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Quantum magnetotransport in massive Dirac materials

Bo Fu, Huan-Wen Wang , and Shun-Qing Shen *

Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

(Received 21 September 2019; revised manuscript received 3 March 2020; accepted 6 March 2020;
published 18 March 2020)

Massive Dirac fermions break the chiral symmetry explicitly and also make the Berry curvature of the band
structure non-Abelian. By utilizing the Green’s function technique, we develop a microscopic theory to establish
a set of quantum diffusive equations for massive Dirac materials in the presence of electric and magnetic fields.
It is found that the longitudinal magnetoresistance is always negative and quadratic in the magnetic field, and
decays quickly with the mass. The theory is applicable to the systems with non-Abelian Berry curvature and
resolves the puzzles of anomalous magnetotransport properties measured in topological materials.
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I. INTRODUCTION

Symmetries and their corresponding conservation laws
play an important role in understanding the fundamental na-
ture of matter. A classical conservation law might turn out to
be violated in its quantized version, i.e., the so-called quantum
anomaly [1,2]. A well-known example is that the massless
relativistic Dirac or Weyl fermions in three spatial dimensions
possess the chiral anomaly [3,4]: the chiral charges at each
node (χ = ±1) will be nonconserved in the presence of the
external gauge fields with nontrivial topology. The quantum
fluctuation produces an additional term to the classical con-
servation law for the chiral charges:

∂μJχ
μ = −χ

e3

4π2 h̄2 E · B, (1)

where Jχ

0 is the charge density and Jχ
i (i = 1, 2, 3) is the

electric current for the Weyl node χ . From this equation, with
parallel electromagnetic fields E and B, charge might flow
between Weyl nodes and can not reach the equilibrium in
the absence of internode scattering, generating the chirality
imbalance. Nielsen and Ninomiya [5] proposed that the chiral
anomaly of the Weyl fermions could be realized in the Weyl
semimetals based on the picture of the Landau levels of
the Weyl fermions in a finite magnetic field as shown in
Fig. 1(left), and a negative magnetoresistance is regarded as
a substantial signature of the effect. Son and Spivak have
obtained such anomaly-related negative magnetoresistance
effect through semiclassical Boltzmann transport theory [6]. It
is assumed that the Hamilton dynamics equations of quasipar-
ticle trajectories become modified due to the (Abelian) Berry
curvature. After introducing the internode scattering time τa

phenomenologically, a nonzero deviation of the chiral charge
density δρ5 = δρ+ − δρ− = e2

2π2 E · Bτa from its equilibrium
value can be obtained in the steady-state condition, which re-
sults in an anomaly-related negative magnetoresistance ∼B2.
A lot of theoretical approaches have been developed for
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the anomaly-induced magnetoresistivity for massless Weyl
fermions [6–11]. Recent advances in topological materials
demonstrate a series of topological materials may host the
chiral quasiparticles [12–20], which provide a practical route
to detect the signatures of the purely quantum mechanical
effect. The longitudinal negative magnetoresistance has been
reported experimentally in a large class of topological ma-
terials, and the observation was regarded extensively as a
smoking gun to confirm the chiral anomaly in condensed
matter [21–30].

However, a puzzle arises as some topological materials
with negative magnetoresistance are actually not Weyl or
Dirac semimetals: for example, ZrTe5 [30–35] actually has
a tiny direct band gap, and Bi2Se3 is a typical topological
insulator [36–38], in which the chiral anomaly might not exist
according to the existing theories. It is known that mass term
breaks the chiral symmetry explicitly, and also modifies the
Nielsen-Ninomiya picture for chiral anomaly at a finite field.
The conservation law for the axial charge is modified to be
[39]

∂μĴaμ(x) = 2mv2n̂P + e3

2π2h̄2 E · B, (2)

where mv2 and e are the fermion mass and charge, re-
spectively, the axial or chiral current is defined as Ĵaμ =
�̄γ μγ 5�, and n̂P = �̄iγ 5� is the pseudoscalar density,
where �̄ and � are fermionic field operators. γ μ are the Dirac
gamma matrices. The presence of term n̂P in the right-hand
side of Eq. (2) indicates that the axial charges are even not
conserved at the classical level in the presence of the Dirac
mass. Furthermore, the anomaly term arises as a consequence
of the ultraviolet divergence of the “VVA” triangle diagrams
which cannot be cured by a finite mass [39]. Another direct
consequence of the chiral symmetry breaking is that the Berry
curvature of the band structure becomes non-Abelian [40–43].
Actually, the two zeroth Landau levels are mixed together near
the crossing point as shown in Fig. 1(right). And the charge
tunneling process can still be realized through the smoothly
connected region for nonzero Dirac mass, which is analogous
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FIG. 1. Schematics for chiral anomaly-related magnetoresis-
tance mechanism for massless (left panel) and massive (right panel)
Dirac materials in the parallel electromagnetic field. The occupied
and unoccupied states are shown as solid and open dots for the lowest
Landau level, respectively, and the color of the dots indicates the
averaged chirality 〈γ 5〉 as a function of the momentum. For massive
case of m �= 0, the states are mixed near kz = 0. The populations for
two chiralities are different due to the presence of parallel electric
and magnetic field. The black solid line arrows demonstrate the
charge transfer driven by the electric field. The exceeding right-hand
electrons (red solid dots) are scattered back to left (blue open dots)
as indicated by the dashed green line arrow, and the relaxation time
is characterized by τa.

to the massless case that the chiral charge pumping is through
the infinite Dirac sea [5]. Thus, it becomes an open issue
whether the measured negative magnetoresistance could be
still attributed to the chiral anomaly in the case of massive
Dirac fermions. Some mechanisms have been proposed for
topological and trivial states without invoking chiral anomaly
[44–49]. Thus, it is desirable to develop a unified quantum
magnetotransport theory for the topological materials with
either Abelian or non-Abelian Berry curvature to clarify the
puzzle.

The rest of this paper is organized as follows. In Sec. II we
introduce the model Hamiltonian for massive Dirac fermion,
give the Green’s function in finite magnetic field, and analyze
all the physical quantities and various types of disorder that
may exist in this 4 × 4 Hamiltonian according to symmetry.
Section III presents the derivation for the quantum diffusive
equations in the real space in the framework of the linear
response theory, which is one of the main findings in this
paper. Section IV gives the solutions of the diffusive equations
for the parallel electromagnetic fields in the diffusive regime,
which contain the important results for the longitudinal mag-
netoconductivity and the axial density imbalance. Section V
predicts an anomaly-related magnetic field correction to the
polarization function from the obtained diffusive equations.
Section VI derives the pseudoscalar density and the continuity
equation for the massive Dirac fermion. Section VII discusses
the physical origin of the anomalous coupling between the
axial charge and vector current in Dirac materials in the
presence of magnetic field. Finally, Sec. VIII is a conclusion.

TABLE I. Various types of physical quantities and disorder rep-
resented by fermionic bilinears (i = 1, 2, 3), their symmetries under
time reversal (T ), parity (I), and continuous chiral rotation (C). The
time-reversal symmetry T is generated by an antiunitary operator
γ 1γ 3K, where K is complex conjugation, such that T 2 = −1. The
parity operator is generated I = γ 0. The continuous chiral symmetry
(C = eiθγ 5

) is generated by γ 5. Here, � and × signify even and odd
under a symmetry operation, respectively. And, we use the capital
letters A, B, . . . for indices when the index runs through the entire
hypercomplex system from 1 to 16.

