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Abstract

We propose a fixed-point iteration approach to
the maximum likelihood estimation for the in-
complete multinomial model, which provides a
unified framework for ranking data analysis. In-
complete observations typically fall in a subset
of categories, and thus cannot be distinguished
as belonging to a unique category. We develop a
minorization—maximization (MM) type of algo-
rithm, which requires relatively fewer iterations
and shorter time to achieve convergence. Under
such a general framework, incomplete multinomi-
al models can be reformulated to include several
well-known ranking models as special cases, such
as the Bradley—Terry, Plackett—Luce models and
their variants. The simple form of iteratively up-
dating equations in our algorithm involves only
basic matrix operations, which makes it efficient
and easy to implement with large data. Experi-
mental results show that our algorithm runs faster
than existing methods on synthetic data and real
data.

1. Introduction

Multinomial modeling and inference have been widely uti-
lized for polytomous response data analysis in many prob-
lems of statistics and machine learning. For example, some
ranking models (Luce, 1959) treat ranking results as a finite
sequence of multinomial samples; the cross-entropy loss
built on the Kullback—Leibler divergence of two multinomi-
al distributions can be used for the training of classification
tasks (Krizhevsky et al., 2012).

In a multinomial model, the sample space €2 is partitioned
into K disjoint subspaces, where K is the number of cate-
gories. However, in most real applications, observed sam-
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ples are incomplete in the case of partial or conditional
classification. For some observations, a subset of categories
rather than a unique category is reported, or the set of possi-
ble outcomes contains only part of all categories, i.e., trun-
cated data. The probability for an incomplete multinomial
observation y; has the form

Zjeci Dj
ZjeAi pj,

where C; € A; C Q, Q = {1,...,K} and p =
(p1,-..,pK)7 is the parameter of interest. The paired set-
s (Cy, A;) record the reported categories and the set of
possible outcomes for y;. An observation is complete if
|C;] = 1 (] - | represents the number of elements of a set)
and A; = Q. The probability of a reported subset can be
expressed as a probability sub-sum p = §Tp, where d is an
indicator vector corresponding to the composition of each
incomplete classification. Given the incomplete multinomi-
al data, Dong & Yin (2018) proposed a weaver algorithm to
maximize the likelihood function

K q K q
L(pla,b,A) < [] »* [] 7 = [1 v+ [ (61p)",
k=1 1

k=1 j=1 i=
2)

Pr(yi c CZ|A1) = (1)

where

e p=(p1,...,pK)T collects the probabilities of all cat-
egories, representing the parameters of the incomplete
multinomial model.

e a = (ay,...,ax)T represents the counts of fully clas-
sified observations for each category, corresponding to
|C;| = 1.

e b = (b1,...,by)T denotes the counts of incomplete

observations, where ¢ is the number of observed sub-
sets. Positive terms represent the results of partial
classification, and negative terms indicate the counts
corresponding to truncated outcomes.

o A = {Ay;}kxq = [01,...,0] is the indicator ma-
trix where each §; is a column vector of indicators
representing the element constituents of observed sub-
sets, associated with the count b;.
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In fact, model (2) is a unified framework which includes
the probability mass functions of the Bradley—Terry model
(Bradley & Terry, 1952) and Plackett—Luce model (Luce,
1959; Plackett, 1975) for ranking aggregation as special cas-
es. However, the model flexibility is restricted by constrain-
ing Ag; € {0, 1}, and more problems can be reformulated
into incomplete multinomial models by relaxing the indica-
tor Ag; as Ay; > 0. We call the model allowing A; > 0
as the ‘generalized incomplete multinomial model’.

The rest of this paper is organized as follows. Section 2
introduces related work on incomplete multinomial infer-
ence and ranking aggregation analysis. Section 3 presents
our fixed-point iteration approach for maximum likelihood
estimation and its convergence properties. Simulation re-
sults on synthetic data and analysis of real data are given in
Section 4.

