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Abstract 

    The microstructure of dislocations can be accessed by the total density of dislocations or the density of 

geometrically necessary dislocations (GND). The total dislocation density determines the flow strength of 

a crystal, which, in the case of high dislocation contents, is a quantity very difficult to measure accurately. 

On the other hand, related to crystal rotations, the GND densities are conveniently measured from electron 

diffraction experiments or calculated via simulations. Here, a novel and modern approach is proposed to 

understand the microstructures of dislocations based on deep learning, which estimates the total density 

of dislocations from a given density of GND distributions. In this method, the convolutional neural 

networks (ConvNets) are applied to extract the hidden information in the GND distribution maps to 

understand the microstructures of dislocations. It is demonstrated that the pre-trained ConvNets can be 

used to predict the distribution of total dislocation density from a small GND density map. Moreover, this 

technique is further developed to post-process real EBSD images for α-Fe to estimate the average total 

dislocation density, which corresponds to stress increments from a Taylor hardening assumption that is in 

good agreement with experimental values. Compared with previous methods involving much effort to 

track individual dislocations or other quantities, the present machine learning method is quick and 

convenient to use.  
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1. Introduction 

Dislocations are the main carriers of plasticity in most crystalline materials. The well-known Taylor’s 

formula relates the flow stress 𝜎 to the dislocation density 𝜌total as 𝜎 ∝ √𝜌total, and so 𝜌total is one of 

the most important parameters in discussing crystal strength and plasticity. Traditionally, methods 

available for obtaining 𝜌total  include image-based methods such as transmission electron microscopy 

(TEM) or electron channeling contrast imaging (ECCI) (Dunlap et al., 2018; Gutierrez-Urrutia and Raabe, 

2012), and diffraction-based methods such as X-ray, synchrotron X-ray and neutron diffraction. In 

addition to these methods, the density 𝛒GND  of geometrically necessary dislocations (GNDs) can be 

accurately determined by correlating with the lattice rotation and elastic strain obtainable by conventional 

electron backscattered diffraction (EBSD) (Calcagnotto et al., 2010; Dahlberg et al., 2014; Das et al., 2018; 

Demir et al., 2009; Hardin et al., 2013; Konijnenberg et al., 2015; Pantleon, 2008; Zhu et al., 2016) or 

high-resolution EBSD (HR-EBSD) (Chen et al., 2018; Jiang et al., 2015, 2013; T. J. Ruggles et al., 2016; 

T.J. Ruggles et al., 2016; Wilkinson et al., 2010). This EBSD-based approach is appealing not only 

because it captures the appropriate length scale for the heterogeneous deformation of metals, but also 

because the available mathematical formulas linking 𝛒GND with the experimental data are mathematically 

stringent and trustworthy. However, the measured 𝛒GND is not directly linked to the mechanical properties 

of the materials since, as mentioned above, the flow stress is defined by 𝜌total  rather than by 

𝛒GND according to Taylor’s formula.  

    In fact, 𝜌total and 𝛒GND are geometrically and physically linked since they are the vector and scalar 

summation, respectively, of the density of the same group of individual dislocations (Ngan, 2017). 

Therefore, the total dislocation density distribution should be solvable based on the GND density map 

along with the appropriate boundary conditions. Recently, statistical models (Kalácska et al., 2017; T. J. 

Ruggles et al., 2016) have been proposed to estimate the total density based only on the local value of 
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𝛒GND, but then information hidden in the distribution map of 𝛒GND in the neighborhood is not exploited. 

Since 𝛒GND is based on individual dislocations which are lines connected in space, enhanced accuracy in 

the estimate of 𝜌total should be achievable if the 𝛒GND distribution map in the neighborhood, rather than 

the local value of 𝛒GND, is used. 

For an image-like data structure (e.g., a 𝛒GND map), although information is stored locally in each pixel, 

it is the interconnection of the information in the neighboring pixels, rather than the data in a given pixel, 

that decides the meaning (such as the 𝜌total) of the image. The advantage of ConvNets, as compared with 

other signal-processing techniques, lies in its characteristic structure (shared weights and multiple layers) 

that allows the essential information hidden in the neighboring pixels to be clearly identified. Due to this 

special advantage, ConvNets have recently been successfully employed in analyzing scanning electron 

microscopy (SEM) and EBSD images for microstructural recognition (Azimi et al., 2018; Chowdhury et 

al., 2016; DeCost et al., 2017; Hagita et al., 2018; Heinrich et al., 2017; Ling et al., 2017; Liu et al., 2016; 

Lubbers et al., 2017). 

