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ABSTRACT

Although ATRA represents a successful differentiation therapy for APL, it is 
largely ineffective for non-APL AMLs. Hence combination therapies using an agent 
targeting ATRA-regulated molecules that drive cell differentiation/arrest are of 
interest. Using the HL-60 human non-APL AML model where ATRA causes nuclear 
enrichment of c-Raf that drives differentiation/G0-arrest, we now observe that 
roscovitine enhanced nuclear enrichment of certain traditionally cytoplasmic signaling 
molecules and enhanced differentiation and cell cycle arrest. Roscovitine upregulated 
ATRA-induced nuclear c-Raf phosphorylation at S259 and S289/296/301. Nuclear 
c-Raf interacted with RB protein and specifically with pS608RB, the hinge region 
phosphorylation controlling E2F binding and cell cycle progression. ATRA-induced 
loss of pS608RB with cell cycle arrest was associated with loss of RB-sequestered 
c-Raf, thereby coupling cell cycle arrest and increased availability of c-Raf to promote 
differentiation. Part of this mechanism reflects promoting cell cycle arrest via ATRA-
induced upregulation of the p27 Kip1 CDKI. Roscovitine also enhanced the ATRA-
induced nuclear enrichment of other signaling molecules traditionally perceived as 
cytoplasmic promoters of proliferation, but now known to promote differentiation; in 
particular: SFKs, Lyn, Fgr; adaptor proteins, c-Cbl, SLP-76; a guanine exchange factor, 
Vav1; and a transcription factor, IRF-1. Akin to c-Raf, Lyn bound to RB, specifically to 
pS608RB. Lyn-pS608RB association was greatly diminished by ATRA and essentially 
lost in ATRA plus roscovitine treated cells. Interestingly Lyn-KD enhanced such ATRA-
induced nuclear signaling and differentiation and made roscovitine more effective. 
ATRA thus mobilized traditionally cytoplasmic signaling molecules to the nucleus 
where they drove differentiation which were further enhanced by roscovitine.
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INTRODUCTION

All-trans retinoic acid (ATRA), a retinoid metabolite 
of vitamin A, regulates gene expression [1] in a number 
of physiological processes, including morphogenesis, 
vision, growth, metabolism, differentiation and cellular 
homeostasis [2]. For cancer chemotherapy, ATRA is 
prominent as a differentiation-inducing therapeutic for 

acute promyelocytic leukemia (APL) [3, 4], which is a 
FAB (French American British classification) M3 subtype 
of acute myeloid leukemia (AML). APL is cytogenetically 
characterized by a t (15;17) (q22; q12) translocation that 
results in a PML-RARα fusion protein seminal to the 
disease [5]. The classical paradigm of ATRA-induced 
differentiation in leukemia cells focuses on RARα and 
retinoid X receptors, which are transcription factors 

           Research Paper

www.oncotarget.com


Oncotarget1018www.oncotarget.com

activated by binding to their ligands. However, other 
signaling pathways, particularly mitogen-activated protein 
kinase (MAPK), have been found to be necessary for 
RAR and RXR to transcriptionally activate and induce 
differentiation and G1/G0 cell cycle arrest [6–8]. The 
Raf/Mek/Erk axis is imbedded in the ATRA-induced 
signalsome which also includes Src family kinases Fgr and 
Lyn, PI3K, c-Cbl, SLP-76, Vav1, 14-3-3 and KSR1, plus 
transcription factors AhR and IRF1 [9–12].

HL-60 cells have been an archetype model for 
analyzing effects of ATRA in vitro. HL-60 cells are lineage 
bipotent myelo-monocytic precursors established from the 
peripheral blood of a patient retrospectively diagnosed 
with acute myeloblastic leukemia (FAB M2) [13]. ATRA 
induces these cells to undergo myeloid differentiation and 
G0 cell cycle arrest that depends on a sustained MAPK 
pathway signal with up-regulation and unanticipated 
translocation of c-Raf to the nucleus [14, 15]. In the 
nucleus, c-Raf interacts with the RB tumor suppressor 
protein [14, 16, 17]. RB is considered a master regulator of 
the cell cycle that becomes progressively phosphorylated 
with G1/S/G2 progression. Hypo-phosphorylated RB 
sequesters the E2F transcription factor that is released 
with RB phosphorylation to transcriptionally activate 
genes needed for S-phase entry. Phosphorylation at serine 
608 (pS608 RB) is a phosphorylation event signifying a 
conformational change associated with release of E2F 
[18]. ATRA-induced RB hypo-phosphorylation requires 
both RAR/RXR activation to cause G1/G0 arrest [19]. 
ATRA-induced arrest reflected down-regulation of cyclin 
E, associated with cyclin dependent kinase inhibitor 
(CDKI) p27(Kip1) up-regulation [20].

The non-receptor tyrosine kinase Src family of 
kinases (SFKs) is a group of enzymes that regulate 
MAPK pathway signaling associated with multiple 
cellular processes including migration, adhesion, invasion, 
survival, proliferation and differentiation [21, 22]. Src 
kinase is the prototypical member of the SFKs, with a 
total of 8 members expressed in mammalian cells (Src, 
Blk, Fgr, Fyn, Yes, Hck, Lck and Lyn) [23]. Lyn has been 
found to be the primary active SFK expressed in AML 
cells [24, 25]. However, in the ATRA responsive HL-
60 non-APL AML cell line, expression of both Lyn and 
Fgr protein-tyrosine kinases (PTKs) are inducible and 
tyrosine-phosphorylated [26].

Vav1 is a guanine nucleotide-exchange factor (GEF) 
that regulates MAPK pathway signaling. Its physiological 
expression is restricted to hematopoietic systems [27] and 
up-regulated by ATRA in APL-derived promyelocytes 
[28]. In malignant promyelocytes, Vav1 interacts with 
both cytoplasmic and nuclear signaling molecules and 
participates in interconnected networks regulating the 
different aspects of ATRA-induced differentiation of 
APL-derived cells [29]. ATRA drives Vav1 expression 
and increases association of Vav1 and c-Raf, putatively 
promoting sustained MAPK pathway activation, cell cycle 

arrest and differentiation [30]. Vav has been found to be 
needed for myelopoiesis in knockout mice [31, 32]. In 
ATRA-induced differentiation of leukemia cells, Vav1 
also interacts with PU.1, recruiting it to the promoter 
to transcriptionally activate expression of the CD11b 
differentiation marker [33]. IRF is the transcription factor 
known to be the primary effector of interferon action. It 
is known to collaborate with ATRA [34]. Like Vav1, IRF-
1 also enhanced Raf/Mek/Erk activation and promotes 
ATRA-induced differentiation and cell cycle arrest [10].

Roscovitine is a purine analogue that inhibits the 
activity of cyclin-dependent kinases (CDKs) by targeting 
their ATP-binding pockets [35]. The antitumor activity 
of roscovitine was demonstrated in various carcinoma 
cell lines, including nasopharyngeal, ovarian, colon, 
osteosarcoma, breast, lung and testicular [36, 37]. 
Roscovitine has been shown to potentiate the effects 
of other drugs in various hematological diseases. It, for 
example, synergistically collaborated with high dose 
farnesyltransferase inhibitor (FTI) to induce caspase-3 
activation in HL-60 promyelocytic leukemia cells [38]. 
While there are reports on roscovitine and apoptosis, 
there is nothing to our knowledge on regulation of 
differentiation. While it was originally conceived of as a 
CDK inhibitor, we now show here that it has other activity 
and novel downstream targets other than just CDKs. 
This enhances its interest in chemotherapy and, as we 
now report, particularly for ATRA-based differentiation 
induction therapy, which is an entirely novel mechanism 
for this drug that reveals novel therapeutic vulnerabilities 
as well as basic molecular mechanistic features of ATRA-
induced differentiation of leukemic cells.