Bilinear (γ A) Physical quantity T I C Disorder

�̄γ 0� Total charge (J0 ) � � � �

�̄γ 0γ 5� Axial charge (Ja0) � × � �a

�̄� Scalar mass (nβ ) � � × �m

�̄iγ 5� Pseudoscalar density (nP ) × × × �P

�̄γ i� Current (Ji ) × × � �c

�̄γ iγ 5� Axial current (Jai ) × � � �ac

�̄iγ 0γ i� Electric polarization (pi ) � × × �p

�̄γ 5γ 0γ i� Magnetization (mi ) × � × �M

II. MODEL HAMILTONIAN AND GREEN’S FUNCTION IN
LANDAU-LEVEL REPRESENTATION

A. Model Hamiltonian

We start with the Hamiltonian for massive Dirac fermions

H0 =
∫

d3x �̄(x)(vp̂ · γ + εFγ
0 + mv2)�(x), (3)

where m is the Dirac mass, v is the effective velocity, εF is the
chemical potential, and p̂ = −ih̄∇ is the momentum operator.
�(x) is the four-component Dirac spinor with the time-space
position four-vector xμ = (t, x), that the Greek indices (μ, ν,

etc.) run over all the space-time indices (0,1,2,3). γ μ are the
Dirac gamma matrices in Weyl representation: γ 0 = τ 3 ⊗
σ0 and γ i = iτ 2 ⊗ σ i (i = 1, 2, 3) with τ i and σ i the Pauli
matrices, acting on the orbital and spin degrees of freedom
correspondingly. The chirality operator is γ 5 = iγ 0γ 1γ 2γ 3 =
τ 1 ⊗ σ 0. In a uniform magnetic field, say along the z direc-
tion, the kinetic momentum operator p̂ is replaced by the
canonical momentum operator in Eq. (3), π = −ih̄(∇ − ieA)
with the gauge field chosen as A = (−Bx2, 0, 0). In the case
the model is solvable, and the energy dispersion becomes
discrete to form the Landau levels [48]. The Green’s functions
for the free Dirac fermions at a magnetic field can be obtained
analytically.

By using the five Dirac gamma matrices γ μ (μ =
0, 1, 2, 3, and 5) and their descendants, we can define
16 physical quantities as shown in Table I. The enlarged
(pseudospin ⊗ spin) gamma matrices will allow us to obtain a
microscopic theory of diffusive transport for all the possible
coupled physical observables in the presence of an external
field.

B. Green’s function in magnetic field

The Green’ s function of free Dirac fermions in an external
magnetic field reads as [50]

G(x, x′; iωm) = exp[i�(x⊥, x′
⊥)]G̃(x − x′; iωm), (4)
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where ωm = (2m + 1)π/β are the fermionic Matsub-
ara frequencies and β = 1/kBT is the inverse tempera-
ture, �(x⊥, x′

⊥) = e
∫ x⊥

x′
⊥

dx′′
⊥ · A(x′′

⊥) = − (x1−x′
1 )(x2+x′

2 )
2�2

B
is the

Schwinger phase with x⊥ = (x1, x2), which depends on x2 +
x′

2 lacking translational invariance and reflecting the non-
conservation of the direction of momentum evident in the
circularity of motion in a magnetic field, also embodying the
gauge dependence of the Green’s function. Here we begin
with the Fourier transform of G̃(x − x′; iωm):

G̃(k, iωm) = ie−k2
⊥�2

B

∞∑
n=0

(−1)nDn(k, iωm)

(iωm + εF )2 − ε2
n (k3)

, (5)

where εn(k3) =
√

m2v4 + 2nv2h̄|eB| + v2(k3)2 are the ener-
gies of the relativistic Landau levels and the numerator of the
nth Landau-level contribution is determined by

Dn(k, iωm) = 2[(iωm + εF )γ 0 − vh̄k3γ 3 + mv2]

× [
P−Ln

(
2k2

⊥�2
B

)− P+Ln−1
(
2k2

⊥�2
B

)]
− 4vh̄γ · k⊥L1

n−1

(
2k2

⊥�2
B

)
(6)

with k⊥ = (k1, k2), P± = 1
2 [1 ∓ iγ 1γ 2sgn(eB)] being the

spin projection operators, and L(α)
n (z) are the generalized

Laguerre polynomials. By definition, L(α)
−1 ≡ 0. In the scalar

product, the Dirac matrices appear with a lower index γi.
In what follows, we also need the retarded and advanced
Green’ s functions that are obtained by analytic continuation
from positive and negative discrete frequencies, respectively,
G̃R(k, ω + i0) = G̃(k, iωm → ω + i0) and G̃A(k, ω − i0) =
G̃(k, iωm → ω − i0). When the impurity scattering induced
self-energy is included, they acquire the form

G̃R/A(k, ω) = ie−k2
⊥�2

B

∞∑
n=0

(−1)nDn[k, ω + εF ± ih̄/2τ ]

[ω + εF ± ih̄/2τ ] − ε2
n (k3)

,

(7)

where τ is the relaxation time which will be defined later.
Up to the linear order in B, the translation-invariant part of
the free-fermion propagator in the momentum representation
[Eq. (7)] has the following structure:

G̃R/A(k, ω) = G̃R/A
0 (k, ω) + G̃R/A

1 (k, ω) + · · · , (8)

where G̃(R,A)
0 (k, ω) is the fermion propagator in the absence

of magnetic field and G̃(R,A)
1 (k, ω) is the linear part in the

magnetic field. It can be derived by means of a generalized
Schwinger parametrization [50]

G̃R/A
0 (k, ω) = i

(
ω + εF ± ih̄

2τ

)
γ 0 − vh̄k · γ + mv2(

ω + εF ± ih̄
2τ

)2 − (v2h̄2|k|2 + m2v4)
(9)

and

G̃R/A
1 (k, ω) = −γ 1γ 2ev2 h̄B

×
(
ω + εF ± ih̄

2τ

)
γ 0 − vh̄k3γ 3 + mv2[(

ω + εF ± ih̄
2τ

)2 − (v2h̄2|k|2 + m2v4)
]2 .

(10)

C. Disorder effects

Various types of disorder are described by an appropriate
choice of the 4 × 4 gamma matrices (last column in Table I)
due to the Dirac structure of the Hamiltonian. All the disorder
potential VF(x) are quenched, the random variable behaving
as white noises,

〈VA(x)VB(x′)〉dis = δAB�Aδ
3(x − x′), (11)

where 〈. . .〉dis denotes disorder averaging. After configuration
average, the impurity vertex acquires tensor form

∑
F �Fγ

F ⊗
γ F. Our formalism allows us to give a generic description
for various type of disorders with symmetry consideration.
For example, the constraint of time-reversal symmetry allows
only six bilinears: {�̄γ 0�, �̄�, �̄γ 0γ 5�, i�̄γ 0γ i� ( j =
1, 2, 3)} which can be used to describe the nonmagnetic static
disorder in Dirac materials. For simplicity, we only concen-
trate on impurities with time reversal and parity invariance

Hdis =
∫

d3x[V (x)�̄(x)γ 0�(x) + Vm(x)�̄(x)�(x)],

(12)

which corresponds to the random chemical potential and
mass, respectively. After introducing the impurities in the
system, we can calculate the self-energy in the Born approxi-
mation. The real part of the self-energy gives a shift of the zero
of energies and will not be considered either. The imaginary
part of the self-energy can be evaluated as

Im�R = − πρ

2
(� + �m)(γ 0 + η1)

×
⎡⎣1 + 2

kF�B

∑
p=1

e−pλD

√
p

cos

(
π pk2

F�
2
B − π

4

)⎤⎦,

(13)

where ρ = k2
F/(2π2h̄vF ) is the density of states at zero mag-

netic field with Fermi wave vector kF =
√
ε2

F − m2v4/h̄v and
Fermi velocity vF = (h̄v2kF )/εF . The orbital polarization is
defined by

η ≡ 〈γ 0〉 = mv2

εF
, (14)

where 〈. . . 〉 = 1
2

∑
s〈sk| . . . |sk〉 denotes the sum of the ex-

pectation values for the degenerate states in the conduction

band. The Dingle factor is λD = (� + �m)(1 + η2) ε2
F kF

v4 h̄4 �
2
B.