2. Related Work

Statistical inference for multinomial models in the presence
of missing data has a long history. Ireland & Kullback
(1968) estimated contingency table cell probabilities when
the marginal probabilities are known and fixed. Hocking &
Oxspring (1971) considered the problem of maximum likeli-
hood estimation when some of the observations are partially
classified. Chen & Fienberg (1976) studied the imperfect
cross-classification problem in multi-dimensional contin-
gency tables with totally mixed-up cells. Several Bayesian
approaches, such as Dickey et al. (1987) and Paulino &
de Braganca Pereira (1995), were developed for solving the
problem of categorical responses with censoring. Numer-
ous studies on incomplete multinomial data considered only
the partial classification problem, i.e., the counts of merged
cells are positive. However, these methods, such as the
expectation—-maximization (EM) algorithm which splits the
merged counts by current cell probabilities (Schafer, 1997),
cannot be implemented on the data with negative counts
induced by conditional probabilities.

Another type of missingness in multinomial data is caused
by conditional classification, which has been widely dis-
cussed in ranking aggregation problems, such as the
Bradley—Terry model for pairwise comparisons and the
Plackett—Luce model for multiple rankings and permutation-
s. To deal with negative terms in the log-likelihood function,
Hunter (2004) proposed a minorization—maximization (M-
M) algorithm for iterative maximum likelihood estimation,
which is applicable to a wide class of generalizations of the
Bradley—Terry model. Negahban et al. (2012) introduced
the ranking centrality algorithm for pairwise ranking data,
which interprets ranking relationships between objects as
a random walk over the comparison graph. Its generaliza-
tion to multiple rankings has been discussed in Maystre &
Grossglauser (2015) and Agarwal et al. (2018).

Most of the existing work focus on either partial or condi-
tional classification. When both types of missingness occur,
for example, partial multiple rankings with ties, Soufian-
i et al. (2013) proposed to break multiple rankings into
pairwise comparisons. Turnbull (1976) developed a self-
consistency algorithm to solve the nonparametric estimation
of the empirical distribution function with interval-censored
and truncated survival data, for which the likelihood has the
same form as the incomplete multinomial model. Huang
et al. (2006) proposed a new method called group pairwise
comparisons to deal with the pairwise comparison prob-
lems between subsets of items. Dong & Yin (2018) used
an incomplete multinomial model to formulate the gener-
alized multinomial data and derived a fixed-point iteration
algorithm by solving a system of equalities satisfied on the
stationary point of the likelihood function.

We consider the problem of solving the maximum likelihood
estimator (MLE) with incomplete multinomial data, where
partial classification and conditional probabilities co-exist.
Based on the simple and interpretable incomplete multino-
mial modeling in (2), we explore the optimality conditions
of the log-likelihood function and develop a fixed-point iter-
ation updating rule called the stable weaver algorithm. We
investigate the convergence properties of our algorithm, and
demonstrate the capabilities of generalization of the incom-
plete multinomial model which includes many well-known
ranking models as special cases.

3. Stable Weaver Algorithm
3.1. MLE from Fixed-Point Iterations

Recall the likelihood function with incomplete multinomial
observations (a, b, A) in (2), the log-likelihood function is

Zaklogpk +Zb log(d7p)

{(pla,b,A) =

with the parameter space © = {p|p; > 0, Zszl pr =1}
Solving the MLE of an incomplete multinomial model can
be viewed as an optimization problem,

K
max ¢(pla,b, A) subject to Zpk =1.
P
k=1

We can apply the Lagrange multipliers method,

maxZaklogpk—l—Zb log ( 6T p) —A1"p

k=1 j=1

-1, 3

where ) is the Lagrange multiplier.

Theorem 1 Let s = 1, aj, + dio1 by If (P, A7) is
the stationary point of (3), then \* = s.
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Remark 1 A special situation is that s = 0. For observa-
tions {y; }_, in (1), the likelihood has the form

n (ST_
L(pl{Ci, AYy) = H( Cl”), @)

=1 62119

where d¢,,0 4, are indicator vectors corresponding to
Ci,A;. If s =0, A; # Q, Vi. Then for any p* > 0,
we can find another pt = ap* (o > 0), such that
L(p*|{Ci, Ai}y) = L(p'|{C;, A;}7_). As a result, we
need to renormalize p in every iteration for identifiability.

