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China, with the world’s largest population, has gone through rapid development in the last forty years and now has over 800

million urban citizens. Although urbanization leads to great social and economic progress, they may be confronted with other
issues, including extra heat and air pollution. Local climate zone (LCZ), a new concept developed for urban heat island research,
provides a standard classification system for the urban environment. LCZs are defined by context of the urban environment; the
minimum diameter of an LCZ is expected to be 400-1,000 m so that it can have a valid effect on the urban climate. However, most
existing methods (e.g., the WUDAPT method) regard this task as pixel-based classification, neglecting the spatial information.
In this study, we argue that LCZ mapping should be considered as a scene classification task to fully exploit the environmental
context. Fifteen cities covering 138 million population in three economic regions of China are selected as the study area. Sentinel-2
multispectral data with a 10 m spatial resolution are used to classify LCZs. A deep convolutional neural network composed of
residual learning and the Squeeze-and-Excitation block, namely the LCZNet, is proposed. We obtained an overall accuracy of
88.61% by using a large image (48×48 corresponding to 480×480 m2) as the representation of an LCZ, 7.5% higher than that using
a small image representation (10×10) and nearly 20% higher than that obtained by the standard WUDAPT method. Image sizes
from 32×32 to 64×64 were found suitable for LCZ mapping, while a deeper network achieved better classification with larger
inputs. Compared with natural classes, urban classes benefited more from a large input size, as it can exploit the environment
context of urban areas. The combined use of the training data from all three regions led to the best classification, but the transfer
of LCZ models cannot achieve satisfactory results due to the domain shift. More advanced domain adaptation methods should be
applied in this application.
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1. Introduction

The United Nations has proposed 17 Sustainable Develop-
ment Goals (SDGs) for a shared blueprint for the peace and
prosperity of human beings and the planet. With an emphasis
on SDG 11 Sustainable Cities and Communities and SDG 13
Climate Action, urban scientists are devoted to investigating lo-
cal climate in cities (Masó et al., 2019; Campbell et al., 2018;
Zhu et al., 2019b), where over 55% of the world’s population
live in (Nations, 2015). The LCZ scheme proposed by Stewart
and Oke (2012) for urban heat land study has attracted many
urban scientists’ attention, as it provides a standard for world-
wide urban structure classification (Bechtel and Daneke, 2012;
Xu et al., 2017b; Perera and Emmanuel, 2018; Liu et al., 2019;
Demuzere et al., 2019a). Based on building height, impervi-
ous proportion, surface texture, etc., the LCZ scheme classifies
global land covers into seventeen categories, including ten ur-
ban classes and seven natural classes.
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China has gone through rapid social and economic develop-
ment in the last forty years; now up to 800 million population
in China live in cities (Luo et al., 2018). Urban structure in
China is different from other (western) countries. Due to the
large population and strict land supplies, high-density urban re-
gions (LCZ-1 compact high-rise) are more popular in China
(Güneralp et al., 2017; Huang and Wang, 2019). Hong Kong
and Macau, the two special administrative regions of China,
have an even higher level of urban density due to limited land
resources (Lau et al., 2019). Slums are rare in China; instead,
urban villages are quite common. Urban villages are extremely
compact regions with a typical height of seven to eight floors
(you can even shake your hands with the person in the neighbor-
ing building, as shown in the upper left of Figure 1); buildings
with more than eight floors are required to install lifts. But in-
side the buildings, the houses are well decorated. Basic equip-
ment, including electricity, water and internet supply, is also
available. Urban villages provide the youth with a cheap living
option in major cities (Kuffer et al., 2016; Wu, 2016). Although
slums and urban villages are related in social science, they are
often classified as LCZ-3 compact low-rise (Cai et al., 2016)
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and LCZ-7 lightweight low-rise, respectively, and are easily
mixed in LCZ mapping (Kotharkar and Bagade, 2018). There-
fore, to generate precise LCZ maps in China, special arrange-
ments should be made to address issues like this.

The World Urban Database and Access Portal Tools (WU-
DAPT) initiative is proposed to use free Landsat satellite data
and random forest to classify LCZs in a spatial resolution of
100 m worldwide. The WUDAPT method first collects Landsat
satellite data and resamples them to 100 m. Then, the satellite
and pre-collected reference data from Google Earth are used to
map LCZs using a random forest classifier. It becomes the stan-
dard for LCZ mapping and is widely adopted (Bechtel et al.,
2015; Wang et al., 2018a). Still, two major issues are encoun-
tered. First, an LCZ is defined by the context of urban envi-
ronment, but the this method did not consider spatial informa-
tion. Second, it requires local experts to collect training sam-
ples, which is labor intensive.

Due to limitation of the WUDAPT method, many studies
have investigated other methods for LCZ mapping. Some tackle
the availability of training samples by using transfer learning
and “borrow” training samples from other regions. Xu et al.
(2017a) proposed a domain-adaptation co-training approach with
self-pace learning to classify LCZs, where training samples from
existing cities were reused and transferred to new target cities.
Qiu et al. (2019) investigated the transferability of LCZ sam-
ples in European cities by using multi-seasonal Sentinel-2 im-
ages and found cities at lower latitude were less sensitive to sea-
sonal characteristics. Demuzere et al. (2019b) tested the global
transferability of LCZ models on the Google Earth Engine plat-
form. Although local training samples were still required, train-
ing samples from the same ecoregion considerably enhanced
the classification. Ensemble learning with multisource data is
highlighted in this task. In 2017, an LCZ mapping contest
was hosted by the IEEE Geoscience and Remote Sensing So-
ciety, where the first-prize winner used a combination of ran-
dom forests and canonical correlation forests with expert hand-
crafted features to earn the honor (Yokoya et al., 2018). An-
other research utilizing multisource data was conducted by Qiu
et al. (2018). They used five kinds of data, including global
urban footprint, open street map, VIIRS night lights, Sentinel
and Landsat multispectral data, and showed that all data could
contribute to classification. Others explored the task in spatial
domain. Zheng et al. (2018) found that building surface fraction
was sensitive to the geolocation of raster grids. Kotharkar and
Bagade (2018) applied the LCZ scheme in Nagpur, India with
the overlay technique over a grid of 250, 500 and 1000 m. They
found seven additional LCZ subclasses as a result of mixing of
two or more classes. However, to this end, existing literature
mostly classify LCZs in a pixel-based manner. Exceptions are,
a) the So2Sat LCZ42 dataset presented by Zhu et al. (2019a); b)
a recent study presented by Rosentreter et al. (2020). These two
studies both used an image size of 32×32 to generate LCZ maps
in Europe, but neither of them explained the reason to use scene
classification method or the choice of this particular image size,
leaving two important questions: 1) why scene classification is
a better solution to LCZ mapping and 2) what is the optimal
scene size for this application?