When in the weak magnetic field regime kF�B � 1, the quan-
tum oscillation of the relaxation time can be neglected. In this
regime, the self-energy is approximately independent of the
magnetic field. Thus, the total relaxation time (or quasiparticle
lifetime) is given by

τ = h̄

πρ(� + �m)(1 + η2)
(15)

and the random mass induced relaxation time is

τm = h̄

πρ�m(1 + η2)
. (16)

Further assume the random chemical potential dominates
the elastic scattering processes � � �m. The impurities are
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considered to distribute randomly in the sample which can
be modeled as a random potential. In the Dirac material,
one also needs to introduce small quadratic momentum terms
(Ch̄2k2) in the Hamiltonian to incorporate the nonlinearity
of the band dispersion. Here, we use the mass-type disor-
der (�m) to simulate the small pseudospin mixing caused
by quadratic momentum terms which can be estimated as

�m ∼ �(Ch̄kF
2vF

)
2
. Also, the anomaly-induced contribution

dominates the magnetoconductivity only when � � �m [51].

III. QUANTUM DIFFUSIVE EQUATIONS
IN THE REAL SPACE

With the help of Table I, we can introduce the 16-
dimensional vectors for all the possible physical observables
in terms of the Dirac matrices,

ŜA(x) = dA�̄(x)γ A�(x), (17)

where dA = e for the density operators (the first four quantities
in Table I) and dA = ev for the current operators. To investi-
gate the response to the external potential AA(x), we consider
the generic external perturbation

H1(t ) =
∑
A

∫
d3x ŜA(x)AA(x) (18)

with AA are also 16-dimensional vectors [52] . The observ-
ables can be evaluated within the framework of the linear
response theory [53]

SA ≈ S (0)
A + S (1)

A + O
(
A2

A

)
. (19)

S (0) = −dATr[γ AG(x, x)] is the zeroth-order term in H1 and
G(x, x′) is the fermion propagator for H0:

S (1)
A (x) =

∫
d4x′χR

AB(x, x′)AB(x′) (20)

is the first-order response to H1, with χR
AB(x, x′) is the

retarded response function which can be evaluated by
analytical continuation [χR

AB(�) = χAB(i�m → � + i0)] of

the imaginary-time expression

χAB(x, x′; i�m) =
∫ β

0
dτ ei�m (τ−τ ′ )〈Tτ ŜA(x, τ )ŜB(x′, τ ′)〉,

(21)

where ŜB is the observable coupled with the exter-
nal field and ŜA is the goal observable to calculate.
Both ŜA and ŜB can be chosen as the one of 16
physical quantities in Table I. Substituting the general-
ized current operator (17) into Eq. (21), and using the
Fourier series expansion of imaginary-time Green’s func-
tion G(x, x′, τ − τ ′) = 1

β

∑
n e−iωn (τ−τ ′ )G(x, x′; iωn), where

the imaginary-time Green’s function G(x, x′, τ − τ ′) =
−〈Tτψ (x, τ )ψ̄ (x′, τ ′)〉 defined in Eq. (4), we obtain

χAB(x, x′; i�m) = −dAdB
β

∑
n

Tr[γ AG(x, x′, iωn)γ B

× G(x′, x, iωn − i�m)], (22)

where Tr includes also the summation over the flavor index.
Note that in the presence of a magnetic field, the average
Green’s function is no longer translation invariant and the
real-space formalism is more appropriate. However, when
considering the combination of the type G(x, x′)G(x′, x),
the Schwinger phase exactly cancels out and translational
invariance still holds for diffuson. In order to introduce the
disorder effect, we express the translation-invariant part of the
Green’s function as a frequency integral over its respective
spectral function

G̃(k, iωn) =
∫ ∞

−∞
dω

A (k, ω)

iωn − ω
, (23)

where the spectral function is given by the discontinuity
relation A (k, ω) = 1

2π i [G̃
A(k, ω) − G̃R(k, ω)].

The sum over Matsubara frequencies in Eq. (22) is easily
evaluated when the fermion Green’ s function is written, using
the spectral representation (23),

χAB(x, x′; i�m) = dAdB

∫ ∞

−∞
dω

∫ ∞

−∞
dω′

∫
d3k d3k′

(2π )6
ei(k−k′ )·(x−x′ ) nF (ω′) − nF (ω)

ω − ω′ − i�m
Tr[γ AA (k, ω)γ BA (k′, ω′)]. (24)

Here, nF is the Fermi distribution function nF (ω) = 1/[exp(β h̄ω) + 1]. We then perform the analytical continuation i�m →
� + i0 and integral over ω:

χAB(x, x′;� + i0) = dAdB
2π i

{∫ ∞

−∞
dω[nF (ω + �) − nF (ω)]Tr[γ AGR(x, x′;ω + �)γ BGA(x′, x;ω)]

+
∫ ∞

−∞
dω nF (ω)Tr[γ AGR(x, x′;ω + �)γ BGR(x′, x;ω)]

−
∫ ∞

−∞
nF (ω + �)Tr[γ AGA(x, x′;ω + �)γ BGA(x′, x;ω)]

}
. (25)

We are only interested in the response function in a
low-frequency limit � → 0 that nF (ω) − nF (ω + �) ≈
−�∂ωnF (ω) at zero temperature ∂ωnF (ω) = −δ(ω − ε). The
Ward identity expresses the conservation of the symmetry

currents which follows from the global symmetry of the
system. It puts direct constraint between the vertex function
and the self-energy function arising from impurities’ scat-
tering [52]. In order to satisfy the Ward identity, the vertex
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FIG. 2. (a) Diagrammatic representation of the disorder-
averaged correlation function. (b) The iterative equation for the
vertex correlation of the generalized current operator. The solid
(dashed) lines represent the retarded (advanced) Green’s function,
the dotted lines denote the disorder correlations.

renormalization due to the multiscattering needs to be con-
sidered which appears perturbatively as a series of impurity
line ladder diagrams, in which only combinations of retarded
and advanced Green’s functions, having poles on opposite
sides of the real axis, will contribute. To evaluate the vertex
corrections, we can first neglect the RR and AA contributions

χAB(x, x′;� + i0)

= −dAdB
2π i

�Tr[γ AGR(x, x′;�)γ BGA(x′, x; 0)]. (26)

Taking the impurity vertex corrections into consideration, the
calculation of the response function (21) reduces to the evalu-
ation of a series of ladderlike diagrams, depicted as in Fig. 2.
Analytically, these diagrams are given by the expression