In this work, a new method is presented to understand the microstructure of dislocations, by estimating 

the total dislocation density 𝜌total from the 𝛒GND map, with deep learning techniques (Lecun et al., 2015), 

especially the convolutional neural networks (ConvNets) (Krizhevsky et al., 2012; Szegedy et al., 2016). 

Furthermore, the trained ConvNets are applied to estimate the average total dislocation densities for real 

EBSD images from α-Fe samples. Compared with the previous methods to obtain total densities of 

dislocations, the present method does not require tracking individual dislocations or carrying out extra 

experiments or simulations. 

 

2. Methodology 
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2.1 Problem statement 

 

Fig. 1. (a) Random dislocation lines generated in a 7×7 matrix of pixels; arrows indicate the GND density 

vector in each pixel. (b) The GND density map of (a) used in the datasets with its corresponding (𝜌𝑡, 𝑁). 

 

A new framework for estimating the total dislocation density 𝜌total, in terms of obtaining an explicit 

relation between 𝜌total and 𝛒GND, is presented here. Based on the dislocation theory, the GND density and 

the total density are connected via 

 {
 
 

 
 𝛒GND

𝛼 =∑𝛒𝑖
𝛼

𝑖

𝛁 ∙ 𝛒𝑖 = 0

𝜌total
𝛼 =∑|𝛒𝑖

𝛼|

𝑖

 

(1) 

where 𝛒 is the density vector, 𝛼 specifies the slip system, and 𝑖 indicates the 𝑖th individual dislocation in 

the slip system. Eqn. (1) suggests that both 𝜌total
𝛼  and 𝛒GND

𝛼  depend on the characteristics of individual 

dislocations. Interestingly, when the coarse-graining resolution (the grid resolution in Fig. 1) is in 

nanometers, the distribution of 𝛒GND
𝛼  becomes an accurate topography of the individual dislocations, so 
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that the magnitude of 𝛒GND
𝛼  equals to 𝜌total

𝛼 . Even though the coarse-graining length scale is in 

micrometers, information about individual dislocations can still be extrapolated from the GND distribution 

map, and we seek a general function f of the form 

 𝜌total
𝛼 (𝐱) = 𝑓(𝛒GND

𝛼 (Ω)) (2) 

where x is the position on the slip plane at which the total density is estimated, and Ω is a neighborhood 

area around x. In other words, the purpose is to estimate the hidden information of 𝜌total
𝛼  from the 𝛒GND

𝛼  

distribution regardless of the measurement resolution. 

    To achieve this goal, the model schematically shown in Fig. 2 is established. Given a large GND density 

distribution, 𝛒GND
𝛼 , as the vector field shown in Fig 2(a), for each pixel, a small region of 7×7 pixels in its 

neighborhood is cropped as shown in the orange and green squares. The density 𝜌total
𝛼  in the center pixel 

is defined as 𝜌total
𝛼 = 𝑙/(𝑠2𝑏) where 𝑙 is the dislocation line length in the pixel, 𝑠 is the pixel length, and 

b is the slip plane thickness. The limited size of 7×7 pixels for Ω will introduce noise in the prediction but 

such noise can be reduced by additionally incorporating the number of dislocations 𝑁total
𝛼  inside each pixel 

as a model parameter, and hence the model parameters are specified as (𝜌total
𝛼 , 𝑁total

𝛼 ), which are hereafter 

written as (𝜌𝑡, 𝑁) for short. Therefore, if the (𝜌𝑡, 𝑁) for each pixel can be predicted, then the full (𝜌𝑡, 𝑁) 

distribution map can be estimated.  
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Fig. 2. Schematic of using a GND density map to predict the distribution of (𝜌𝑡, 𝑁) via ConvNets where 

𝜌𝑡 is the total dislocation density and 𝑁 the number of dislocations. The distribution of vector 𝛒GND shown 

as arrows is the input. For each pixel (outlined by black thick lines), a cropped 7×7 pixel grid (orange or 

green domain) serves as the area Ω used to predict (𝜌𝑡, 𝑁). The full prediction of (𝜌𝑡, 𝑁) in the right panel 

is the output. The color filling each pixel indicates the value of the 𝜌𝑡 and the integers indicate the values 

of N.  