Since the key factors of LCZs include sky view factor, rough-
ness class, pervious and impervious fractions, building height
and anthropogenic heat flux, the classification of LCZs signif-
icantly depends on the surrounding environment context, . In
Figure 2, we present some LCZs derived from Sentinel-2 mul-
tispectral imagery in a spatial resolution of 10 m with image
sizes of 10×10, 16×16, 32×32 and 64×64. Let’s assume we’d
like to map LCZs in a spatial resolution of 100 m. The WU-
DAPT solution is to resample the satellite imagery from 10 m
to 100 m, in which the spatial texture is lost. Another solution
is directly classifying the 10×10 image patch to an LCZ class.
However, it is difficult for a person to tell the class with a small
image, not to say a machine. As shown in Figures 2 (a,b,c)
a, we barely recognize the class within a 10×10 image. But if
we zoom out and use a larger image (e.g., 64×64) as the rep-
resentation of an LCZ, we can easily recognize the regions as
urban villages (Figure 2a (d)), high-rise buildings with reason-
able green covers (Figure 2b (d)) and single houses (Figure 2c
(d)).

Therefore, it is only reasonable to use a large image repre-
sentation to classify LCZs, which directly changes the task from
pixel-based mapping to scene classification. Unlike pixel-based
mapping, which assigns each pixel with a class, scene classi-
fication assigns the entire image (e.g., 64×64) with only one
land cover category. In this way, the spatial context of the input
image plays an more important role (as it should be) in LCZ
mapping. For the difference between scene classification and
pixel-based mapping and for deep learning applications in re-
mote sensing, we refer interested readers to (Zhang et al., 2016;
Zhu et al., 2017; Ma et al., 2019).

In this study, our primary goal is to investigate the optimal
scene size for LCZ mapping using Sentinel-2 images. We clas-
sify LCZs in 15 cities over three economic regions in China,
which exhibits a unique urban structure from other regions in
the world. To do so, we design a very deep CNN for LCZ map-
ping. We further analyze the effect of image size to individual
class. Finally, we investigate the transferability of LCZ mod-
els in the three economic regions of China. The remainder of
this paper is organized as follows. In section 2, we review some
deep learning applications in remote sensing and go through the
so-called remote sensing image classification, including pixel-
based classification, semantic segmentation, and scene classifi-
cation. We then introduce the data and three economic regions
of China in section 3. In section 4, we describe the LCZNet in
details. In sections 5 and 6, we present and analyze the results.
Finally, we draw some conclusion in section 7.

2. Remote sensing image classification

In this section, we review what is called remote sensing
image classification. In a boarder sense, it means three dif-
ferent paths to classify satellite images, whereas the conven-
tional pixel-based (and object-based) classification is only one
of them. The readers may go to one of the three review papers
for a more comprehensive perspective of deep learning appli-
cations in remote sensing (Zhang et al., 2016; Zhu et al., 2017;
Ma et al., 2019).
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Figure 1: Photos of some of the urban landscape in China. Upper left (Guangzhou): urban villages and skyscrapers. Lower left (Guangzhou): compact mid-rise
and compact high-rise. Middle (Hong Kong): extremely compact high-rise. Upper right (Zhuhai): large low-rise and/or heavy industry with sufficient low plants.
Lower right (Zhuhai): open mid-rise.

Table 1: Summary of the three remote sensing image classification methods
Method Input Output Reference data

Pixel-wise classification
Pixel-wise classification 1D feature vector (pixel level) A label for a pixel Several labels for several pixels

Object-based image analysis 1D feature vector (object level) A label for an object Several labels for several objects
Patch-based classification 3D tensor (2D feature matrix × channel) A label for a pixel Several labels for several pixels

Semantic segmentation 3D tensor (2D image × channel) All labels for all pixels All labels for all pixels
Scene classification 3D tensor (2D image × channel) A label for an image A label for an image

2.1. Pixel-based Classification (LULC Mapping)

Remote sensing image classification is a special computer
vision task, which often stands for assigning each pixel of a
satellite image with a land cover and land use (LULC) cate-
gory. The conventional way is by treating each pixel as a sam-
ple with rich spectral features, from which we distinguish pixels
from each other and label them with the most confident LULC
class. Therefore, this task is often referred to as LULC mapping
(Thenkabail et al., 2005).

With the literature going deep, remote sensing researchers
found that the usage of textural (spatial) information is helpful
for LULC mapping (Risojević and Babić, 2012). A lot of filters
(kernels or operators) are integrated into LULC mapping to ex-
ploit textural features in a fixed size window, such as morpho-
logical profiles and its extended version (Benediktsson et al.,
2005), Gabor filters (Li and Du, 2014), and local binary pat-
terns (Li et al., 2015). The common way is to open a fixed size
window to extract the surrounding textures of a central pixel to
be classified. In this manner, the size of window is often an
odd number (e.g., 3×3 and 5×5). Because ground targets are
irregular, a fixed size window is not the best representation to
extract textural features. Object-based image analysis (OBIA)

is then proposed to group homogeneous pixels into an object to
extract textural and shape features on the object level for LULC
mapping (Blaschke, 2010).

