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Abstract: Environmental and human health challenges are pronounced in Asia, an exceptionally diverse and complex region
where influences of global megatrends are extensive and numerous stresses to environmental quality exist. Identifying
priorities necessary to engage grand challenges can be facilitated through horizon scanning exercises, and to this end we
identified and examined 23 priority research questions needed to advance toward more sustainable environmental quality in
Asia, as part of the Global Horizon Scanning Project. Advances in environmental toxicology, environmental chemistry,
biological monitoring, and risk‐assessment methodologies are necessary to address the adverse impacts of environmental
stressors on ecosystem services and biodiversity, with Asia being home to numerous biodiversity hotspots. Intersections of
the food–energy–water nexus are profound in Asia; innovative and aggressive technologies are necessary to provide clean
water, ensure food safety, and stimulate energy efficiency, while improving ecological integrity and addressing legacy and
emerging threats to public health and the environment, particularly with increased aquaculture production. Asia is the largest
chemical‐producing continent globally. Accordingly, sustainable and green chemistry and engineering present decided
opportunities to stimulate innovation and realize a number of the United Nations Sustainable Development Goals. Engaging
the priority research questions identified herein will require transdisciplinary coordination through existing and nontraditional
partnerships within and among countries and sectors. Answering these questions will not be easy but is necessary to achieve
more sustainable environmental quality in Asia. Environ Toxicol Chem 2020;39:1485–1505. © 2020 The Authors. Environ-
mental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCTION

Environmental and human health challenges in Asia are
pronounced and increasingly influenced by global megatrends
spanning rural to urban and industrial gradients and inter-
actions within and among countries, which vary across all
stages of development. Located within the broader Asia Pacific
region, which extends from the western Pacific Ocean to the
Russian Federation in the north, New Zealand in the south,

Turkey in the west, to Kiribati in the east (shaded area in
Figure 1; United Nations Regional Commissions New York
Office 2017), Asia is the largest continent in the world, covering
29.4% of the Earth's land surface (International Maritime
Organization 2017). In contrast, Oceania is the smallest continent,
consisting of thousands of islands (National Geographic 2012).
The Asia Pacific region is home to approximately 4.1 billion
people, making up more than half of the world's population of
approximately 7.5 billion in 2017 (Table 1; International Maritime

FIGURE 1: Area coverage of Asia‐Pacific region (modified from United Nations Regional Commissions New York Office 2017). It is important to
note that SETAC Asia Pacific Geographic Unit does not include members from Georgia, Middle East, Russia, and Turkey.
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Organization 2017; Population Reference Bureau 2017; United
Nations Economic and Social Commission for Asia and the
Pacific 2017). Of the top 10 most populated countries, 6 (i.e.,
China, India, Indonesia, Pakistan, Bangladesh, and Russia) are
within Asia (Population Reference Bureau 2017). By 2030, Asia will
include 22 megacities, and it is urbanizing, along with Africa,
faster than other continents (United Nations 2014). With such
population growth and urbanization come challenges for waste
management, and Asia has been predicted to become the
leading generator of global municipal solid waste by 2030 (United
Nations Environment Programme 2015).

Though it is difficult to single out a representative primary
industry in Asia because of varying development levels among
countries, which gives rise to very diverse and complex in-
dustry types, countries tend to shift from agriculture to man-
ufacturing and then eventually to services (Economy
Watch 2010). In more developed and high‐income areas, such
as Hong Kong, Singapore, and Japan, gross domestic prod-
ucts (GDPs) are primarily generated by providing services
because the agriculture and manufacturing industries de-
clined some decades ago (Economy Watch 2010). For
emerging countries like China, industries are now shifting to
provide services with a lesser focus on the manufacturing in-
dustry. Less developed countries, such as Vietnam and India,
focus mainly on manufacturing, mining, and producing semi-
conductors and other finished goods while slowly shifting to
providing services. The income classification of countries is
based on gross national income per capita (in US dollars
[USD]) using the World Bank Atlas method; the results show
that Southeast Asia is the poorest area in the Asia Pacific re-
gion, with most countries having a GDP per capita less than
USD $10 000 (Table 1; World Bank 2017a).

Because the Asia Pacific region is home to more than half of
the world's population, water security, clean water availability,
and water sanitation are consistently great challenges (Asian
Development Bank 2016). The situation is especially alarming in
the poorest area of the region, Southeast Asia, where agriculture
and manufacturing activities are the main industries that have a
high demand for water resources and at the same time generate
pollution. Although water security problems have improved over
the past decades, there remains much room for improvement in
household water supply and sanitation. For example, there are
approximately 1.7 billion people living in areas without proper
water and wastewater treatment (Eco‐business 2011; Asian
Development Bank 2016). Most countries are only equipped
with septic tanks or pit latrines for collecting wastewater, and
discharge to nearby water bodies occurs without any treatment,
especially in rural areas (Table 1). Biological wastewater‐
treatment facilities are mainly installed in major cities. Installation
of advanced facilities is rare in Oceania, where countries usually
directly discharge used water to the marine environment be-
cause of the low population density. However, the mixed usage
of drainage systems and lack of water infrastructure may lead to
the outbreak of water‐related health diseases such as cholera
(World Health Organization 2020). Therefore, the development
of advanced water infrastructure, improvement of wastewater
facilities, and management of environmental and human health

hazards associated with poor water quality are urgently needed
in this region. In 2013, only 32% of sewage in Asia received
treatment (Sato et al. 2013), though the technologies employed
and the associated effectiveness vary among countries, which
further highlights the water‐ and waste‐management challenges
in this part of the world.

Besides water insecurity associated with poor quality, bio-
diversity conservation is another great challenge in Asia. This
region is rich in biodiversity, with the most diverse coral reefs in
Southeast Asia and numerous unique species found on various
isolated islands, especially in Oceania (United Nations
Environment Programme 2016; Hughes 2017; International
Maritime Organization 2017). Approximately 70% of the
world's species are found in 12 countries: Australia, Brazil,
China, Colombia, Costa Rica, the Democratic Republic of
Congo, Ecuador, India, Indonesia, Madagascar, Mexico, and
Peru, 4 of which are located within the Asia Pacific region
(Hood 2010). However, many species in this region are under
threat that is closely related to anthropogenic factors such as
increasing population, its associated increase in pollution of
water bodies, urbanization, deforestation, illegal harvesting,
illegal trading, as well as climate change. Of 36 recognized
biodiversity hotspots where >70% of the original habitat has
been lost, 14 are found in the Asia Pacific region (Hood 2010;
Critical Ecosystem Partnership Fund 2016).

Given the high population density, rapid urbanization, and
industrialization in the region, especially in Southeast Asia,
there are inevitably increasing chemical contaminants in
water, air, and soil/sediment. In addition, global chemical
production is increasingly centered in Asia (United Nations
Environment Programme 2019); for example, China, Japan,
and Korea are 3 of the top 5 countries for global chemical
sales (European Chemical Industry Council 2020). Pollution
problems are further intensified by a lack of environmental
infrastructure to control the release of pollutants at the source
and cleanup in many developing nations in this region. Critical
global hotspots of biodiversity in tropical Asia are facing
multiple threats including chemical pollution. Researchers and
regulators in environmental quality management play essen-
tial roles in revealing the environmental fate of these chem-
icals, evaluating their environmental risks, and providing
science‐based solutions to mitigate and minimize their neg-
ative impacts to the environment and human health. However,
identifying which specific priority research needs should be
addressed to advance more sustainable environmental quality
in Asia has remained elusive.

The Global Horizon Scanning Project (GHSP) was launched to
identify important environmental quality research needs around
the world, by transparently engaging diverse disciplines working
in the government, academia, and business sectors (Brooks
et al. 2013). With the support of the Society of Environmental
Toxicology and Chemistry (SETAC), the GHSP has been suc-
cessfully accomplished in the Australasian region of Oceania,
Europe, North America, and Latin America; and its priority re-
search questions have been published (e.g., Furley et al. 2018;
Van den Brink et al. 2018; Fairbrother et al. 2019; Gaw
et al. 2019). As part of the GHSP, we invited members of the
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SETAC Asia Pacific Geographic Unit to recommend priority re-
search questions for Asia in relation to chemical risk manage-
ment with consideration of the aforementioned demographic
characteristics, economic development, and geographic fea-
tures of the Asia Pacific region. Because a similar HSP exercise
was recently conducted for Oceania (Gaw et al. 2019), we spe-
cifically focused on Asia. This Asian HSP exercise aimed to
identify the top priority research questions in the region through
bottom‐up stakeholder engagement. Outcomes of this HSP
were thus intended to beneficially inform the researchers,
funding agencies, and regulatory authorities regarding key
research priorities and knowledge gaps in the region.

