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Abstract: It is well-established that tumor-associated macrophages (TAMs) play an important role in
breast cancer development. Accumulating evidence suggested that human cathelicidin antimicrobial
protein (CAMP), which is mainly expressed in host defense cells such as macrophages, is crucial not
only in combating microorganisms but also promoting tumor growth. Here we report the interaction
of CAMP with TAMs in breast cancer. CAMP expression was upregulated in cancer tissues and in the
circulation of breast cancer patients. Surgical removal of tumor decreased CAMP peptide serum level.
Knockdown of CAMP decreased cell proliferation and migration/invasion ability in breast cancer
cells. CAMP expression was altered during macrophage M1/M2 polarization and was expressed
predominantly in M2 phenotype. In addition, breast cancer cells co-cultured with macrophages
upregulated CAMP expression and also increased cancer cell viability. Xenograft tumors reduced
significantly upon CAMP receptor antagonist treatment. Our data implicated that CAMP confers an
oncogenic role in breast cancer and plays an important role in the tumor microenvironment between
TAMs and breast cancer cells, and blocking the interaction between them would provide a novel
therapeutic option for this malignant disease.

Keywords: breast cancer; cathelicidin antimicrobia; tumor associated macrophage;
tumor microenvironment

1. Introduction

Breast cancer is the second most common cancer in women, with more than 2 million new breast
cancer cases diagnosed in 2018, representing 12% of all new cancer cases worldwide [1]. It was also one
of the most leading causes of cancer-related mortalities in women, resulting in more than 600 thousand
deaths globally [1]. Accumulating evidence supports that genetic, hormonal, and immunological
factors play critical roles in breast cancer development [2–5].

Human cathelicidin antimicrobial protein (CAMP) is the only member of the cathelicidin protein
family in humans [6,7]. CAMP encodes the human cationic antimicrobial peptide-18 (hCAP-18),
which could cleave into different lengths of peptides. LL-37 peptide is the most well-studied
peptide [8] that maintained in its pro-peptide form until processed by proteolytic cleavage to bioactive
LL-37 [9,10]. CAMP is constitutively expressed in different host defense cells, including macrophages,
neutrophils, epithelial cells, and endothelial cells, playing important roles not only in combating bacteria,
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fungi, viruses, and parasites but also regulating various immune functions such as inflammatory
reactions, cell proliferation, apoptosis, cell cycle arrest, angiogenesis, and cytokine release [9–15].
A growing body of evidence illustrated that CAMP promoted tumor growth and invasion through
angiogenesis initiation and recruitment of immune cells (e.g., monocytes, neutrophils, dendritic cells,
mesenchymal stromal cells) [6,16], while promoting wound healing ability and angiogenesis [15].
It has been proposed that LL-37 binds to specific receptors including CXC chemokine receptor type 2
(CXCR2), insulin-like growth factor 1 receptor (IGF-1R), and purinergic receptor 7 (P2X7) in different
cell types and tissues, leading to the activation of these receptors [17]. CAMP was overexpressed in
lung, breast, ovarian, prostate, pancreatic cancer, melanoma, and skin squamous cell carcinoma and
facilitated cancer cell growth [6,16–21]. These observations suggest that CAMP confers a tumorigenic
effect in cancers.

Tumor-associated macrophages (TAMs) are the most abundant cells among tumor infiltrated
immune cells and have great impact on prognosis [22,23]. Macrophages are regarded as critical
effectors during infection, however, accumulating evidence demonstrated a clear role of TAMs in
promoting tumor progression [24]. Macrophages are classified into the M1 and M2 phenotypes [25,26].
M1 mainly produce type I pro-inflammatory cytokines, participate in antigen presentation, and are
responsible for pro-inflammatory and anti-tumorigenic roles, while M2 produce type II cytokines
and have pro-tumorigenic functions [22]. There are markers for each phenotype such as nitric oxide
synthase (iNOS)for M1, ARG-1 and CD163 for M2 [27]. The communication between cancer cells
and microenvironment is crucial for disease initiation, development, and progression [28]. In breast
cancer stroma, macrophages form the crucial part of tumor microenvironment that occupy more
than half of the tumor mass [29,30]. In ovarian cancer, cancer cells induced CAMP expression in
macrophages to promote tumor progression which indicated an important source of LL-37 [9,11,31,32].
In prostate cancer, overexpression of mouse orthologue cathelicidin-related AMP (CRAMP) facilitated
early myeloid progenitors into M2 macrophages to promote cancer progression [33]. In contrast, the
CAMP secreted from M1 macrophages was identified to induce cell death by targeting mitochondria
in Burkitt’s lymphoma cells [34]. In view of the intimate relationship between CAMP and TAMs,
we focused on the characterization of CAMP in breast cancer and its interaction with TAMs, which
remains largely unknown.

