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ABSTRACT Raw point cloud data are often noisy, superfluous, and with topological defects, such as
holes. These issues cause inaccurate geometric representation in 3D reconstruction. As a result, surface
reconstruction from point cloud data is a highly challenging problem. In this paper, we address the
aforementioned issues by taking advantage of the embedded information of segmentation, skeletonization,
and user guidance. First, we pre-process the point cloud data with three steps, relocating each point,
upsampling the point data, and optimizing normals to enhance the features and geometric details; second,
a segmentation method converts the input cloud into separate parts; finally, we construct curve skeletons
for each part and guide the surface reconstruction with minimal user interaction, where the parts of refined
smooth shapes are fused to generate the final results. The comparison studies confirmed that the proposed
method is able to produce state-of-the-art results in terms of preserving sharp features, handling missing
data, and requiring minimal user intervention.

INDEX TERMS Surface reconstruction, segmentation, enhanced features, curve skeleton.

I. INTRODUCTION
Fully developed three-dimensional (3D) scanners can
produce 3D point cloud representing complex models,
which is an important data source of computer graphics
research. Nowadays, point cloud can be easily acquired
for our purposes, but the data is usually noisy, sparse and
unorganized. A large amount of existing works have been
paid to the reconstruction of meaningful surface models from
the point cloud in the past three decades [1]–[3]. However,
surface reconstruction from incomplete point cloud is still a
challenging and unresolved problem [4].

Our work is inspired by the observation that the points
of one division share the same characteristics and represent
a primitive substructure. Segmentation is considered useful
for analyzing various aspects of a scene such as locating
and recognizing parts, classification and feature extraction.

A recent work used the deep neural network (PointNet [5])
to tackle the problem of segmenting point cloud. Although
there are many segmentation and reconstruction algorithms
[5]–[7], few works utilize the segmentation information in
surface reconstruction, in particular for challenges of han-
dling incomplete point cloud. Meanwhile, the majority of
existing works requires intensive user-interactive editing in
the pipeline of surface reconstruction [8], [9].

Based on the aforementioned motivations, we propose
a novel method that integrates both segmentation and
curve skeletonization to accomplish the goal of surface
reconstruction from incomplete point cloud. Our method
advances the state-of-the-art by its performance of preserving
sharp features, handling missing data and requiring mini-
mal user intervention. Specifically, the novelty of this work
lies in:
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• We combine the extracted information of segmentation
and skeletonization to address the challenges of mesh
reconstruction from incomplete point cloud. This is,
to the best of our knowledge, the first work to take
advantage of these two aspects in the domain of point
cloud reconstruction and achieve the state-of-the-art
performance.

• We propose an anisotropic operator for point cloud sim-
plification. This operator applies heterogeneous trans-
formation, attraction or repulsion, to areas with different
densities. This leads to a better uniform distribution
after the process of simplification and lays the critical
foundation for the follow-up procedures.

• We propose amethod of prioritized feature enhancement
to insert points along sharp boundaries of low density.
This method improves the result of the existing method
by preserving and enhancing the sharp edges in the
original point cloud.

II. RELATED WORK
A. POINT CLOUD SEGMENTATION
3D point cloud segmentation classifies parts of point cloud
with the same properties into the same region. Nguyen and
Le [6] presented a detailed survey on existing segmenta-
tion methods, which include edge-based methods, region-
based methods and model-based methods. They analyzed
and discussed the advantages and disadvantages of these
segmentation methods for point cloud. Gomes et al. [3] used
a 3D moving fovea to process parts of a scene with differ-
ent levels of resolution, which could easily recognize and
identify objects in point cloud. Ochmann et al. [10] defined
the reconstruction task as a labeling problem. They applied
point cloud segmentation to define content into rooms and
the outside area as a pre-processing filter to accelerate their
computing and simplify the processing, which inspired our
approach of applying segmentation for full reconstruction.
Aliaga et al. [7] introduced a weighted minimum set cover
to maximize the repetition of similar segments to simultane-
ously detect similarities especially for existing 3D architec-
tural models. Qi et al. [5] proposed a deep neural network
PointNet to segment point cloud. Their method provided a
unified approach to object classification, part segmentation
and semantic segmentation. Song et al. [11] introduced SSC-
Net, an end-to-end 3D ConvNet, to produce a complete 3D
voxel representation from a single-view depth map. Different
from the aforementioned works, we integrate the segmenta-
tion information as part of the reconstruction process.