χAB(x, x′;� + i0) = idAdB
2π

�

∫
dx1Tr[γ AGR(x, x1;�)

× Γ B(x1, x′;�)GA(x1, x; 0)], (27)

where the bare vertex γ B has been replaced by the dressed ver-
tex Γ B(x1, x′;�) which satisfies the following Bethe-Salpeter
equation:

Γ B(x1, x′;�)

= γ Bδ(x1 − x′) +
∫

dx2

∑
F

�Fγ
FGR(x1, x2; ε + �)

× Γ B(x2, x′;ω)GA(x2, x1;�)γ F. (28)

The dressed vertex Γ B(x2, x′;ω) is obtained from iteration
of the elementary vertex γ B with the further propagation of
the electron in-between two scattering events characterized
by its retarded and advanced propagator which are also 4 × 4
matrices of the form (4). By projecting Eq. (28) onto the
elements of the Clifford algebra,

Γ̃ BC(x, x′;�) = 1
4 Tr[Γ B(x, x′;�)γ C], (29)

thus the notation Γ̃ BC with a wide tilde denotes each projec-
tion component Γ B(x, x′;�) = ∑

c Γ̃
BC(x, x′;�)γ C. We then

recast the Bethe-Salpeter equation (28) into the form

Γ̃ BC(x, x′;�)

= δBCδ(x − x′) +
∑
D

∫
dx1Γ̃

BD(x1, x′;�)
1

4

∑
F

�F

× Tr[γ FGR(x, x1; ε + �)γ DGA(x1, x; ε)γ Fγ C]. (30)

For any two matrices γ F and γ C, one always has γ Fγ C =
κFCγ

Cγ F with κFC = ±1 depending on whether they are com-
muting or anticommuting. With this definition, Eq. (30) is
rewritten as

Γ̃ BC(x, x′;�) = δBCδ(x − x′) +
∑
D,F

∫
dx1Γ̃

BD(x1, x′;�)

× MDC(x, x1,�)�FκFC, (31)

with

MDC(x, x′,�) = 1
4 Tr[γ CGR(x, x′; ε + �)γ DGA(x′, x; ε)].

(32)

Rewrite Eq. (32) in matrix form:

Γ̃ (x, x′;�) = δ(x − x′) +
∫

dx1Γ̃ (x1, x′;�)M(x, x1,�)W,

(33)

where the impurity-related diagonal matrix W with its ele-
ments is defined as

WCC =
∑
F

κFC�F. (34)

In the diffusive regime, the spatial variations of Γ̃ (x, x′;�)
are small on the scale of mean-free path �e = vFτ and the
integral equation (33) simplifies. We expand Γ̃ (x1, x′;�)
about x1 = x:

Γ̃ (x1, x′;�) ≈ T (x1, x)Γ̃ (x, x′;�) (35)

with

T (x1, x) = 1 + (x1 − x) · ∇x + 1
6 (x1 − x)2∇2

x .

The diffusion equation for Γ̃ (x, x′;�) takes the form

D−1
x Γ̃ T (x, x′;ω) = W−1δ(x − x′), (36)

with the inverse diffusion operator D−1
x defined as

D−1
x =W−1 −

∫
dx1MT (x, x1; 0)T (x1, x)

− �

∫
dx1∂�MT (x, x1;�)|�=0, (37)

where we have expanded MT near � = 0 under low-
frequency approximation because, as mentioned above, we
are only interested in the diffusive regime, which corre-
sponds to low frequencies and long wavelengths. Substituting
Eqs. (29) and (32) into Eq. (27), we derive the relation
which connects the generalized response function with the
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renormalized vertex:

χ (x − x′,�) = 4dAdB
i�

2π

∫
dx1Γ̃ (x1, x′;�)M(x, x1,�).

(38)

The coordinate x1 can be further integrated out by using
Eq. (33), and the response functions can be expressed in terms
of the dressed vertex functions

χ (x − x′,�) = dAdB4
i�

2π
[Γ̃ (x, x′;�) − δ(x − x′)]W−1.

(39)

From the linear response theory, the first-order term in H1 is
known to be

S (1)
A (x, t ) =

∫ ∞

−∞

d�

2π
e−i�t

∫
dx′χR

AB(x, x′;�)AB(x′,�).

(40)

By introducing the 16-dimensional vectors, the physical
responses S and the generalized external field A with the ele-
ments as S (1)

A and AA, respectively, the above set of equations
can be recast as the following matrix form:

S (x,�) =
∫

dx′χ (x, x′;�)A(x′,�). (41)

Then, applying the inverse diffusion operator to the both sides
of Eq. (41) and using the relation (38), we arrive at a set of

quantum diffusive equations

D−1
x S (1)(x, ω) = − 2

π

[
W−1 − D−1

x

]
W−1iωA(x, ω), (42)

which describes the coupled dynamics of all the physical
quantities. These equations provide a unified description of
transport phenomena and (pseudo)spin density relaxation at
finite magnetic field for Dirac materials. Due to the coupling
in D−1 between different physical quantities, we can use
two different ways to induce the current. The first choice
is to apply the electric field and investigate the current-
current response. One can also induce the current indirectly
by exciting a coupled observable through D−1. For instance,
as shown below, the axial charge density is coupled to the
current (directed along the magnetic field) in the presence of
the magnetic field. Therefore, for massless Dirac materials,
the axial charge injection which will generate the chemical
potential difference between the right- and left-hand fermion
and finally induces a net electric current, this is the chiral
magnetic effect [54].

IV. LONGITUDINAL MAGNETORESISTANCE

A general solution of the quantum diffusive equations is
quite complicated. As an application to explore the longitu-
dinal magnetoresistance, we focus on the linear response for
the electric field also along the z direction. The perturbation
part of the Hamiltonian is H1(t ) = ∫

d3x A3(t )�̄(x)γ 3�(x).
In this case, the diffusion operator D−1 can be reduced into
a block-diagonal form: among all the 16 physical quantities,
only 4 observables we are interested in are coupled together
in the quantum diffusive regime. Thus, we extract the fol-
lowing coupled 4 × 4 submatrix of D−1 which is spanned by
(J0, Ja0, nβ, J3):

h̄

πρτ 2
D−1

4×4 =

⎛⎜⎜⎜⎜⎝
iω + Λ0

τ
− D∂2

z ϒv∂z η
(
iω − 1

τ
− D∂2

z

)
1
3 (1 − η2)v∂z

ϒv∂z (1 − η2)
(
iω + Λa0

τ
− D∂2

z

)
η

2ϒv∂z − 1
τ
ϒ

η(iω − 1
τ

− D∂2
z ) η

2ϒv∂z η2
(
iω + Λβ

τ
− D∂2

z

)
1
3η(1 − η2)v∂z

1
3 (1 − η2)v∂z − 1

τ
ϒ 1

3η(1 − η2)v∂z
1
3 (1 − η2)

(
iω + Λ3

τ
− D∂2

z

)

⎞⎟⎟⎟⎟⎠. (43)

The coefficient ϒ ≡ 1
2 ( h̄v

εF �B
)2 with the magnetic length �B =√

h̄/eB and the dimensionless diffusion channel relaxation
rates are

Λ0 = η2, (44)

Λβ = 1

η2
, (45)

Λ3 = 2
(� + 2�m) + η2(2� + �m)

(� − �m)(1 − η2)
. (46)