With the result of Theorem 1, our goal is to maximize

K a
lp|s,a,b,A) = Zaklogpk—i-z:bjlog(s;p
k=1 j=1

K
—5 (Zpk — 1> ) (5)
k=1

For terms in b, we divide them into positive and negative
sets. Let QT = {j|b; > 0,5 =1,...,q} and Q= =
{j1b; <0,5=1,...,¢q} be the sets of indices of positive
and negative elements in b respectively. The optimality
condition V{(p) = 0 implies

ol ay 16| Ak; 16| Ak;
= Y Y
opr Dk Pt o;p Pl o;p

which is equivalent to

bi| Ay
ar+ Y 16518 3|T Lp =
j€Q+ ]p

s=0,

bi|Ak;
DI =3 O
ji€eQ~ Y
Based on (6), we formulate a fixed-point iteration approach

to deriving the stationary point of the likelihood function,

[bjAk; (%)
a + ZjeQ* ,sjjrp(f)J P

[bj[Ak; 7
S+ eco- 3Tp()

(t+1) _

P k=1,...,K. (7)

We rearrange (7) into a matrix format as shown in Algorithm
1, which can be viewed as a stable version of the weaver
algorithm in Dong & Yin (2018). The weaver algorithm up-
dates the parameter by p = a/(s1 — A7), and its iteration
might collapse due to the existence of negative terms in the
denominator (s1 — A7) and zeros in a, leading to nonposi-
tive p(“’l). To overcome this defect, Bayesian weaver with
a two-layer iteration structure was proposed, which thickens
the complete counts a with Dirichlet priors to enlarge s so
that (s1 — A7) remains positive during updates (Dong &
Yin, 2018). However, Bayesian weaver is time-consuming
due to the inner—outer iteration structure and the selection
of the thickening parameter is difficult. Our stable weaver
algorithm does not require the Bayesian outer iterations, and
thus uses fewer iterations and less time to reach the MLE
with a stable updating path.

Algorithm 1 Stable Weaver

Input: Observations (a, b, A)

Initialize: p*) = (1/K,...,1/K)T

repeat
7 =b/ATp® (element-wise division)
7t = max(7,0), 7~ = min(r, 0)
pttY =[a+ (ATtH)op®]/(s1— AT7)
(o represents element-wise product)
pltth) — p(t+1>/5um(p(t+1))

until convergence

3.2. Properties of the Stable Weaver Algorithm

Our stable weaver (Algorithm 1) is inspired by the fixed-
point iteration method which reaches convergence at the
stationary point of the log-likelihood function. In fact, under
reasonable assumptions, the stable weaver algorithm has
the form of an MM algorithm and thus strictly increases
{(pla, b, A) in every updating step.

Assumption 1 Forany k € {1,..., K}, the observations
(a, b, A) satisfy the following two conditions:

(i) Either s > 0 or )0_ I{b; < 0,A; > 0} > 0;

(ii) Either ax, > 0or > 9_, I{b; > 0,Ay; > 0} > 0.

Assumption | requires that each category should appear in
both positive count cells and negative count cells for at least
once. Note that s is the number of observations with the
whole sample space as possible outcomes, and a records
the counts corresponding to |C;| = 1.

Theorem 2 At the t-th iteration, if (i) Assumption 1 is sat-
isfied, (ii) p® > 0 and (iii) 3k, 00(p™)/Opy # 0, then
under the updating rule of the stable weaver algorithm, it
holds that

(") > £(p").

Theorem 2 guarantees a strict increase of the log-likelihood
in each iteration, which indicates the effectiveness of our up-
dating rule. If the log-likelihood function (5) contains only
one stationary point which satisfies (6), then this stationary
point would be the global maximum, i.e., the MLE.

Theorem 3 Under Assumption 1, {(p) has a unique sta-
tionary pointif Q~ = @ or QT = @.

However, the condition Q= = @ or QT = & in Theorem
3 may not be satisfied for incomplete multinomial data if
both partial and conditional classifications exist, therefore
the stationary point of (5) might not be the MLE.