B. CURVE SKELETONS
A few methods [12]–[14] have been developed for
curve skeleton extraction from incomplete point cloud.
Guo et al. [13] and Andrei et al. [15] evolved deformable
snakes based on surface tension control or smooth-
ness priors for topological and geometric reconstruction.
Tagliasacchi et al. [12] and Huang et al. [14] both obtained

medial curve skeletons and proposed smooth cross-sectional
curve interpolation to follow the skeletons for surface con-
struction. Tagliasacchi et al. [16] extended curve skeletons
with medial sheets to reconstruct non-cylindrical geometry.
In existing works, surface reconstruction with incomplete
data does not primarily consider sharp features. Inspired by
the fact that a curve skeleton is an abstraction of data that can
tolerate missing data, we have extended the existing method
to radical cases in which a large amount of data is missing.
Using the segmentation results, our approach allows fewer
user interaction for guidance to preserve and enhance sharp
features.

C. 3D RECONSTRUCTION
The task of reconstruction is from point cloud to automati-
cally construct mesh models, which are convenient to store,
edit, render, and animate. The core aims of reconstruction are
to recover missing data and preservemodel shapes. In the past
20 years, surface reconstruction technology has made con-
siderable progress [2], ranging from explicit reconstruction
to implicit function-based reconstruction. Recent works have
focused on priori knowledge-oriented model reconstruction
and interactive reconstruction in response to serious defi-
ciencies in point cloud. Ochmann et al. [10] presented an
automatic approach to the parametric reconstruction of 3D
building models from indoor point cloud. It took human
inputs as an initial guess, and later treated the reconstruction
problem as a labeling problem solved by energy minimiza-
tion. Zhang et al. [17] introduced a statistical model using
a Poisson distribution to extract feature points from point
cloud. In contrast to the model of Ochmann et al. [10],
their approach did not require any prior knowledge of the
surface. However, their reconstruction is vulnerable to data
noise and sampling quality, which have been addressed in
our proposed method to enhance the reconstruction result.
Sameer [1] reconstructed architectural scenes from sparse
3D point cloud. Yin et al. [8] considered 3D objects as a
combination of generalized cylinders and proposed theMorfit
algorithm to reconstruct generalized cylinders. Similar to
their curve based solutions, we adopt the curve skeleton as an
important interlayer and Morfit algorithm developed in [8]
for our reconstruction. Our method provides higher quality
surfaces in terms of smoothness and feature preservation
compared to previous ones.

III. OVERVIEW
An overview of the proposed approach is shown in Figure 1.
The input point cloud (Figure 1(a)) is typically unoriented,
unevenly distributed, incomplete and contains noise and out-
lier. The approach includes two steps: pre-processing and
reconstruction. The pre-processing step generates a new
point set that enhances the sharp features and preserves
the potential shape of the raw data. The pre-processing
step (see Section IV) includes three substeps: simplification
(Figure 1(b)), upsampling (Figure 1(c)), and normal opti-
mization (Figure 1(d)). Simplification relocates each point to
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FIGURE 1. Surface reconstruction. (a) Incomplete point cloud input. (b) Points simplified by redistributing the center of the points.
(c) Enhanced features. (d) Normals optimized by iterative updates. (e) Segmented results. (f) Curve skeleton. (g) Reconstruction.

the center of its local neighborhood, which is equivalent to
a smoothing filter and can reduce undesired noise. Upsam-
pling improves the quality of point cloud data by selectively
inserting new points to enhance features such as sharp edges.
Normal optimization produces accountable normals and is
specifically tailored to consider sharp features by clustering
candidates into different groups for optimization. After the
pre-processing, we segment the point cloud into meaningful
parts (Figure 1(e)), each of which contains only primitive
geometry in terms of its topological structure so that we may
use a general cylinder to represent each part in the next step.
The curve skeletons are identified for the segmented parts by
finding the L1 media skeletons (Figure 1(f)). Finally, we use
the curve skeletons and point information to generate general
cylinder structures and stitch them together to create fine
surfaces (Figure 1(g)) with interactive user editing.