METHODS
Here, we employed a transparent and inclusive approach

and followed a well‐established social science process in se-
lection of the research questions (Sutherland et al. 2011). In
2016, members of the SETAC Asia Pacific Geographic Unit
(~550 members from academia, government, and business)
were invited via email to submit priority research questions to
advance toward more sustainable environmental quality using
an online platform. Like other regional HSP exercises, mem-
bers were informed about how to develop an ideal priority
question (Sutherland et al. 2011), which should address im-
portant knowledge gaps, be answerable through a realistic
experimental design, be answerable within a 5‐yr period if
supported with sufficient research funding (e.g., €5 million),
cover a spatiotemporal scale that could realistically be ad-
dressed by a research team, not be answerable by “it all
depends” or “yes” or “no,” and contain a subject, an inter-
vention, and a measurable outcome. In addition, the questions
were solicited to be research‐oriented, rather than policy‐
based, while the spatial scale had an Asian focus, within a
global context. Thus, this workshop format was more inclusive
than traditional formats.

After gathering the submitted questions, the project team
reviewed them and removed any duplicated questions and
responses outside the scope of the exercise. Then, we put
forward a list of 113 questions for further deliberation at the
Asia Horizon‐Scanning Workshop, which was organized in
conjunction with the 2016 SETAC Asia Pacific meeting in
Singapore. The workshop participants were living or working
in the Asia Pacific region. They included tripartite (74%
academia, 17% business, 9% government), geographic (from
14 different countries), disciplinary and gender (60% males,
40% females) diversity. Such diversities of the members who
originally submitted questions and workshop participants
were thus consistent with previous horizon scanning efforts in
other geographic units. During this 1‐d Asia Horizon‐Scanning
Workshop, there were 2 breakout sessions, each session
having 3 concurrent theme groups. Hence, 6 themes were
initially arranged for the group discussion purposes, including
1) tools for improving risk assessment; 2) multiple stressors
and mixtures; 3) contaminants of emerging concern; 4) risk
assessment, regulation, and guidelines; 5) environmental
chemistry and engineering; and 6) spotlight on Asia. The

submitted questions were assigned to the 6 themes according
to relevance and then deliberated by participants with multi-
disciplinary expertise from the government, academia, and
industry sectors in Asia. To generate the priority research
questions, the workshop participants further identified 2 to 5
priority research questions in each theme, and then the
combined list of the research questions was further discussed,
prioritized, and endorsed at a final plenary session, consistent
with methods of other GHSP workshops (Furley et al. 2018;
Van den Brink et al. 2018; Fairbrother et al. 2019; Gaw
et al. 2019). Finally, the selected priority questions were
grouped into 4 overarching themes based on their contexts
and relatedness.

RESULTS AND DISCUSSION
From the 113 questions, 23 priority research questions for

Asia were identified during the Singapore Workshop (Table 2).
These questions were broadly identified within 4 overarching
themes: 1) environmental fate and risks of chemical con-
taminants; 2) advanced technologies for understanding and
predicting toxicities and environmental risks of chemical con-
taminants; 3) issues of multiple stressors; and 4) sustainability,
food safety, and green chemistry.

Environmental fate and risks of chemical
contaminants

Two types of information are prerequisites for environ-
mental risk assessment of chemical contaminants: 1) measured
or predicted environmental concentrations (PECs) of the
chemical of concern and 2) its predicted‐no‐effect concen-
tration (PNEC), which is derived from available toxicity data (Lin
et al. 2005; Lin and Meng 2009; Leung et al. 2014, 2018; Zhou
et al. 2019). Four priority research questions related to the
detection and quantification of various emerging chemical
contaminants in different environmental compartments (i.e.,
PECs) and how to relate observed toxicity to PECs of individual
chemicals in a mixture.

How do we develop broad screen analytical
methods integrating nontarget directed analysis
for identifying key chemical stressors responsible
for observed toxicity? (Q1)

Asia is one of the fastest‐growing areas in the world. In
addition to intensive agriculture practices to feed the high
population in this region, rapid urbanization and in-
dustrialization pose a high stress to the environment. As a
result, the ecosystems, including humans, in this region have
been, and still are, continuously exposed to a complex mix-
ture of legacy and emerging contaminants which arise from a
variety of sources, such as domestic sewage, industrial wastes,
agriculture runoff, and aquaculture practices. The occurrence
of contaminant “cocktails” in the environment poses potential
ecological risks, yet these risks are inadequately understood,
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TABLE 2: The 23 priority questions identified by the Asian Horizon Scanning Project (HSP) among 4 themesa

No. Europe
Latin

America
North

America Oceania Total

Theme 1: Environmental fate and risks of chemical contaminants
1 How do we develop broad screen analytical methods integrating

nontarget directed analysis for identifying key chemical stressors
responsible for observed toxicity?

✓ ✓ ✓ 3

2 How do we develop methods to identify and quantify nano‐ and
microplastics in different environmental compartments (water,
sediment, soil, biota) associated with potential toxicity or interactions
with other contaminants?

✓ ✓ 2

3 What are the terrestrial and aquatic risks of atmospheric contaminants
in Asia?

0

4 How can we improve methods to classify, identify, and separate
nanomaterial contaminants from their bulk counterparts and
differentiate effects caused by nanomaterials in the environment?

✓ 1

Theme 2: Advanced technologies for understanding and predicting toxicities and environmental risks of chemical contaminants
5 How can we better use field data and incorporate new big data (e.g.,

ecological genome) approaches for improving ecological risk
assessments and decision‐making?

✓ ✓ ✓ 3

6 How can we develop and advance laboratory (e.g., in vitro, in vivo,
analytical) and theoretical (toxicokinetic, toxicodynamic) approaches
to understand (prospective, retrospective) adverse outcomes of
complex chemical mixtures (e.g., pesticides, surfactants, medicines,
metals)?

✓ ✓ ✓ 3

7 How we can improve the current approaches to assess and manage
risks of micropollutants and emerging contaminants?

✓ ✓ ✓ 3

8 How can we integrate high‐throughput screening with next‐generation
computational toxicology tools to support hazard and risk
assessment of individual chemicals and complex mixtures?

✓ ✓ ✓ 3

9 How can we develop advanced biological tools to better understand
and predict toxic mechanisms and interactions across species in
multiple highly biodiverse compartments for risk assessment and
management of chemical contaminants in Asia?

✓ ✓ ✓ 3

10 How can we analyze big data and develop effective risk‐communication
approaches (e.g., report card system, real‐time reporting) for
environmental status (e.g., ecosystem functions and services)?

✓ ✓ 2

11 How can we use new developments in nanoscience and
nanotechnology to advance ecotoxicological research?

0

Theme 3: Issues of multiple stressors
12 How can we strengthen the environmental quality criteria system (e.g.,

water, sediment, soil, air) to adequately protect ecosystems that are
experiencing multiple stressors and changing climate?

✓ ✓ 2

13 What are the influences of changing landscapes and climate change on
the resilience of terrestrial and aquatic ecosystems, and how do we
measure the ecological endpoints with reference to chemical
pollution?

✓ ✓ ✓ ✓ 4

14 How can we develop an integrative and effective framework (e.g.,
environmental policy, green technologies) to manage nutrient
loading and associated hypoxia in Asia?

✓ 1

15 How will changes to physicochemical characteristics (e.g., salinization/
ion imbalance, pH, temperature, hypoxia attributable to enrichment)
alter the bioavailability and effects of chemical stressors in the
environment?

✓ ✓ 2

16 How can we prioritize and apportion chemical stressors in complex
scenarios to guide restoration efforts?

✓ ✓ ✓ 3

17 How can we identify adverse impacts of multiple stressors in the field to
biodiversity (including multigenerational, evolutionary, and
developmental), ecosystem services, and human health?