In the era of deep learning, remote sensing researchers use
CNNs to extract textural features, as with CNNs the filters can
be adaptive and are more useful for LULC mapping (Liu et al.,
2019). Since the input sample changes from a pixel to an im-
age patch, this method is sometimes referred to as patch-based
classification (Sharma et al., 2017). In order to assign a label to
the central pixel, the size of input images is still an odd number.

In a word, the most common remote sensing image classi-
fication is usually related to LULC mapping, and the core is to
classify each pixel with a LULC category. The variants of OBIA
and patch-based classification are two ways to extract textural
features to achieve better classification, but they are still the
same task because training data remain as one satellite image
with some pixels labeled.

2.2. Semantic Segmentation
A special method called semantic segmentation for satel-

lite image classification is developed in the era of deep learning
(Audebert et al., 2016). Although the goal of semantic seg-
mentation is also to classify each pixel with a LULC (often
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(a) LCZ-3 compact low-rise.

(b) LCZ-4 open high-rise.

(c) LCZ-6 open low-rise.

Figure 2: Same regions presented as 10×10, 16×16, 32×32 and 64×64 images. One can hardly tell the class based on a small image representation, but it is easier
to tell the class based on a larger image representation.

land cover) category, the approach is different. This method
treats each satellite image (e.g., 256×256) as a sample instance.
Through a special kind of CNNs named the fully convolutional
network (FCN) (Long et al., 2015; Kampffmeyer et al., 2016),
the output of semantic segmentation is directly the classification
(segmentation) result of the entire image, rather than a classifi-
cation summation for individual pixel. FCN is the first to ad-
dress this application using deep learning. Later, many other
methods were proposed, including SegNet, UNet, PSPNet, Re-
fineNet, DeepLab, etc. We here refer interesting readers to Mi-
naee et al. (2020) for a survey of semantic segmentation algo-
rithms.

Semantic segmentation models often require the training
data to be several images with fully annotated reference data.
Some recent studies have been devoted to use imperfect anno-
tation, which is under the scope of weakly supervised learn-
ing (Song et al., 2019; Rafique and Jacobs, 2019; Wang et al.,

2020). The size of the input image is often an even number
(e.g., 256×256) in line with those from computer vision tasks.
Usually, only a few less than 10 land cover classes are recog-
nized in this task (Marmanis et al., 2016), e.g., the ISPRS Vai-
hingen and Potsdam data (6 classes) and the DeepGlobe Land
Cover Classification Challenge (7 classes), though there is some
progress with up to 21 land covers (Azimi et al., 2019). This
method is very effective in extracting single class of interest
such as roads, building footprints, clouds, ice and water (Mag-
giori et al., 2016; Shi et al., 2017; Ji et al., 2018; Yang et al.,
2019; Zhang et al., 2020).

2.3. Scene Classification

The third type of remote sensing image classification is of-
ten referred to as remote sensing scene classification (Cheng
et al., 2017; Xia et al., 2017). This task aims at classifying
the entire satellite image to only one LULC (often land use)
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Table 2: Statistics of the 15 cities in the three studied regions. Type of “Urban”
means the images used only cover the core city (downtown). Meanwhile, type
of “ALL” means the entire administrative areas are covered in the study. The
fifteen cities cover over 138 million population in China.

City Type Population (k) GDP (million USD)

Guangzhou Urban 13,501 342,200
Shenzhen ALL 10,779 362,589
Dongguan ALL 8,343 123,922

Foshan Urban 7,431 148,727
Huizhou Urban 4,727 61,422

Zhongshan ALL 3,210 54,371
Jiangmen Urban 4,592 43,413

Zhuhai ALL 1,614 44,401
Macau ALL 643 54,026

Hong Kong ALL 7,306 358,817

Shanghai Urban 24,183 489,206
Hangzhou Urban 9,468 202,230
Shaoxing Urban 4,988 81,092

Beijing Urban 21,707 453,892
Tianjin Urban 15,596 281,571

Total 138,088 3,101,879

category. For example, some standard satellite image datasets
are developed to determine whether an image containing an
airport or a stadium, or whether the satellite image is about a
parking lot or a tennis court. Since this task is very similar
to image recognition/classification in computer vision, models
trained from daily datasets like ImageNet can be and are of-
ten transferred to this special application. As a convention, the
size of the input image (e.g., 256×256) is often an even num-
ber in line with those in computer vision. This task requires the
input to be several satellite images, each labeled with one cat-
egory. Since multiple land covers may exist in the same scene
as satellite images cover a large area, the number of identifying
classes in scene classification is large, e.g., NWPU-RESISC45
(45 classes) (Cheng et al., 2017), PatternNet (38 classes) (Zhou
et al., 2018), and BigEarthNet (43 classes) (Sumbul et al., 2019).

3. Study Area and Data

3.1. Study Area

In this study, we classify LCZs for fifteen cities in three
economic regions of China. The three regions are the Greater
Bay Area, the Shanghai-Hangzhou Metropolis and the Beijing-
Tianjin Metropolis. Ten cities of the Greater Bay Area is cov-
ered in the study. The Shanghai-Hangzhou Metropolis is lo-
cated in the Yangtze River Delta; the city of Shaoxing is also
included in the study. Population and gross domestic product
(GDP) in 2018 of these cities are shown in Table 2. The fifteen
cities in this study cover a population of 138 million. Figures
3a and 3b show a 2018 night light imagery and the location
of three study regions. These regions are very bright at night,
showing their high-density population and vital economy.