IV. PRE-PROCESSING
A. SIMPLIFICATION
The original point cloud is first simplified with our
anisotropic operator. This operator is an improved work of
Locally Optimal Projection (LOP) operator [18] by apply-
ing heterogeneous transformation, attraction or repulsion,
to adjacent areas with different densities. Given the original
captured point set P = {pj}j∈J ⊂ R3, our operator projects

an arbitrary point set X = {xi}i∈I ⊂ R3 onto the original
captured set P, and minimizes the sum of distances from
projected setQ = {qi}i∈I to set P. This can be represented as:

Qk+1 = argmin
X={xi }i∈I

{Es(X ,P,Qk )+ Er (X ,Qk )} (1)

Es is an attractive energy that attracts the points in set Q
towards the local medians of original set P, while Er is a
repulsive energy that strives to equally distribute the qi. |I |
and |J | are the sizes of sets X and P respectively, and i and
j denote the indices of the respective sets. An illustration of
Equation 1 is given in Figure 2.

Standard LOP operator is likely to produce non-uniform
distribution of cloud points, creating the sparse region high-
lighted in the model of Japanese Lady (Figure 3(b)). We
overcome this problem by considering the anisotropic point
density of adjacent regions. Attraction and repulsion energy
are defined to relocate points from regions of higher density to
ones of lower density. This improves the uniform distribution
of the point cloud, in comparison to the original one. Our
algorithm updates each q(k)i ∈ Q(k) in iteration k using the
following equations. The first iteration is:

q(1)i =

∑
j∈J pjς (nj, pj − q

(0)
i )∑

j∈J ς (nj, pj − q
(0)
i )

(2)
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FIGURE 2. Projected set generated with attraction and repulsion defined
by Equation 1. (a) Arbitrary set X . (b) Projected set Q.

We define the weighted densities for each point pj in P and
qi in Q during the iteration k by

ρj = 1+
∑

j′∈J\{j}
ς (nj, pj − pj′ )

w(k)
i = 1+

∑
i′∈I\{i}

θ (||q(k)i − q
(k)
i′ ||), k = 0, 1, 2, ......

(3)

where nj is the normal vector of the point pj. The normal
vector can be calculated by PCA. ρ and w are the local
adaptive weighted densities, which allow higher densities
around sharp features. Finally, the projected result for q(k)i can
then be defined as

q(k+1)i =

∑
j∈J

pj
αij/ρj∑

j∈J
αij/ρj

µ
∑

i′∈I\{i}

||q(k)i − pj||
w(k)
i′ β

i
i′∑

i′∈I\{i}
w(k)
i′ β

i
i′

αij =
θ(||q(k)i − pj||)

||q(k)i − pj||
,

β ii′ =
θ(||q(k)i − q

(k)
i′ ||)η(||q

(k)
i − q

(k)
i′ ||)

||q(k)i − q
(k)
i′ ||

(4)

where ||.|| is the L2-norm, and µ is the weight parameter
which balances attraction and repulsion. ρ and w are the
adaptive density weights, and ς decides the normal directions
indicating the approximate location of the edges. In our exper-
iments, we set µ = 0.4, η(r) = −r . θ and ς can be expressed
as follows:

θ (r) = e−r
2/(h/4)2

ς (nj, pj − pj′ ) = e−(n
T
i (pj−pj′ ))

2/σ 2p

σp = distbb/
√
|J | (5)

where θ is a rapidly decreasing smooth weight function with
support radius h, which defines the size of the influence
neighborhood and can be adjusted adaptively. We use a
default value of h = 4

√
distbb/|J | where dist is the diagonal

length of set P’s bounding box.
Figure 3 shows the results of simplifying the Japanese Lady

model using our proposedmethod and the standard LOP [18].

FIGURE 3. Comparison of point cloud simplification by different methods
on the Japanese Lady model. (a) Raw data. (b) Our Method.

In our method, owing to the density weights ρ and w,
the attraction is relaxed by ρ with respect to the attractive
energy, and the repulsion in dense areas is strengthened by
weight w with respect to the repulsive energy. Hence, our
algorithm obtains more uniformly-spaced points than the
standard LOP.