 

2.2 Dataset generation 

In the present machine learning approach, the input-output data are used to train, verify and test neural 

networks which are then used to make future predictions. To obtain such data for the slip plane specified 
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by 𝛼, dislocation lines are generated randomly as curved lines as shown in Fig. 2. To begin with, a 21×21 

grid is generated and the middle point in each edge of the pixel is located as the approximate starting or 

finishing point of a dislocation passing through the pixel. Then, a set of random points from one boundary 

of the grid to another boundary is established. From the starting point to the ending point, each point looks 

for its next connecting point by choosing randomly from 5 neighbors except its predecessor point. B-

spline is then interpolated through these points to represent a single dislocation line. A property of B-

spline line is that the interpolated line does not necessarily pass through the given points, so the resulting 

dislocation line will be free from the initial grid. Finally, a random number of dislocation lines are 

generated in the 21×21 grid and a 7×7 cropped map is made as shown in Fig. 2. Then, the dislocation 

density vector 𝛒𝑖
𝛼 for each line i is calculated, and the GND density vector in each pixel is obtained by 

vector summation, 𝛒GND
𝛼 = ∑ 𝛒𝑖

𝛼
𝑖 , as shown in Fig. 1(b). The number of individual dislocations, N, and 

the total density 𝜌𝑡  of each pixel are also obtained. We used a pixel size 𝑠 of 3/7 µm and slip plane 

thickness b of 3 Å for calculating the individual dislocation line length 𝑙𝑖 , and the density 𝛒𝑖(𝐱) =

𝑙𝑖𝛏𝑖/(𝑠
2𝑏), where 𝐱 is the position and 𝛏𝑖 is the direction vector of the line i. With such a map constructed 

to generate data relating GND density 𝛒GND maps to the (𝜌𝑡, 𝑁) of the center pixel, supervised learning is 

used to obtain the function in eqn. (2) for future predictions. Although the present method incorporates 

enough randomness, future studies may adopt discrete dislocation dynamics to generate datasets that may 

be more realistic.  



9 

 

 

Fig. 3 (a) The total density of dislocation 𝜌𝑡 vs. the number of dislocations N for the generated datasets. 

The discrete data points are each plotted with a transparency of 0.01, so that overlapping data points would 

show higher contrast, in order to indicate the distribution of the data. (b) The distribution of 𝜌𝑡 for the 

datasets. 

 

    In a supervised learning sample, a pair of the 7×7 pixel GND density maps are input and its 

corresponding (𝜌𝑡, 𝑁) in the center pixel as output. A GND density map is in the shape of 7×7×2, where 

the two channels are the edge and the screw components of the GND. Since the arrow in the GND map, 

as shown in Fig. 2(a), indicates the direction of the GND density, the edge and screw components can be 

either positive or negative while the value of the total density 𝜌𝑡 cannot be negative. The whole dataset 

generated randomly consists of 5×105 samples covering the cases of N = 1, 2, 3, 4, 5 for training, 5×2×104 

samples for validation and 5×2×104 samples for testing. Although in reality, the distribution of N may not 

be uniform amongst the samples, balanced datasets are used here to avoid biased predictions. Cases for 
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N > 5 are not considered since the real pixel size of the GND density map can always be reduced to exclude 

such cases with large N, and the purpose here is to show the working principles of this method, rather than 

aiming at a particular dislocation density value. From the generated dataset, 𝜌𝑡 increases with the number 

of the dislocations inside the pixel N, and the Pearson correlation coefficient between N and 𝜌𝑡 is 0.898. 

The two variables are highly correlated but certain deviations, as shown in Fig. 3(a), exist. The deviations 

are due to the finite size of the discrete pixels, so that the distribution and the shape of the dislocation lines 

inside the pixels are different. The distribution of 𝜌𝑡 in Fig. 3(b) shows 𝜌𝑡 in the range of 1013 to 1016 m-

2, with a mean value of 1015 m-2.  