In the present study, we found that ATRA caused 
nuclear enrichment of a number of traditionally cytosolic 
signaling molecules that earlier reports implicated in the 
MAPK pathway signaling that drives ATRA-induced 
differentiation. Roscovitine enhanced the effect of 
ATRA. Roscovitine enhanced the ATRA-induced nuclear 
enrichment of c-Raf and the Lyn and Fgr SFKs. RB 
specifically, pS608 RB, interacted with nuclear c-Raf 
and Lyn. ATRA plus roscovitine co-treatment diminished 
the amount of RB bound to c-Raf and Lyn enhancing 
the availability of freed c-Raf and Lyn in nucleus. 
We found that ATRA-induced p27Kip1 expression, 
suppression of cyclin E1 and Cdk2 phosphorylation 
and loss of pS608 RB were enhanced by roscovitine. 
Expression of several adaptor proteins, c-Cbl, SLP-76, 
a guanine exchange factor, Vav1, and the transcription 
factor, IRF-1 were likewise enriched by ATRA in the 
nucleus with enhancement by roscovitine. We generated 
a shRNA Lyn knockdown (shLyn) stable transfectant 
(Lyn KD), which essentially expressed no detectable 
pY416 Src, indicating that the phosphorylated nuclear 
SFK was Lyn and not Fgr. Lyn knockdown augmented 
certain roscovitine enhancements of ATRA effects on 
nuclear signaling and cell cycle regulatory molecules. 
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Interestingly Lyn KD did not much modify ATRA 
effects on c-Raf or its pS289/296/301 form, although 
it did enhance ATRA-induced p27Kip1 up-regulation 
as well as down-regulation of pT160 and pY15 Cdk2 
and down-regulation of RB and pS608 RB. These 
effects were associated with enhanced differentiation/
cell cycle arrest. Combined ATRA/roscovitine therapy 
thus enriches an ensemble of canonically cytoplasmic 
signaling molecules in the nucleus and promotes ATRA-
induced differentiation of HL-60 cells. The novel 
activation of the signaling molecules and translocation 
to the nucleus during ATRA-induced differentiation is 
enhanced by roscovitine with concomitant enhancement 
of induced differentiation. This suggests the potential use 
of combined therapy with roscovitine in AML patients. 
Roscovitine is already in clinical trial for patients with 
advanced solid tumors, but our results suggest that it may 
be useful in combination with ATRA for differentiation 
therapy of AML patients.

RESULTS

Roscovitine enhances ATRA-induced nuclear 
enrichment of c-Raf and ATRA regulation of 
c-Raf/RB and pS608RB complexes

ATRA-induced differentiation is driven by a 
sustained activation of MAPK signaling that causes the 
unanticipated nuclear translocation of c-Raf [14, 15]. 
The nuclear c-Raf phosphorylates transcription factors 
to enable RAREs to regulate gene transcription needed 
for ATRA-induced differentiation [8]. We investigated 
the effect of roscovitine on such signaling seminal to 
differentiation. Cells were either untreated or treated 
with ATRA, roscovitine, or ATRA plus roscovitine for 
72 h and nuclear lysates were harvested for analysis by 
Western blotting and immunoprecipitation. ATRA-treated 
cells showed enhancement of c-Raf expression and its 
S259 and S289/296/301 phosphorylated forms in the 
nucleus compared to untreated cells (Figure 1A–1C). 
Roscovitine enhanced the ATRA-induced accretion of 
c-Raf and its S259 and S289/296/301 phosphorylated 
forms in the nucleus. The immunoprecipitation of c-Raf 
followed by immunoblotting showed that nuclear c-Raf 
complexed with RB and specifically with pS608 RB-the 
hinge region phosphorylation that controls E2F binding 
and cell cycle progression. ATRA reduced the amount 
of RB and pS608 RB bound with c-Raf, and roscovitine 
enhanced the reduction in the amount of c-Raf bound 
with RB and pS608 RB. Roscovitine thus promoted these 
ATRA-induced effects (Figure 1E). In these cells, ATRA-
induced cell cycle arrest was associated with less RB 
and specifically less pS608 RB [14, 39]. Thus, cell cycle 
arrest also would result in less c-Raf sequestered with RB, 
increasing the availability of non-RB-sequestered Raf. 
This provides a heuristic rationalization for how cell cycle 

arrest can promote differentiation. Roscovitine is ergo 
a pharmacological means of evoking the same putative 
differentiation-promoting effect.

Roscovitine enhances the ATRA-induced 
expression of SFKs and pY416 SFKs and pS608 
RB hypophosphorylation

SFKs function to promote ATRA-induced 
differentiation [9, 40]. We therefore tested if roscovitine 
affected them in a way consistent with driving 
differentiation. Lyn and Fgr are the predominant SFKs in 
these cells, and they are up-regulated with ATRA treatment 
[40]. Given that these ATRA-regulated SFKs participate 
in inducing differentiation, we characterized the effects 
of co-treatment with ATRA and roscovitine by measuring 
their expression and activating phosphorylation. Cells 
were untreated controls or treated with ATRA, roscovitine 
or ATRA plus roscovitine. After 72 h of culture, we 
collected the cell lysate, extracted nuclear protein, and 
analyzed the expression of Lyn, Fgr, and phospho (Y416)-
c-Src proteins.

Lyn was up-regulated by ATRA, and the expression 
was further enhanced by co-treatment with roscovitine 
(Figure 2A). ATRA also induced the expression of Fgr 
and phospho-Src family (Y416), and co-treatment with 
ATRA plus roscovitine further enhanced the expression 
(Figure 2B and 2C). To the best of our knowledge, this 
study is the first to report the existence of the members of 
Src-family kinases and phospho-Src family (Y416) in the 
nucleus of HL-60 human myeloblastic leukemia cells and 
their nuclear enrichment by treatment with either ATRA 
alone or ATRA plus roscovitine.

Given that the above results show the presence 
of SFKs in the nucleus, we explored the association 
between Lyn and RB. Immunoprecipitation showed 
that Lyn complexed with RB and in particular its S608 
phosphorylated form. ATRA reduced the amount of 
Lyn complexed with pS608 RB. At the same time Lyn 
expression in the nucleus was enhanced by ATRA in 
addition to gains from relieving the amount bound to 
pS608 RB. Roscovitine enhanced these ATRA-induced 
effects. Roscovitine thus again potentiated ATRA effects, 
but it did not cause such effects by itself (Figure 2E). 
While Lyn binding to pS608 RB was greatly diminished 
in ATRA treated cells and essentially lost in ATRA plus 
roscovitine treated cells, Lyn binding to RB was detectable 
in both (Figure 2F), consistent with preferential binding 
to non-pS608 phosphorylated RB in the treated cells. 
Interestingly, like Lyn, Vav likewise binds RB.