B. FEATURE ENHANCEMENT
We propose a method of prioritized feature enhancement to
insert points along sharp boundaries of low density. For each
insertion, this method adds a new point b + dn in two steps:
finding the near-sparsest insertion base b and optimizing the
projection distance d tomove the point onto the latent surface.
Different from existing methods in feature enhancement [19],
we aim to insert more points along sharp boundaries and
at low-density regions. To achieve this goal, we introduce
a priority factor as:

P(si) = max
si′∈Nsi

(2− nTsinsi′ )
ρD(

si + si′

2
, si′ )

minimize
si′∈Nsi

D(b, si′ ) = ||b− si′ − n
T
si′ (b− si′ )nsi′ ||

(6)

where b is the base location, si is an existing point and the set
Nsi is its neighbors. Higher priority ρ is given to place points
along sharp edges. In order to get the results of sharp feature
enhancement, we use the default value ρ = 3.
To minimize the weighted projection distance, we intro-

duce the anisotropic neighbors to enhance features. Finally,
the calculation of projection distance d is as follows:

d(b, n) =

∑
si∈Nb (n

T (b− si))ς (n, b− si)ϕ(n, nsi)∑
si∈Nb ς (n, b− si)ϕ(n, nsi)

(7)
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FIGURE 4. Comparison results of feature enhancement by different methods on the plant model. (a) Simplified points. (b)
Our method.

FIGURE 5. Normal optimization. (a) Sample model. (b) PCA normal. (c) Anisotropic normal.

where ϕ(n, ni) = e−(
1−nTi ni′
1−cosα )

2

, α = 150 and ς can be obtained
from the Equation (5).

In comparison to the uniform distribution of inserted points
from the EAR method [19], our method inserts more points
at the low-density region and preserves the sharp edges
(Figure 4).

C. NORMAL OPTIMIZATION
Standard method for computing the normal direction of a
point, such as Principal Component Analysis(PCA) [19], is to
utilize the information of its local neighbors. Errors may
occur when the point is near sharp areas (see Figure 5(b));
we therefore estimate the normal based on an anisotropic
neighborhood, as in the framework of bilateral normal
smoothing [20].

For an existing point zi = (pi, ni), our goal is to minimize
the normal differences between all points on the surface and
their neighbors:

f (pi, ni) =
∑
zi′∈Nzi

||ni − ni′ ||
2
θ (||zi − zi′ ||)ϕ(ni, ni′ ) (8)

This can be achieved by iteratively updating ni with

ni←

∑
zi′∈Nzi

||ni − ni′ ||
2
ς (ni, zi − zi′ )ϕ(ni, ni′ )ni′∑

zi′∈Nzi
||ni − ni′ ||

2
ς (ni, zi − zi′ )ϕ(ni, ni′ )

(9)

where ς, ϕ can be obtained from Equation (5) and (6) respec-
tively. The results in Figure 5(c) show that the normals are
well aligned in the appropriate directions.

V. SURFACE RECONSTRUCTION
A. SEGMENTATION
We adopt a self-adaptive segmentation algorithm of two main
steps: automatic selection of the centers according to the
extracted features and segmentation of the points according
to the centers [21].

The centers can be selected with their representativeness
and diversity values. Representativeness of a point can be
measured by the relative density in comparisonwith its neigh-
bors. The diversity can be measured by computing the min-
imum distance between a point and other points with higher
densities. A point is selected as a center if it has a high density
compared to its surrounding neighbors with lower density
and a large diversity with respect to other points with high
density.

We define the representativeness value δ and the diversity
value ν as:

spAtti = log νi + log δi

ν
Rep
i = 1+

∑
i′∈I

θ(||pi′ − pi||)

δDivi = min
i′<i
||pi′ − pi|| (10)

where θ is the same as in Equation (5).
Next, we sort the points in a descending order according

to the value of sp. Center points are efficiently extracted
from points with higher rankings. Our method can effectively
select centers that are both dense and distant from other cen-
ters [21]. After obtaining the centers, each remaining point is
assigned to the same cluster as its nearest neighbor of higher
density.
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FIGURE 6. Curve skeleton extraction. (a) Curve skeleton with
unsegmented point cloud. The red rectangle denotes undesired skeletons.
(b) Curve skeleton of segmented point cloud.

