes in the ECM pathway
correlated with treatment failure [57]. The ECM
reflected the active fibrotic process, which was a marker
of poor prognosis LN [58]. Remarkably, the prevalence
of severe LN was high in the South East Asian ethnic

Fig. 4 The graph shows the polygenic risk score calculation and the mean difference between SLE and healthy controls (a). The circular plot
showed loci which identified in this study at individual chromosomes using package Rcircos [33] (b)
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included Thai [59]. As regards our SLE patients’ demo-
graphic data, we found that the frequency of clinical
phenotype was roughly similar to other ethnic [60]. The
LN has the highest abundance found among Thai SLE
patients. Thus, our results supported that genetic back-
ground was a pivotal factor driving a severe LN among
Thai SLE patients. Taken together, these pieces of evi-
dence could justify the link between genetic variants and
clinical involvement in Thai SLE patients.
The study of known SNPs showed most of the poly-

morphisms resembled with previous reports in Thais,
such as ARID5B, TNFSF4, BANK1, TNFAIP3, CXCR5
SLC15A, ITGAM, WDFY4, ETS1, and BLK [7–11]. It
confirmed that our analysis processes were reliable. No-
ticeably, the allele frequency of ITGAM was higher
among Thai SLE when compared to Chinese Hong Kong
[9], but has no association with Japanese and Korean
background [61]. Thus, this implies the specificity of
these variants to the Thai SLE patients. Although we did
not recognize polymorphisms on chromosome 11q23.3
(rs11603023 on PHLDB1 and rs638893 on DDX6),
which has been identified in the Thais’ SLE, our meta-
analysis enhanced signal from rs10845606 on GPR19
allele which does not correlate with Thai SLE patients
previously [8].
It is noteworthy that meta-analysis in the Thai popula-

tion discovered novel SLE susceptible variants on FBN2.
The FBN2 allele is located on a chromosome 5 encoded
protein called fibrillin-2 [62]. Fibrillins-2 is one of the
glycoprotein components incorporated extracellularly on
microfibrils and is essential in bone, muscle, and extra-
cellular matrix formation [63]. It is well known that mu-
tation of FBN2 leads to dominant heritable connective
tissue disorders [64]. Importantly, a recent review article
has gained insight on fibrillin-2 as a critical mediator
that binds to transforming growth factor-beta (TGF-β)
during extracellular matrix formation [65]. The TLR9/
TGF-β1/PDGF-β pathway was excessively activated in
peripheral mononuclear cells isolated from LN patients
[66]. Besides, the upregulation of FBN2 correlated with
fibrosis prevalence in the spontaneous LN developed
mouse model (SWR X NZB1 F1) [67]. Although the
function of FBN2 in SLE is unclear, collective evidence
led us to hypothesize that this variant might drive either
fibrosis-associated inflammation or inflammatory induc-
tion during disease pathogenesis. Due to whole-genome
sequencing data in the Thai population is lacking, fur-
ther study using FBN2 target sequencing, whole-genome
sequencing, and variant functional characterization in a
large cohort is needed. This knowledge could be useful
to identify rare coding variants and genetic propensity
eliciting SLE pathogenesis in Thais.
Note that some of the variants were previously charac-

terized in other autoimmune diseases, including

rheumatoid arthritis and primary Sjögren syndrome
(pSS). It, therefore, indicates the sharing of underlying
genetic factors between autoimmune disease. However,
predisposing factors which could affect clinical mani-
festation driving different autoimmune disease out-
come has not been elucidated yet. Recently, the GRS
(genetic risk score) has been widely adopted to pre-
dict disease outcomes from genetic variants [68]. The
previous studies in SLE showed that overall mortality
was higher in the striking GRS SLE patients; also, the
high cumulative genetic risk could predict the specific
organ damages such as proliferative nephritis and car-
diovascular disease [69]. Our study showed a high
sensitivity for using polygenic risk scored as a marker
for SLE disease development in the Thai population.
It is exciting for further study to calculate the genetic
risk score and specific clinical manifestation among
Thai SLE patients.

Conclusions
In conclusion, our study reported susceptible loci of SLE
patients in Thai ancestry, which were variants on the
HLA class II allele, STAT4, GTF2I, and BLK. Addition-
ally, we confirmed those variants which had been re-
ported previously in the Thai populations, which were
ARID5B, TNFSF4, BANK1, TNFAIP3, CXCR5 SLC15A,
ITGAM, WDFY4, and ETS1. Interestingly, we identified
novel variants associated with the Thai SLE patients,
which were on the FNB2 allele. Summary loci associated
with the Thai SLE were seen in Fig. 4b. Functional anno-
tation analysis highlighted extracellular matrix
organization pathways specific to the Thai population.
The PRS using GWAS data is useful for SLE prediction
with sensitivity and specificity of more than 70%. Further
whole-genome sequencing study with a large sample size
might help to validate our results. Finally, our finding
provides the necessary genetic background susceptible
to SLE disease, expanding the number of molecular tar-
gets for treatment options.
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