ATRA plus roscovitine co-treatment enhances 
nuclear VAV1 expression

Vav1 is a GEF found in both the cytoplasm and 
nuclear compartments and is the only member of the Vav 
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family expressed in hematopoietic cells [41]. Vav was 
identified as a component of the cytoplasmic signalsome 
that drives differentiation [29]. We explored whether 
Vav was regulated by ATRA and roscovitine as were 
the related signaling molecules, c-Raf and Lyn, which 
were also signalsome components. Cells were untreated 
controls or treated with ATRA, roscovitine or ATRA 
plus roscovitine. After 72 h of culture, we collected the 
cell lysate, extracted nuclear protein, and analyzed the 
expression of Vav. ATRA alone up-regulated nuclear Vav1 
expression, and co-treatment with roscovitine caused 
further nuclear enrichment (Figure 3A). We next searched 
for Vav partners of regulatory significance in the nucleus. 
Using immunoprecipitation with RB as bait, we also noted 
a novel Vav1-RB interaction in the nucleus (Figure 2F). 
We infer that ATRA causes more Vav in the nucleus where 
it bound RB. Roscovitine enhanced the ATRA-induced 
increased Vav in the nucleus, To the best of our knowledge, 
this result is the first finding that ATRA alone and co-
treatment with ATRA plus roscovitine enhanced Vav1 
expression in the nucleus where it associated with RB.

Roscovitine enhances ATRA-induced enrichment 
of c-Cbl and SLP-76 in the nucleus

c-Cbl and SLP-76 are adaptor proteins that also 
activate sustained MAPK signaling to facilitate ATRA-
induced cell differentiation [11, 12, 42]. We explored 
the effect of ATRA and roscovitine on these signaling 
adaptor molecules known to be functionally related 
to c-Raf, Lyn, and Vav. Expression of c-Cbl and SLP-
76 are known to drive ATRA-induced differentiation. 
Cells were untreated controls or treated with ATRA, 
roscovitine or ATRA plus roscovitine. After 72 h of 
culture, we collected the cell lysate and extracted 
nuclear protein for Western blotting. ATRA increased 
nuclear c-Cbl expression, and roscovitine enhanced 
the increase (Figure 4A). Similarly, ATRA increased 
nuclear SLP-76 expression, and adding roscovitine 
further enhanced expression compared with ATRA alone 
(Figure 4B). Roscovitine thus had widespread effects 
on signaling molecules that promote ATRA-induced 
differentiation.

Figure 1: Roscovitine enhances the amount of ATRA-induced phosphorylated c-Raf and phosphorylated c-Raf in 
the nucleus modulates the RB protein functions. (A–C) Western blot of c-Raf and its phospho-regulatory residues in HL-60 cells 
cultured with ATRA for 72 h showed that ATRA upregulated nuclear c-Raf, pS259 and pS289/296/301 c-Raf expression and co-treatment 
with ATRA plus roscovitine further increased of c-Raf and its active phosphorylation sites, pS259 and pS289/296/301, compared to 
ATRA alone. (D) TATA binding protein (TBP) is the loading control.  (E) c-Raf immunoprecipitates probed for RB or S608 RB show that 
roscovitine enhances ATRA-induced downregulation of the amount of nuclear c-Raf complexed with RB and specifically with its serine 
608 phosphorylated form (pS608 RB). An equal amount of pre-cleared nuclear lysate was collected 72 h post treatment and incubated 
overnight with 2.5 µg of the precipitating antibody with magnetic beads and resolved on 12 % polyacrylamide gels. All blots shown are 
representative of three replicates.
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Figure 3: Roscovitine increases ATRA-induced nuclear expression of Vav1. (A) Western blots of nuclear lysate shows that 
ATRA enhances the relative expression of nuclear Vav1 compared to untreated cells and ATRA/roscovitine treated HL-60 cells further 
increases the level of Vav1 compared to ATRA alone at 72 h. (B) TATA binding protein (TBP) was the loading control. All blots shown are 
representative of three replicates.

Figure 2: Roscovitine enhances the expression of ATRA-induced enrichment of nuclear Src-family kinase members. 
Nuclear lysates collected after 72 h of treatment were resolved on 12% polyacrylamide gels. 25 µg protein was loaded per well. (A–C) 
Roscovitine enhances ATRA-induced nuclear Lyn, Fgr and Y416-c-Src expression. p < 0.05 comparing ATRA-treated samples to ATRA/
roscovitine-treated samples. (D) TATA binding protein (TBP) was the loading control. (E) Roscovitine augments ATRA-induced reduction 
of nuclear Lyn interaction with pS608 phosphorylated RB tumor suppressor protein. Co-immunoprecipitation was done using Lyn as bait. 
(F) Nuclear RB binds Lyn in ATRA and ATRA plus roscovitine treated cells. Co-immunoprecipitation was done in treated cells using RB 
as bait. Vav also binds RB in these cells. An equal amount of pre-cleared nuclear lysate was collected 72 h post treatment and incubated 
overnight with 1:100 concentration of the precipitating antibody with magnetic beads and resolved on 12 % polyacrylamide gels. All blots 
shown are representative of three replicates.

www.oncotarget.com


Oncotarget1022www.oncotarget.com

Roscovitine augments ATRA-induced nuclear 
IRF-1 expression

IRF-1 is a transcription factor found to have a 
signaling function in the signalsome that promotes 
ATRA-induced differentiation [34]. Given that ectopically 
expressed IRF-1 enhanced Raf/Mek/Erk activation and 
ATRA-induced cell differentiation and G1/G0 arrest 
[10], we explored if like other signaling molecules in 
the signalsome it was subject to regulation by ATRA and 
roscovitine. Cells were untreated or treated with ATRA and 
ATRA plus roscovitine for 72 h and harvested to generate 
nuclear lysates to analyze for nuclear IRF-1 expression 
by Western blotting. ATRA increased the amount of IRF-
1 in the nucleus compared to untreated cells. Adding 
roscovitine further enhanced IRF-1 expression compared 
to ATRA alone (Figure 5A). Roscovitine effects thus 
extended to the IRF-1 transcription factor in addition to 
classical signal transduction molecules.

Roscovitine enhances ATRA-induced changes in 
certain canonical cell cycle regulators: p27/cyclin 
E1/Cdk2/RB pathway

Given the effects of roscovitine on signaling and 
the unanticipated nuclear translocation and association 
with RB of these molecules, we explored the effects of 
roscovitine on classical cell cycle regulatory molecules. 
Cells were untreated or treated with ATRA, roscovitine 
or ATRA plus roscovitine and harvested after 72 h for 
Western blot analysis of nuclear lysates probed for the 
cell cycle regulators, p27Kip1, Cyclin E1, Cdk2, pY15 
and pY160 phosphorylated CDK2, RB, and pS608 RB. 
The p27Kip1 cyclin dependent kinase inhibitor (CDKI) 
plays a key role in determining the onset of the S-phase 
[43]. ATRA induced p27Kip1 expression consistent with 

the G1/G0 cell cycle arrest known to occur [44] and 
adding roscovitine slightly enhanced this (Figure 6A). 
p27Kip1 is known to target the cyclin E1/Cdk2 complex. 
We analyzed the expression of total Cdk2, phospho-
Y15Cdk2, phospho-T160Cdk2, and cyclin E1 and found 
that co-treated cells down-regulated cyclin E1 and Cdk2, 
notably both its Y15Cdk2 and T160Cdk2 phosphorylated 
forms. Roscovitine generally enhanced the effects of 
ATRA on these cell cycle regulators (Figure 6B–6E). 
p27Kip1, cyclin E, and cdk2 are canonical regulators of 
RB, where activated cyclin E1-Cdk2 phosphorylates RB 
to cause S-phase entry [43]. We analyzed the expression 
of total RB and pS608-RB status in these cells. Consistent 
with other reports [14, 16, 39, 45–47], ATRA promoted 
the down-regulation of total RB and diminished the 
amount of pS608-RB, and co-treatment with roscovitine 
enhanced this (Figure 6F and 6G). Thus, roscovitine 
enhanced ATRA-induced effects on G1/G0 cell cycle 
arrest through regulatory proteins of the p27/cyclin E1/
Cdk2/RB pathway. Notably, roscovitine itself had effects 
on such cell cycle regulators. It induced the expression 
of cyclin E1, Cdk2, pY15Cdk2, and pT160Cdk2. Based 
on the above results, roscovitine affects ATRA-regulated 
signaling molecules that drive induced differentiation and 
also ATRA-regulated cell cycle regulatory molecules that 
control G1/G0 arrest.