Most importantly, the axial relaxation rate is

Λa0 = 2
�m + �η2

(� − �m)(1 − η2)
, (47)

from the chiral symmetry breaking. By substituting (43)
into (42) and using the explicit form of W = �14 +

�mdiag(1,−1, 1,−1) for this 4 × 4 case, we arrive at the
coupled charge-current dynamics equations in the presence
of electromagnetic field. By transforming into frequency-
momentum space, the coupled charge-current equations can
be solved in the diffusive regime (ωτ,Dτq2

z � 1):
(i) The chirality imbalance induced by the parallel electric

and magnetic field is

δJa0 = εF

vh̄kF

iω

iω + D∗q2
z

e3

h̄2

EBτa

2π2
. (48)

(ii) The current along the direction of the magnetic field is

δJ3 = iωσDE

iω + D∗q2
z

(
1 + 3

4

τa

τ ∗
1

k4
F�

4
B

iω

iω + q2
zD∗

)
. (49)
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(iii) The density fluctuations induced by external field are

δJ0 = iqzσDE

iω + D∗q2
z

(
1 + 3

4

τa

τ ∗
1

k4
F�

4
B

iω

q2
zD∗ + iω

)
, (50)

which can be used to determine the density-density response
function.

(iv) The scalar mass which has nonzero polarization (η) in
the absence of external electric field acquires a variation due
to an applied electric field

δnβ = ηδJ0. (51)

We have introduced the renormalized diffusion coefficient
D∗ = 3

2
(1+η2 )(�+�m )

(�+2�m )+η2(2�+�m )D with the classical diffusion con-

stant D = v2
F τ/3, and the Drude conductivity as

σD = 2e2ρD∗. (52)

Most importantly, the axial relaxation time which describes
the attenuation time of the axial charge in the disordered
medium is defined as

τa = 1

Λa0

D∗

D τ ∗, (53)

with τ ∗ = h̄/[πρ(� + �m)]. The ratio of two relaxation
times depends only on two parameters η and �m/�:

τa

τ ∗ = 3

4

(1 − η4)
(
1 − �2

m
�2

)(
η2 + �m

�

)[
1 + 2η2 + (2 + η2)�m

�

] . (54)

For symmetry with chiral symmetry nearly preserved
(η,�m/� ∼ 0), we have τa/τ

∗ ≈ 3
4 (η2 + �m/�)−1. The so-

lution in Eq. (49) gives the dynamic longitudinal conduc-
tivity σzz(ω,q,B) = δJ3(ω,q,B)/E (ω,q) in a finite mag-
netic field. In the “slow limit,” limq→0 limω→0(ω/q2

zD∗) →
0 [55], such that the perturbing potential is nearly con-
stant on the timescale 1/q2

zD∗. Consequently, in the ther-
modynamic equilibrium no current will be generated:
limq→0 limω→0 σzz(ω,q,B) = 0, which is also a require-
ment of the gauge invariance that a purely longitudi-
nal and static vector potential cannot induce any physical
current. In the “rapid limit,” limω→0 limq→0(q2

zD∗/ω) →
0 [55]. In this case, we obtain the remarkable re-
sult limω→0 limq→0 σzz(ω,q,B) = σD + σCA(η,B), with the
anomaly-induced magnetoconductivity as

σCA(η,B)/σD = 3

4

τa

τ ∗
1

k4
F�

4
B

= 3

16

τa

τ ∗

(
B

BF

)2

. (55)

The magnetoconductivity is positive and quadratic in B and
BF = h̄

2e k2
F . In the massless case of η = 0, only the impu-

rities which break the chiral symmetry (the impurity matrix
anticommutes with the chiral symmetry operator) can cause
the scattering between different chiralities (nodes) control
the axial relaxation time, and we may reproduce the previ-
ous results from the semiclassical theory limη→0 σCA(η,B) =

3
4π22ρ ( eB

h̄ )2 τa
τ

h̄v

ε2
F
σD [6]. In a massive case of η �= 0, the chiral

symmetry is broken explicitly due to the Dirac mass m, and
the eigenstates near the Fermi level mix the chiralities. The
disorder with the chiral symmetry (e.g., the chemical potential
randomness) can cause the backscattering between opposite
helicity, giving an axial relaxation time proportional to the
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Δm/Δ = 0.001
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A
(k

S
·c

m
−1

)

(b)
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Δm/Δ = 0.01
Δm/Δ = 0.001

FIG. 3. (a) The universal behavior of the relative anomaly mag-
netoconductivity correction for different �m/� as a function of the
parameter η = mv2/εF . (b) The anomaly-related positive magneto-
conductivities at B = 1 T are plotted as a function of Dirac mass mv2

for several different �m/�with the chemical potential εF = 90 meV
and Ohm resistance at zero field R = σ−1 = 1.2 m� cm. The other
parameter is chosen as h̄v = 6 × 10−5 meV cm.

inverse of η2. As shown in Eq. (55), when the carrier den-
sity of the system is fixed, the relative magnetoconductivity
σCA(η,B)/σD is only determined by two parameters, the rela-
tive impurity strength �m/� and the orbital polarization η. As
shown in Fig. 3(a), when the relative impurity strength �m/�

is fixed, the relative anomaly-induced magnetoconductivity
σCA(η)/σCA(η = 0) is suppressed as the parameter η grows.
When �m/� goes to zero, the mass becomes dominant in
chiral symmetry breaking, and the anomaly-induced magne-
toconductivity quenches to zero more quickly as η grows.
We also plot the absolute value of σCA by using the realistic
parameters according to Ref. [30]. As shown in Fig. 3(b), σCA

is strongly suppressed as �m/� and η grows. Experimental
observation of the anomaly-induced magnetoconductivity re-
quires a long axial current relaxation time τa, which stems
from the near conservation of chiral charge, and a lower
carrier density. A finite mass cannot forbid such an effect, but
only suppress its contribution. From Eq. (48), in the “rapid
limit,” the chirality imbalance δJa0 = e3

h̄2
εF

vh̄kF

EBτa
2π2 is also self-

consistently obtained, further confirming our calculations.
The chiral anomaly-induced magnetoconductivity is rooted
in the current vertex renormalization from the axial charge
density in the presence of parallel electromagnetic field.
Therefore, we could not obtain such an anomaly correction
only in the Drude approximation by considering the bubble
diagram.

V. ANOMALY-INDUCED MAGNETIC FIELD
CORRECTION TO POLARIZATION FUNCTION

The conservation of total charge also makes an anomaly-
induced correction to the dynamical polarization function or
the density-density response function χ00(ω,q,B). The gauge
invariance poses some constraints on the elements of the
response function: χ00 = − qz

ω
χ03 with χ03 = δJ0

A3
, we yield the

following compact form for the polarization function from
Eq. (50):

χ00(ω,q,B) = 2ρ
q2

z D̃(B)

q2
z D̃(B) + iω

, (56)
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where D̃(B) = D∗(1 + 3
4

τa
τ ∗

1
k4

F �4
B

) is the field-dependent dif-

fusion constant. This factor (1/[q2
z D̃(B) + iω]) is known as

the “diffusion pole,” which emerges from the repeated elastic
scattering (the ladder diagram), and also reflects the conser-
vation of total charge. Some many-body effects are directly
associated with this diffusion pole. For example, when the
electron-electron interaction cannot be neglected, each elec-
tron will be influenced by the electronic density fluctuation
from other electrons described by χ00. As a consequence,
the spectral and transport properties are modified by the
interaction effect. One way to detect the effect is to measure
the tunnel conductance, which directly reflects the variation of
the density of states δρ due to the Coulomb interaction. The
reduction of the tunnel conductance is given by δGt (V )/Gt =
δρ(V )/ρ ∝ (

√
|eV |/D̃(B) − C)/D̃(B) where V is the voltage

difference between two leads and C is a constant independent
of the bias [56]. Since the change is maximal around the Fermi
energy εF , the tunneling spectrum will display a downward
cusp at the Fermi level, i.e., the so-called zero-bias anomaly.
Due to the magnetic field dependence of the diffusion con-
stant, we can expect the zero bias downward cusp should be
weakened under the magnetic field. Furthermore, this inter-
action correction in conductivity shows a strong dependence
on the configuration of the electric and magnetic field in
sharp contrast with the contribution from weak localization,
providing a fruitful way to distinguish the two effects.