 

2.3 Convolutional neural network 

    Classification (identifying which category a new observation belongs to) and regression (predicting a 

quantity for a new observation) are performed on the dataset generated above using the fully ConvNet, 

the architecture of which is summarized in Table A1 in appendix. The network contains 17 convolutional 

layers and 1 fully connected layer for 6 outputs with 343434 parameters in total. The loss function used 

here is a combination of classification loss (cal), softmax cross-entropy for N, and regression loss (reg) 

for 𝜌𝑡, 

 {
 
 
 
 
 

 
 
 
 
 
reg =

1

𝑚
∑[𝜌𝑡(𝑖) − 𝜌𝑡̂(𝑖)]

2

𝑖=𝑚

𝑖=1

 or                             

reg =
1

𝑚
∑{log[𝜌𝑡(𝑖) + 1] − log[𝜌𝑡̂(𝑖) + 1]}

2

𝑖=𝑚

𝑖=1

cal =
1

𝑚
∑∑𝑝(𝑖, 𝑗)log [𝑝̂(𝑖, 𝑗)]

𝑗=5

𝑗=1

𝑖=𝑚

𝑖=1

                         

loss = (1 − ratio) ∙ reg + ratio ∙ cal                    

 

(3) 
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where m is the number of the samples, p is the result after the softmax function, the ratio from 0 to 1 is 

used for the loss function, and the hat variables 𝑝̂ and 𝜌𝑡̂ indicate the predictions from the networks. Two 

different regression losses are adopted in the training because the 𝜌𝑡  distributes in a wide range as 

suggested in Fig. 3(b). The mean absolute percentage error (MAPE) of 𝜌𝑡, 

 
MAPE =

1

𝑚
∑

|𝜌𝑡(𝑖) − 𝜌𝑡̂(𝑖)|

𝜌𝑡(𝑖)

𝑖=𝑚

𝑖=1

 
(4) 

and the classification accuracy of N are applied to measure the prediction accuracy of the ConvNets. 

Before feeding the networks, the magnitude of the 𝛒GND is added as the third channel along with the 

two existing channels of 𝛒GND for edge and screw components. Each of the learnable layers are followed 

by the batch normalization transform (Ioffe and Szegedy, 2015), and the Relu (rectified linear unit) 

activation function expected for the output layer. Considering that the image size from the dataset is only 

7×7 pixels, the valid padding type for the last six convolutional layers reduces the dimension gradually 

and the same padding type for previous convolutional layers is also adopted. A valid padding for a 

convolutional layer implies no padding, and will decrease the height and width of the map if the filter 

size > 1, while the same padding will pad zero around the map which can keep the height and width 

unchanged. A dropout rate of 0.5 is used for two dropout layers (Srivastava et al., 2014) in the training 

process. We apply the stochastic gradient descent and Adam optimizer with a training rate of 10-3, and a 

mini-batch size of 64 in the training process. The validation dataset is used for hyperparameter tuning and 

early stopping to prevent overfitting. The convolutional neural network is implemented in the Tensorflow 

(Abadi et al., 2016) framework using the Python language. Python scripts for dataset generation, training 

ConvNets, test ConvNets, and trained model can be found at 

“https://github.com/Ninazizi/estimate_dislocation_density”. 

 

https://github.com/Ninazizi/estimate_dislocation_density
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3. Training the ConvNets 

Table 1. Models trained with different ratios for the loss function (see eqn. (3)) 

 Mean square error Mean square logarithmic error 

ratio MAPE of 𝜌𝑡 N Accuracy MAPE of 𝜌𝑡 N Accuracy 

0 44.3% - 43.3% - 

0.25 40.7% 61.0% 40.8% 62.8% 

0.5 41.9% 62.0% 40.4% 62.3% 

0.75 42.2% 62.6% 41.2% 62.0% 

1 - 62.7% - 62.7% 

 

    The results are reported in Table 1 for two kinds of regression error, namely, the mean square error and 

the mean square logarithmic error, with different ratios applied to the loss function. The smaller the mean 

absolute percentage error (MAPE) of 𝜌𝑡 and the larger the accuracy of N, the better the model. The major 

aim of the ConvNets is to predict 𝜌𝑡 with the mean absolute percentage error as small as possible, and the 

smallest MAPE of 𝜌𝑡 is achieved for the mean square logarithmic error in the model with the loss-function 

ratio of 0.5. Recalling from eqn. (3) that loss = (1 − ratio) ∙ reg + ratio ∙ cal, the models with a pure 

regression (ratio = 0) loss function achieve the worst MAPE of 𝜌𝑡  among ratio of 0, 0.25, 0.5, 0.75, 

indicating that incorporating a classification (0 < ratio < 1) loss in the loss function helps generalize the 

model to predict 𝜌𝑡 . The highest accuracy of N is achieved in the model with a loss function being 

exclusively the classification error (ratio = 1). The GND map alone does not uniquely indicate the 𝜌𝑡 or 

N distribution when the pixel size is in the range of microns, since not all information is perfectly stored 

in the 𝛒GND after coarse graining as described in eqn. (1), especially when a 7×7 pixel map size is used. 