Lyn knockdown enhances ATRA and roscovitine-
induced nuclear protein expression changes

The data above implicate Lyn with a prominent role 
in mediating the effects of ATRA and roscovitine, but there 
are conflicting reports on how Lyn is involved. Miranda 
et al. [48] reported that the inhibition of Src family kinases 
enhances ATRA-induced myeloid cell differentiation. In 
contrast we reported that putative SFK inhibitors could in 

Figure 4: Expression of adaptor proteins (c-Cbl, SLP-76) in the nucleus is enhanced by ATRA and roscovitine. (A, B)
Western blots of nuclear lysate show that ATRA enhances the expression of c-Cbl and SLP-76 compared to untreated cells and co-treatment 
with ATRA and roscovitine further increased their expression compared to ATRA alone at 72 h (C). (B) TATA binding protein (TBP) was 
the loading control. All blots shown are representative of three replicates.
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fact enhance the signaling that drives differentiation and 
enhance differentiation [9, 40]. It is ergo not clear how 
SFK activity regulated ATRA-induced differentiation, 
although the significant engagement of Lyn in the action 
of ATRA and roscovitine was indicated by our earlier 
data. We explored Lyn function in mediating the effects 
of ATRA and roscovitine by shRNA knockdown targeting 
Lyn, in this case obviating potential off target effects 
of pharmacological agents. We constructed a pLKO.1-
LynshRNA expression vector and generated stable 
transfectants expressing shRNA targeting Lyn (shLyn). 
The knockdown efficiency was assessed by Western blot. 
Stable transfectants expressing the shRNA targeting Lyn 
essentially lost all Lyn expression. Nor could ATRA or 
ATRA plus roscovitine induce Lyn expression. After 72 
h, ATRA and ATRA plus roscovitine treatment of shLyn 
stable cells no longer up-regulated expression of Lyn. 
No phospho residue pY416-c-Src was detectable in the 
nucleus of the stable transfectants (Figure 7A and 7B). 
Interestingly, Lyn knockdown enhanced up-regulation of 
nuclear Fgr by both ATRA and ATRA plus roscovitine. 
(Figure 7C). Since Lyn and Fgr are essentially the only 
two SFKs in these cells, and Lyn KD resulted in loss of 
pY416 SFK, then the pY416 SFK phosphorylation must 
reflect only Lyn phosphorylation at Y416 SFK activation 
site. Fgr ergo is not Y416 phosphorylated in response to 
ATRA or to roscovitine. Interestingly loss of one SFK has 
enhanced the induced expression of the other, suggesting 
compensatory cross talk between Lyn and Fgr.

c-Raf is a kinase known to drive the differentiation 
process and to collaborate with Fgr [9]. As in the case of 
Fgr, Lyn KD enhanced ATRA/roscovitine-induced up-
regulation. Likewise, up-regulation of pS289/296/301-c-
Raf was enhanced by Lyn KD. Interestingly, as for Fgr, 
the Lyn KD itself caused increased c-Raf in the nucleus 
(Figure 7D and 7E).

p27Kip1 is a CDKI cell cycle regulator, and we 
sought evidence that it regulated ATRA and roscovitine 
effects on canonical cell cycle regulatory molecules. 
ATRA induced up-regulation of p27Kip1 expression 
where addition of roscovitine enhanced this; and Lyn 
KD resulted in further up-regulation. The Lyn KD 
thus enhanced the induced up-regulation of p27Kip1 
(Figure 7F). In contrast Lyn KD did not significantly 
further affect expression of cyclin E nor Cdk2 or its pY15 
and pT160 forms in ATRA/roscovitine treated cells. 
(Figure 7G–7J). RB is downstream of the p27Kip1 CDKI, 
E cyclin, and CDK2 axis; and Lyn KD enhanced ATRA/
roscovitine-induced down regulation of RB, but without 
much further effect on the ATRA/roscovitine-induced loss 
of pS608 RB (Figure 7K and 7L).

The above reported data on the effects of Lyn 
knock down as well as roscovitine on the differentiation 
promoting signaling and cell cycle regulators motivated 
us to seek evidence that they promote cell cycle arrest and 
differentiation. Cell cycle arrest at G1/G0 is a feature of 
differentiation. Cell cycle phase distribution was measured 
by flow cytometry in untreated, ATRA, roscovitine and 

Figure 5: Roscovitine enhances ATRA-induced nuclear enrichment of IRF-1. (A) Western blots of nuclear lysate show that 
ATRA enhances the relative expression of IRF-1 compared to untreated cells and cells co-treated with ATRA plus roscovitine further 
increases the level of IRF-1 compared to ATRA alone at 72 h. (B) TATA binding protein (TBP) was the loading control. All blots shown 
are representative of three replicates.
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ATRA plus roscovitine treated wild-type and Lyn KD cell 
populations. We found that ATRA treated Lyn KD cells 
showed progressively more G1/G0 enrichment than wild 
type cells, consistent with retardation of growth, and adding 
roscovitine to ATRA further enhanced the accumulation of 
these cells in G1/G0 compared to ATRA alone (Figure 7N). 
CD11b is an integrin receptor subunit that is a differentiation 
marker. We also found that ATRA treated Lyn KD stable 
transfectants showed more CD11b expression than wild 
type and adding roscovitine to ATRA modestly enhanced 
CD11b expression (Figure 7O). So roscovitine enhancement 
of ATRA ergo was not lost with loss of Lyn. The changes 
observed in nuclear signaling molecule responses to ATRA 
and roscovitine due to Lyn KD are thus associated with 
enhancement of cell cycle arrest and differentiation.

Hierarchical clustering based on nuclear protein 
expression and activation in HL-60 Wt and HL-
60 Lyn-KD cells

Hierarchical clustering analysis for an ensemble 
of known cell cycle regulatory molecules and canonical 

growth factor receptor regulated cytosolic signaling 
molecules now found in the nucleus was performed to 
identify coupling relationships that betray regulatory 
pathways driving cell differentiation induced by ATRA 
and enhanced by addition of roscovitine.

In the wt parental cells, ATRA and roscovitine 
treatments reveal two main clusters determined by 
absence or presence of ATRA. Each of these resolves into 
cells without roscovitine or with roscovitine. The main 
determinant of variance is hence ATRA which is modified 
by roscovitine, so biologically roscovitine is just a modifier 
of a cellular response to ATRA, which is the main driver.