VI. CALCULATION OF THE PSEUDOSCALAR DENSITY
〈nP〉 AND DERIVATION OF CONTINUITY EQUATION

Within the framework of semiclassical Boltzmann theory,
the chiral anomaly-induced negative magnetoresistance for a
massless semimetal can be derived through the Hamiltonian
dynamic equations which are modified by the (Abelian) Berry
curvature. This is a nontrivial extension even in the case of
small mass. The Berry curvature becomes non-Abelian in the
case of massive Dirac fermions, and the semiclassical theory
is usually limited to the system with the Abelian Berry cur-
vature. Also, the conservation law of the axial charge cannot
be applied to the semiclassical Boltzmann theory explicitly if
we have no response result of the pseudoscalar density to the
external fields.

In the linear response theory, the pseudoscalar density nP

is associated with the electric field

nP(q,�) = 2imv2χnP,J3 (q,�)A3(�). (57)

From the previous calculations, we find that the retarded-
advanced part of χnP,J3 vanishes. From Eq. (25), we only need
to evaluate the RR and AA parts of contributions,

χnP,J3 (q,�) = ΠRR
nP,J3

(q;�) − ΠAA
nP,J3

(q;�), (58)

where we define the RR part of response function as

ΠRR
AB (x, x′;�) = e2v

2π i

∫ ∞

−∞
dω nF (ω)

× Tr[GR(x, x′;ω + �)γ AGR(x′, x;ω)γ B]

(59)

and transform into momentum space,

ΠRR
AB (q,�) = e2v

2π i

∫ ∞

−∞
dω nF (ω)

∫
d3k

(2π )3

× Tr[G̃R(k + q, ω + �)γ AG̃R(k;ω)γ B].
(60)

ΠAA
AB can be obtained by replacing the retarded Green’s func-

tions by the advanced ones. We are only interested in small
|q| and � limits, and also the electric field with no spatially
variation, then we first set q = 0. Here, we directly use the
magnetic field expansion of G̃ in Eq. (8), and truncate to the
linear order in B:

ΠRR
nP,J3

(0,�) ≈ e2v

2π i

∫ ∞

−∞
dω nF (ω)

∫
d3k

(2π )3

× {
Tr
[
γ 5G̃R

0 (k, ω + �)γ 3G̃R
0 (k;ω)

]
+ Tr

[
γ 5G̃R

1 (k, ω + �)γ 3G̃R
0 (k;ω)

]
+ Tr

[
γ 5G̃R

0 (k, ω + �)γ 3G̃R
1 (k;ω)

]}
. (61)

The trace of γ 5 timing a product of two or three γ μ matrices
gives zero, thus, the first term in the absence of magnetic
field vanishes, or in other words the pseudoscalar density has
no response only in the presence of the electric field. By
substituting the explicit expression for the Green’s function
which is linear in magnetic field [Eq. (10)] into Eq. (61),
we find the expressions for ΠRR

nP,J3
(0,�) and ΠAA

nP,J3
(0,�).

Since the integrand is already first order in � we can neglect
the � dependence of nF in ΠAA. Using the trace identity
for the Dirac gamma matrices Tr[γ 5γ 1γ 2γ 0γ 3] = −4i, and
performing the integration over frequency and momentum, we
finally obtain

χnP,J3 (0,�) = − e3

4π2 h̄2

�B

mv2

(
εF

vh̄kF
− 1

)
. (62)

By substituting Eq. (62) into (57), we finally obtain the remark
result for anomaly-induced pseudoscalar condensate [57,58]
in the presence of electric and magnetic field:

nP(0,�) = e3BE

2π2h̄2

(
εF

vh̄kF
− 1

)
. (63)

It is emphasized that Eq. (2) is exact as an operator rela-
tion, thus, in order to examine the properties of measurable
physical quantities we need to calculate the expectation value
of the corresponding operator. The pseudoscalar density n̂P

modifies directly the continuity equation for the axial charge
and current density in Eq. (2). In the presence of the electric
and magnetic field, it is found that the expectation value of
the pseudoscalar density has the form 〈n̂P〉 = 1

2mv2 ( εF
h̄vkF

−
1) e3

2π2 h̄2 E · B, which vanishes when m = 0 [57,58]. Thus, the
anomaly equation is reduced to

∂μJaμ = εF

h̄vkF

e3

2π2h̄2 E · B. (64)

As the chemical potential εF =
√

(vh̄kF )2 + m2v4, the pref-
actor εF

h̄vkF
=

√
1 + ( mv

h̄kF
)2 is always larger than 1 for a finite

mass. Assume the electric field is caused by a spatially
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varying chemical potential εF , E = −∇ εF
e . By integrating

the above anomaly equation for massive Dirac fermion and
further assuming a spatially varying chemical potential μ is
modeled by a electric potential φ = μ/e, we directly ob-
tain the dissipationless axial current Ja = −eBvh̄kF

e2

2π2 h̄2 for
massive Dirac fermion which coincides the previous results
for the massless Dirac fermions [59], the so-called chiral
separation effect. As the name suggests, the axial current
will induce a chiral charge separation (i.e., a nonzero chi-
ral chemical potential μ5), thus triggers the chiral magnetic
effect and the longitudinal NMR in the presence of parallel
electromagnetic field even with finite Dirac mass. After intro-
ducing the relaxation mechanism, a finite chirality imbalance
can be generated which plays a major role in accessing
the chiral anomaly. However, in many studies the chirality

imbalance is introduced by hand. Thus, in order to get a full
understanding of the anomaly-related magnetotransport, one
should perform a first-principles and self-consistent derivation
including the dynamics and impurity effects.