This explains why in the present attempt, the MAPE of 𝜌𝑡 does not converge to zero and the accuracy of 

N does not converge to 100%, and the ConvNets with 343,434 parameters trained with 500,000 samples 

still suffer from overfitting. To reduce the overfitting, joint (𝜌𝑡, 𝑁) is applied in the loss function, and the 
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lowest MAPE of 𝜌𝑡 occurs at the loss function ratio of 0.5 in Table 1. The generality of the ConvNets is 

enhanced by incorporating information for both 𝜌𝑡 and N. Incorporating N in the training datasets and 

penalizing large deviations in the prediction of N in the training loss function (the classification loss in 

eqn. (3)) improve the generalized accuracy of 𝜌𝑡, as shown in Table 1. Involving the extra variables in the 

training datasets and using the combined loss function improve generalization, which is in the spirit of 

“multi-task learning” in machine learning. 

Fig 4. Examples of predicted total dislocation maps from the trained ConvNets. In the first column, (a), 

(e), (i) are the input of the 𝛒GND map. In the second column, (b), (f), (j) show the output (𝜌𝑡, 𝑁) from the 
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trained ConvNets with the total dislocation density in color and the N in value. In the third and fourth 

columns, the figures show the true (𝜌𝑡 , 𝑁) values and true dislocation lines respectively. The blue boxes 

in (i) mark pixels with similar 𝛒GND but the corresponding boxes in (k) show quite different values of 𝜌𝑡 

and (l) shows the absolute different distributions of real lines. 

 

    Applying the ConvNets with the lowest mean square logarithmic error and loss-function ratio of 0.5, 

some prediction examples were obtained as shown in Fig. 4. Applying the trained ConvNets and the 

method shown in Fig. 2, the distribution of the total dislocation density can be estimated from the GND 

densities. The results in Fig. 4 show that the present method captures the distribution of 𝜌𝑡 and provides 

an indicator for the complexity of the dislocation lines from the label N, i.e. the number of dislocations 

inside each pixel. 

 

4. Application to real GND maps from EBSD experiments 

    Conventional EBSD measurements at spatial resolution (step size) of 0.1 µm were conducted for two 

α-Fe samples with different deformation strains (sample 1 with 4% and 10% strain, and sample 2 with 1%, 

6%, and 10% strain). The GND densities are calculated from the EBSD measurements via the MTEX 

toolbox (Bachmann et al., 2010) based on methods proposed by Pantleon (Pantleon, 2008). The 

distributions of GND densities, ∑ |𝜌gnd
𝛼 |𝛼  where 𝛼 indicates the slip system, are presented in Fig 5(b)-5(f). 

To apply the ConvNets for predicting the total density, the cropped 7×7 areas where the GND densities 

within some slip system satisfy the divergence-free requirement of 𝛁 ∙ 𝛒𝛼 = 0 were first selected. In 

practice, the numerical divergence for slip system 𝛼 at each pixel is calculated by a finite difference 

method and if the sum of the absolute values of the divergences for all the 7×7 pixels in slip system 𝛼 is 
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smaller than a critical value of 2×1011 m-2 /step size, the cropped 7×7 area is defined as satisfying the 

divergence-free requirement for slip system 𝛼. Then, ~800×7×7×2 GND densities maps are fed into the 

trained ConvNets and the average of ~800 prediction outputs is used as the average total dislocation 

density, 𝜌𝑡 , for the specimen. Fig. 5(b-f) shows the cropped areas satisfying the divergence-free 

requirement in the GND map, with central pixels marked by cyan crosses. For each 200×200 pixel image 

shown in Fig 5(b-f), the number of cropped 7×7 images satisfying the requirement are ~800. Table 2 

records the GND densities ∑ |𝜌gnd
𝛼 |𝛼  and the predicted total densities 𝜌𝑡 from the trained ConvNets. 
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Fig. 5. (a) Stress-strain curves of two α-Fe samples. (b, c) GND densities for sample 1 at 4% and 10% 

strain respectively. (d, e, f) GND densities for sample 2 at 1%, 6% and 10% strain respectively. The cyan 

crosses in (b, c, d, e, f) indicate the places satisfying the divergence-free (continuity) requirement. The 

GND densities are calculated from all slip systems as ∑ |𝜌gnd
𝛼 |𝛼  where 𝛼 indicates each slip system. 