3.1.1. The Greater Bay Area (GBA)
The Greater Bay Area locates at 23◦ N (Figure 3e) and

consists of 10 cities, i.e., Guangzhou, Shenzhen, Dongguan,

Foshan, Huizhou, Zhongshan, Jiangmen, Zhuhai, Macau, and
Hong Kong, as shown in Table 2. This region covers over 60
million people. Guangzhou is the capital city of Guangdong
province; Shenzhen is the third-largest city in China. The two
cities consist of many urban villages (LCZ-3) that exhibit a
unique urban structure in downtown. Other cities of this re-
gion are also important industrial centers (LCZ-8). For exam-
ple, the main factory of one of the largest high-tech companies,
Huawei, is located in Dongguan. Macau and Hong Kong are
the two special administrative regions of China and the latter
is one of the world’s financial centers. They are with a high-
density population and lack of available land, leading to their
extremely high-density urban structure (LCZ-1). As some of
the cities are small (e.g., Macau), it is difficult to classify LCZs
within one city. Also, not all LCZs are presented in a single
city. Thus, in this study, we combine the available samples in
this region.

3.1.2. The Shanghai Metropolis
The second study region includes Shanghai, Hangzhou, and

Shaoxing. Shanghai is the largest city in China. Hangzhou is
the capital city of Zhejiang province, where the company Al-
ibaba locates and the internet economy thrives. These three
cities cover nearly 40 million population. Shanghai is a city
lack of hills and mountains; the highest point is merely 98 m
above sea level, leading to the lack of dense forests (LCZ-A).

3.1.3. The Beijing Metropolis
The third region covers the major part of Beijing and Tian-

jin. Beijing is the capital city in China and Tianjin is the largest
industrial city of north China. The two cities consist of a pop-
ulation of 37 million. Due to industrial upgrades and environ-
mental protection, heavy industrial factories (LCZ-10) were re-
located from Beijing to other cities. Tianjin is similar to Shang-
hai and lack of dense forests (LCZ-A).

3.2. Sentinel Multispectral Imagery
Sentinel-2 multispectral data are used in this study. Sen-

tinel is a new mission launched by the European Space Agency
(ESA) to use satellite data to monitor land, ocean, and atmo-
sphere of the Earth (Berger et al., 2012). The data consist of 13
spectral bands, including 4 bands with a ground sampling dis-
tance (GSD) of 10 m, 6 bands with 20 m GSD and 3 bands with
60 m GSD Drusch et al. (2012). The data are currently with
the highest resolution among freely available satellite imagery.
They are very suitable for large-scale LCZ mapping.

In the study, we only use the 10 m and 20 m images be-
cause images with 60 m GSD are not designed for classification
(Drusch et al., 2012). Images with 20 m GSD are resampled
to 10 m GSD using the nearest neighbor algorithm. Four sets
of Sentinel multispectral data captured on 21 March 2018 were
used for the Greater Bay Area. Two sets were collected in the
Beijing-Tianjin Metropolis, which were captured on 20 April
2018 (Tianjin) and on 21 August 2018 (Beijing). Another two
sets captured on 9 April 2018 (Hangzhou) and 19 April 2018
(Shanghai) were collected for the Shanghai-Hangzhou Metropo-
lis.
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Figure 3: Location of three studied regions. (a) Annual VIIRS/DNB night lights (2018). (b) Studied regions shown with east China layout. (c) Beijing and Tianjin,
referred as the Beijing metropolis. (d) Shanghai, Hangzhou and Shaoxing, referred as the Shanghai metropolis. (e) The Greater Bay Area (Guangzhou, Shenzhen,
Dongguan, Foshan, Zhongshan, Jiangmen, Zhuhai, Macau, and Hong Kong).

3.3. Reference Data

Reference data were collected on Google Earth via visual
interpretation. Some regions that were difficult to distinguish
were checked in fields. For a standard Sentinel-2 image with a
size of 10980×10980, we divided it into 100 subsets with a size
of 1098×1098. The subsets were randomly chosen as training
or testing parts. Labels located in the boundary (60 pixels) of
each subset were discarded to ensure no overlapping between
training and testing data. Then, the reference image was re-
sampled to 100 m spatial resolution using the nearest neighbour
method. Therefore, a pixel in the reference image correspond
to a 10×10 scene in the satellite image.

Some photos are presented in Figure 1 to show the unique
urban landscape in China. The compact high-rise urban land-
scape, which is very common in Hong Kong and other cities
in China, is shown in the middle (Hong Kong). In the up-
per left (Guangzhou), you can find the urban villages (under
reconstruction) in the front and the skyscrapers as the back-
ground. Two buildings in the front are close enough to “shake
your hands”. The lower left side shows another photo taken in
Guangzhou, where the compact mid-rise and compact high-rise
buildings are in the same area. A large low-rise and/or heavy
industry area with sufficient low plants are shown in the up-
per right. The landscape shown in the photo (taken in Zhuhai)
is very common in China, illustrating that industrial areas can
have sufficient vegetation cover. In the lower right, we show an
open mid-rise photo taken in Zhuhai as well. The unique and
complex landscape in China requires urban scientists to care-
fully assign LCZ categories.

4. Methods

4.1. The Proposed Network

In this study, we propose a network for LCZ mapping, namely
the LCZNet (Figure 4). It includes an Inception module (Szegedy
et al., 2017), several residual blocks (He et al., 2016a) and the
Squeeze-and-Excitation blocks (Hu et al., 2018). As shown in
Figure 4, at the tail of the LCZNet, it consists of a convolu-
tional layer with multi-scale filters to extract spatial features.
The extracted spatial features are then concatenated together to
go through a SE-Residual block. This block has the ability to
integrate channel-wise features by squeeze the less important
features and excite the useful feature maps Hu et al. (2018). A
total of six SE-Residual blocks are used in the LCZNet. For
every two residual blocks, the number of convolutional filters
doubles. At the head of the network, a global average pooling
layer is applied and then the extracted high-level features are
fed in a fully connected layer with the softmax function to give
out the probability of each class.

4.2. Residual Learning

The idea of residual learning is to add a short cut connection
so that the gradients learnt from backpropagation can convey
efficiently, easing the training process (He et al., 2016b). It is
defined as,

xl+1 = xl + F ( f̂ (xl),Wl), (1)

where xl and xl+1 are the input and output of the l-th layer,Wl

is the parameters associated with the l-th layer, F is the residual
function and f̂ is an activation that only affects the F path (the
non-skip part).
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Table 3: Number of training and testing samples in the three studied regions. Each label represents a region of 10×10 in 10 m spatial resolution (see Appendix A
for the sampling strategy).