2. Materials and Methods

2.1. Analysis of TCGA Data

To determine the expression pattern of CAMP in breast cancer, the datasets in The Cancer
Genome Atlas (TCGA) were used. Briefly, we used Gene Expression Profiling Interactive Analysis,
(GEPIA2, http://gepia2.cancer-pku.cn/#index), an interactive web server for analyzing the RNA
expression sequencing data (Tumor: n = 1085; Normal: n = 291) from the GTEx and TCGA projects,
based on a standard processing pipeline [35].

2.2. Clinical Specimen

Participants were recruited through Queen Mary Hospital, Tung Wah Hospital, and Hong
Kong Sanatorium and Hospital through the Hong Kong Hereditary Breast Cancer Family Registry.
This study was approved by Institutional Review Board of the University of Hong Kong (UW 15-441).
All participants of this study including breast cancer and DCIS patients have agreed and signed the
consent form. Patients’ demographic characteristics such as age, histological type, bilateral, staging,
metastasis, and histological grade are listed in Table 1.

http://gepia2.cancer-pku.cn/#index
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Table 1. Clinical characteristics of breast cancer patients.

Breast Cancer (n = 110)

Age (years; mean (SD)) 49.5 (12.8)

Histological type
DCIS 38
IDC 72

Bilateral cancer 6

Stage
0 41
I 34
II 25
III 6
IV 4

Histological grade
1 8
2 34
3 21

NA 47

Abbreviation: DCIS—ductal carcinoma in situ; IDC—invasive ductal carcinoma.

2.3. Cell Culture and Transfection

T47D (ATCC no. HTB-133) were cultured in a 37 ◦C incubator with RPMI-1640 medium
(Invitrogen, NY, USA) supplemented with 10% fetal bovine serum (FBS) and 1% Antibiotic-Antimycotic
(Gibco, CA, USA). MCF-7 breast adenocarcinoma cell line (ATCC no. HTB-22) was maintained in DMEM
(Gibco) supplemented with 10% FBS and 1% Antibiotic-Antimycotic (Gibco). THP-1 cells (human
acute monocytic leukemia cells) were maintained in RPMI-1640 medium (Invitrogen) supplemented
with 10% FBS, 1% Antibiotic-Antimycotic (Gibco). Cells were transfected with Allstar Negative Control
siRNA and CAMP siRNA (Qiagen, CA, USA). Cells were collected after 72 h for further studies.

2.4. THP-1 Cell Differentiation into Macrophages

THP-1 cells (2 × 105/mL) were stimulated into undifferentiated macrophages (M0) by incubation
with phorbol 12-myristate 13-acetate (PMA, 20 ng/mL) (Sigma-Aldrich) for 3 days, followed by
maintaining in complete RPMI-1640 medium for another 3 days. THP-1 cells were treated with
A438079 (specific CAMP antagonist) at 10 nM dose before adding PMA to stimulate CAMP-deficient
undifferentiated macrophages. Conditioned medium (CM) collected from MCF-7 was used to stimulate
M0 into tumor-associated macrophages (TAMs). CM was centrifuged at 4000 rpm and the supernatant
was filtered with Acrodisc® Syringe Filters with Supor® Membrane (Pall Life Sciences, NY, USA).
CM was supplemented to 10%FBS before use.

2.5. Cell Proliferation Assay

Cells were seeded in a 96-well microtiter plate with triplicates. For gene knockdown experiment,
cells were transfected with Allstar Negative Control siRNA or CAMP siRNA (Qiagen) using
Lipofectamine 3000 (Thermo Fisher Scientific, MA, USA). A438079 was used to treat cells for 5 days
aiming to investigate the effect of CAMP specific blockade. Cell viability was measured by MTT assay,
intracellular purple formazan was solubilized in 100 µL of DMSO followed by the colorimetric product
quantified at absorbance 570 nm using a microplate photometer (Thermo Fisher Scientific).
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2.6. RNA Labelling and Microarray Analysis