 

 

Table 2. GND densities, total densities, and experimental stresses for each sample. 

 Sample 1 Sample 2 

Strain 4% 10% 1% 6% 10% 

∑ |𝜌gnd
𝛼 |𝛼  (/m2) 1.81×1014 2.85×1014 1.50×1014 2.48×1014 2.98×1014 

𝜌𝑡 (/m
2) 9.28×1014 1.16×1015 8.80×1014 1.17×1015 1.26×1015 

Experimental stress (MPa) 603.6 652.2 526.8 605.4 635.5 

 

To assess the predicted total dislocation densities, Taylor’s formula for polycrystals is employed: 

 𝜎 = 𝜎∗ +𝑀𝛼′𝜇𝑏√𝜌  (5) 

where 𝜎  is the stress, 𝜎∗  is the critical stress, 𝑀  is the Taylor factor, 𝛼′ is a constant, 𝜇  is the shear 

modulus, 𝜎 is the burgers vector, 𝜌 is the dislocation density. For each sample, a change ∆𝜎 in the tensile 

stress from the stress-strain curve should be correlated with a change in the dislocation density as 

 ∆𝜎 = 𝑀𝛼′𝜇𝑏∆(√𝜌)  (6) 

Using the constants for α-Fe, namely, 𝛼′ = 0.23 (Kassner, 2004), 𝑏 =2.482 Å, 𝜇 = 82 GPa, 𝑀 = 2.86 

(calculated from the EBSD data by MTEX (Bachmann et al., 2010)), in Fig. 6 the results of ∆𝜎 calculated 



17 

 

from 𝜌𝑡 and ∑ |𝜌gnd
𝛼 |𝛼  are compared with the ∆𝜎 from the tensile test experiments which are also recorded 

in Table 2. For all three situations, the predicted results from the current machine learning approach are 

better than the results from ∑ |𝜌gnd
𝛼 |𝛼 . In sample 1, the ∆𝜎 calculated from 𝜌𝑡 is closer to the true value of 

48.6 MPa measured in the experiment, and both the values of ∆𝜎 from ∑ |𝜌gnd
𝛼 |𝛼  and from 𝜌𝑡 are not very 

far from the experimental value. In sample 2 with larger stress increments, both results from ∑ |𝜌gnd
𝛼 |𝛼  and 

𝜌𝑡 show underestimation of ∆𝜎 , but still the ∆𝜎 from 𝜌𝑡 is closer to the true value than that from ∑ |𝜌gnd
𝛼 |𝛼 . 

Moreover, when the stress increments calculated from the GND densities are close and fail to distinguish 

the hardening effects in the two situations (sample 1 from 4% to 10% strains, and sample 2 from 1% to 

6% strains), the stress increments calculated from the estimated total densities clearly indicate that the 

latter situation has a stronger strain hardening effect than the first situation, which is in accordance with 

the tensile experiments. Since the ConvNets are never fed with the information of stress in the training 

process, its ability to predict the stress increment demonstrates the potential of the present machine 

learning approach. 
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Fig. 6. Comparison among stresses increments (∆σ) calculated from GND density (𝜌𝐺𝑁𝐷) and total density 

of dislocations (𝜌𝑡) by Taylor’s law and the stress increments measured in experiments of three different 

situations: sample 1 between strain=10% and strain=4%, sample 2 between strain=6% and strain=1%, 

sample 2 between strain=10% and strain=1%. 

 

5. Discussion 

    The present work first establishes a methodology to understand the microstructure of dislocations, 

namely, to estimate the total density of dislocation based on the distribution of the GND densities in the 

slip plane, and then the trained ConvNets are applied in post-processing the real EBSD data to estimate 

the total densities of dislocations. To establish the methodology in the first part, we focus on the essential 

property of dislocation lines, namely, that they must be continuous in the crystal. To apply the trained 

ConvNets to real EBSD data, the usable area is restricted according to the continuity requirement 𝛁 ∙ 𝛒𝑖 =

0. Both attempts in the present study are around the core property of dislocation lines, i.e. the continuity 

requirement, which was neglected in previous studies (Kalácska et al., 2017; T. J. Ruggles et al., 2016). 