✓ ✓ ✓ 3

18 To what extent is seawater pH in Southeast Asia impacted by terrestrial
inputs (e.g., organic carbon, nutrients, other anthropogenic sources
such as mining), how are these inputs changing as a result of human
activities (including CO2), and how does this affect vulnerable coastal
ecosystems such as coral reefs?

0

Theme 4: Sustainability, food safety, and green chemistry
19 How can we develop new technology and promote green chemistry for

enhancing reuse of waste and preventing environmental impacts?
✓ ✓ ✓ ✓ 4

(Continued )
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especially in developing nations in Asia. While evaluating the
ecological risk caused by individual contaminants in aquatic
ecosystems has been relatively well developed, especially for
common chemical contaminants (e.g., the AIST‐Multi‐purpose
Ecological Risk Assessment and Management Tool; https://en.
aist‐riss.jp/softwares/5511/), tackling multiple stressors in a
complex system at the same time is an essential step forward
(Escher et al. 2020). In this context, it is imperative that more
holistic methods to assess the risk in ecosystems are devel-
oped, and both the key stressors and the causal relationships
between the stressors and ecological responses are identified.
Recent studies suggest that the observed toxicity is driven
mainly by a few chemicals, although multiple contaminants
are present in the environment (e.g., Stehle and Schulz 2015).
Before effective measures to mitigate the risk in ecosystems
can be implemented, it is important to identify the driving
agents for the observed toxicity within the systems. Tradi-
tional ecological risk evaluations have typically compared
chemical concentrations in environmental media to available
thresholds (i.e., PNECs) to define risk (Maruya et al. 2016), and
the target chemical analysis–based methods are in many cir-
cumstances unable to prioritize key toxicants in complex
mixtures. Fortunately, there is growing awareness of the im-
portance of the challenges, expressed in a growing body
of research on nontarget chemical analysis (Leung 2018;
Moschet et al. 2018). Although the development and har-
monization of sample databases for authentication are urgent
needs for the application of nontarget analysis approaches,
the development of sophisticated instruments in recent years,
particularly a variety of high‐resolution mass spectrometers,
along with the integration of computational chemistry and
data science, brings hope that we will see substantial progress
in the field of nontarget analysis. With such analytical ad-
vancements, a combination of toxicity identification evalua-
tion and effect‐directed analysis can provide a more holistic
understanding of adverse effects from both target and non-
target contaminants (Li et al. 2018b).

How do we develop methods to identify and
quantify nano‐ and microplastics in different
environmental compartments (water, sediment,
soil, biota) associated with potential toxicity or
interactions with other contaminants? (Q2)

Asia is one of the leading regions for plastics production,
accounting for nearly half of the world's production (Wu
et al. 2017). Accordingly, the input of plastic wastes from East
Asia into the adjacent ocean was estimated as the highest in
the world (Jambeck et al. 2015). In the field, plastic wastes are
gradually broken into small pieces and finally microplastics
(<5mm) and even nanoplastics (in nanometers). It is important
to note that the sizes of nano‐ and microplastics overlap with
naturally occurring particles such as sediment clay (<2 μm), silt
(2–50 μm), and sand (0.05–2mm; Connors et al. 2017). There-
fore, it is necessary to develop and standardize effective
methods to differentiate nano‐ and microplastics from naturally
occurring particles and quantify their occurrence in different
environmental compartments, including water, sediment, soil,
and biota. Moreover, there may be a cocktail of organic
chemical contaminants, which are absorbed into and/or ad-
sorbed onto the micro‐ and nanoplastics, could pose harmful
effects to living organisms after ingestion of these con-
taminated particles (Ziccardi et al. 2016). Understanding the
interactions among microplastics and associated chemicals is
essential to evaluate the potential risk related to plastic debris.

What are the terrestrial and aquatic risks of
atmospheric contaminants in Asia? (Q3)

As discussed in the Introduction, a great proportion of the
human population resides in Asia (Table 1). Extensive human
activities associated with the high population density in this
region have resulted in a growing demand for various re-
sources as well as a constant release of pollutants into the
environment. As such, a variety of contaminants have been

TABLE 2: (Continued )

No. Europe
Latin

America
North

America Oceania Total

20 Given increasing population growth and per capita demand for
seafood in Asia, how can we develop sustainable aquaculture
practices while protecting environmental quality, particularly in
coastal waters?

✓ 1

21 How can we develop innovative solid waste‐management programs to
protect environmental quality, particularly in rural areas of less
developed regions in Asia?

✓ 1

22 What is the extent of antibiotic pollution in the environment and
associated risks of antibiotic resistance in rural and urban regions
of Asia?

✓ ✓ ✓ 3

23 How can we develop sustainable development frameworks (e.g., green
chemistry) to address, balance, and manage the production (e.g.,
food production, forestry) and protection of ecosystem services?

✓ ✓ ✓ ✓ 4

Total 12 10 15 14

aIf a similar question was reported by the HSP in another region (i.e., Europe, Latin America, North America, and Oceania), it is indicated with a tick.
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detected in different environmental compartments, such as air,
soil, water, and sediment. Most studies on the occurrence and
risk of contaminants in the environment are restricted to a
single compartment, but the environment is not an assembly of
isolated compartments. Therefore, it is important to under-
stand the movement of contaminants across different envi-
ronmental compartments, and a variety of multimedia fate
models have been developed and increasingly used for pre-
dicting the fate and transport of legacy and emerging con-
taminants (Cowan et al. 1995). Air pollution is a severe problem
in Asia, especially in India and China. Although extensive
studies have been conducted on ambient air pollution and its
associated health issues in this region as well as the transport of
airborne contaminants across country boundaries (Zhong
et al. 2012), little is known about how these atmospheric con-
taminants may affect the terrestrial and aquatic ecosystems via
precipitation processes. Soil and sediment are important sinks
for a suite of contaminants, and as a result, contaminants in air
may eventually end up in soil and sediment, potentially causing
adverse effects to organisms dwelling in these compartments.
Given that air pollution is a major concern in Asia, a high pri-
ority should be given to research studies that incorporate risk
assessment and multimedia fate modeling to reveal the com-
position, fate, and transport of air pollutants (Li et al. 2014; Lu
et al. 2018).

How can we improve methods to classify,
identify, and separate nanomaterial
contaminants from their bulk counterparts and
differentiate effects caused by nanomaterials in
the environment? (Q4)

A great number of laboratory experiments have been con-
ducted for assessing adverse outcomes of nanomaterials (Lai
et al. 2018). Unfortunately, the key drivers of toxicity in these
assessments are not clear in some cases, and the observed
effects may be caused by their bulk counterparts and released
ions or degradants instead of the nanomaterials themselves.
Therefore, the selection of appropriate methods to identify
nanomaterials and differentiate their toxicity from bulk coun-
terparts is imperative (Geitner et al. 2020). Such a finding is
partially attributable to the fact that there has been increasing
evidence to show that many nanomaterials are not consistently
more toxic to living organisms when compared with their bulk
counterparts (Wiesner 2019). Hence, current regulations on
bulk chemicals may already offer adequate environmental
protection from nanomaterials (Lai et al. 2018). Nonetheless,
the movement of nanoparticles including nanoplastics within
organisms including humans, their long‐term health im-
plications, and their interaction with other coexisting chemicals
are still largely unknown (see Question 2). To better understand
the environmental fate and potential environmental risk of
nanomaterials, we will need to tackle the major challenges in
the field of nanotoxicology including how we can isolate target
nanoparticles from environmental samples, accurately monitor
and quantify them, characterize their physicochemical

properties (e.g., aggregation size, zeta potential, ion dis-
solution), and link these results to their observed toxicity in
living organisms (Lai et al. 2018).

With rapid advancements in analytical instrumentation and
DNA sequencing, we have been entering a new era of high‐
throughput omics in recent years. Such technologies enable us
to obtain a large amount of data on biological responses
to chemicals in terms of gene expression (transcriptomics),
protein expression (proteomics), and metabolite profiles
(metabolomics; Leung 2018). We can now use these omics'
approaches to uncover the toxic mechanisms of chemicals and
their mixtures at the molecular and ecosystem levels. However,
technological breakthroughs will be dependent on further de-
velopment of complementary mega‐database and better bio-
informatics for handling such large data sets. Under this central
theme, there are 7 priority questions.