Following the strategy for proving convergence of the MM
algorithm (Hunter, 2004), we can derive the convergence
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properties of the stable weaver algorithm under some mild
conditions.

Lemma 1 (Lyapunov’s Theorem) (Lange, 1995)
Suppose that

(i) F: 0O — O is continuous;
(ii) ¢ : © — R is differentiable;

(iii) Vp € O, {(F(p)) > {(p), with equality held if and
only if p is a stationary point of {(+);

then for an arbitrary p\°) € ©, any limit points of the
sequence p+Y) = F(p®) is a stationary point of {(p).

The mapping F'in Lemma 1 is taken to be one iteration of
the stable weaver algorithm, and its continuity is easy to
verify. Obviously, the log-likelihood function (5) is differ-
entiable on ©. The condition £(F(p)) > {(p) is guaranteed
by Theorem 2 when p is not a stationary point of ¢(p). The
proof of Theorem 2 in the Supplementary Material shows
that {(F(p)) = {(p) for p € O if and only if F(p) = p,
and thus p satisfies (6), i.e., p is a stationary point of £(-).
It remains to show that the sequence p**1) = F(p®)) has
limit points for any starting point p(®) € ©.

During the updates of the stable weaver algorithm, we
can obtain a bounded increasing sequence £(p*)), where
(@) < £(p®) < £(p) and p is the MLE of £(p). The
parameter space © is not a compact set. However, given any
starting point p(©), the updating path of the stable weaver
algorithm must be included in a subset of the parameter
space {p € © : £(p) > L(p»)}. Since a compact set
implies the existence of at least one limit point, we need
to give sufficient conditions for the compactness of the set
{p € ©: {p) > c},Vc € R, i.e., the upper compactness
of the log-likelihood function £(-).

Assumption 2 Given the observations (a, b, A), there ex-
ists a reformulation of the likelihood function as (4), such
thatVk,5€ {1,... ., K}, k#j, 3 e {l,...,n},

Assumption 2 has a form similar to those in Hunter (2004)
and Huang et al. (2006), indicating that £ ‘beats’ at least
one set containing j. Assumption 2 might be too strong
while these conditions can be fulfilled by adding an extra
term -y Zle log pi to (5). Usually a relatively small « is
used to alleviate the induced bias, e.g., we set v = 10=%in
all scenarios.

Under Assumption 2, we can claim the upper compact-
ness of ¢(p) and derive convergence properties of the stable
weaver algorithm.

Theorem 4 [f Assumptions 1 and 2 hold, then ((p) is up-
per compact, and there exists at least one limit point in
the sequence p't!) = F(p®"). According to Lemma 1,
any convergence point of the stable weaver algorithm is a
stationary point of (5).

On the other hand, the sequence of ¢(p®)) is increasing
and bounded above. The monotone convergence theorem
indicates the convergence of this sequence, which means
that our updates have at least one limit point. Further, we
can draw the conclusion that the stable weaver algorithm
converges to a stationary point of the log-likelihood func-
tion (5). If the conditions in Theorem 3 are satisfied, the
existence of at most one stationary point is guaranteed, and
thus we can obtain the unique stationary point as the MLE.

Our stable weaver algorithm is a simple fixed-point iteration
method with only element-wise matrix operations and ma-
trix products. The complexity of one stable weaver iteration
is O(K x q), where K X g is the dimension of A. This
renders our algorithm great time efficiency and capability
of handling large datasets.