VII. ANOMALOUS COUPLING BETWEEN THE AXIAL
CHARGE AND VECTOR CURRENT

As shown in the previous section, the coupling between
the axial charge and the vector current along the magnetic
field, which originates from the chiral anomaly, leads to the
anomalous negative magnetoresistance. We will show that the
coupling only comes from the lowest Landau level (LLL). Let
us first evaluate the vector-axial current coupling components
in Landau-level representation:

Qaμ,ν ≡
∫

dx′Maμ,ν (x, x′; 0) =
∫

d3k
(2π )3

1

4
Tr[γ 5γ μG̃R(k, εF )γ νG̃A(k, εF )]. (65)

By substituting the translation-invariant part of the fermion propagator (7), we arrive at

Qaμ,ν =
∫

dk3

2π

∞∑
n,n′=0

(−1)n+n′
∫

d2k⊥
(2π )2

e−k2
⊥�2

B
1

4

Tr[γ 5γ μDn′ (εF + ih̄/2τ,k)γ νDn(εF − ih̄/2τ,k)]

[(εF + ih̄/2τ )2 − ε2
n′ (k3)][(εF − ih̄/2τ )2 − ε2

n (k3)]
. (66)

We first perform the integration over k⊥ by using the orthogonality relation for the generalized Laguerre polynomials (A5). The
odd terms in k3 vanish after integration over k3 have been dropped, and also the trace of terms involving k⊥ · γ equals zero. We
only need to evaluate the following two traces:

1
4 Tr[γ 5γ μ(εFγ

0 + mv2)Psγ
ν (εFγ

0 + mv2)Ps′ ] = (s + s′)
{
ημ0η3ν

(−ε2
F + m2v4

)+ ημ3ην0
(−ε2

F − m2v4
)}

(67)

and

1
4 Tr[γ 5γ μγ 3Psγ

νγ 3Ps′ ] = −(s + s′)(ημ0ην3 + ημ3ην0)
(68)

with ημν the Minkowski metric with signature (+, –, –, –).
The spin projection operator Ps projects out the spin com-
ponent of the state on the direction of the magnetic field.
As seen from Eqs. (67) and (68), the opposite spin part has
a vanishing trace and only the same spin part contributes
to the off-diagonal coupling. Furthermore, LLs with n � 1
are degenerate with the opposite spin state, leading to an
exact cancellation of the contributions from s = ±. The LL
of n = 0, on the other hand, has no spin degeneracy. Thus,
even in a small field that the Fermi energy crosses many LLs,
only the LLL contributes to the Eq. (65). Then, we obtain

Qaμ,ν =ημ0η3ν eB

4π h̄

kFτ

h̄εF
+ ημ3ην0 eB

4π h̄

εF τ

v2h̄3kF
. (69)

It is also instructive to investigate this coupling term from
the weak magnetic field expansion at the first beginning.
By making use of the explicit form of GR/A

1 in Eq. (10)
and truncating to the linear order in B, we straightforwardly
derive the contribution of the coupling between the axial and
vector currents which coincides with the results obtained by
using the expansion over the Landau levels, where it comes
only from the LLL states. However, in the language of weak
magnetic field without the Landau quantization, the anomaly-
related anomalous coupling comes from the Fermi surface.

The above calculations imply that a semiclassical approach for
the anomaly-related topological contribution can be viewed as
a dual description as the fully quantum theory.

VIII. SUMMARY

In this section, we summarize the main results in this work.
Quantum diffusive equations. Even a small magnetic field

is not a weak perturbation, and many subtleties may be missed
out in calculations by using the perturbative basis of the
plane-wave function. In a magnetic field, electrons perform
the cyclotron motion and exhibit the Landau quantization.
The quantized Landau levels provide an accurate description
of the wave-function properties, and serve as a more proper
basis for perturbative calculations. In this work, we develop
a fully microscopic theory of the quantum diffusive magneto-
transport for massive Dirac materials by means of the Green’s
function in the Landau-level representation in a fully quantum
mechanical manner. By using the diagrammatic perturbation
theory, we derive the coupled diffusive equation for all the 16
relevant physical quantities of 4 × 4 massive Dirac equation

D−1
x S (1)(x, ω) = − 2

π

[
W−1 − D−1

x

]
W−1iωA(x, ω), (70)

which is one of our main findings.
Chiral anomaly-induced positive longitudual magnetocon-

ductivity. The coupled dynamic equations are solved analyti-
cally in small magnetic field and the diffusive regime. We ob-
tain the quadratic positive magnetoconductivity contribution
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from chiral anomaly

σCA(η,B)

σD
= 3

16

τa

τ ∗

(
B

BF

)2

, (71)

which recovers the previous result in the massless limit. Thus,
we may conclude that the anomaly-related magnetoconduc-
tivity will dominate the magnetotransport in a wide class of
Dirac materials with small η, e.g., the topological insulators,
not a transport characteristic unique to semimetals. As re-
quired by the Ward identities, the series of ladder diagrams
need to be considered in the presence of impurity scatter-
ings to implement the charge conservation laws, although
it appears as a higher-order perturbation. Our calculations
also demonstrate that the anomaly correction is rooted in the
current vertex renormalization from the axial charge density
in the presence of parallel electromagnetic field. The vertex
corrections are important and can never be dismissed in
studying the transport properties of Dirac materials.

Anomaly-induced magnetic field correction to polarization
function. Another important finding is that the polarization
function acquires a magnetic field correction due to chiral
anomaly,

χ00(ω,q,B) = 2ρ
q2

z D̃(B)

q2
z D̃(B) + iω

, (72)

which is closely related to many-body effects. We hope this
new effect originated from chiral anomaly can be detected
experimentally in the future.

Axial continuity equation for massive Dirac fermion. Last
but not least, the expectation value of the pseudoscalar density
is calculated within the linear response theory

nP(0,�) = e3BE

2π2h̄2

(
εF

vh̄kF
− 1

)
. (73)

With the help of this result, we reach at the axial charge
continuity equation for massive Dirac fermion

∂μJaμ = εF

h̄vkF

e3

2π2h̄2 E · B, (74)

which can be directly applied to the semiclassical Boltzmann
theory and thereby the magnetotransport properties can be
calculated.
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APPENDIX: EVALUATION OF THE DIFFUSION
OPERATOR

In order to evaluate the explicit form for D−1
x in the

diffusive regime, it is convenient to use the diffusion kernel
for Dirac fermions

P0(x, x′;�) = GR(x, x′; ε + �) ⊗ GAT (x′, x; ε). (A1)
The superscript “T ” means taking the transpose of the ad-
vanced Green’s function. Then, we can directly get all the
matrix element of M through the index contraction

MAB(x, x′,�) =
∑

μ,ν,λ,ξ

1

4
(γ B)λξ [P0(x, x′;ω)]4(ξ−1)+λ,4(μ−1)+ν (γ A)μν. (A2)

As a consequence of the scattering trajectories traversed in the same direction, the diffusion kernel depends only on the
translation-invariant part of the Green’s function. It is more convenient to work in momentum space. Using the Fourier transforms
of the Green’s function, Eq. (A1) becomes

P0(x, x′,�) =
∫

d3k d3k′

(2π )6
ei(k−k′ )·(x−x′ )G̃R(ε + �,k) ⊗ G̃AT (ε,k′). (A3)

We only present the crucial steps in computing
∫

dx′P0(x, x′, 0), and give directly the results for
∫

dx′(x3 − x′
3)P0(x, x′, 0),∫

∂ωP0(x, x′;ω)|ω=0dx′, and 1
6

∫
dx′(x − x′)2P0(x, x′, 0). Thus, the average over x′ after setting ω = 0 in Eq. (A3) yields∫

dx′P0(x, x′, 0) =
∫

d3k
(2π )3

G̃R(ε,k) ⊗ G̃AT (ε,k). (A4)

Substitute Eq. (7) into (A4) and perform the integration over k⊥ by using∫ ∞

0
xα exp(−x)L(α)

n (x)L(α)
m (x)dx = !(n + α + 1)

n!
δn,m, (A5)

that the Kronecker’ s delta symbols appear due to the orthogonality relation for the Laguerre polynomials:∫
dx′P0(x, x′, 0) =

∫
dk3

2π

1

4|eh̄v2B|2
∞∑

n,n′=0

(−1)n+n′ 1

(n + χ )(n′ + χ∗)