How can we better use field data and
incorporate new big data (e.g., ecological
genome) approaches for improving ecological
risk assessments and decision‐making? (Q5)

Because the current paradigm of ecological risk assess-
ments of chemical contaminants is heavily dependent on
laboratory‐driven toxicity data for individual chemicals and in-
dividual culturable species, there is a high uncertainty asso-
ciated with use of such laboratory data to derive and
extrapolate PNECs for the protection of actual ecosystems and
their resident biota, hence resulting in high safety margins (Lin
et al. 2005; Lin and Meng 2009; Leung et al. 2014, 2018;
Merrington et al. 2014). Field data can be used to cross‐check
the validity of the laboratory‐based PNECs (Leung et al. 2005)
and provide direct evidence on the ecological process and
status of an ecosystem (e.g., soils, rivers, lakes, estuaries) that
are potentially impacted by toxic substances and, under some
circumstances, constitute a line of evidence in guideline de-
termination itself (Cormier and Suter 2013; Australian and
New Zealand Governments 2018). Such applications have been
historically restricted by the limitation of field survey tech-
nologies (Yang et al. 2018), but that situation is rapidly
changing (Australian and New Zealand Governments 2018).

The advancement of ecogenomics approaches provides an
open system to evaluate the ecological structure and function
of an ecosystem in a high‐throughput fashion (Chariton
et al. 2016; Leung 2018; Zhang et al. 2018). For example, meta‐
barcoding of environmental DNA (eDNA), as a new biological
survey method (Deiner et al. 2017), can be used to monitor the
phylogenetic diversity of organisms by detecting species‐
specific target DNA from water (Yang et al. 2017; Li
et al. 2018a) and sediment samples (Xie et al. 2018a, 2018b). In
recent years, eDNA technologies have been rapidly devel-
oped, primarily focusing on method development and appli-
cation in the field. To fully apply their potential in
environmental impact assessment, some uncertainties must be
addressed including the lack of indication of abundance of
each specie and spatial uncertainties due to eDNA movement

Priority research questions for Asia—Environmental Toxicology and Chemistry, 2020;39:1485–1505 1493

wileyonlinelibrary.com/ETC © 2020 The Authors



(e.g., flow dynamics in rivers). Fortunately, there are ongoing
research efforts to solve these issues (e.g., Altermatt
et al. 2020).

Meta‐transcriptomics and meta‐metabolomics can analyze
the functional and metabolic diversity of species within natu-
rally occurring assemblages of organisms (e.g., communities;
Grossmann et al. 2016). Integration of field‐based mesocosms
and ecogenomics can provide an excellent platform to assess
the chemical‐induced alteration on biodiversity, community
composition, and ecosystem function using a tree‐of‐life ap-
proach (Li et al. 2018a; Yang et al. 2018). For example, eDNA
meta‐barcoding technologies can be applied in assessing
community‐level effects triggered by toxic stressors. Firstly,
samples can be collected from different sites along a stress
gradient and the species composition obtained by meta‐
barcoding. Secondly, response patterns of different taxa can
be classified to different groups, for example, sensitive, tol-
erant, and nonaffected groups. Field‐based species sensitivity
distributions (f‐SSDs) are developed by the 50% abundance
concentration of the sensitive taxa (Leung et al. 2005). Finally,
an ecological source‐to‐outcome pathway can be built by
a linear connection among aggregate exposure pathways
(Teeguarden et al. 2016), adverse outcome pathways, f‐SSDs,
altered community structures, and altered ecosystem services.
Such a novel field‐based approach will require further vali-
dation through field studies in different habitats in Asia. Al-
ternatively, a multivariate approach comparing reference to
successive exposure gradient classes may also derive a
dose–response relationship (Chariton et al. 2016; Australian
and New Zealand Governments 2018). Nonetheless, it is im-
portant to note that most of the published and current relevant
field‐based studies are conducted as small‐scale case studies
and for academic research purposes and have yet to be com-
monly implemented for large‐scale studies and widely adopted
by environmental authorities. Thus, it remains a scaling chal-
lenge for developing an easy‐to‐use and reliable field‐based
approach to be adopted by environmental authorities in
routine environmental risk assessment.

How can we develop and advance laboratory
(e.g., in vitro, in vivo, analytical) and theoretical
(toxicokinetic, toxicodynamic) approaches to
understand (prospective, retrospective) adverse
outcomes of complex chemical mixtures (e.g.,
pesticides, surfactants, medicines, metals)? (Q6)

National‐scale biomonitoring programs such as the National
Health and Nutrition Examination Survey of the United States
and the Korean National Environmental Health Survey show
that humans are exposed to a myriad of chemicals at the same
time and suggest that other living organisms in ecosystems
may not be an exception. Therefore, understanding and man-
aging adverse outcomes of complex mixtures is one of the
grand environmental health challenges of modern societies
including those in Asia (Carusi et al. 2018). Mixtures can be as
simple as a binary mixture but also can include a huge number

of components. Diesel engine exhaust and oil spills are ex-
amples of extremely complex mixtures. Traditionally, mixture
interaction was assumed to be represented in an “additive”
way, that is, dose or response addition, if the components in
the mixture have the same or similar modes of action or re-
sponses (Kar and Leszczynski 2019). The National Research
Council of the United States recommended that cumulative risk
assessment for mixtures be conducted for chemicals not only
with the same modes of action but also with the same type of
health outcomes (National Research Council 2008).

For mixtures for which modes of action or adverse outcomes
of the components are well characterized, dose or response
addition can be an option to estimate the toxicity. However,
often, the complexity of the mixture composition and a lack of
toxicological information can be obstacles. For example, en-
vironmental health issues of per‐ and polyfluoroalkyl sub-
stances (PFAS) have become of growing interest, but
characterizing their toxicological properties in a timely and
cost‐effective way is very challenging because there are more
than 4000 PFAS of possible concern (Lim 2019).

Recently, Zhang et al. (2018) proposed a high‐throughput
functional genomic screening measure in combination with a
cell‐ and a fish embryo–based reduced transcriptomics for
mechanistic research on toxicological effects of chemicals. With
the reduced gene set for high‐throughput transcriptomics, this
conceptual framework has promise in addressing mixtures of
multiple chemicals, even including hydrophobic chemicals
(Vergauwen et al. 2015; Balik‐Meisner et al. 2019). This ap-
proach can identify toxicological modes of action of chemicals
employing multiple biological organizational levels ranging
from the molecular to the cellular and individual (or even
community) levels, in a high‐throughput manner, which enables
grouping of multiple chemicals based on the toxicity pathway
or the toxicological modes of action or possible toxicological
responses (Xia et al. 2020). Once chemicals are grouped, vali-
dation can be performed using in vivo high‐throughput plat-
forms (e.g., Kithcart and MacRae 2017; Meng et al. 2020). As a
high‐throughput in vivo screening tool, fish embryos are a
promising model because of their utility in both ecotoxico-
logical and environmental health studies (Bambino and
Chu 2017) and their advantage of less restrictive guidelines in
terms of experimental use (European Parliament 2012). De-
pending on the similarity of the mode of toxic action, additive
joint toxic action can be applied to estimate the mixture toxicity
(US Environmental Protection Agency 2000b).

This approach can also be applied to the mixture as it is,
especially when the mixtures of concern have a complex
composition. Because whole effluents are considered to be
“stressors” and measured for ecotoxicity for discharge permit
(see the whole‐effluent toxicity test of the United States [US
Environmental Protection Agency 2000a] and Japan [Ministry
of Environment of Japan 2019] and the ecotoxicity manage-
ment policy of Korea [Ministry of Environment of Korea 2015]),
one can consider specific complex mixtures as individual
chemicals and estimate their adverse outcomes. Such mixtures
may include commercial products with diverse chemical com-
position (e.g., surfactants or pesticides) or environmental
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samples of complex mixture (e.g., fine particulates in air,
dissolved organic fractions of water).