Total RNA was extracted from frozen tissues by RNeasy Mini Kit (Qiagen) according to the
manufacturer’s instructions. Total RNA was quantified by the NanoDrop ND-1000 and RNA integrity
was assessed by standard denaturing agarose gel electrophoresis. Arraystar Human Microarray V3.0
is designed for the global profiling of human protein-coding transcripts, which is updated from the
previous Microarray V2.0. About 26,109 coding transcripts can be detected. Sample labelling and
array hybridization were performed according to the Agilent One-Color Microarray-Based Gene
Expression Analysis protocol (Agilent Technology) with minor modifications. Briefly, mRNA was
purified from total RNA after removal of rRNA (mRNA-ONLY™ Eukaryotic mRNA Isolation Kit,
Epicentre). Then, each sample was amplified and transcribed into fluorescent cRNA along the entire
length of the transcripts without 3’ bias utilizing a random priming method (Arraystar Flash RNA
Labelling Kit, Arraystar Inc., Rockville, MD, USA). The labelled cRNAs were purified by RNeasy
Mini Kit (Qiagen). The concentration and specific activity of the labelled cRNAs (pmol Cy3/µg cRNA)
were measured by NanoDrop ND-1000. Then, 1 µg of each labelled cRNA was fragmented by adding
5 µL of 10 × Blocking Agent and 1 µL of 25 × Fragmentation Buffer, then heated the mixture at 60 ◦C
for 30 min, finally 25 µL of 2 × GE Hybridization buffer was added to dilute the labelled cRNA. A
total of 50 µL of hybridization solution was dispensed into the gasket slide and assembled to the
expression microarray slide. The slides were incubated for 17 h at 65◦C in an Agilent Hybridization
Oven. The hybridized arrays were washed, fixed, and scanned using the Agilent DNA Microarray
Scanner (part number G2505C).

2.7. qRT-PCR

Total RNA was reverse transcribed into cDNA with High Capacity cDNA Reverse Transcription kit
(Applied Biosystems). Real-time qPCR was performed using QuantiTect SYBR Green PCR Kit (Qiagen)
in LightCycler480 II system (Roche, Rotkreuz, Switzerland). The expression level of housekeeping
gene was used for normalization. The reaction for each sample was performed in triplicate.

2.8. Aldehyde Dehydrogenase (ALDH) Activity

Aldehyde dehydrogenase (ALDH) activity was measured by using the ALDEFLUOR™ Assay
System (StemCell Technologies, WA, USA) according to the manufacturer’s recommendations.
Single cells were resuspended in ALDEFLUORTM Assay Buffer and incubated with the activated
ALDEFLUORTM Reagent, biodipy-aminoacetaldehyde (BAAA). For negative control, an equal number
of cells was also incubated with the activated ALDEFLUORTM reagent and the specific ALDH inhibitor,
diethylaminobenzaldehyde (DEAB). After 40 min of incubation, cells were washed with PBS and
resuspended in ALDEFLUORTM Assay Buffer in 4 ◦C. Cells were analyzed by a dual laser BD FACS
Calibur (BD Biosciences, MA, USA) using CellQuest software.

2.9. Cell Cycle Analysis

Cells were fixed in 3 mL of ice-cold 70% ethanol at −20 ◦C overnight. Fixed cells were centrifuged
at 1000 g for 5 min. Then the cells were washed by PBS and stained with 1mL of staining solution
containing 20 µg/mL of propidium iodide and 0.2 mg/mL of RNase A for 30 min and subjected to flow
cytometric analysis. Flow cytometric study was performed by BD FACSCalibur (BD Biosciences) using
CellQuest software. The average value of G0/G1, S, and G2/M phase were averaged from at least three
independent experiments.

2.10. Apoptosis Assay

Cellular apoptosis was detected by FITC Annexin V Apoptosis Detection Kit (BD PharmingenTM,
San Diego, CA, USA) according to manufacturer’s instructions. Briefly, cells were suspended in
1× binding buffer at a concentration of 1 × 106 cells/mL. Then, 5 µL of FITC Annexin V together
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with 5 µL of PI were added to 100 µL of resuspended cells and gently vortexed for 15 min at room
temperature in the dark. After incubation, 400 µL of 1× binding buffer was added then analyzed using
BD FACSCalibur (BD Biosciences, Woburn, MA, USA).

2.11. Migration Assay

Cells were plated into a 12-well cell culture plate and were allowed to reach 90% confluence.
A sterile pipette tip was used to scratch the cell monolayer. The scratched area was monitored under
microscopy (Olympus CKX41, Waltham, MA, USA) at 0, 6, 24, and 48 h. Images at each time point
were acquired by DP controller 3.31.292 (Olympus, MA, USA).