The ensemble of measured regulatory molecules 
responding to treatment segregates into two main clusters, 
cell cycle regulators and cell signaling differentiation 
regulators. Confirming the fidelity of the analysis to 
known cell cycle biology, the cell cycle regulators show 
the anticipated relationships, except for one revealing 
detail. In this cell cycle cluster, pS608 RB is coupled 
to CDK2, which is known to phosphorylate RB, and 
Cyclin E1 is coupled to both of these, which reflects the 
classical Cyclin E1 regulation of CDK2 [43]. Somewhat 

Figure 6: Roscovitine effects on ATRA-induced changes in nuclear expression of G1/G0 regulatory molecules: p27/
cyclin E1/Cdk2/RB pathway. (A) Western blot of p27Kip1 in cells cultured for 72 h showed that ATRA enhanced nuclear p27Kip1 level, 
and cells co-treated with ATRA and roscovitine modestly further upregulated the p27Kip1 expression. (B) Roscovitine further decreased 
ATRA-induced reduction of nuclear cyclin E1 expression in these cells. (C–E) Roscovitine diminishes ATRA-induced downregulation of 
nuclear CDK2 and specifically its pY15CDK2 and pT160CDK2 phosphorylated forms. (F, G) ATRA plus roscovitine downregulates total 
RB and pS608 phosphorylated RB. Roscovitine enhanced ATRA-induced reduction of RB phosphorylated at pS608 site. Surprisingly, at 
the same dose, roscovitine alone enhances nuclear cyclin E1 and CDK2 expression. p < 0.05 comparing ATRA-treated samples to ATRA/
Roscovitine-treated samples. (H) TATA binding protein (TBP) was the loading control; a minor artifact caused during image capture can be 
seen. All blots shown are representative of three replicates.
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surprisingly the putative canonical inhibitory and 
enhancing phosphorylation events, pY15 and pT160, 
of CDK2 are coupled and co-regulated (Figure 8A). 
Significantly the CDKI, p27 Kip1, is not in this cluster, 
although it is a classical inhibitor of CDK2 and mediates 

cell cycle arrest as is occurring under the influence 
of ATRA and ATRA plus roscovitine. The signaling 
regulators segregate into three discernible clusters that 
are followers that co-vary together with pS259-c-Raf  
as their driver. Notably pS259-c-Raf Raf is the driver 
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Figure 7: Western blots of nuclear lysate, CD11b and DNA histograms show that Lyn knockdown enhances ATRA-
roscovitine induced gene expression and myeloid differentiation. (A, B) ATRA and ATRA plus roscovitine co-treated Lyn KD 
cells caused a modest increase in Lyn and the phospho-residue, pY416-c-Src, expression. (C) Lyn knockdown enhances Fgr expression in 
Lyn KD cells co-treated with ATRA and roscovitine. (D, E) Lyn knockdown enhances c-Raf and phospho- S289/296/301-c-Raf expression 
in Lyn KD cells co-treated with ATRA and Roscovitine (F). p27Kip1 protein expression upregulates in Lyn KD cells co-treated with ATRA 
and roscovitine (G–J). Total Cdk2, phospho-Cdk2Y15, phospho-Cdk2T160 and cyclin E1 downregulates in Lyn KD cells co-treated with 
ATRA and roscovitine (K, L). Cotreatment of Lyn KD cells also deceases total RB expression and induced hypophosphorylation at serine 
608 (S608) of RB (M). TATA binding protein (TBP) was used as loading control. p < 0.05 comparing ATRA-treated samples to ATRA/
Roscovitine-treated samples of either wild-type and Lyn-KD cells. (N) Cell cycle distribution showing the percentage of cells in G1/G0, 
S and G2/M was analyzed using flow cytometry with propidium iodide. ATRA/roscovitine-induced differentiation of Lyn KD stable cells 
marked by G1/G0 cell cycle arrest was enhanced compared to parental wild type cells. (O) CD11b expression assessed by flow cytometry 
with an APC-conjugated antibody. Lyn KD cells show enhanced CD11b expression in response to ATRA when compared to wild-type 
cells. Also, a difference in CD11b expression was found between ATRA/roscovitine-treated parental wild type and Lyn KD cells. All 
experiments shown are representative of three replicates.
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for these three signaling subclusters, consistent with the 
postulated regulatory significance of pS259 Raf and its 
nuclear translocation in ATRA-induced differentiation [9]. 
Of the three signaling molecule clusters, one contains Fgr 
and pY416 Src, which in this process we biochemically 
established as linked [9], another contains the Lyn SFK, 
and the third includes pS289/296/301-c-Raf coupled 
to p27 Kip1 (Figure 8A). So, the p27 Kip1 surprisingly 
appears in the group of signaling molecules covarying 
with c-Raf/phospho-c-Raf. Interestingly each of these 
signaling subclusters also has an entity that goes from 
essentially not expressed in untreated cells to clearly 
expressed in ATRA treated cells, namely Fgr, IRF-1, and 
p27 Kip1. And addition of roscovitine enhances these 
up-regulations. The coupling of the p27 Kip1 CDKI with 
a putative major signaling regulator of differentiation 
suggests how signaling driving differentiation is coupled 
to driving cell cycle arrest. Indeed, the p27 Kip1 gene 
promoter is Sp1 regulated [49] where the Sp1 transcription 
factor is a classical responder to Raf/Mek/Erk axis MAPK 
pathway signaling [50]. p27 kip1 may thus be a molecular 
link connecting differentiation signaling to cell cycle 
arrest. Principal components analysis (PCA) revealed 
essentially only one principal component (Figure 8B) 
where pS289/296/301 c-Raf, Lyn, c-Cbl, and IRF1 were 
coupled as one major contributor and p27 Kip1, Cyclin 
E1, Cdk2, pY15 Cdk2, pT160 Cdk2, RB and pS608 RB 
were coupled as the other major contributor. The cell cycle 
regulators including p27 Kip1 appear coupled as a group 
(Figure 8C).

The Lyn SFK is a putatively important regulator 
of signaling activation that drives ATRA-induced 
differentiation. Historically it is a known regulator of 
many of the signaling molecules [9, 42] implicated here 
in driving ATRA-induced differentiation. A Lyn shRNA 
KD was created to experimentally probe the effect of this 
disruption on the ATRA-induced coupling of regulatory 
molecules to gain molecular mechanistic insights into 
the mechanism of induced cell differentiation. The Lyn 
KD disrupts certain features revealed by the hierarchical 
clustering analysis, but the gross features are largely 
conserved albeit with some potentially notable changes. 
Segregation by treatment is largely as it was with the 
effect of ATRA modified by roscovitine. Segregation by 
molecular entities again resolves into two main clusters, 
namely cell cycle regulators and signaling molecules 
driving differentiation. The clustering of coupled cell 
cycle regulators is unaffected by the Lyn KD. Although 
the signaling molecules still cluster, the hierarchical 
structure within this cluster is affected. Interestingly 
we note that pS289/296/301-c-Raf, which was with 
c-Raf and p27 kip1 in a cluster distinct from the cluster 
containing Fgr and pY415 SFK in parental cells, has 
divorced to cluster with Fgr and pY416 SFK in Lyn KD 
cells (Figure 8D). The coupling between Fgr and pY416 
SFK is conserved comparing parental and Lyn KD cells. 

p27 kip1 coupling to signaling molecules is ergo altered, 
too. Principal components analysis revealed several 
principal components (Figure 8E) with one dominant 
one where p27 Kip1 and Fgr were coupled as one major 
contributor and pT160 CDK2 and pS608 RB were coupled 
as the other major contributor. P27 Kip1 was ergo coupled 
differently compared to wt parental cells (Figure 8F). 
These changes may contribute to the greater efficacy of 
ATRA and ATRA plus roscovitine to induce differentiation 
of Lyn KD cells. The collective changes reflect a global 
signaling enhancement that apparently drove enhanced 
differentiation.