3.3. Applications of Incomplete Multinomial Models

3.3.1. POLYTOMOUS RESPONSE DATA WITH
UNDERLYING CATEGORIES

For some problems, we are not interested in the observed,
explicit categories, but the underlying, implicit categories.
One such example is the phenotype expressions on blood
types according to genotypes as shown in Table 1. With the
observed counts of the blood types (na, ng, no, nap),
we can derive the likelihood function,

(P2 + 2papo)"* (p + 2ppo)™”
X (2papB)™® (po)™,

which can be rearranged into an incomplete multinomial
model with

L(pA7vapO) =

a = (na+nap,np+nag,2no)7,
b = (na,np)T,
1 0 2
T _
A { 01 2 ]

Table 1. Relationship between the blood types and genotypes

PHENOTYPE GENOTYPE PROBABILITY

A AA P
AO 2papo

B BB P
BO 2pBpo

0 00 )
AB AB 2papB
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Similar models are also applicable in recommendation
systems. For example, in online video recommendation
problems, each individual has a personalized probabili-
ty vector which reflects his/her interest on different type-
s of videos, and each video often contains multiple la-
bels, e.g., ‘travel’, ‘cooking’ and ‘sports’. The selection
of a video can be viewed as a choice from all available
videos on the web page. Assuming video A with label-
s (1,3), video B with labels (2,3), video C with labels
(1,3,4), if video A is selected from (A, B, C), the proba-
bility of the selection has the form of a multinomial slice,
(p1 4+ p3)/[(p1 + p3) + (p2 + p3) + (p1 + p3 + pa)| =
(p1 + ps3)/(2p1 + p2 + 3ps + p4). An incomplete multino-
mial model can be built upon individual browsing history,
and the levels of preference on different video labels can be
estimated to improve customized recommendation.

3.3.2. PAIRWISE COMPARISON WITH HOME
ADVANTAGE AND TIES

With the generalized settings of A, incomplete multinomi-
al models can suit more ranking problems. For example,
Agresti (1990) considered the pairwise comparisons with
home-field advantage,

if 7 is home,

o [ Opi/(Opi + pj),
Pri =) = { if j is home,

pi/(pi + ij),

where 6 is the advantage parameter. For the pair (4, 5), let
wij| be the count of 4 wining j if h € {i, j} is home. The
probabilities can then be encoded into the expressions of an
incomplete multinomial model for which

tij tij+1
bT o= [ —wg —wigy oo ]
Pi pj
AT _ tij O 9 0 1 O (8)

where O represents a row vector of Os.

Another important extension is to handle ties in pairwise
comparisons. Rao & Kupper (1967) established that

Pr(i = j) pi/ (i + 0p;),
Pr(i <j) = p;/(0p;i +py),
Pr(i = j) (6% — Vpip;/[(pi + 0p;)(pj + 0p:)],

where § > 1 is the parameter associated with ties. For
the above model, we can derive an incomplete multinomial
expression for A similar to (8).

3.3.3. TIED RANKINGS IN THE PLACKETT-LUCE
MODEL

The Plackett—Luce model formulates the probability of or-
dering sequences, e.g., 1 >~ 4 >~ 3 > 5 > 2. However,
partial rankings or ties often appear in multiple ranking data.
If rankings are known up to several subsets of items, such
as {1,4} > {3,2} > 5, the likelihood has the form

D2 + p3
p2+p3+ps’

p1+ P4
5
Zk:1 Pk

which can be encoded into the tuple (a, b, A).

Ties often appear in sports and gaming (e.g., gymnastics,
diving) where the matches are evaluated by referees. If a
survey collects people’s opinions on the best k items (un-
ordered) among all objects, this also belongs to ranking
models with ties, e.g., election voting. A discrete rating
system is another type of Plackett—Luce model with ties,
which treats objects with the same rating as a subset and
generates rankings among the subsets.

4. Experimental Results

In this section, we study large-sample properties and nu-
merical performances of our algorithm on synthetic data
and real data. Although our experiments only consider the
standard incomplete multinomial model with Ay; € {0,1},
Section 3 implies that our algorithm is also applicable to
data with Ag; > 0. All the methods are coded in the form
of matrix operations for fair comparisons on time efficiency.

The convergence criteria of all implemented algorithms are
set to be
I p"+D —p™ |1, < e,

where e is the tolerance. We set ¢ = 10~ for the simulation
studies in Section 4.1 and ¢ = 10~° for the remaining
experiments.