2.12. Invasion Assay

Cell invasion assays were performed using the BD BioCoat™ Matrigel™ Invasion Chamber
(BD Biosciences, MA, USA) according to the manufacturer’s instructions. Briefly, 1 × 104 cells were
resuspended in serum-free medium in the upper chambers, and medium supplemented with 10% FBS
served as chemoattractant and was placed in the lower chamber. After 24 h culture at 37 ◦C, invaded
cells were fixed with absolute methanol and stained with crystal violet. Invasive cells were counted at
magnification ×200 from six random fields. All experiments were performed in triplicate.

2.13. Immunofluorescence Staining

Cells were seeded on the glass coverslips in 24-well plates. After washing with PBS three
times, cells were fixed with 2% paraformaldehyde for 15 min at room temperature followed by
permeabilization with 0.1% Triton × −100. Afterwards, 3% bovine serum albumin (BSA) was used to
block the unspecific binding sites for 50 min at room temperature. Cells were then incubated overnight
at 4 ◦C with the primary antibody: 1:100 diluted anti-CD68 antibody (Abcam, MA, USA), 1:50 diluted
iNOS antibody (Santa Cruz Biotechnology, CA, USA), 1:50 diluted ARG-1 antibody (Santa Cruz
Biotechnology), 1:50 diluted CAMP antibody (Abcam). Samples were then incubated with secondary
antibody: 1:200 diluted Donkey Anti-Rabbit IgG H&L, Alexa Fluor® 594 (Abcam), 1:200 diluted Goat
Anti-Mouse IgG H&L (Alexa Fluor® 594 (Abcam) for 50 min at room temperature. After being rinsed
with PBS, 4’, 6-diamidino-2-phenylindole (DAPI) was added to stain the cell nucleus and samples were
visualized under immunofluorescence microscopy (Nikon, Eclipse 80i, Tokyo, Japan).

2.14. Western Blotting

Cell pellets were collected and washed with ice-cold PBS and subsequently lysed in 100 µL of lysis
buffer for 20 min. After centrifuged for 15 min at 14,000 g in 4 ◦C, the supernatant was collected, and
the protein concentration was determined by the Bradford assay. Whole cell extracts were fractionated
by SDS-polyacrylamide gel electrophoresis (PAGE), and transferred to a polyvinylidene difluoride
(PVDF) membrane. After incubation with 5% non-fat milk in TBST to block the unspecific binding
sites, membranes were washed with TBST and probed against primary antibodies at 4 ◦C overnight.
Secondary antibodies were either anti-mouse or anti-rabbit conjugated with horseradish peroxidase.
Chemiluminescence was determined using ECL Western blotting substrate (Amersham Biosciences).

2.15. Development of Stable CAMP Overexpression Cell Lines

Full-length coding sequence of human CAMP gene (GenBank accession no. NM_004345) was
PCR amplified with primer sequences: TGCATCGAATTCAGGCTGGGCATAAAGGAG (sense) and
GCCTGACTCGAGGTAGGGCACACACTAGGAC (anti-sense) and was cloned into pcDNA3.1(+)
expression vector. Correct sequence clones were selected and verified with Sanger sequencing. Cells
were transfected with CAMP-expression plasmid and were selected with 500 µg/mL of G418 for 4 weeks.
Cell clones that survived were selected for CAMP-overexpression with quantitative RT-PCR.
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2.16. LL-37 Quantification by Enzyme-Linked Immunosorbent Assay (ELISA)

96-well ELISA plate (Cusabio, Wuhan, China) was pre-coated with antibody specific for
antibacterial peptide LL-37. Serum samples from 26 normal healthy individuals, 58 breast cancer
patients, or medium from cultured cells were included in this assay. A standard curve was prepared by
making serial dilutions of the known concentration of standard. All steps were carried out according to
the manufacturer’s instruction. Briefly, 100 µL of serum or culture medium was added into each well
and incubated for 2 h at 37 ◦C. After removing the serum, 100 µL of biotin-antibody (1×) was added
and incubated for 1 h at 37 ◦C. After incubation, each well was washed with wash buffer three times.
Then 100 µL of HRP-avidin (1×) was added followed by the washing process. Afterwards, 90 µL of
TMB Substrate was added prior to addition of 50 µL of Stop Solution and incubated for 15–30 min at
37 ◦C with protection from light. The optical density was determined at 450 nm wavelength within
5 min by microplate photometer (Thermo Fisher Scientific).

2.17. Transwell Co-Culture Assay

Macrophages differentiated from THP-1 cells were cultured in the absence/presence of MCF-7/T47D
cells by using a 0.4 µm transwell system (Sigma-Aldrich). After co-culture for 5 days, macrophages
and breast cancer cells were collected for further study.