How we can improve the current approaches to
assess and manage risks of micropollutants and
emerging contaminants? (Q7)

Micropollutants are synthetic substances that appear
in concentrations usually <1 μg/L in natural waters (Fuhrmann
2012; Stamm et al. 2016). Emerging contaminants are both
human‐made and naturally occurring chemicals that have not
commonly been monitored in the environment. In some cases,
some of these chemicals are or have been monitored, but we
do not know what they might do to the environment (i.e., lack
of effects data). Because the number of chemicals used in
modern society has been increasing and many of these
emerging chemicals may cause serious ecological and health
risks, improving approaches to assess and manage the risks of
micropollutants and emerging contaminants is warranted.

Because it is not feasible to assess and manage all micro-
pollutants and emerging contaminants, identification and pri-
oritization of chemicals that have higher risks and require
proper management are crucial first steps. Although a sys-
tematic approach should be established to identify priority
chemicals and subsequently develop appropriate management
plans, most Asian countries do not have such a system. Taking
Korea as an example, when a new micropollutant is detected in
the water at a level that may cause health risk, it is required by
regulation to identify the sources of the release and to develop
and implement management systems for the pollutant, in-
cluding mitigation measures (Ministry of Environment of
Korea 2009). However, a systematic procedure that can be
applied to identify new micropollutants is not available in
Korea. Identification of new chemicals of concern generally
relies on monitoring programs designed for specific purposes
not necessarily related to prioritization. For example, the
Ministry of Environment of Korea designated 3 PFAS com-
pounds, i.e., perfluorooctane sulfonate, perfluorooctanoic acid,
perfluorohexane sulfonate, as watch‐list chemicals for drinking
water in 2018, after detecting these chemicals in greater fre-
quency in drinking water treatment plants in a government‐
funded study (Ministry of Environment of Korea 2017).
The Korea example exemplifies the urgent need for a more
systematic approach to identify candidate chemicals in Asia.

Because micro‐ and emerging contaminants often have not
been frequently measured and/or are present at low levels,
advances in chemical analytical methods are necessary. Recent
advances in analytical chemistry which include techniques re-
lated to nontarget analysis will be useful eventually for this
effort (Schymanski et al. 2015; see Question 1). Another chal-
lenge lies in the lack of toxicological information for these
micro‐ and emerging contaminants. Most of the available tox-
icological information is limited to traditional toxicological
endpoints outlined by regulatory or international entities, for
example, Organisation for Economic Co‐operation and De-
velopment (OECD) test guidelines. In some cases, such

traditional toxicological information may not capture important
modes of toxicological action of these chemicals. Therefore,
developing high‐throughput screening measures in combina-
tion with advanced bioanalytical models is warranted. For ex-
ample, the toxicological priority index, which supports a
rational prioritization of chemicals using ToxCast data, may be
considered one possible method for this purpose (Reif
et al. 2010).

In contrast to the top‐down approach, a bottom‐up ap-
proach that starts from toxicological responses can be another
option. This bottom‐up approach can be described as an
ecological version of epidemiological investigation (“eco‐
epidemiology”) that helps identify a fraction (or group) of
chemicals that are responsible for a given ecological adverse
outcome. This eco‐epidemiological approach can be coupled
with toxicological approaches such as effect‐driven analysis
and can be used to identify micro‐ and emerging contaminants
that warrant follow‐up assessment and management (Bornstein
et al. 2014). Hence, this approach may supplement the top‐
down approach, which can miss an important chemical(s) that
may cause adverse outcomes.

How can we integrate high‐throughput
screening with next‐generation computational
toxicology tools to support hazard and risk
assessment of individual chemicals and complex
mixtures? (Q8)

As discussed, Asia has experienced unprecedented increases
in population and economic growth during the past several
decades, resulting in the release of increasingly diverse chemicals
into the market and the environment. To screen and assess the
hazard (and risk) of these chemicals, traditional approaches need
to be significantly improved. Computational toxicology tools
have been considered as one of the promising alternative
approaches for hazard and risk assessment of chemicals
(Mangiatordi et al. 2016). One good example is the OECD
Quantitative Structure–Activity Relationship (QSAR) Toolbox,
which is one of most widely used computational tools for pre-
diction of chemical toxicity including read‐across (Schultz
et al. 2018). Because of the complexity of toxicological mecha-
nisms and biological responses, a more integrated approach
employing advanced data processing (Meng and Lin 2007), ma-
chine learning techniques (Takada et al. 2019), and omics data
becomes necessary (Kiani et al. 2018). Otherwise, such compu-
tational models could be misused and often lead end users to
elusive or underprotective results (Mangiatordi et al. 2016).

Therefore, integrating next‐generation computational tox-
icology tools with high‐throughput screening measures is
essential. As a result of significant advances in omics tech-
nologies, image techniques, and automated robotic platform
techniques in recent decades, testing a growing number of
chemicals for toxicity in a high‐throughput manner becomes
more feasible (Kiani et al. 2018). The Toxicology in the 21st
Century program is a good example of a collaborative ap-
proach among several agencies of the United States to better
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predict toxic chemicals using robotics in high‐throughput
screening (Dox et al. 2006).

Direct application of the knowledge obtained from com-
putational and high‐throughput screening measures to hazard
or risk assessment of chemicals will eventually uncover sig-
nificant uncertainties, including taxa applicability and mecha-
nistic probability, to name a few. Efforts to address such
uncertainties through scientific and methodological advances
are essential, even though it may not be possible to completely
remove the uncertainties. In addition, building consensus
among regulatory, industrial, and societal stakeholders on
the values and limitations of these computational and
high‐throughput screening measures is very important.

How can we develop advanced biological tools
to better understand and predict toxic
mechanisms and interactions across species in
multiple highly biodiverse compartments for risk
assessment and management of chemical
contaminants in Asia? (Q9)

Chemical contaminants in the environment can generate ad-
verse effects at all levels of biological organization from the mo-
lecular to the population, community, and ecosystem levels (Zhang
et al. 2018). To improve the understanding and prediction of the
mechanisms of adverse outcomes in a multiple, highly biodiverse
ecosystem, advanced biological tools should be developed to
capture the changes across the multiple levels of biological or-
ganization, with a particular focus on indigenous species and
communities in the local environment of concern (i.e., site‐specific).

Effect‐based methods, compiling a battery of in vitro assays
and apical bioassays (e.g., with fish embryos, daphnia, and
algae) and covering a range of well‐described modes of action
and diverse taxa (Escher et al. 2014; Altenburger et al. 2015),
can provide both diagnostic and monitoring information to
establish the likelihood of impacts of chemical contamination
(Brack et al. 2015). Omics technologies, if well applied, have
the potential to enable qualitative and quantitative measure-
ment of changes in different biological organization scales
through molecular, cellular, tissue, individual, population, and
community levels and thus provide a historic opportunity to
transform our knowledge of the consequences of the exposure
of toxic substances in the environment (Leung 2018; Zhang
et al. 2018). Recent omics advances, such as reduced tran-
scriptomics (Xia et al. 2017; Wang et al. 2018) and eDNA meta‐
barcoding (Deiner et al. 2017; Yang et al. 2017), not only
generate new knowledge regarding mechanisms of chemical
toxicity and their environmental effects and improve the rele-
vance and immediacy of laboratory toxicological assessment
but also can provide a wholly new paradigm for ecotoxicology
by linking ecological models to mechanism‐based, systems
biology approaches. Future chemical risk assessment and
management in Asia can benefit from focusing on the
site‐specific protection goals, establishing an integrative risk
assessment framework, and efficiently utilizing the new
approaches as described herein.

How can we analyze big data and develop
effective risk‐communication approaches (e.g.,
report card system, real‐time reporting) for
environmental status (e.g., ecosystem functions
and services)? (Q10)

Rapid and reliable ecological monitoring and prediction of
the trend of ecological changes are of great value to the pro-
tection of ecosystems. Recent advances in environmental omics
(e.g., meta‐barcoding), remote sensing, and other interdiscipli-
nary technologies not only allow sensitive automated bio-
monitoring of terrestrial and aquatic ecosystems in high spatial
and temporal resolution at larger scales but also enable more
accurate and cost‐effective detection of ecological changes
(Gibson et al. 2015; Dafforn et al. 2016; Bohan et al. 2017).