DISCUSSION

Retinoic acid differentiation therapy has been 
successfully used to treat acute promyelocytic leukemia 
(APL), which is classified as the M3 subtype of AML 
in the FAB classification system and accounts for 
approximately 5%–8% of patients with AML [51], but it 
has not been effective for the majority of AML. In APL, 
the cause of disease is thought to arise from a t (15;17) 
translocation resulting in a PML-RARα fusion protein. 
ATRA can induce the proteolytic degradation of this fusion 
protein resulting in the repression of cell proliferation and 
induction of myeloid cell differentiation [52]. However, 
some patients relapse, and disease recurrence is associated 
with resistance to ATRA [53]. This and the fact that ATRA 
is ineffective at inducing remissions in the majority of 
AML have stimulated interest in combination therapies 
using ATRA with other agents. Such therapies hold the 
promise of both overcoming resistance and mitigating 
the incidence of retinoic acid syndrome, a potentially 
fatal cardio-pulmonary pathological sequela of ATRA 
therapy, by reducing the effective dose of ATRA needed. 
Much effort has been devoted to identifying novel drugs 
with specific targets that would increase the therapeutic 
efficiency of ATRA [54–58]. In a series of studies, we 
have established that ATRA-induced differentiation and 
cell cycle arrest of a FAB M2 cell line model requires 
formation and activation of a macromolecular signaling 
complex, a signalsome, that incorporates a number of 
signaling molecules associated with MAPK pathway 
signal transduction as well as unexpected components, in 
particular the IRF-1 and AhR transcription factors [10, 57]. 
These molecular mechanistic insights motivated tests of 
agents targeting signalsome components. The signalsome 
results in nuclear events that enable RAR/RXR, ATRA 
activated transcription factors, to transcriptionally activate 
their target genes to drive differentiation and cell cycle 
arrest. For example, our laboratory reported that the SFK 
inhibitors PP2, dasatinib, and bosutinib modulate MAPK 
signaling and enhance the therapeutic effects of ATRA 
in various myeloid leukemia cells [9, 40]. We have also 
found that AhR ligands, specifically FICZ and VAF347, 
used with ATRA enhance induced differentiation [57, 58]. 
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There is hence encouragement to find agents that enhance 
ATRA via gaining insight into novel molecular mechanistic 
underpinnings of ATRA action. Ultimately such cocktails 
could render ATRA resistant AML susceptible to 
differentiation therapy.

In the present work, we reported that roscovitine 
collaborates with ATRA to cause nuclear enrichment 
of proteins known to drive differentiation and cell cycle 
arrest of the t(15;17)-negative HL-60 human myeloblastic 
leukemia model. An ensemble of traditionally regarded 
cytosolic signaling molecules was unexpectedly found in 

the nucleus where their expression or phosphorylation state 
was regulated by ATRA. Roscovitine was found to target 
these and enhance effects of ATRA. One of these molecules 
was c-Raf. ATRA is known to cause its enrichment in the 
nucleus where it functions in a non-canonical signaling role 
to target transcription factors that drive differentiation [8]. 
In the current study, we found that roscovitine enhanced 
the ATRA effect. HL-60 cells co-treated with ATRA and 
roscovitine showed increased nuclear c-Raf levels. c-Raf 
function in various contexts is controlled by site-specific 
phosphorylation that controls its binding to various other 
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Figure 8: Hierarchical clustering and principal components analysis (PCA) of nuclear protein expression/activation 
in HL-60 wt and Lyn KD cells. (A) Clustering based on the expression and activation of nuclear molecules for HL-60 cells either 
untreated or treated with ATRA, roscovitine or ATRA plus roscovitine, was performed using the ‘pheatmap’ function available in the R 
package. (B) Contribution by principal components for HL-60 wt cells. (C) Molecular contributors of principal components and their 
coupling (coupling shown by color similarity) for HL-60 wt cells. (D) Hierarchical clustering of nuclear protein expression/activation for 
HL-60 Lyn KD cells. Clustering based on the expression and activation of nuclear molecules for HL-60 Lyn KD cells either untreated or 
treated with ATRA, roscovitine or ATRA plus roscovitine, was performed using the ‘pheatmap’ function available in the R package. (E) 
Contribution by principal components for HL-60 Lyn KD cells. (F) Molecular contributors of principal components and their coupling (by 
color) for HL-60 Lyn KD.

proteins [59]. How roscovitine caused activation of kinases 
other than CDKs is unknown. In the current study, we see 
that roscovitine enhanced ATRA-induced nuclear c-Raf 
phosphorylation at S259 and S289/296/301, which are 
known to be associated with differentiation [9]. Although 
nuclear c-Raf phosphorylated at S621 is implicated in 
myeloid cell differentiation [8], the potential roles of other 
sites (S259 and S289/296/301) remain to be determined. 
In the nucleus, the RB tumor suppressor protein is known 
to be central in cell cycle regulation and by inference 
differentiation. During the cell cycle progression of 
untreated HL-60 cells, RB is in the hyper-phosphorylated 
state but begins to be hypo-phosphorylated in late G2 in 
ATRA-treated cells [39]. Hypo-phosphorylated RB is 
only detectable in cells undergoing differentiation [19]. 
We found that the c-Raf in the nucleus interacted with RB 
and specifically with pS608 RB. pS608 is the hinge region 
phosphorylation that controls E2F binding and cell cycle 
progression. The ATRA-induced loss of pS608 RB with 
cell cycle arrest is associated with less RB and specifically 
less pS608 RB bound to Raf, even as the amount of 
nuclear c-Raf increases. Roscovitine promoted the loss of 
c-Raf bound with RB. Hence cell cycle arrest with loss of 
pS608 RB liberated c-Raf from RB and resulted in more 
c-Raf availability to stoichiometrically favor targets such 
as transcription factors that drive differentiation. This 
provides a heuristic mechanistic rationalization coupling 

cell cycle arrest and differentiation through the availability 
of non-RB-sequestered Raf.

The members of the Src kinase family such as 
Blk, Hck, Fgr, Lck, and Lyn are primarily found in 
hematopoietic cells [60]. Among these, Lyn and Fgr 
are progressively activated by tyrosine phosphorylation 
after ATRA treatment of HL-60 cells [26]. In the current 
study, we found that roscovitine enhanced ATRA-
induced enrichment of the SFK members Lyn and Fgr 
and promoted Y416 phosphorylation in the nucleus. 
Phosphorylation of Y416 marks activation of SFKs. We 
observed that whereas Fgr and Lyn are the primary SFKs 
known in these cells, knocking down Lyn eliminated 
detectable pY416 SFK indicating that Lyn and not Fgr 
was the primary phosphorylated SFK in the nucleus of 
ATRA-treated cells. Given that the above results indicate 
the presence of SFKs in the nucleus, we searched for 
Lyn nuclear partners of potential regulatory significance. 
Through co-immunoprecipitation, we found that Lyn 
complexed with RB after ATRA or combined ATRA and 
roscovitine treatment.