No. Class name
The Greater Bay Area Shanghai Metropolis Beijing Metropolis

Train Test Train Test Train Test

LCZ-1 Compact high-rise 167 210 146 120 151 155
LCZ-2 Compact mid-rise 89 120 66 106 180 238
LCZ-3 Compact low-rise 285 442 71 113 380 317
LCZ-4 Open high-rise 302 390 231 191 297 579
LCZ-5 Open mid-rise 190 123 192 300 272 239
LCZ-6 Open low-rise 202 177 234 204 534 417
LCZ-7 Lightweight low-rise 152 179 29 36 76 64
LCZ-8 Large low-rise 333 437 333 260 366 557
LCZ-9 Sparsely built 31 76 46 24 105 186

LCZ-10 Heavy industry 106 254 231 98 152 186
LCZ-A Dense trees 213 287 141 131 115 136
LCZ-B Scattered trees 19 29 23 24 72 73
LCZ-C Bush, scrub 22 23 7 7 7 4
LCZ-D Low plants 109 128 72 64 222 262
LCZ-E Bare rock or paved 205 196 213 165 118 179
LCZ-F Bare soil or sand 166 543 103 95 561 1004
LCZ-G Water 871 2111 888 761 1208 2868

Total 3462 5725 3026 2699 4816 7464
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Figure 4: The network (LCZNet) used in this study.

4.3. Squeeze-and-Excitation Blocks

SENet was the winner of the last ImageNet competition (Hu
et al., 2018), and the key to their success is the SE blocks. The
SE block tries to enhance the channel relationship of feature
maps learnt by CNN. As the features in later layers of a CNN
tend to be abstract and class-specific, the SE block has the ca-
pability to perform dynamic channel-wise feature enhancement
by assigning a weight to the feature maps. In the squeeze pro-
cess, for a feature map X ∈ RH×W×C , we can obtain the channel-
wise statistics z ∈ RC by using global average pooling:

zc = Fsq (Xc) =
1

H ×W

H∑
i=1

W∑
j=1

xc (i, j) . (2)

Here, Xc is a 2D feature map of channel c with a spatial dimen-
sion H × W, Fsq is the squeeze process, xc (i, j) and zc are the
value of (x, y) and the channel-wise statistics of the c-th feature
map. After the squeeze process, we obtain the channel-wise
statistics z

In the excitation process, we aim to fully capture the channel-
wise statistics. A gating mechanism with the sigmoid function
is used for this purpose,

s = Fex (z,W) = σ (W2δ (W1z)) , (3)

where σ is the sigmoid function, δ is the Rectified Linear Unit
(ReLU), and W1 and W2 are two fully connected layers. The
final output of excitation is by a channel-wise multiplication
between a scalar s and the original feature map,

yc = Fscale (xc, sc) . (4)

4.4. Network Training
The experiments were conducted on Python 3.6 using Keras

with TensorFlow backend. An Nvidia GTX 1060 6G GPU was
used to accelerate the calculation. We initialized all convolu-
tional layers with a Gaussian distribution of zero mean and 0.01
standard deviation. The AdaDelta (Zeiler, 2012) optimizer and
a batch size of 16 were used in the training phase. The learning
rate was set as 1.0 in the first 100 epochs and as 0.1 for another
30 epochs. If the training loss did not decrease for 5 epochs, the
learning rate changed to 0.1 immediately or the training stopped
when the training rate was already 0.1.

5. Results

5.1. Classification of the Greater Bay Area
The confusion matrix of the Greater Bay Area is shown

in Figure 5. This classification achieves an OA of 90.84%, a
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Figure 5: Confusion matrix of the Greater Bay Area. The background color
represents the number of predicted labels divided by the number of reference
labels of this class (%), e.g., producer accuracy for the correct class.
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Figure 6: Confusion matrix of the Shanghai Metropolis. The background color
represents the number of predicted labels divided by the number of reference
labels of this class (%), e.g., producer accuracy for the correct class.

Kappa coefficient of 0.8893 and an AA of 77.64%. We can see
that the OAs of LCZs are satisfactory (mostly greater than 80%)
except for LCZ-9, LCZ-B, and LCZ-C (less than 50%). Urban
classes are well classified, especially for LCZ-3 and LCZ-6.
LCZ-3 are urban villages with special textural features, whereas
LCZ-6 are mostly villas and single houses. Among the nat-
ural classes, LCZ-G water is no doubt the easiest to classify,
followed by LCZ-A dense tree and LCZ-F bare soil. LCZ-B
scattered trees are confused with LCZ-A dense trees.

5.2. Classification of the Shanghai Metropolis

Classification of the Shanghai Metropolis achieves an OA
of 88.66%, a Kappa of 0.8702 and an AA of 71.93% (Figure
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Figure 7: Confusion matrix of the Beijing-Tianjin metropolis. The background
color represents the number of predicted labels divided by the number of refer-
ence labels of this class (%), e.g., producer accuracy for the correct class.

6). The results are similar to the GBA region. Urban classes are
well classified, whereas natural classes LCZ-B scattered trees
and LCZ-C bush are confused. LCZ-D low plants are also con-
fused with other classes. Since the three natural classes are
quite similar in the spectral domain, additional data should be
utilized to distinguish them, e.g., high spatial resolution im-
agery, DEM, and/or LiDAR data.

5.3. Classification of the Beijing Metropolis
For the Beijing Metropolis, we obtained an OA of 84.95%,

a Kappa of 0.8454 and an AA of 68.98%. The confusion matrix
is presented in Figure 7. For this region, the confusion between
LCZ-7 lightweight low-rise and LCZ-8 large low-rise is signif-
icant. In this area, informal small factories are common, and
their urban functions are similar to large factories. In a 10 m
spatial resolution imagery, the small and large factories are eas-
ily confused as their heights and rooftops materials are similar.
A possible solution to better classification may be using high
spatial resolution imagery, in which the two types of factories
should be easily distinguished based on their textures.