Effective utilization of big data generated by these novel
approaches relies on efficiently transforming and extracting the
core information and key messages into risk communication on
the environmental status (Gibson et al. 2015). In future, de-
velopment of simple, convenient, and standardized operations
will be important to make these technologies more accessible
and facilitate effective risk communication. Also, a combination
of multiple approaches, such as integrating eDNA meta‐
barcoding and remote sensing with machine learning, will
revolutionize our understanding of ecosystem changes. Finally,
in addition to the “report card” system, the citizen science risk
community tools (e.g., public participatory geographical in-
formation systems) would be another effective approach to
engage the general public to address environmental concerns
(Jiao et al. 2016; Deiner et al. 2017).

How can we use new developments in
nanoscience and nanotechnology to advance
ecotoxicological research? (Q11)

In the past 2 decades, advancements of nanoscience and
nanotechnology have led to numerous innovations and estab-
lishment of novel technologies for various industries including
the environmental sector. For example, specially synthesized
magnetic nanoparticles can be used to break down and re-
move micropollutants from sewage effluents (Hu et al. 2005;
Tang and Lo 2013). Because of advances in nanoscaled func-
tional materials, many sensors for environmental monitoring
can be more compacted and reduced in size with higher spe-
cificity and sensitivity (Su et al. 2012). Therefore, participants of
this Asia HSP noted that there is great potential for developing
and applying various nanotechnologies to advance ecotox-
icological research, and this area remains relatively underex-
plored. Other possibilities may include 1) the development and
use of fluorescent nanoparticles as bioimaging probes (i.e.,
labels) for studying the fate and toxicity mechanisms of
chemical substances within cells and organisms (e.g., Bhunia
et al. 2013), and 2) the innovation and integration of lab‐on‐
chips and biochemical sensors to study the toxicity of single
chemicals and chemical mixtures with cells or small aquatic
organisms (i.e., downscaled experimental setups; Figeys and
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Pinto 2000). The latter would enable high‐throughput and
rapid analysis and promote sustainability by substantially re-
ducing the amount of chemicals being used in toxicity tests.

In the natural environment, chemical contaminants often
exist in mixtures while their physicochemical properties and
toxicities are governed by environmental conditions (e.g.,
temperature, solar radiation, and moisture in soils; water tem-
perature, conductivity, and pH in aquatic environments; Wang
et al. 2016, 2019b; Leung et al. 2018). We agree that it is very
important to study the impact of chemical contamination while
considering the coexistence and combined effects of multiple
stressors. Multiple stressor issues become more apparent and
pressing under anthropogenically driven climate changes, in-
cluding warming and heatwaves, alteration in the patterns of
rainfall and typhoons, and acidification of water bodies. There
are 6 questions relevant to the theme of multiple stressors.

How can we strengthen the environmental
quality criteria system (e.g., water, sediment,
soil, air) to adequately protect ecosystems that
are experiencing multiple stressors and changing
climate? (Q12)

Setting protective PNECs or environmental quality bench-
marks (EQBs) of chemical contaminants is a prerequisite step in
environmental risk assessment and management of environ-
mental quality (Leung et al. 2014, 2018; Merrington et al. 2014;
Zhou et al. 2019). There are some obvious shortcomings in the
current system for setting EQBs in Asia. First, much of the
available toxicity data were generated using temperate or cold‐
water species, but most Asian countries are situated in the
tropics, where toxicity data are lacking (Kwok et al. 2007; Wang
et al. 2014, 2019a; Mooney et al. 2019). Because of the in-
sufficiency of tropical toxicity data, Asian countries in the
tropics often made use of temperate data to derive their EQBs
or directly adopted the EQBs from North America or Europe
for managing their environmental quality (Kwok et al. 2007),
while unknown margins of protection are often addressed by
application of safety factors. This results in an unknown margin
of protection for tropical ecosystems in Asia. Second, the cur-
rent EQB derivation system mainly deals with chemical toxicity
in standard representative environmental conditions (e.g., a
fixed average temperature) without consideration of the influ-
ence of seasonal and annual changes of environmental con-
ditions (Zhou et al. 2014; Leung et al. 2018). As such, the
derived EQBs may not be protective under extreme climate
conditions which are influenced by global climate change. For
instance, Wang et al. (2019b) discovered that extremely high or
low temperatures can exacerbate chemical toxicity to fresh-
water organisms. Therefore, there is an urgent need to develop
a region‐specific EQB derivation system, including identi-
fication of indicator species for testing and risk assessment,
with a view to generating more accurate PNECs for protecting
the ecosystems in Asia.

Furthermore, current EQB derivation systems around the
world mainly deal with the derivation of PNECs for individual

chemicals without consideration of chemical mixtures nor the
co‐occurrence of other multiple stressors (e.g., temperature),
an issue not restricted to Asia. Recently, Mu et al. (2018) made
an attempt to predict the toxicities and PNECs of various
metals in different marine environments around the globe by
integrating QSAR models with temperature‐ and salinity‐based
SSD approaches. This innovative study, as an example, paves
the way for developing region‐specific toxicity prediction
models and hence strengthening the EQB derivation system to
enable the derivation of region‐ and site‐specific PNECs for a
wider range of chemical contaminants.

What are the influences of changing landscapes
and climate change on the resilience of
terrestrial and aquatic ecosystems, and how do
we measure the ecological endpoints with
reference to chemical pollution? (Q13)

This is an overarching question regarding the interplay
among 3 different stressors—land use, climate change, and
chemical pollution—which can be applicable not only to Asia
but also around the globe. The biological communities and
ecosystem functions of an aquatic ecosystem can be altered by
a combination of these 3 interrelated factors, while at the same
time, the effects threshold of a chemical contaminant to the
aquatic ecosystem might be modified by the changing envi-
ronmental condition. For example, conversion of a natural
wetland into a city with impervious (concrete) surfaces would
increase the discharge of pollutants via surface water runoff (He
et al. 2020), while under global warming the bioavailability and
toxicity of chemicals could also be increased (Zhou et al. 2014;
Wang et al. 2019b). Both of these changes might eventually
pose a higher risk to aquatic organisms. Such a complex
question requires a sophisticated method to disentangle the
impacts of multiple stressors and the ecosystem response.
Chariton et al. (2016) recommend a conceptual model to fulfill
this purpose, encompassing the collection and analysis of an
integrated data set on biological composition and function,
biotic and abiotic stressors, and other information available in a
geographical information system. Through advanced statistical
analyses, it is possible to identify key stressors, establish cau-
sality and predictive models, and define effect thresholds, that
is, PNECs (Chariton et al. 2016). For example, the relative im-
pacts of individual stressors can be expressed using a cumu-
lative stress index in each study site, and then the cumulative
stress values of different sites can be jointly analyzed with
consideration of these multiple stressors using multivariate
analysis (Allan et al. 2013). Based on the results, we can identify
the most impacted sites and the corresponding key stressors.
Furthermore, the use of ecogenomics (eDNA) approaches can
characterize in far more detail the biological community at each
site of concern (Yang et al. 2017), and such biodiversity data
(number of species, functional groups) can then be treated as a
covariate in the analysis. With the availability of big data and
advanced statistical analysis tools, this complex question
could be adequately addressed in the future. However, the
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availability of relevant monitoring data may be relatively
lacking in many parts of developing Asia, and hence concerted
effort in data acquisition would present a challenging and
crucial step.

How can we develop an integrative and effective
framework (e.g., environmental policy, green
technologies) to manage nutrient loading and
associated hypoxia in Asia? (Q14)

Globally, there is an increasing trend in the number of dead
zones in the coastal marine environment as a result of
eutrophication‐driven hypoxia, with the number of such zones
at approximately 500 (United Nations Educational, Scientific
and Cultural Organization 2020). The situation in Asia is ex-
pected to follow the same trend, though some of the devel-
oping countries in the region might not monitor or report
hypoxic events. The impact of eutrophication‐driven hypoxia
can be catastrophic; a low‐oxygen environment can kill all
sessile benthic organisms and have cascading effects on the
marine ecosystem, including reduction of fishery resources and
an increase of organic matter in sediment that further increases
long‐term hypoxia (Breitburg et al. 2018). Furthermore, pre-
vious studies suggested that tropical estuaries would be more
prone to nitrogen retention via dissimilatory nitrate reduction
to ammonia instead of nitrogen loss via denitrification and
anammox under anoxic conditions, when compared to tem-
perate systems (Dong et al. 2011; Li et al. 2019). If this is true,
this could make marine ecosystems in tropical Asia more prone
to eutrophication. Apparently, we need to have a better un-
derstanding of nutrient cycling in coastal marine ecosystems in
tropical Asia.