2.18. Immunohistochemistry (IHC) Staining

Tissues were fixed in 4% paraformaldehyde and embedded in paraffin. The tumor was sectioned
at 5 µm and was dewaxed and rehydrated by serial immersion in ethanol. After quenched with
hydrogen peroxide and treated with sodium citrate, blocking solution was applied to block non-specific
binding sites. The slides were subsequently reacted with primary antibody overnight at 4 ◦C. The slides
were then washed with PBS and were incubated with secondary antibodies for 30 min. Sections were
visualized by Nikon Eclipse 80i (Nikon) using iView DAB detection kit (Ventana, AZ, USA). Images were
acquired by Spot Advanced software.

2.19. Animal Study

Four to six weeks old NOD/SCID mice were used for orthotopic injection of cells into the
mammary fat pad. Briefly, 0.72 mg of slow release estradiol pellet (Innovative Research of American,
Sarasota, FL, USA) was implanted subcutaneously on the neck between the ear and the shoulder of the
mice. After 3 days, 2× 106 T47D cells with empty vector or CAMP overexpressing plasmid were injected
into mammary fat pad of the mice and the tumor volume was compared after 7 weeks. To further
elucidate the role of CAMP in cancer cells-TAMs microenvironment, mice were divided into four groups:
(i) cancer cells only; (ii) cancer cells + TAMs (cancer cells:TAMs ratio = 5:1); (iii) cancer cells + CAMP
antagonist A438079 (35 mg/kg); and (iv) cancer cells + TAMs + CAMP antagonist A438079. A438079
was administered intraperitoneally per week in dose of 35 mg/kg. Tumor volume was calculated using
the formula (length × width2)/2. All experiments were conducted under to the approval of Committee
on the Use of Live Animals in Teaching and Research (CULATR) of The University of Hong Kong Li
Ka Shing Faculty of Medicine (4341-17).

2.20. Statistical Analysis

The differences between groups were estimated by Student’s t-test, and non-parametric
Mann–Whitney U test as appropriate in calculations. p < 0.05 was considered as statistically significant.
All experiments were performed in triplicate. The statistical analyses were performed using GraphPad
Prism 6.0 (GraphPad Software Inc., CA, USA).
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3. Results

3.1. CAMP mRNA and Cathelicidin Antimicrobial Peptide Are Upregulated in Breast Cancer

To identify the dysregulated genes in breast cancer, we selected three pairs of tumor and tumor
adjacent normal tissues for microarray analysis. With cut-off of 2-fold, we found that CAMP is one of the
most upregulated genes in breast cancer which was further confirmed by qRT-PCR. First, we analyzed
the CAMP mRNA expression between breast cancer (BC) tissues and normal tissues (NC) using the
publicly available TCGA database. The result showed that the expression of CAMP was upregulated
significantly in the cancer tissues compared to the normal tissues (Figure 1A). Then, we further
validated in our cohort that the expression level of CAMP was higher in breast cancer patients’ tissues
(T) when compared to their paired normal tissues (TN) and normal control tissues (NC) (Figure 1B).
Additionally, we revealed CAMP was upregulated in breast cancer patients’ plasma when compared
with normal individuals (Figure 1C). The concentration of human antibacterial peptide LL-37 was
significantly higher in breast cancer patients than in normal individuals and ductal carcinoma in situ
(DCIS) cases (Figure 1D). Among the breast cancer patients, we observed a decreased LL-37 level in
post-operative blood samples (Figure 1E).
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Figure 1. CAMP mRNA and cathelicidin antimicrobial peptide is upregulated in breast cancer.
(A) CAMP expression data in normal controls and breast cancer tumor tissues from The Cancer Genome
Atlas (TCGA) database; (B) CAMP mRNA expressions in normal controls, breast cancer patients’
tumor tissues and tumor adjacent normal tissues; (C) CAMP mRNA expression in normal controls
and breast cancer patients’ plasma; (D) serum concentration of peptide LL-37 in normal controls,
DCIS, and breast cancer patients; (E) serum LL-37 levels of pre-/post-operation breast cancer patients.
* p < 0.05, ** p < 0.01, *** p < 0.001 indicates statistically different. (NC: normal control; BC: breast cancer;
TN: tumor adjacent normal tissue; T: breast cancer tissue).