{
eB

8π h̄

[
4(εγ 0 − vh̄k3γ 3 + mv2)P− ⊗ (εγ 0 + vh̄k3γ 3

+ mv2)P−
!(n + 1)

n!
δnn′ + 4(εγ 0 − vh̄k3γ 3 + mv2)P+ ⊗ (εγ 0 + vh̄k3γ 3 + mv2)P+

!(n)

(n − 1)!
δnn′
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− 4(εγ 0 − vh̄k3γ 3 + mv2)P− ⊗ (εγ 0 + vh̄k3γ 3 + mv2)P+
!(n + 1)

n!
δnn′−1

− 4(εγ 0 − vh̄k3γ 3 + mv2)P+ ⊗ (εγ 0 + vh̄k3γ 3 + mv2)P−
!(n)

(n − 1)!
δn−1,n′

]
−
[

16
1

2
(γ 1 ⊗ γ 1 − γ 2 ⊗ γ 2)

e2v2B2

16π

!(n + 1)

(n − 1)!
δn,n′

]}
, (A6)

where we have introduced the shorthand notation

χ = −
(
ε + ih̄

2τ

)2 − (vh̄k3)2 − m2v4

2v2h̄|eB| . (A7)

Then, one of the two summations over the Landau index n in the retarded and advanced Green’s functions can be easily done:∫
dx′P0(x, x′, 0)

=
∫

dk3

2π

eB

2π h̄

1

4e2 h̄2v4B2

∞∑
n=0

{
(εγ 0 − vh̄k3γ 3 + mv2)P− ⊗ (εγ 0 + vh̄k3γ 3 + mv2)P−

(n + χ )(n + χ∗)

+ (εγ 0 − vh̄k3γ 3 + mv2)P+ ⊗ (εγ 0 + vh̄k3γ 3 + mv2)P+
(n + χ + 1)(n + χ∗ + 1)

+ (εγ 0 − vh̄k3γ 3 + mv2)P− ⊗ (εγ 0 + vh̄k3γ 3 + mv2)P+
(n + χ )(n + χ∗ + 1)

+ (εγ 0 − vh̄k3γ 3 + mv2)P+ ⊗ (εγ 0 + vh̄k3γ 3 + mv2)P−
(n + χ + 1)(n + χ∗)

− neh̄v2B(γ 1 ⊗ γ 1 − γ 2 ⊗ γ 2)

(n + χ )(n + χ∗)

}
. (A8)

It can be recast by using the the polygamma functions∫
dx′P0(x, x′, 0) =

∫
dk3

2π

|eB|
2π h̄

1

4e2 h̄2v4B2

{
ψ (χ ) − ψ (χ∗)

χ − χ∗ (εγ 0 − vh̄k3γ 3 + mv2)P− ⊗ (εγ 0 + vh̄k3γ 3 + mv2)P−

+
ψ (χ ) + 1

χ
− ψ (χ∗) − 1

χ∗

χ − χ∗ (εγ 0 − vh̄k3γ 3 + mv2)P+ ⊗ (εγ 0 + vh̄k3γ 3 + mv2)P+

+
ψ (χ ) + 1

χ
− ψ (χ∗)

χ + 1 − χ∗ (εγ 0 − vh̄k3γ 3 + mv2)P− ⊗ (εγ 0 + vh̄k3γ 3 + mv2)P+

+
ψ (χ ) − ψ (χ∗) − 1

χ∗

χ − 1 − χ∗ (εγ 0 − vh̄k3γ 3 + mv2)P+ ⊗ (εγ 0 + vh̄k3γ 3 + mv2)P−

− eh̄v2B

χ − χ∗ (γ 1 ⊗ γ 1 − γ 2 ⊗ γ 2)

}
, (A9)

where ψ (n) is the polygamma function of order n. With the help of the asymptotic expansion of ψ (n) for large arguments, i.e., a
small magnetic field,

ψ (z) ∼ log z − 1

2z
−

∞∑
n=1

B2n

2nz2n
(A10)

and

ψ (m)(z) ∼ (−1)m+1
∞∑

k=0

(k + m − 1)!

k!

Bk

zk+m
(A11)

for m � 1, where Bk is the kth Bernoulli number, the above expression allows us to study the magnetic dependence order by
order. Retaining to the linear terms in B and performing the integration over k3, we arrive at the final expression∫

dx′P0(x, x′, 0) = 1

4π

kF

εv2 h̄2

τ

h̄

[
ε2(γ 0 + η14) ⊗ (γ 0 + η14) +

∑
i=1,2,3

1

3
v2h̄2k2

Fγ
i ⊗ (γ i )T

]

+ |eB|
8π h̄

{
ikF

τ 2

h̄2 [(γ 0 + η14) ⊗ (γ 0 + η14)iγ 1γ 2 − (γ 0 + η14)iγ 1γ 2 ⊗ (γ 0 + η14)]

125203-11



BO FU, HUAN-WEN WANG, AND SHUN-QING SHEN PHYSICAL REVIEW B 101, 125203 (2020)

+ 1

3

iv2h̄2k3
F

ε2

τ 2

h̄2 (−γ 3 ⊗ iγ 3γ 1γ 2 + iγ 3γ 1γ 2 ⊗ γ 3) + 1

2

ε

v2h̄2kF

τ

h̄
[(1 + ηγ 0) ⊗ (γ 0 + η14)iγ 1γ 2

+ (1 + ηγ 0)iγ 1γ 2 ⊗ (γ 0 + η14)] + 1

2

kF

ε

τ

h̄
(γ 3 ⊗ iγ 3γ 1γ 2 + iγ 3γ 1γ 2 ⊗ γ 3)

}
+ O(B2). (A12)

Following the similar procedure, we can find the results for the term linear in the gradient∫
dx′(x3 − x′

3)P0(x, x′, 0) = − vh̄k3
F

12πε

τ 2

h̄2 [γ 3 ⊗ (γ 0 + η14) − (γ 0 + η14) ⊗ γ 3]

+ i|eB|
16π h̄

{
−i

4

3

v3h̄3k3
F

ε2

τ 3

h̄3 [γ 3 ⊗ (γ 0 + η14)γ 1γ 2 − γ 3γ 1γ 2 ⊗ (γ 0 + η14)]

+ i
vh̄kF

ε

τ 2

h̄2 [γ 3 ⊗ (γ 0 + η14)γ 1γ 2 + γ 3γ 1γ 2 ⊗ (γ 0 + η14)] − [γ 3 ⇔ (γ 0 + η14)]

}
+ O(B2);

(A13)

the notation [γ 3 ⇔ (γ 0 + η14)] is an instruction to interchange the two matrices in the previous expression to generate a second
term and finally the quadratic term is

1

6

∫
dx′(x − x′)2P0(x, x′, 0) =Dτ

εkF

4πv2 h̄2

τ

h̄

[
(γ 0 + η14) ⊗ (γ 0 + η14) +

∑
i=1,2,3

1

3
(1 − η2)γ i ⊗ (

γ i
)T

]
, (A14)

and the term linear in ω,∫
dx′∂ωP0(x, x′, ω)|ω=0 = − iεkF

4πv2 h̄2

τ 2

h̄2

[
(γ 0 + η14) ⊗ (γ 0 + η14) +

∑
i=1,2,3

1

3
(1 − η2)γ i ⊗ (γ i )T

]
. (A15)

By using the results (A12)–(A15), we can obtain the explicit expression for the 16 × 16 matrix form of D−1
x .
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