4.1. Large-Sample Properties

We generate data based on a contingency table whose pop-
ulation is cross-classified into six categories according to
gender and age. The contingency table includes one com-
plete sample, two partially classified samples, and one con-
ditionally classified sample with corresponding sample sizes
of {120, 40,40, 100}. Details of the contingency table are
given in the Supplementary Material. In each simulation,
four multinomial samples are created with true probabilities
p, and then they are encoded into incomplete multinomial
observations, which means that we have the same A but dis-
tinct @ and b. We run N = 100000 simulations to examine
the asymptotic properties of our estimator.

The simulation results are reported in Table 2. The MLE of
(5) satisfies consistency and asymptotic normality, for which
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Table 2. Simulation results under the gender—age contingency table
averaged over 100000 simulations

TRUEp MLEp SD SE
p1 0.1654 0.1654 0.0233  0.0233
p2 0.2024 0.2022 0.0338 0.0337
ps  0.1444 0.1444 0.0293 0.0292
psa  0.1532  0.1533 0.0222 0.0222
ps  0.2301  0.2302 0.0348 0.0347
ps 0.1046 0.1046 0.0264 0.0261

the asymptotic covariance corresponds to the inverse of the
observed information matrix. The ‘SE’ column is computed
as the square root of the diagonal of the averaged asymptotic
covariance matrix. The parameter estimator of the stable
weaver algorithm is close to the true p, and the sample
standard deviation and standard error match well, which
indicates the accuracy of the MLE obtained by the stable
weaver algorithm. To further examine asymptotic properties
of the stable weaver estimation, we consider the coverage
probability of true p. We define the squared Mahalanobis
distance between the estimator and true p,

. ’ N —1 .
D(Z) = (ﬁﬁ),m - p[175])TS(Z) (ﬁﬁ),g)] - p[175])7
where p;_5 = (p1,...,p5)T is the vector of the first five
elements of p and S @) is the asymptotic covariance matrix
in the ¢-th simulation. The asymptotic normality of the MLE
implies that D) follows a x?(5) distribution when sample
size is large. We consider the proportion of D(?) that leads
to acceptance of the null hypothesis under the significance
level g, i.e., Y1 I{D® < x3_(5)}/N, where N is the
number of simulations, x7 _,(5) is the (1 — ¢)-th quantile
of x%(5) distribution.

= S %
)
.l
")
..
"
%
.l
",
'
",

Empirical probabilities of {D) < x}_,(5)}

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

1q
Figure 1. Probability-probability plot of x?(5) and D®)

Figure 1 shows that the empirical distribution of D)
matches well with the x2(5) distribution. For each
Dk, the asymptotic normality of p; allows us to verify
marginal coverage probabilities. The empirical marginal

Table 3. Number of iterations needed for convergence

STABLE BAYESIAN SELF

ITERATION WEAVER WEAVER  WEAVER CONSISTENCY
MEAN 20.32 16.25 439.23 47.65
SD 2.72 3.26 42.25 5.51

coverage probabilities based on simulation results are
(0.944,0.944,0.942,0.945,0.945,0.937) under the 95%
confidence level. The evidence from the joint and marginal
coverage probabilities confirms the asymptotic properties
of the MLE from the stable weaver estimation.

Table 3 presents the average number of iterations and stan-
dard deviation for the convergence of three weaver-type al-
gorithms and the self-consistency approach (Turnbull, 1976).
The stable weaver algorithm takes slightly more iterations
than the basic weaver due to the simple data structure of
the contingency table. While under some more complex
simulation settings, e.g., experiments in Section 4.3, or on
real datasets, the weaver algorithm often collapses during
updates, and our stable weaver algorithm has significant
advantages over other methods.