3.2. CAMPConfers Oncogenic Roles in Breast Cancer

To further elucidate the functional implication of CAMP in breast cancer, we investigated the
expression of CAMP in different breast cancer cell lines (MDA-MB-231: triple-negative breast cancer;
MCF-7: estrogen receptor-positive; SK-BR-3: HER2-positive; T47D: estrogen receptor-positive) by
qRT-PCR (Figure 2A) and Western blotting (Figure 2B). Knockdown of CAMP decreased mRNA
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expression, protein level, and secreted CAMP protein (Figure 2C–E). MTT assay result confirmed that
siCAMP led to significant growth inhibition in MCF-7 and T47D cell lines (Figure 2F) but not in SK-BR-3
(data not shown). Treatment with CAMP receptor-specific antagonist, A438079, dose-dependently
inhibited breast cancer cell growth (Figure 2G). Cell cycle analysis suggested a significant G1 phase
arrest in CAMP-deficient cells (Figure 3A). CAMP knockdown also led to robust increase in early
apoptotic cells (Figure 3B) along with increased cleaved Caspase 3 expression (Figure 3C). Both cell
migration ability (Figure 4A) and invasiveness (Figure 4B) were suppressed upon CAMP knockdown
in T47D cells, which may be due to increased CDH1 and decreased ALDH activity (Figure 4C,D).
To consolidate this result, we developed stable CAMP overexpressing MDA-MB-231 cells (Figure 4E)
and found that ectopic CAMP expression enhanced migration and invasion ability (Figure 4F,G).Biomolecules 2020, 10, x FOR PEER REVIEW 9 of 22 
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Figure 2. CAMP inhibition significantly decreased cell viability in breast cancer cells. (A) CAMP
mRNA expression and protein level (B) in breast cancer cell lines; qRT-PCR (C) and Western blotting
results (D) showed that CAMP was significantly suppressed by siRNA; (E) secreted CAMP peptide
level in cell culture medium was detected by ELISA in breast cancer cells; (F) MTT assay after CAMP
siRNA in breast cancer cells; (G) CAMP receptor specific antagonist, A438079inhibited cell proliferation.
* p < 0.05, ** p < 0.01, *** p < 0.001 indicates statistically different.
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Figure 3. CAMP knockdown altered cell cycle progression and apoptosis. (A) Significantly increased G1
phase arrest was observed in both cell lines after CAMP knockdown (negative control: parental breast
cancer cells); (B) early apoptotic cells were induced upon CAMP siRNA (negative control: parental
breast cancer cells); (C) Western blot result of cleaved caspase-3 in breast cancer cells after CAMP
knockdown. * p < 0.05, ** p < 0.01, *** p < 0.001 indicates statistically different.
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Figure 4. CAMP played an essential role in maintaining aggressiveness and stemness in breast cancer
cells. (A) Wound healing ability was inhibited by CAMP siRNA; (B) invasive cells were decreased by
knocking down of CAMP; (C) NOTCH1 expression was altered by CAMP knockdown; (D) aldehyde
dehydrogenase (ALDH)-positive cell population was significantly decreased by CAMP siRNA treatment
in both breast cancer cell lines; (E) Western blot result of CAMP protein in stable MDA-MB-231 CAMP
overexpressing cells; wound healing ability (F) and invasive ability (G) were significantly enhanced
by ectopic CAMP expression in MDA-MB-231 cells. * p < 0.05, ** p < 0.01, *** p < 0.001 indicates
statistically different.
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3.3. CAMP is Essential in Tumor Cells-M2 Macrophage Microenvironment

THP-1 cells were differentiated into macrophage (M0) by incubation with PMA for 72 h (Figure 5A).
CD68, which is a marker for macrophages, were increased upon PMA treatment by flow cytometry
analysis (Figure 5B). Immunofluorescence identified CD68 expression was co-expressed with CAMP in
macrophages (Figure 5C). After macrophages were co-cultured with T47D cells in the transwell system,
immunofluorescence staining showed increased M2 marker (ARG-1) and CAMP immunofluorescence
intensity (Figure 5D), while expression of M1 marker (iNOS) was decreased (Figure 5E). To further
delineate the role of CAMP in the transition to M2 macrophages when co-cultured with breast cancer
cells, we used A438079 pre-treated THP-1 cells for macrophage differentiation, aiming to block the
effect of CAMP during this process. In the CAMP-deficient macrophage group (A438079 pre-treated
group), M2 marker ARG-1 expression was decreased when compared to the control group co-culture
with breast cancer (BC) cells (Figure 5F). In addition, expressions of CAMP M2 marker (CD163),
P2X7 (CAMP-specific receptor), and IGF-1R increased in a time-dependent manner (Figure 5G).