5.4. LCZ Maps
The LCZ maps with the corresponding satellite images are

shown in Figure 8. In general, a reasonable urban structure
is presented in the LCZ maps. It is easy to distinguish ur-
ban classes from natural classes and water. Airports are very
easy to identify on the maps. Beijing shows a compact urban
structure. The central areas are classified as LCZ-3 compact
low-rise, while the entire urban regions are dominant by LCZ-
2 compact mid-rise and LCZ-4 open high-rise. On the upper
right side, we can see the Beijing Capital Airport is classified
as LCZ-15. Some LCZ-1 compact high-rise are observed in the
CBD region (Downtown East). For Tianjin, LCZ-1 compact
high-rise locate in the central area. The asymmetry structure of
airport is recognized as well.

8



Figure 8: LCZ maps of the study area and the corresponding satellite images.

For Shanghai and Hangzhou, more LCZ-8 large low-rises
are found in the suburban areas. In central Shanghai, LCZ-1
compact high-rise and LCZ-3 compact low-rise are the major
classes, where LCZ-4 open high-rise and LCZ-5 open mid-rise
are the dominant types in the surrounding urban areas, a result
of 30-year urban expansion. The urban structure of Hangzhou
is more compact compared with the aforementioned cities and
is dominated by compact mid-rise and open high-rise.

As for the Greater Bay Area, more dense trees are shown
in the maps due to the existence of hills and mountains. For
Guangzhou and Foshan, the core urban area is smaller than Bei-
jing. These two cities are connected to each other. The river di-

viding the city into two parts is recognized in the map. On the
left side of Guangzhou and Foshan, a lot of LCZ-8 large low-
rise are presented, a reflection of the strong industrial section in
the region. Huizhou, a small city in the region, has the smallest
urban area. The dominant LCZs for Huizhou are LCZ-C dense
trees, LCZ-D low plants, and LCZ-F bare soil. The dominant
LCZ type in peninsula of Macau is compact high-rise (on the
right side of the LCZ maps with an airport on the water). From
the satellite images, we can see a lot of “white” scattered be-
tween croplands in Zhuhai and Macau, which are the sheds of
greenhouses. We finally check the LCZ maps in Shenzhen and
Hong Kong. Compact high-rise is dominant in the Hong Kong
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Table 4: Classification accuracy with different input channel. Band index can
be found in Drusch et al. (2012).

Input band OA(%) Kappa×100 AA(%)

RGB (2,3,4) 87.04±0.60 84.48±0.78 75.29±0.66
All (2,3,4,5,6,7,8,8A,11,12) 88.61±0.48 86.58±0.57 77.17±0.61

island north, while water and dense trees are the major natural
types. Low plants are observed on top of the mountains. On the
upper side of the map shows Shenzhen city, where the major
classes are LCZ-2 compact mid-rise and LCZ-4 open high-rise.
Some LCZ-1 compact high-rises are found in the city as well.

To conclude, urban and natural classes are well distinguished
in the classification map. The urban structure with rivers or
mountains is well preserved. The obtained LCZ maps are visu-
ally satisfactory.

6. Discussion

6.1. Effect of Input Channels

Traditional pixel-wise land cover mapping relies on the rich
spectral features to classify ground targets. As a result, re-
mote sensing images often have tens of hundreds of channels.
Adding more spectral bands should help the pixel-wise classi-
fication significantly, especially when the number of original
bands is less than three (Wang et al., 2018b). On the other
hand, daily RGB images only have 3 channels, but the deep
learning model can still perform well on recognizing them. Re-
mote sensing scene classification has no big difference with
daily RGB image recognition. In Table 4, we show that even
with only RGB channel, the network still has a very competitive
performance compared to using all 10 bands of Sentinel data,
indicating the scene classification nature of LCZ mapping.

6.2. Effect of the Scene Size

To find out the optimal scene size for LCZ mapping, we
conducted an experiment with all available data with input sizes
of 10×10, 16×16, 32×32, 48×48, 64×64, 80×80 and 96×96,
corresponding to a minimum area of 100×100 m2 and to a max-
imum of nearly 1,000×1,000 m2.

The obtained results are presented in Figure 9. We achieve
the best OA and Kappa using 48×48 inputs, whereas the op-
timal scene size in terms of AA varies among studied regions.
For the GBA region, Shanghai Metropolis and Beijing Metropo-
lis, the best AAs are achieved by using 48×48, 64×64 and
96×96 inputs, respectively. Beyond Beijing Metropolis, the dif-
ference among using the three input sizes is marginal. Although
a 10×10 image size is the natural representation of a 100×100
m2 region, it is too small and lack of context for LCZ mapping.
A large scene size from 32×32 to 64×64 is found beneficial for
LCZ mapping.

To analyze the influence of image size on individual class,
we present the producer’s accuracy (PA) and user’s accuracy
(UA) obtained with 10 × 10 inputs and 48 × 48 inputs in Fig-
ure 10. Compared with natural classes, urban classes benefited
more from a large input size. For example, the PAs of LCZ-1,

LCZ-2 and LCZ-6 increased from 57% to 84%, 26% to 63%
and 75% to 84%, respectively. The UAs of these classes also
increased from 57% to 77%, 44% to 60% and 70% to 88%, re-
spectively. Since the environmental context of urban classes is
more complex, a large input size helps the network to capture
urban environmental features, which leads to its good perfor-
mance.

6.3. Comparison with the Competitors

In this section, we compare the classification among the
proposed LCZNet, the WUDAPT method, random forest (with
and without spatial features), and a recent CNN proposed by
Rosentreter et al. (2020). To use spatial information in random
forest, we extracted the standard deviation features from the in-
put image. The results of these methods in terms of OA, Kappa
and AA are presented in Figure 11.