The role of Lyn in ATRA-induced differentiation 
is somewhat enigmatic. We reported that ATRA causes 
up-regulation of Lyn. However, previous reports show 
that some SFK inhibitors enhanced the ATRA-induced 
expression of SFK members, Lyn and Fgr, as well as 
activated signaling which was associated with promoting 
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cell cycle arrest and differentiation [9, 24, 40]. And Lyn 
knock down also did this, too. But roscovitine enhances 
the ATRA-induced increase of Lyn and Fgr in the nucleus 
and promotes ATRA-induced differentiation. This is 
paradoxical, however, as it is known that in a variety of 
cases SFK inhibitors can also act as activators, too [61], 
suggesting that context dependence may be a partial 
explanation. Certainly, off target effects of the drugs could 
have resulted in compensatory effects, too.

We then explored Vav1 expression and found that 
roscovitine increases ATRA-induced nuclear enrichment 
of Vav1. Vav1, a guanine nucleotide exchange factor, plays 
a central role in the activation of MAPK signaling cascade 
[62] and is associated with downstream expression of the 
differentiation markers CD38 and CD11b. Brugnoli et al. 
[33] reported that the ATRA-induced expression of Vav1 

recruits PU.1 to its consensus sequence on the CD11b 
promoter and ultimately regulates CD11b expression 
during the late stages of the neutrophil differentiation 
of APL-derived promyelocytes. To our knowledge, no 
previous evidence shows that roscovitine regulates Vav1 
activity in myeloid cells, but synthesizing these results 
with ours suggests roscovitine could be promoting this to 
drive the phenotypic shift characterizing differentiation.

The adaptor proteins c-Cbl and SLP-76 also 
promote ATRA-induced differentiation and the G1/G0 
arrest of HL-60 cells [11, 12, 42]. Shen and Yen [63] 
showed that c-Cbl interacts with CD38 to enhance ATRA-
induced differentiation. This is the first report showing 
that roscovitine enhances the ATRA-induced nuclear 
enrichment of c-Cbl and SLP-76. Because these adaptor 
molecules also support signaling by other chemokines that 

Figure 9: (A and B) Schematic diagram of ATRA-roscovitine induced modulation of nuclear molecules in wild-type and Lyn-KD HL-60 
cells. Red/Green arrow shows flow of either Wt or Lyn KD HL-60 cells. Up/down arrows show effects shown to be affected by adding 
ATRA plus Roscovitine
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regulate myeloid differentiation, they may also promote 
signaling pathways collaborating with ATRA during 
induced differentiation. A well-established collaborating 
pathway is interferon enhancement of ATRA-driven 
differentiation [34]. Indeed, we have observed that ATRA 
induces IRF-1 expression and ectopic expression of IRF-1 
propels ATRA-induced differentiation and arrest of these 
cells [10]. IRF-1 is the well-known transcription factor 
implicated in being the primary driver of IFN-γ effects 
[64]. As with adaptor proteins, roscovitine also drives 
nuclear IRF-1 expression, augmenting ATRA-induced 
increases that we previously showed enhance Raf/Mek/
Erk activation and promote differentiation and cell cycle 
arrest [10].

We found that roscovitine enhanced ATRA-induced 
reduction of cyclin E1, CDK2, pY15 CDK2 and pT160 
CDK2, and pS608 RB. Roscovitine enhanced the ATRA-
induced increase in p27Kip1 level. The observed ATRA 
and roscovitine driven reduction in cyclin E1 levels 
possibly contributes to the following increase in p27Kip1 
stability after ATRA-roscovitine treatment because cyclin 
E-CDK2 complexes can target p27Kip1 for degradation 
through phosphorylation of Thr187 [65, 66]. RB is the 
target of CDKs. We found that ATRA induced loss of 
pS608 RB, which was enhanced by roscovitine. This may 
have dual effects of enhancing sequestering E2F to cause 
G1/0 arrest and freeing molecules sequestered by pS608 
RB to drive differentiation. RB may thus sequester factors 
driving differentiation during cell proliferation when 
S608 is phosphorylated, and sequester factors driving 
proliferation when S608 phosphorylation is lost and 
freeing factors that drive differentiation. Hence depending 
on its phosphorylation state RB may be promoting either 
proliferation or differentiating by differential sequestration 
of drivers of these processes.

We also explored Lyn function in mediating the 
effects of ATRA and roscovitine by shRNA knockdown 
targeting Lyn and found that Lyn knockdown enhanced 
up-regulation of nuclear Fgr by both ATRA and ATRA 
plus roscovitine. Since Lyn KD resulted in loss of pY416 
SFK, the pY416 SFK phosphorylation must reflect only 
Lyn phosphorylation at Y416 SFK activation site. Fgr 
ergo is not Y416 phosphorylated in response to ATRA 
or to roscovitine. Interestingly loss of one SFK, Lyn, 
has enhanced the induced expression of the other, Fgr, 
suggesting compensatory cross talk between Lyn and Fgr. 
Our data clearly implicate the Lyn KD effects on nuclear 
signaling pathways considered seminal to ATRA-induced 
differentiation and cell cycle arrest.

In conclusion, the current study showed that 
roscovitine exhibits effects beyond its original presentation 
as a CDK inhibitor (Figure 9A and 9B). Roscovitine may 
modulate nuclear molecules and enhance the therapeutic 
effects of ATRA in HL-60 cells. To the best of our 
knowledge, this study is the first to report that roscovitine 
potentiates ATRA in inducing myeloid leukemia cell 

differentiation, the mechanistic insights of which suggests 
new therapeutic targets to improve the clinical efficiency 
of ATRA to treat myeloid leukemia.

MATERIALS AND METHODS

Cell culture and treatments

HL-60 human myeloblastic leukemia cell lines 
derived from the original isolates were a generous gift of 
Dr. Robert Gallagher. They were certified and tested for 
mycotoxin by Bio-Synthesis (Lewisville, TX, USA) in 
August 2017. Cells were cultured in RPMI 1640 medium 
(Invitrogen, Carlsbad, CA) supplemented with 5% heat 
inactivated fetal bovine serum (Invitrogen, Carlsbad, CA) 
and 1% antibiotic-antimycotic (Thermo Fisher Scientific, 
Waltham, MA) in a 5% CO2 humidified atmosphere 
at 37° C. Cell growth and viability was measured with 
hemocytometer and 0.2% trypan blue (Invitrogen, 
Carlsbad, CA) exclusion assay.

Four treatment regimens were studied: (1) untreated, 
(2) All-trans retinoic acid (ATRA), (3) Roscovitine (Rosco) 
and (4) ATRA plus Roscovitine (ATRA/Rosco). ATRA 
(Sigma, St. Louis, MO) was added from a 5 mM stock 
solution in 100% ethanol to a final concentration of 1 µM 
in culture as previously described [19]. Roscovitine from 
EMD Millipore Corp., (Billerica, MA) was also solubilized 
in 100% ethanol at 1 mM. A dose response curve assaying 
cell number and viability over a 72 h course using 1, 2, 4, 
6, 8 and 10 µM roscovitine showed that 6 µM dose was at 
the threshold of overt growth arrest and toxicity. Cells were 
treated with a final concentration of 6 µM.