To effectively manage such unacceptable situations, an in-
tegrated management approach is required to effectively
minimize the release of nutrients from agricultural and in-
dustrial areas, as well as municipal sewage effluent and surface
runoff. A comprehensive framework for controlling nutrient
discharge has been suggested by Chen and Hong (2012),
which consists of multiple levels of management of human
activities and involvement of various stakeholders including
intergovernmental cooperation for transboundary manage-
ment (e.g., if a river is shared between countries).

How will changes to physicochemical
characteristics (e.g., salinization/ion imbalance,
pH, temperature, hypoxia due to enrichment)
alter the bioavailability and effects of chemical
stressors in the environment? (Q15)

This question has some degree of overlap with Question 12,
concerning the combined effect of contaminant mixtures and
multiple stressors (e.g., pH and temperature) under varying
environmental conditions. This is a very complex issue, calling
for more well‐thought‐out research studies to enable us to
improve our understanding of these compounded effects and

make better predictions of chemical toxicity under different
climate regimes (e.g., Wang et al. 2016, 2019b; Mu et al. 2018).
This question is clearly not restricted to Asia.

It is a truism that rarely do toxicant additions occur in the
absence of other changes to water chemistry (e.g., Kienzler
et al. 2014; Pan et al. 2015; Bopp et al. 2016; Godoy and
Kummrow 2017), yet most knowledge of contaminant ecotox-
icity is based on testing of single contaminants without other
stressors present. Although there were limited experiments
being conducted with a selection of 2 or 3 contaminants or
commercial product formulations that are variable, their ex-
perimental settings still generally represent relatively simple
situations without considering variations in environmental
conditions. Consequences of this difference between testing of
contaminant toxicity and the reality of environmental exposures
can be readily gleaned from careful reading of the general
mixture toxicity literature including the reviews cited earlier in
this paragraph. Although some attempts have been made in
recent years using the multi–biotic ligand model to assess the
aquatic toxicity of metal mixtures (Santore and Ryan 2014) and
the integrated “simplified” approach for assessing the risk of
chemical mixtures (Diamond et al. 2018), this remains a very
challenging question to address in the coming decade.

How can we prioritize and apportion chemical
stressors in complex scenarios to guide
restoration efforts? (Q16)

Although methods have been developed to assess the
overall toxicity of mixtures (sometimes called “whole‐effluent
toxicity” tests [Hall and Golding 1998] or “direct toxicity as-
sessment” [Australian and New Zealand Governments 2018],
depending on the jurisdiction) and determine the groups of
substances contributing to that toxicity (often termed “effects‐
directed analysis” or “toxicity identification evaluation”
[Brack 2011; Burgess et al. 2013]), these are methods of “hind‐
casting” the toxicity of environmental mixtures, not predicting
their toxicity. The limited research to date into mixture toxicity
means that the ability to predict the toxicity of contaminant
mixtures, or to be certain what substances should be prioritized
for control, is currently very limited.

The Asia region is particularly prone to existing and
emerging contaminant mixtures because of the co‐occurrence
of the world's largest national populations, the highest national
population growth rates, rapidly developing economies
(Table 1), and, commonly, environmental regulation regimes
that are developing from a minimal base and/or have limited
capacity to enforce compliance. To further complicate the
issue, rarely do these mixtures of contaminants enter the en-
vironment in the absence of other changes to the phys-
icochemical characteristics of the receiving environment, often
being associated with changes in pH, temperature, nutrient
levels, or salinity that are associated with the source(s) of the
contamination.

Furthermore, the Asia region includes several areas that
are particularly sensitive to climate change, including changes
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to water availability and sea‐level rise (Field and Barros 2014).
These factors mean that mixture toxicity impacts are increas-
ingly going to co‐occur with changing receiving environment
characteristics. What is urgently needed in the face of these
multiple challenges to managing environmental impact to the
region are tools to enable proactive prioritization of actions.
This will require the ability to predict which of the multiple
stressors most urgently needs improved management. Al-
though this is not a problem that is unique to Asia, it is ar-
guably more urgent that these predictive tools and more
systematic approaches to proactive environmental manage-
ment of contaminants be developed for this region with ap-
parent challenges brought by the ever‐growing population,
rapid economic development, and urbanization (Hooper
et al. 2013).

How can we identify adverse impacts of multiple
stressors in the field to biodiversity (including
multigenerational, evolutionary, and
developmental), ecosystem services, and human
health? (Q17)

Future ecological risk assessments would be based on
impacts on ecological function and service, relevant to water
and land management and regulatory decision‐making
(Maltby et al. 2017, 2018). Ecological function and service
often refer to ecological processes (diversities of species and
traits) and the resulting properties that support the well‐
being of human populations (Gibson et al. 2015). Not only
species diversity but also diversity of traits can affect eco-
system function and service. Accordingly, elevated concen-
trations of chemical mixtures can ultimately cause adverse
impacts to the ecosystem services being provided to humans
(e.g., provision of clean water and food, enabling healthy
cycling of nutrients).

It is, therefore, critical to develop advanced tools that can
encompass the biodiversity, community composition (trophic
interactions, food web complexity/diversity), and bio-
geochemical processes that drive ecosystem function in envi-
ronments of concern (Compson et al. 2018). These tools should
support routine application in a consistent and repeatable
manner so that they can be easily incorporated into regulatory
and management programs (Gibson et al. 2015). For example,
eDNA meta‐barcoding can generate DNA sequence–based
data for monitoring and predicting the effects of anthro-
pogenic contamination of chemicals on aquatic ecosystems (Li
et al. 2018a; see also Question 5).

Mesocosm‐based experiments provide an ideal approach to
understand the ecological mechanisms of the effects of dif-
ferent stressors (e.g., pesticides, herbicides, and fertilizers) on
biodiversity and ecosystem functioning (Nienstedt et al. 2012).
Development of supporting knowledge bases and ecological
models (e.g., for food webs) will eventually enhance our
capability to differentiate ecological adverse outcomes by
different stressors in the field (Halstead et al. 2014).

To what extent is seawater pH in Southeast Asia
impacted by terrestrial inputs (e.g., organic
carbon, nutrients, other anthropogenic sources
such as mining), how are these inputs changing
as a result of human activities (including CO2),
and how does this affect vulnerable coastal
ecosystems such as coral reefs? (Q18)

In addition to the release of carbon dioxide and reactive ni-
trogen compounds from the burning of fossil fuel, pH in river,
estuary, and coastal water can be greatly influenced by the dis-
charge of various chemical contaminants (Orr et al. 2005). For ex-
ample, the discharge of mine tailings which are acidic in nature can
significantly reduce the pH in receiving water bodies, thereby in-
creasing the bioavailability of metals (Byrne et al. 2012). The re-
duction of pHmay lead to ocean acidification and imbalance of the
carbonate system that will negatively affect the growth of corals
and other organisms that require calcium carbonate to build their
skeleton (Orr et al. 2005). Because there are many mining sites
across tropical Asia, the risk of such anthropogenically driven ocean
acidification to corals is expected to be high (Burke 2006). More
field‐based studies on acidification of estuaries and coastal waters
in Asia are warranted to address this important issue and uncover
the current status and extent of the impact.

Global food production must increase by 200% to meet the
needs of developing countries by 2050. Aquaculture, which
surpassed global fisheries for production of fish for human
consumption in 2014 (Food and Agriculture Organization 2016),
will be critical to meet these needs, particularly for Asia in which
per capita seafood consumption is elevated and the majority of
global aquaculture production exists. Defining and managing
environmental and health challenges in Asia is becoming in-
creasingly important because most of the population already
lives in cities, where access to and consumption of chemical
products are occurring faster than environmental management
systems, making public health interventions necessary
(Brooks 2018). In fact, pollution is now responsible for profound
health burdens, especially in lower‐ to middle‐income countries
(Landrigan et al. 2018). For example, 80% of sewage produced
around the world is released untreated to surface waters (World
Water Assessment Programme 2017). Unfortunately, terrestrial
agriculture and aquaculture efforts are practiced in urban and
periurban areas receiving wastewater discharges (Burket
et al. 2018). Integrated challenges among urbanization and
water and food security are thus pronounced in Asia, where
22 megacities (>10 million people) are projected to exist by
2030 and where over one‐third of the human population will live
in 2050 (United Nations 2018).