We can see that the LCZNet significantly outperforms other
methods, followed by the CNN proposed by Rosentreter et al.
(2020). For the results obtained by random forest, they are all
worse than CNN-based methods. The result obtained by the
WUDAPT method (OA=67%) is the worst. The standard de-
viation features help random forest achieve a higher OA, about
5% higher compared to random forest with only mean spec-
tral features. For AAs, the WUDAPT method only achieves an
accuracy of 48%, whereas random forest with spatial features
achieves 65% and our method 77%. The result is expected, as
deep CNNs can effectively extract the urban environment con-
text, i.e., the spatial information, without manual spatial filter-
ing. The standard deviation filter is a simple tool to extract spa-
tial features; more advanced methods like the morphological
profiles and the Gabor filter are expected to boost the classifi-
cation, but these filters are time-consuming because one has to
grid-search the optimal parameters. The benefit of using CNNs
is to automatically learn the proper features.

6.4. Analysis of Network Depth

Network depth is another important factor to classification.
The proposed network is with six SE-Residual units. In Fig-
ure 12, we show the obtained OA, Kappa, and AA using one,
two, four, and six units with different input sizes. The pro-
posed network with six units achieves the highest classification
in terms of the three evaluation metrics with input sizes greater
than 32. When the inputs are small, a shallow network has a
better performance. Another interesting phenomenon is that, a
shallow network achieves the best classification with 32×32 in-
puts, whereas a deeper network achieves the best classification
with 48×48 inputs. A deep network is capable to handle larger
input data. This is because, the receptive field of a deep net-
work is larger than a shallow network. For example, with only
one SE-Residual unit, the receptive field of a network is 45×45
(5×3×3, determined by the size of convolutional layer in Figure
4). With the network going deep, its receptive field increases.
On the other hand, although a network with two units can sense
a region larger than the input size, which should be sufficient
in the spatial domain, a deeper network is capable to extract
high-level features, which is rather beneficial for classification.
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Figure 9: Sensitivity of the scene size. The results are averaged from ten runs. (a) Overall accuracy (OA). (b) Kappa coefficient. (c) Average accuracy (AA).
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Figure 10: PA and UA obtained with 10 × 10 and 48 × 48 inputs.

10 16 32 48 64 80 96
Input Image Size

66

68

70

72

74

76

78

80

82

84

86

88

90

O
ve

ra
ll 

Ac
cu

ra
cy

 (%
)

WUDAPT
Random Forest
Random Forest with Standard Deviation Filters
CNN Proposed by Rosentreter et al., 2020
Ours

(a) OA

10 16 32 48 64 80 96
Input Image Size

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

Ka
pp

a 
C

oe
ffi

ci
en

t ×
10

0

WUDAPT
Random Forest
Random Forest with Standard Deviation Filters
CNN Proposed by Rosentreter et al., 2020
Ours

(b) Kappa

10 16 32 48 64 80 96
Input Image Size

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

Av
er

ag
e 

Ac
cu

ra
cy

 (%
)

WUDAPT
Random Forest
Random Forest with Standard Deviation Filters
CNN Proposed by Rosentreter et al., 2020
Ours

(c) AA

Figure 11: Comparison among the proposed LCZNet, random forest (with and without spatial features), the WUDAPT method, and a recent CNN proposed by
Rosentreter et al. (2020). The results are averaged from ten runs. Note the CNN proposed by Rosentreter et al. (2020) is not applicable with 10×10 inputs.

6.5. Effect of the SE Blocks
In this section, we analyze the effect of SE blocks. The

analysis is based on 64×64 input size, where the OA obtained
with SE blocks is 89.44% and the OA without SE blocks is

88.76%. The F1 score of each class is shown in Figure 13. The
t-SNE dimension reduction is a popular method for visualiz-
ing the latent features of a deep network (Maaten and Hinton,
2008; Zhong et al., 2017; Fang et al., 2020), where the sim-
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Figure 12: Sensitivity of network depth. The results are averaged from ten runs.
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Figure 13: F1 score of each class using LCZNet w/ and w/o SE blocks.

ilar instances (same class) are closer than other instances. In
our study, the used features were the output latent features be-
fore the fully connected layer, which is shown in Figure 14. As
the margin is small, the F1 scores of these two networks are
quite similar. With SE blocks, LCZ-2 and LCZ-E are better
classified. As shown in Figure 14b with SE blocks, black tri-
angles (LCZ-E) are more compact compared to those in Figure
14a without SE blocks. In both settings, red triangles (LCZ-
2) are confused with other urban classes, and thus it is difficult
to tell the difference from visualization. The compactness of
yellow and green stars (LCZ-7 and LCZ-B), in which the net-
work without SE blocks performs better, are similar from the
visualization as well.

6.6. Effect of the Training Set Size

In this section, we explore the effect of training set size in
LCZ mapping. The experiment is conducted on all available
data with 20%, 40%, 60%, 80% and 100% of training sam-
ples with different input sizes. The results are presented in
Figure 15. With the sample set enlarging, all evaluation met-

rics (OA, Kappa and AA) increase as expected. An interesting
phenomenon is that, with limited training data, a large image
representation leads to better classification compared to a small
image. The gap in terms of OA between 10×10 and 64×64 in-
puts shrinks from 11.5% to 8.1%, whereas the gap in terms of
AA between 10×10 and 48×48 inputs shrinks from 19.0% to
11.0%. A large image representation such as 32×32 and 48×48
is found more effective in LCZ mapping, especially when the
training samples are limited. This is interesting, since we ex-
pected a large image representation would suffer from the curse
of dimensionality and led to overfitting. But the experiment
does not support the above assumption. On the other hand, it
may be because the spatial features learned from a large im-
age are more robust than those spectral-related features learned
from a small image.

6.7. Transferability
Finally, we analyze the transferability of LCZ models. In

the experiment, we trained the network with training samples
from individual region and tested it in other regions. For com-
parative purposes, we also present the result trained on all data.