Antibodies and reagents

Antibody for flow cytometric analysis of CD11b 
(clone ICRF44) conjugated with allophycocyanin (APC) 
was from BD Biosciences (San Jose, CA). Protein G 
magnetic beads used for immunoprecipitation were from 
Millipore (Billerica, MA). Antibodies for western blot 
probing against TBP, Phospho-c-Raf (S259), Phospho-c-
Raf (S289/296/301), SLP-76, Lyn, Fgr, Vav1, RB, HRP 
anti-mouse and anti-rabbit were from Cell Signaling 
(Danvers, MA). Cdk2, Phospho-Cdk2 (T160), Phospho-
Cdk2 (Y15), Phospho-RB (S608) and Cyclin E1 antibodies 
were from AbCam (Cambridge, MA). c-Raf and IRF-1 
antibodies were from BD Biosciences (San Jose, CA). 
c-Cbl antibody was from Santa Cruz Biotechnology 
(CA, USA). NE-PER Nuclear and cytoplasmic extraction 
reagents were from Pierce Biotechnology (Thermo 
Scientific, Rockford, IL). Bovine serum albumin (BSA), 
Triton X-100, protease and phosphatase inhibitors were 
purchased from Sigma (St. Louis, MO).

www.oncotarget.com


Oncotarget1032www.oncotarget.com

Flow cytometric phenotypic analysis

Immunostaining for CD11b was performed as 
previously described [63] and fluorescence was detected 
using a Becton Dickinson LSR II flow cytometer (San Jose, 
CA). Gating was set to exclude 95% of the untreated wild-
type and Lyn KD HL-60 samples.  Cell cycle analysis was 
performed as previously described [63].

Western blotting and immunoprecipitation

Cells were washed, pelleted and nuclear protein 
was extracted. The nuclear – cytoplasmic fractionation 
was done using the NE-PER nuclear and cytoplasmic 
extraction kit (ThermoFisher Scientific, Rockford, IL) 
per the manufacturer’s instructions with the addition of 
protease and phosphatase inhibitors. The purity of the 
nuclear and cytoplasmic fractionations was assessed 
using clathrin as a cytoplasmic marker and TATA binding 
protein (TBP) as a nuclear marker. The nuclear fractions 
used were verified as TBP positive and clathrin negative 
by Western blotting.

Protein concentration was determined using the 
Pierce BCA protein assay (Thermo Scientific, Rockford, 
IL) according to the manufacturer’s protocol. For 
immunoprecipitation experiments, equal amounts of protein 
were pre-cleared with PureProteome protein G magnetic 
beads (Millipore, Billerica, MA) and then incubated 
overnight with beads and appropriate antibodies. Bead/
antibody/protein slurries were then washed and subjected 
to standard SDS-PAGE analysis. For western blotting, 
25 µg of protein was resolved by SDS-PAGE using 12% 
polyacrylamide gel. Electro-transfer was done onto PVDF 
membranes (Millipore, Billerica, MA) at 400 mA. The 
membranes were blocked in dry nonfat milk before being 
incubated with the indicated primary antibody overnight at 
4° C. Images were captured on a Bio-Rad ChemiDoc XRS 
Molecular Imager and analyzed using Image J software. 
Densitometric values for each Western blot band were 
determined using Image J. The values were then normalized 
to the loading control for that lane. For scaling in the bar 
graphs, the lowest normalized value is arbitrarily set to 
one and the values for other bands normalized to that and 
shown relative to the lowest value, which was typically the 
untreated control unless there was no detectable signal then 
the lowest detectable signal was used. The values from at 
least three biological repeats were tabulated and statistically 
evaluated using GraphPad Prism 6.01.

Generation of stable transfectants

pLKO.1 TRC cloning vector was used to 
express the Lyn-shRNA. The sequence with predicted 
high Lyn knockdown efficiency was obtained from 
IDT (Coralville, IA) and cloned into the pLKO.1 
puro (Addgene # 10878). The sequence was; (F:5′- 
CCGGGGAATCCTCCTATACGAAATTCTCGAG AATT

TCGTATAGGAGGATTCCTTTTTG-3′), (R:5′-AATTCA
AAAAGGAATCCTCCTATACGAAATTCTCGAGAATT
TCGTATAGGAGGATTCC-3′). The sequence was cloned 
into pLKO.1 puro following the depositor’s protocol. 
Lentiviral particles were produced using 2.5 µg pMD2.g 
(Addgene # 12259), 7.5 µg psPAX2 (Addgene # 12260) 
and 10 µg with Lyn-shRNA plasmid. HEK293T cells were 
co-transfected with these plasmids at roughly 50–60% 
confluence in 10 cm cell culture dishes with DMEM and 
10% FBS using TransIT-LT1 transfection reagent (Mirus, 
Madison, WI) according to the manufacture’s protocol. 
After 48 h, media containing viral particles was collected 
and 5 mL of additional media was added to the dish for 
24 h until final collection. Total lentiviral containing media 
was concentrated using Amicon Ultra (Millipore, Billerica, 
MA) centrifugal filters. Concentrated viral media was 
stored at –80° C until use. Transduction of HL-60 cells 
with the lentiviral particles was performed in 6-well plate. 
100 µL concentrated viral particles was added to 5 × 104 
cells in 1 mL RPMI 1640 with 5% heat-inactivated FBS. 
After 72 h, transduced cells were transferred into 25 cm2 
flask and cultured in RPMI 1640 with 5% heat-inactivated 
FBS and selected for 3 weeks in 0.4 µg /mL puromycin.

Hierarchical clustering analysis

After densitometrically measuring the nuclear 
protein expression/activation detected by Western blotting 
of nuclear lysates from HL-60 myeloblastic cells, we 
performed hierarchical clustering analysis of expression of 
the selected proteins from cells that were untreated or treated 
with ATRA, roscovitine or ATRA plus roscovitine. All 
normalization, clustering and statistics were performed using 
R (version 3.6.0; http://www.r-project.org/). Densitometric 
data on the expression and activation of nuclear molecules 
for HL-60 cells treated with ATRA, roscovitine and ATRA 
plus roscovitine were normalized to untreated control. 
To obtain robust results of clustering and overcome 
unbalanced distribution of different molecules, z-scores 
of raw expression values were calculated and used as the 
clustering algorithm input. The heatmap was generated using 
the ‘pheatmap’ function in R package ‘pheatmap’ (https://
cran.r-project.org/package=pheatmap) [67].

Statistical analysis

Experiments were biological replicates in triplicate 
and results were shown as mean and with standard 
deviation (SD). A two-tailed paired t test was used to 
assess the difference between two groups. A p value less 
than 0.05 was considered to be significant.

Abbreviations

AML: Acute myeloblastic leukemia; APC: 
Allophycocyanin; APL: Acute promyelocytic leukemia; 
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ATRA: All-trans retinoic acid; BLK: B Lymphoid 
Tyrosine Kinase; c-Cbl: Casitas B-lineage Lymphoma; 
CD: Cluster of differentiation; CDK: Cyclin-dependent 
kinases; ERK: Extracellular Regulated MAP Kinase; 
Fgr: Gardner-Rasheed feline sarcoma viral (v-fgr) 
oncogene homolog; GEF: Guanine nucleotide exchange 
factor; HCK: Hemopoietic Cell Kinase; IRF1: Interferon 
Regulatory Factor 1; Lck: Lymphocyte-specific protein 
tyrosine kinase; Lyn v-yes-1: Yamaguchi sarcoma viral 
related oncogene homolog; MAPK: Mitogen-activated 
protein kinase; MEK: Mitogen-activated protein 
kinase kinase; PML: Promyelocytic Leukemia; RAF: 
Rapidly Accelerated Fibrosarcoma; RAR: Retinoic acid 
receptor; RARE: Retinoic acid response element; RB: 
Retinoblastoma; RXR: Retinoid X receptor; shRNA: 
Small hairpin RNA; SLP-76: SH2 domain containing 
leukocyte protein of 76kDa; SFK: Src family kinase.
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