B. L1-CURVE SKELETON
To obtain the geometric representation, the L1-medial skele-
ton [14] is used to represent the curve skeleton. It iteratively
projects points to produce the L1-medians of the local neigh-
borhoods. We use the following definition to obtain a set of
projected pointsM = {ml}l∈L in each segmented clusters:

mk+1l =

∑
i∈I ziα

l
i∑

i∈I α
l
i

+ µσ kl

∑
l′∈L\{l} (m

k
l − m

k
l′ )β

l
l′∑

l′∈L\{l} β
l
l′

(11)

where

β ll′ =
θ (||mkl − m

k
l′ ||)

||mkl − m
k
l′ ||

2
, αli =

θ (||mkl − m
k
i ||)

||mkl − m
k
i ||

,

σl =
λ2l

λ0l +λ
1
l +λ

2
l
, λ is eigenvalue, and λ0l ≤ λ

1
l ≤ λ

2
l .

The aforementioned iterative projection produces a set of
points M = {ml}l∈L , which can form a skeleton of the
underlying shape. It can be seen that our method improves
the standard method of skeleton extraction by introducing the
segmentation procedure and removing the undesired skeleton
parts (Figure 6 marked in red rectangle).

After obtaining the skeleton of data, we apply an interactive
Morfit [8] to reconstruct each part of the segmentation. The
separate parts are fused as an ensemble of general cylinders
around the curve skeleton. The Morfit [8] algorithm allows
users to edit the model on a larger scale. For the L1-center
skeleton of the model, users can adjust the model by dis-
connection, connection, pruning, extension, and deformation,
and hence unambiguously express the model topology.

VI. RESULTS AND DISCUSSIONS
A. IMPLEMENTATION AND PERFORMANCE
Our method is implemented in C++ on a standard PC envi-
ronment (CPU: Intel Core i5-7300HQ 2.50GHz, memory:

TABLE 1. Timecost of demonstrated examples. Unit: second.

8 GB, GPU: NVIDIA GeForce GTX 1050). Figure 7 shows
the reconstruction results on four models: hand, horse, ant
and vase. Number of user interactions are included in the fig-
ure captions.Models of hand, ant and vase contain incomplete
and sparse regions, which our method can successfully han-
dle. Table 1 lists the timecost of segmentation, skeletonization
andmesh reconstruction for all demonstrated examples in this
work. Note that for the purpose of consistency, all models
are preprocessed to the same number of cloud points. The
results show that the procedures of segmentation and mesh
reconstruction cost significantly less time than the procedure
of skeletonization.

B. COMPARISON OF SEGMENTATION RESULTS
WITH POINTNET
In Figure 8 we compared our method with the PointNet [5]
method. Our method produces semantically-meaningful seg-
mentation for the models of mouse, hand, bird, pig and laptop
(Figure 8(a)-(e)). For the handbag case (Figure 8(f)), our
method divides the handle strap into two halves, while the
PointNet method regards it as one part. PointNet successfully
divides the laptop into two parts (the same as our method)
but produces inappropriate segmentation results for cases of
mouse, hand, bird and pig. The results reveal that our method
does not require any training data and thus is not limited
to specific models, while PointNet can face challenges for
models which are excluded from its training dataset.

Table 2 lists the timecost of segmentation by PointNet
and our method. The method of PointNet is implemented
in Python on a standard PC platform (CPU: Intel Core
i7-6700 CPU 3.40GHz, memory: 16GB, GPU: NVIDIA
GeForce GTX 1080ti). Although PointNet runs on a plat-
form with higher computing capability than our method,
the timecost of our method is still less than that of PointNet.
Additionally, the training of PointNet costs over 12 hours on
the aforementioned platform.

C. COMPARISON OF RECONSTRUCTION RESULTS
WITH POISSON AND MORFIT
In this section, we compared the reconstruction results
obtained by our method with existing methods, including
Poisson [17] and Morfit [8].
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FIGURE 7. Reconstruction results on different models. The columns from left to right show the raw data, curve
skeletons of each segmented part (indicated by different colors), reconstruction results and the error plots.
(a) Hand user interaction: #BE = 1, #CE = 1, #PS = 0, #SS = 0; maximum error = 0.013. (b) Horse user interaction:
#BE = 4, #CE = 4, #PS = 2, #SS =2; maximum error = 0.028. (c) Ant user interaction: #BE = 8, #CE = 5, #PS = 11,
#SS =1; maximum error = 0.027. (d) Vase user interaction: #BE = 2, #CE = 0, #PS = 4, #SS =0; maximum
error = 0.013.