To further mimic the microenvironment between breast cancer cells and TAMs, we indirectly
co-cultured breast cancer cells with macrophages in a 0.4 µM transwell system. Co-culture of breast
cancer cells with M2 macrophages promoted cancer cell proliferation and was abated in the cancer
cells co-cultured with CAMP-deficient macrophages (Figure 6A) with increased CAMP and P2X7
expressions (Figure 6B). IF staining revealed CAMP signal intensity was upregulated while CDH1
intensity was decreased in the presence of M2 macrophages (Figure 6C). The Western blotting result
showed CAMP protein expression increased in both macrophages and breast cancer cells after co-culture
for 5 days (Figure 6D). CAMP peptide concentration was increased in medium during co-culture
of breast cancer cells and macrophages (Figure 6E). The induced M2 marker (CD163 and ARG-1)
expressions in macrophages during co-culture with T47D were impeded by CAMP knockdown or
antagonist treatment, respectively (Figure 6F,G).

3.4. CAMPInhibition Reduced Tumor Growth In Vivo

To further investigate the role of CAMP on tumor growth, we developed a CAMP-stable
overexpressing breast cancer cell line (Figure 7A). Secreted CAMP protein level was upregulated
in CAMP overexpressing cells when compared to the control group (Figure 7B). MTT and colony
formation assay enhanced cell growth ability in CAMP overexpressing cells when compared to vector
control (Figure 7C,D). In the animal study, we found that mice with CAMP overexpressing cells had
larger tumor volume than vector control, suggesting an oncogenic role of CAMP in vivo (Figure 7E).
Additionally, mice with cancer cells + macrophages exhibited the largest tumor volume while the
CAMP receptor antagonist inhibited the tumor growth (Figure 7F). The IHC staining result showed
high expression of human-specific CD68 in the T47D + macrophages group, which was diminished in
the T47D + macrophage + A438079 group. Besides, human-specific CD68 was barely seen in T47D and
T47D + A438079 groups (Figure 7G).
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Figure 5. CAMP played an important role in the transition from M0 to M2 macrophages. (A) Non-specific
macrophages were differentiated from THP-1 cells by phorbol 12-myristate 13-acetate (PMA) treatment;
(B) flow cytometry result showed that CD68+ve cells population increased upon PMA treatment;
(C) immunofluorescence (IF) staining of CD68 and CAMP in differentiated macrophages from THP-1
cells; (D) IF staining of CAMP, CD68, and ARG-1 in macrophage co-cultured with breast cancer cells;
(E) Western blotting showed that iNOS decreased while ARG-1 and CAMP increased in macrophage
during co-culture with breast cancer cells; (F) ARG-1 protein expression decreased and iNOS decreased
in CAMP-deficient macrophages co-cultured with breast cancer cells compared to control group;
(G) mRNA expression levels of CAMP, M2 marker CD163, CAMP-specific receptor P2X7, and IGF-1R
were increased in macrophages cultured in conditioned medium. * p < 0.05, *** p < 0.001 indicates
statistically different.
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Figure 6. CAMP contributed in the interaction between tumor-associated macrophages (TAMs) and
cancer cells. (A) Cell proliferation ability was significantly enhanced in both breast cancer cells after
co-culture with TAMs but not with CAMP-deficient macrophages; (B) both CAMP and its receptor P2X7
expressions were upregulated in breast cancer cells after co-cultured with TAMs; (C) IF staining showed
increased immunofluorescence intensity of CAMP and decreased intensity of CDH1 in breast cancer
cells co-cultured with TAMs; (D) Western blot analysis showed CAMP protein level increased with time
in breast cancer cells co-cultured with macrophages; (E) secreted CAMP protein level was detected by
ELISA in co-culture medium of macrophages and breast cancer cells; (F) qRT-PCR and (G) IF staining
showed that upregulation of ARG-1/CD163 induced in macrophages after co-culture with cancer cells
was abrogated by CAMP knockdown. ** p < 0.01, *** p < 0.001 indicates statistically different.
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Figure 7. CAMP is essential for the tumor promoting effect of TAMs in vivo. (A) Western blotting
confirmed CAMP is upregulated in stable T47D CAMP overexpressing cells; (B) secreted CAMP protein
level was higher in CAMP overexpressing cells’ culture medium than in the control group; (C) CAMP
overexpression increased cell viability in breast cancer cells; (D) more colonies were observed in the
CAMP overexpressing group than the control group; (E) CAMP overexpression groups exhibited larger
tumor volumes than the control group; (F) the tumor promoting effect of TAMs was abolished by
A438079; (G) CD163 mRNA expression in mice tissues; (H) IHC staining of human CD68 expression in
mice tumors. * p < 0.05, ** p < 0.01, *** p < 0.001 indicates statistically different.
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4. Discussion