How can we develop new technology and
promote green chemistry for enhancing reuse
of waste and preventing environmental
impacts? (Q19)

Sustainable and green chemistry (Anastas and Warner 1998)
and engineering (Anastas and Zimmerman 2003) present clear
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opportunities to meet some of the environmental and health
challenges associated with rapid population growth and ur-
banization in Asia. In fact, sustainable and green chemistry are
poised to make significant contributions toward realizing some
of the United Nations Sustainable Development Goals (Anastas
and Zimmerman 2018; Brooks 2018, 2019). Sustainable mo-
lecular design, which is inspired by the fourth principle of green
chemistry, specifically aims to design chemicals with lower
hazards but that maintain intended functions (Voutchkova
et al. 2010; Coish et al. 2016). Such efforts are fuelling in-
novation, decreasing risks to public health and the environ-
ment, and appear important for Asia where robust waste‐
management systems remain differentially implemented.

Given increasing population growth and per
capita demand for seafood in Asia, how can we
develop sustainable aquaculture practices while
protecting environmental quality, particularly in
coastal waters? (Q20)

This priority research question identifies a timely need to
develop more sustainable aquaculture practices in Asia, which
at the same time do not impair environmental quality and are
not associated with unacceptable risks for aquaculture product
safety (Sapkota et al. 2008; Burket et al. 2018), ecosystem
services, and biodiversity (Rico et al. 2012). To address this
question, a coordinated effort will be required across the en-
vironmental toxicology and chemistry, agriculture, ecology,
and public health disciplines. For example, expanding
specimen banks that examine contaminants in multiple envi-
ronmental compartments (soil, sediment, water, food, human
tissues) and potential relationships to biodiversity and
population health has been identified as a particularly timely
opportunity for Asia (Brooks and Conkle 2019).

How can we develop innovative solid
waste‐management programs to protect
environmental quality, particularly in rural areas
of less developed regions in Asia? (Q21)

Asia is arguably the major contributor of plastic waste to the
oceans (Jambeck et al. 2015; Lebreton et al. 2017). With in-
creasing population and rapid economic development in the
region, this trend is only likely to worsen. The problem of im-
proper waste management is particularly serious in Asian
megacities but also increasingly alarming in rural and newly
developing urban areas in this region. Solid waste‐
management systems in Asia are overwhelmed because many
Asian countries do not have a proper waste‐management
system and waste‐treatment infrastructures (e.g., advanced
waste‐to‐energy facilities and well‐managed waste‐recycling
industries; Jones 2018; World Bank 2018). The decision by
China to ban imports of waste for recycling (Lasker et al. 2017;
Lee 2018) is an indication of a national system struggling to
cope with increasing solid waste production and an example of

the far‐reaching implication of waste‐management strategies in
one country affecting other countries in the region. However,
when it comes to implementing positive changes to waste
management, the environmental impact of the current systems
is commonly the weakest driver (Agamuthu et al. 2009). Fur-
thermore, this solid waste issue is also closely related to the
potential release of complex contaminant mixtures (e.g., re-
lease of landfill leachates) because solid waste is regarded as a
major source of chemical contaminants. In the face of these
critical issues in solid waste management, reliance on con-
tinuation of the gradual adaptation of traditional management
systems is almost certain to fail. Innovative solid waste‐
management systems are, therefore, urgently needed in Asia
and many other rapidly growing regions.

What is the extent of antibiotic pollution in the
environment and associated risks of antibiotic
resistance in rural and urban regions of
Asia? (Q22)

This priority question focuses on understanding the extent
to which antibiotic pollution and antibiotic resistance are oc-
curring in the environment, in both urban and rural parts of
Asia. This represents an exceptionally important research need
because antibiotic resistance is a leading global health threat
(World Health Organization 2018). For example, Chung et al.
(2018) recently reported multiple antibiotics being discharged
by leachate effluents from landfills of Hong Kong that ex-
ceeded PNEC thresholds for the development of antibiotic
resistance (Bengtsson‐Palme and Larsson 2016). Antibiotics
exceeding PNECs from closed landfills and one of the largest
active landfills in Asia included erythromycin and ciprofloxacin
(Chung et al. 2018). Both erythromycin and ciprofloxacin
are designated as critical antibiotics by the World Health
Organization (2011). Such observations require additional
study in Asia because erythromycin exceedances in effluents of
Asia are higher than in Europe and North America (Schafhauser
et al. 2018), while reported global effluent discharges of
ciprofloxacin exceed antibiotic resistance development
thresholds 58% of the time (Kelly and Brooks 2018). It is also
important to note that similar research questions were identi-
fied during GHSP efforts in Oceania (Gaw et al. 2019), North
America (Fairbrother et al. 2019), and Latin America (Furley
et al. 2018), which face similar challenges to the developing
regions in Asia.

How can we develop sustainable development
frameworks (e.g., green chemistry) to address,
balance, and manage the production (e.g., food
production, forestry) and protection of
ecosystem services? (Q23)

This priority question is closely related to Question 19 that
targets the need to develop innovative technologies to ad-
vance waste resource recovery while improving environmental
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quality. Question 23 specifically identifies the research niche to
derive integrative sustainable development frameworks that
incorporate science and technology advances from green
chemistry and engineering to balance agricultural and natural
resource production while protecting ecosystem services. Re-
lated priority questions were also identified during the GHSP
efforts in the Australasian region of Oceania (Gaw et al. 2019),
Europe (Van den Brink et al. 2018), and North America
(Fairbrother et al. 2019), which are directly relevant to other
continents (e.g., Africa, Latin America).

OUTLOOK
The 23 priority research questions identified here for Asia

exemplify the diversity and environmental and human health
challenges facing the region. Whereas many of these questions
engage cutting‐edge topics, others identify research needs
that are particularly germane to low‐ and middle‐income
countries in Asia and around the world. Recent HSP exercises
have been conducted in Europe (Van den Brink et al. 2018),
Latin America (Furley et al. 2018), North America (Fairbrother
et al. 2019), and the Australasian region of Oceania (Gaw
et al. 2019). As noted in Table 2, priority questions vary among
regions, though some common topics are emerging. Several
research questions are uniquely identified from Asia, including
Questions 3, 11, and 18 (Table 2), which deal with issues re-
lated to air pollution, application of nanotechnology to ad-
vance ecotoxicology, and impacts of carbon dioxide and ocean
acidification. It is important to note that several Asian questions
(e.g., Questions 13, 19, and 23) are common with other regions
and thus appear globally important (Table 2). For instance,
Question 13, addressing the combined influences of changing
landscapes, climate change, and chemical pollution on eco-
system responses, is a universal priority question across all re-
gions and reflects several global megatrends. Moreover, the
other common questions cover 1) development of high‐
throughput screening tools for advancing risk assessment of
chemicals; 2) identification of adverse impacts of multiple
stressors to biodiversity, ecosystem services, and human
health; and 3) establishment of sustainable development
frameworks, including sustainable and green chemistry and
engineering. Question 22, which is related to antibiotic resist-
ance, was identified in several other regions, and particularly
highlighted in Latin America, perhaps because of similarities in
waste‐management capacity with the low‐ and middle‐income
countries in Asia.

The Asia Pacific region needs solutions to these pervasive
problems, and it needs them now. Although many of these
issues have strong socioeconomic and political drivers, envi-
ronmental quality in the receiving ecosystems of the region
urgently needs better prediction and management tools. Given
that these problems are routinely pronounced for rapidly de-
veloping economies in Asia with the most limited economic,
regulatory, and social capacity to deal with them, these tools
need to be accessible and efficient to have the level of impact
needed. This set of 23 questions will be very challenging to

address, but it is critically important that they are. This research
effort is deemed to be necessary for improving environmental
quality and promoting sustainable development in Asia. Future
efforts supporting country‐specific and international activities,
including nontraditional partnerships, are needed to engage
the priority research questions identified here.
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