TABLE 2. Timecost comparison of segmentation between PointNet and
our method. Unit: second.

In Figure 9, the results of the lady model show that our
algorithm can deal with incomplete point cloud (Figure 9(e)),
which provides the most faithful reconstruction result with
only one path stroke and editing. Figure 9(a)-(d) are the raw
data, the extracted skeleton model, the reconstructed model
using the Poisson-based algorithm and the reconstructed

model using the Morfit algorithm. For the left arm of the lady
body, it can be seen that the shape from our method is better
fitted to the original model than the other two methods with
enhanced details. For the enlarged part, our reconstruction
result is smoother.

In Figure 10, we presented the experiment results on the
mouse model. The results show that the Poisson method fails
to reconstruct the arms, tail and whiskers of the mouse due
to sparse cloud points. The Poisson method also introduces
erroneous part on the non-existent nose part. In comparison,
the Morfit method is capable of reconstructing the majority
geometry of the original point cloud. As can be seen from
Figure 10(e), our method can produce distinct edges and
contours of the eyelid and foot toes (highlighted in blue box).
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FIGURE 8. Comparison of segmentation results between our method and PointNet. (a)-(f) our method. (g)-(l) PointNet.

FIGURE 9. Comparison results on the Lady model. (a) Raw data. (b) Skeleton. (c) Poisson. (d) Morfit. (e) Our Method.

FIGURE 10. Comparison results on the mouse model. (a) Raw data. (b) Skeleton. (c) Poisson. (d) Morfit. (e) Our Method.

Obviously, the details of the result are closer to the original
model and represent a more accurate surface.

Figure 11 compares the results of our method and Mor-
fit [8] of a plant model obtained from [14]. For the plant

model, Figure 11(b) shows the reconstructed results of each
part after the segmentation of the point cloud. Our algorithm
achieves better performance than Poisson [17] and Morfit [8]
methods by keeping the sharp features on the leaves.
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FIGURE 11. Comparison results on the plant model. (a) Raw data. (b) Skeleton. (c) Poisson. (d) Morfit. (e) Our Method.

TABLE 3. Comparison of the number of user interactions between Morfit and our method. #BE: number of skeletal branches edited/added/removed;
#CE: number of profile curves edited; #PS: number of strokes to indicate sweep paths; #SS: number of sharpening strokes.

D. USER INTERACTION IN EDITING PROCEDURE
Table 3 compares the number of user interactions in editing
procedure for the models of Lady, mouse and plant. It can
be seen that our proposed method requires a considerably
smaller number of interactions than Morfit for all models.
For example, for the Lady model, our method requires only 1
interaction while Morfit requires 3 interactions because our
method segments the model into meaningful parts and then
reconstructs them accordingly. It performs even better on the
mouse and plant models since both models contain many
curves and branches. Our method requires only 1 stroke to
indicate sweep path while Morfit requires 12 editings for
the mouse model and 7 interactions for the plant model.
Figure 11(d) and 11(e) demonstrates part of the interactions
highlighted in purple boxes.

VII. CONCLUSION
The goal of this work is to construct a mesh surface from a
point cloud. Our method first includes a pre-processing step,
which improves the quality of point cloud distribution and
enhances sharp features. Themain contribution of this work is
to utilize the embedded information from both segmentation
and skeletonization. The segmentation assists in the task of
skeleton extraction by separating the original point cloud and
improving the accuracy of the extracted skeleton. The curve
skeleton informs the final procedure of mesh reconstruction,
in particular for scenarios of incomplete point cloud. Our
approach requires fewer user interactions without degenerat-
ing the quality and efficiency of the output. For the final out-
puts, our results presentmore feature details, whereas existing
methods such as the Poisson-based method and Morfit [8]
tend to overfit the surface and smooth out subtle details.

One of the limitations from our proposed method is the
extraction of representative curve skeletons. For a model with
high structure complexity, the method still requires additional

user edits and produces excessive segments. Our future work
is to investigate the case of objects with complex shapes and
identify suitable solutions that are effective in terms of both
usability and accuracy. In addition, the pipeline of our method
is composed of a set of individual tools. Another future task is
to automate this process and provide a complete framework
to non-professional users. Exploring an end-to-end solution
with the technique of deep neural network is worth our future
efforts.
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