To date, around 30 cathelicidin family members have been identified in mammals. However, there is
only one cathelicidin CAMP, namely hCAP-18, that has been identified in humans [36,37]. LL-37 is
a C-terminal peptide that gains its activity after being proteolytically cleaved from the pro-form
hCAP-18 [38–40]. CAMP was first identified as an endogenous antibiotic due to its broad spectrum
antimicrobial activity to eliminate Gram-positive and Gram-negative bacteria, viruses, and fungi by
disrupting their membranes [41]. CAMP is constitutively expressed in neutrophils, natural killer (NK)
cells, dendritic cells, monocytes, and especially macrophages [42–45]. It has been widely accepted
that CAMP has an important role in inflammatory-related diseases such as chronic inflammatory
skin disease [38], Crohn’s disease [46], and autoimmune diseases including psoriatic arthritis [47],
systemic lupus erythematosus [48], and atherosclerosis [49]. Apart from its antimicrobial function,
CAMP has also been reported to regulate a wide range of activities including apoptosis, cell proliferation,
angiogenesis, and wound healing [37,50]. For example, CAMP was also known to be upregulated in
breast cancer tissues compared to normal tissues [51]. In our study, CAMP was upregulated in both
cancer tissues and circulation. LL-37 peptide level was not significantly different between normal
and pre-cancerous DCIS individuals, but obviously higher in breast cancer patients, suggesting its
oncogenic role in cancer progression. The decreased serum concentration of LL-37 after surgical
removal of tumor indicated its potential as a circulating biomarker for breast cancer.

CAMP was reported to exert its cancer-related roles by regulating cell proliferation, invasion,
migration, apoptosis, and cell cycle [52]. There was a study that reported that LL-37 binds to
ErbB2 receptor and transient receptor potential cation (TRPV2) which led to activation of MAPK
signaling and the PI3K/AKT pathway in breast cancer cells and resulted in enhanced cell proliferation,
migration, and anchorage-independent growth [53–56]. Similarly, we demonstrated increased
G1-phase arrest and apoptosis which inhibited cell viability upon blockade of CAMP. CAMP promoted
pancreatic ductal adenocarcinoma by activating cancer stem cell properties via a P2X7-dependent
manner [57]. Additionally, CAMP knockdown downregulated stemness-related genes, as well as
decreased production of oncospheres in SK-BR-3 breast cancer cells [58]. Similarly, we also observed a
significant inhibition of ALDH activity, which is a well-known cancer stem cell marker, upon CAMP
knockdown, which provides evidence that CAMP is stemness-related.

It is well-established that macrophages secrete CAMP to kill target microbes [59]. During the
differentiation from non-specific macrophage to M2 macrophage, we found that M2 marker expression
was increased with CAMP expression and its receptor. To the best of our knowledge, this is the first
study revealing the relationship between CAMP and TAMs in breast cancer. With limited studies on
cathelicidin and M1/M2 macrophage polarization, LL-37 was reported to be inversely correlated with
proinflammatory M1 macrophages [60]. Upregulation of CD163, CAMP, P2X7 in macrophages cultured
in conditioned medium or co-cultured with cancer cells strongly suggested a positive feedback loop
between TAMs and breast cancer cells. The time-dependent increase in CAMP expression in the tumor
microenvironment provides a novel targeted therapeutic option by blocking the positive feedback
loop. There are different approaches targeting TAMs as to limit monocyte recruitment into tumor
tissues by CCL2-blocking agent [61], to inhibit the activation of TAMs by CSF1/CSF1R inhibitors [62],
reprogramm TAMs into antitumor macrophages using CD40 agonist [63] or IL-10 mAbs [64], and
deplete macrophages by clodronate-liposome [65]. However, macrophage-targeting strategies using
antibodies with large molecular weight often reduced the efficiency for tissue penetration while small
molecule inhibitors tend to be less specific with increased risk of toxicity [66].

5. Conclusions

Taken together, CAMP was regarded as a target mediator in the cell–cell interaction between
TAMs and cancer cells. Blockade of CAMP by either siRNA or antagonist reversed the upregulated
M2 macrophage marker. In our in vivo experiment, the CAMP receptor antagonist indeed attenuated
the TAM-associated tumor growth promotion effect, providing evidence that CAMP could serve as a
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potential target to inhibit breast cancer growth by disrupting the interaction between TAM andcancer
cells. Based on our findings, CAMP targeted therapy aimed to intervene with the crosstalk between
TAM andcancer cells mediated by CAMP, hoping to minimize the impact on the innate macrophage
defensive function, especially for those with high circulating LL-37 titer.
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