4.2. Estimation with Weak Signal and A Large
Number of Categories K

To investigate the convergence performance of our algorithm
with incomplete multinomial data, we consider the simu-
lation under weak signal and a large number of categories
K = 20000, where

p = (p1,---,P20000)7,
1 .
1 i=1,101,201...,19901,
P = { 72001%%901 otherwise ©)
200% 9901 * ‘

Here all the p;’s are the same except pi+iooj, J =
0,...,199, which are one percent of the rest elements. We
construct the weak signal likelihood function L (p) whose
MLE exactly equals to the true p in (9),

Lus(p) = [ [ Li(py); (10)

where pj;; = (P14100G-1)» - - ,P100;) " and for example if
J=1

00 100
* " P1oo

Li(pp)) =p1ps
X (p1+p2)" (p3 + pa)
(p1+p3)"" (p2 + pa)

(p1 + p2 + p3 + pa)30t

(ps +p7)*” (ps + ps)**

(ps + pe + p7 + ps)*°
(po7 + P99)?* (pos + P100)
(Po7 + Pos + Pog + P100)*0

101( 200 200

-+ (P99 + P100)
200
X

200
X e X
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Figure 2. Convergence plots of the stable weaver, Bayesian weaver,
self-consistency algorithms based on the likelihood (10), (a) RMSE
(b) log-likelihood.

Figure 2 displays the covergence plots of the stable weaver
algorithm compared with two existing approaches, the
Bayesian weaver and self-consistency algorithms in terms
of the log-likelihood and root mean square error (RMSE) as
defined in Maystre & Grossglauser (2015). We observe that
both RMSEs and log-likelihoods of our stable weaver algo-
rithm reach the plateaus in a few updates (achieving final
convergence after 45 iterations). Although both metrics keep
improving for the Bayesian weaver and self-consistency
methods, their improvement rates are quite low, which even-
tually achieve convergence after 2229 and 3438 iterations
respectively under the same stopping criterion.

4.3. Simulations Under Random Partition

To further evaluate statistical efficiency of the stable weaver
algorithm, we consider the random partition procedure for
data generation. Each incomplete multinomial expression
consists of R multinomial slices. In a multinomial slice, a
random partition process (Dong & Yin, 2018) is used to split
the sample space into several subspaces, then the samples
are drawn from corresponding multinomial distributions.
The number of observations in each multinomial slice is
controlled by another parameter m. The sample size of a
single sample has the order O(R x m). We take K = 32,
true p = (1,...,32)/528, and vary R and m. For each pair
of (R, m), we replicate 2000 simulations.

The boxplots in Figure 3 show the distribution of the esti-
mated probability of the first class p;. The stable weaver
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Figure 3. Boxplots of p1 (a) with R € {16, 32,64, 128} and m =
1 (b) with R = 16 and m € {1, 5, 10, 20, 50}

leads to remarkable reduction of the variance when R or
m increases. As the true probability of the first class is
p1 = 1/528, which is very small so that abnormal esti-
mation might occur with several relatively small pairs of
(R, m), for which the sample medians of j; are close to
zero. Such abnormality of estimation disappears when more
samples are included.

Table 4. Time efficiency (seconds per simulation) under random
partition simulation settings.

STABLE SELF

K R WEAVER WEAVER GBTML  CONSISTENCY
16 0.0105 1.7804  0.0137 0.0175
39 32 0.0077 1.5591 0.0112 0.0116
64 0.0054 1.5271 0.0095 0.0087
128 0.0041 1.7566  0.0090 0.0080
32 0.0160 3.0583 0.0331 0.0301
64 64 0.0124 3.3152 0.0317 0.0253
128 0.0101 4.0837 0.0318 0.0265
256 0.0117 6.2097 0.0469 0.0541
64 0.1001 11.5110 1.6094 1.2040
128 128 0.7439 16.1314  2.2453 1.2659
256 0.3426 21.0529 1.1494 1.7715
512 0.5723 155.7229 1.9377 1.9291

GBTML: Generalized Bradley—Terry model using maximum likelihood.

In terms of time efficiency, we compare the stable weaver
algorithm with three methods, the Bayesian weaver (Dong
& Yin, 2018) (the basic weaver algorithm fails for all simu-
lations in this section), the generalized Bradley—Terry model
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using maximum likelihood (GBTML) (Huang et al., 2006)
and self-consistency algorithm (Turnbull, 1976). As shown
in Table 4, the stable weaver algorithm consistently achieves
the best time efficiency under different configurations of K
and R, where we set m = 1 for all scenarios.