The transfer matrices of OA, Kappa and AA are presented
in Figure 16. A transfer matrix is interpreted as follows. For
a model trained on the dataset x (column), its classification
accuracy on each dataset y (row) is presented in this column
as (x,y). Take the OA as an example. The model trained on
GBA obtained OAs of 89.01%, 76.77%, 56.83% and 71.81%
on the GBA, Shanghai, Beijing and all the data (CHN15-LCZ).
For the row denoted as Shanghai, the best classification is ob-
tained by the model trained on all data, followed by the model
trained on the same region and the model trained on GBA. We
observe that the transferability of LCZ models is not satisfac-
tory enough. The transferability of the Beijing Metropolis is
the worst among the three regions. Some transferability of the
Shanghai Metropolis (30◦ N, subtropical monsoon climate) and
the Greater Bay Area (23◦ N, subtropical monsoon climate) can
be observed since they are both located in south China with ev-
ergreen vegetation, while the Beijing Metropolis is located at a
higher latitude (40◦ N, temperate monsoon climate).

The transferability of LCZ models is a domain shift prob-
lem (Tuia et al., 2016), where each domain (city) has its unique
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(a) w/o SE blocks (b) w/ SE blocks

LCZ-1 Compact high-rise

LCZ-2 Compact mid-rise

LCZ-3 Compact low-rise

LCZ-4 Open high-rise

LCZ-5 Open mid-rise

LCZ-6 Open low-rise

LCZ-7 Lightweight low-rise

LCZ-8 Large low-rise

LCZ-9 Sparsely built

LCZ-10 Heavy industry

LCZ-A Dense trees

LCZ-B Sca�ered trees

LCZ-C Bush, scrub

LCZ-D Low plants

LCZ-E Bare rock or paved

LCZ-F Bare soil or sand

LCZ-G Water

Figure 14: Visualization of the latent features (before the fully connected layer). Note red and black triangles are LCZ-2 and LCZ-E, where the LCZNet with SE
blocks classified slightly better, whereas yellow and green stars are LCZ-7 and LCZ-B, where the LCZNet without SE blocks classified slightly better.
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Figure 15: Effect of the training set size.
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Figure 16: Transferability of the proposed model on local climate zones of different regions. For a model trained on dataset x (column x), its classification accuracy
on dataset y (row y) is presented at (x,y).

features and environment, and therefore, results in difficulties
in using training data from other regions. Although the topic
of domain adaptation has been developed in recent years, still,
no studies were conducted to tackle the domain shift problem
in LCZ mapping rather than the naive model transfer. More

advanced methods need to be developed or utilized for this ap-
plication.
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7. Conclusions

In this study, we conduct LCZ mapping on fifteen cities in
three economic regions of China1. We first highlight the unique
urban structure in China, which should be given special ar-
rangements for LCZ mapping. Then, we review the existing
literature about LCZ mapping. Most previous studies defined it
as a pixel-based classification task and tried to distinguish them
with spectral or multisource information. However, in the orig-
inal paper, an LCZ is expected to have at least a diameter of
400-1,000 m so that it is possible to have an impact on the local
climate. Therefore in this study, we define LCZ mapping as a
remote sensing scene classification task. By doing so, the rich
surrounding environment context is being considered. Since it
is more reasonable to treat LCZ mapping as scene classifica-
tion, we obtained very promising results on the fifteen cities
(88.61%), nearly 20% higher than that obtained by the standard
WUDAPT method in terms of OA. A supporting evidence that
LCZ mapping should be a scene classification is that, we ob-
tained a very competitive result (OA=87.04%) by using only
RGB channel.

We also explored the suitable image size for LCZ map-
ping. An image size of 48×48 (480×480 m2) was found as
the optimum in terms of the three evaluation matrices, although
the difference among 32×32, 48×48 and 64×64 is marginal.
Larger image representation is more appropriate for LCZ map-
ping compared to a smaller one. The improvement of using
large inputs is even more beneficial when the training samples
are small.

The transferability of various models from different regions
is also investigated. For the three economic regions in China,
namely the Greater Bay Area (23◦ N, subtropical monsoon cli-
mate), the Shanghai Metropolis (30◦ N, subtropical monsoon
climate) and the Beijing Metropolis (40◦ N, temperate monsoon
climate), the models’ transferability of the first two regions is
better than the last one. The combined use of all the available
data achieved the best results for all three regions. Therefore, it
is recommended to combine all the available data for large scale
LCZ mapping. When applying a model from a different region,
researchers should compare the economic and natural environ-
ment of the two regions. However, the domain shift problem in
LCZ mapping is significant. The current transfer in the litera-
ture of LCZ mapping is only a naive solution. More advanced
domain adaptation techniques are expected to be applied in this
application.

The ambiguity of LCZs is a major issue when generating re-
gional and global LCZ maps. A future direction for LCZ map-
ping is to generate multilabel LCZ maps, where a region can
be classified as several LCZ classes, i.e. the LCZ subclasses.
Future studies should be conducted to tackle this issue.
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Appendix A. The Sampling Strategy

Figure A.17 shows an example of the sampling strategy.
The reference data is with 100 m spatial resolution and the satel-
lite data is with 10 m. Thus, when classifying the entire satellite
image, the moving window moves with a stride/skip of 10. If
the input size is larger than 10×10, we extended the input patch
in all directions equally (e.g. 3 pixels for 16×16 and 27 pixels
for 64×64). The light blue area with a text “A” (Figure A.17a)
shows the current scene and the input patch (dark blue) in clas-
sification when using 64×64 input size. The surrounding dark
blue region is the environment context with a 64×64 input size.
After classifying this scene, we jump to the next scene (a skip
of 10 pixels) and continue classification. The scene with a text
“B” (Figure A.17b red and dark red region) is the 5th scene after
scene A, where the overlapped areas between A and B (Figure
A.17c bright blue region) are the shared context for LCZ map-
ping.
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Figure A.17: Illustration of the sampling strategy as scene classification.
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