4.4. Experiments on Real Data

We further evaluate the performances of the stable weaver
and existing algorithms on three real datasets. The first
dataset NASCAR (Hunter, 2004) contains complete rank-
ing results for 43 car races. To investigate performances
of the algorithms under partial rankings with ties, we man-
ually aggregate some adjacent rankings in each race and
build a partial ranking dataset NASCAR (with ties) up-
on the aggregated results. The rules of aggregation take
NASCAR points scoring systems 1975-2003 as reference
and the details are given in the Supplementary Material.
The second dataset contains results of 1561 horse races
in the Hong Kong Jockey Club (HKJC) from 2014-2016
called HKJC1416, in which 1741 horses participated at
least one race. Five existing algorithms including the MM
(Hunter, 2004), Bayesian weaver (Dong & Yin, 2018), itera-
tive Luce spectral ranking (ILSR) (Maystre & Grossglauser,
2015), self-consistency (Turnbull, 1976) and trust region
constrained algorithm (Byrd et al., 1999) are compared with
the stable weaver. As the MM and ILSR cannot deal with
multiple rankings with ties, we consider a smaller dataset
by removing the races with ties.

Table 5. Comparison of six algorithms on real datasets.

NASCAR HKIC1416
ALGORITHM (W/0 TIES) (W/ TIES) (W/O TIES) (W/ TIES)
STABLE ITERATION 22 459 40.4K 27.2K
WEAVER TIME (S) <0.01 0.03 38.46 86.40
BAYESIAN  ITERATION 128K 263K >1M >1M
WEAVER TIME (S) 25.27 50.12 >5000 >5000
MM ITERATION 22 - 40.4K -
TIME (S) <0.01 - 375.79 -
TRUST  ITERATION 1937 5048 6361 649°
REGION™ TIME (S) 74.31 125.68 1139.14 1835.37
ITERATION 12 - 4056 -
ISR “rive(s)  0.06 - 116697 -
SELF ITERATION 36798 11282 i -
CONSISTENCY TIME (S) 11.61 2.08 - -

" The number of iterations for the trust region constrained algorithm refers
to the number of the objective function evaluations.

 We use the approximated Hessian matrix when fitting the trust region
constrained algorithm to the HKJC1416 data because its calculation is
too time-consuming.

¥ For the HKJC1416 data, the self-consistency approach converges to a
wrong solution.

As shown in Table 5, in terms of running time, the stable
weaver algorithm outperforms all the five existing methods
significantly. For the complete ranking data, although ILSR
requires the smallest number of iterations, formulation of
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Figure 4. Convergence plot of the stable weaver algorithm com-
pared with existing methods on the dataset HKJC9916 against
running time (a) ¢ € [0, 100] and (b) ¢ € [100, 36000] (s).

the K x K transition matrix and calculation of the left
leading eigenvector take too much time in each iteration,
resulting in worse performance on the total execution time.

Considering a larger dataset, we collect the HKJC horse
racing results from 1999 to 2016 (HKJC9916), which in-
cludes 13223 races and 7878 horses. Figure 4 presents
the log-likelihood of the stable weaver, Bayesian weaver
and trust region constrained approaches against execution
time. It is shown that the log-likelihood of the stable weaver
arrives at the plateau in 100 seconds, while those of the
Bayesian weaver and trust region constrained algorithms
climb at much lower rates. The performance of the stable
weaver remains the best on a larger real dataset, while all
other methods could not achieve convergence even after ten
hours.

5. Conclusion

This paper considers the problem of statistical estimation
and inference for incomplete multinomial models. A fixed-
point iteration approach is proposed for obtaining the MLEs
of the model parameters. Under some mild assumptions,
we prove the convergence of our stable weaver algorithm
to a stationary point of the likelihood function. The extend-
ed framework of modeling incomplete multinomial data
demonstrates its great capabilities of generalization, which
unifies several well-known models for categorical response
problems. Simulation studies show that the estimator from
the stable weaver has the properties of the MLE, and ex-
periments on real data also illustrate the advantages of our
algorithm in terms of computational efficiency compared
with existing methods. The simple updating rule in our al-
gorithm only involves basic matrix operations, which makes
it run fast and easy to implement with large data.
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