After fully digesting the hidden information from the continuity requirement using machine learning, a 

new approach is provided to understand the dislocation microstructures. The ConvNets is trained on the 

hypothetical 2D examples of dislocation lines on a single slip plane. In the application on the EBSD based 

GND maps, the divergence-free requirement which rejects terminating dislocations will select cropped 

small maps with slip planes close to the EBSD scanning plane. Since different crystals have different 

orientations, the application process can be seen as 2.5D. 

    Building on the continuity requirement of dislocation lines, the present methodology estimates the total 

density of a given point, 𝜌total
𝛼 (𝐱), from the GND density in the neighborhood area (Ω) around that point, 
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𝛒GND
𝛼 (Ω), rather than only from the GND density at that point 𝛒GND

𝛼 (𝐱). Utilizing the continuity property 

avoids establishing a locally one-to-one relationship between the total density and the GND density of 

dislocations (Kalácska et al., 2017; T. J. Ruggles et al., 2016). As Fig. 4(i, k, l) shows, two pixels with 

similar 𝛒GND may have very different values of 𝜌𝑡 and configuration of dislocation lines. Therefore, eqn. 

(2), namely, 𝜌total
𝛼 (𝐱) = 𝑓 (𝛒GND

𝛼 (Ω)), serves to map the 𝛒GND in a certain area Ω around 𝐱 to the 𝜌𝑡 at 

position 𝐱, which is a more valid approach than the previous attempts (Kalácska et al., 2017; T. J. Ruggles 

et al., 2016) in which the total density is estimated from the value of 𝛒GND at the same location x only, i.e. 

𝜌total
𝛼 (𝐱) = 𝑔 (𝛒GND

𝛼 (𝐱)). By utilizing the information contained in the 𝛒GND map within a neighborhood 

Ω of the current pixel and the convolutional neural networks, the present method fully exploits the hidden 

geometrical information in the map, and higher accuracy can be achieved, as shown in the example of  Fig. 

4(j) which predicts distinct 𝜌𝑡 values for pixels with similar 𝛒GND in Fig. 4(i). 

The application of the present ConvNets to the real EBSD measurement in Fig. 5 is one step forward to 

illustrate the present approach. The ConvNets require the input cropped images to satisfy the divergence-

free condition, which restricts the number of qualifying cropped maps. However, the predicted outputs of 

𝜌𝑡  reflect the change in strength of the samples. It should be noted that the step size in the EBSD 

measurement was 0.1 µm which is in the range of dislocation spacing (1/√𝜌), which means that the total 

density is of the same magnitude as the GND density and so are the predicted results shown in Table 2. 

The selection of the step size influences the measured GND density as well as the total density. The 

application of ConvNets requires the 𝛒GND from the EBSD map to be in the same range as the 𝛒GND in 

the training datasets, which also means that the 𝜌𝑡 from the EBSD map should be in the same range as the 

𝜌𝑡 in the training datasets. The ConvNets are based on the statistical description of the training datasets, 

so it is best to apply the model to EBSD maps with a similar range of 𝛒GND or 𝜌𝑡. The present model gives 
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a good estimation over a mild change in strength (sample 1), but it underestimates the 𝜌𝑡 over a larger 

strength increment (sample 2). 

The noticeable discrepancy between the stress increment (∆σ ) from estimated 𝜌𝑡  and that from 

experimental measurement (Fig. 6) shows that the present method underestimates 𝜌𝑡and the discrepancy 

increases with 𝜌𝑡. Four possible reasons might be responsible: (1) The ConvNets and the distribution of 

𝜌𝑡 in the training dataset (Fig. 3b) make the predicted results distribute around 1015/m2, instead of extreme 

values that would be needed for large ∆𝜎. (2) The EBSD measurement and the unindexed grain boundary 

areas will not have predicted 𝜌𝑡 values while the grain boundary areas are likely locations for dislocation 

pile-ups. (3) The grain interiors are less well represented in high-strain samples than in low-strain samples. 

(4) Since the core concept of the present approach concerns the continuity of dislocations lines, cropped 

maps with terminated dislocation line segments would not satisfy the divergence requirement and the 

present method did not consider dislocation junctions with terminating ends. As a result, discrepancies in 

the stress increment exist between the model predictions and the experiments.  

    Although only single phase specimen is investigated in the present study, our approach here is also able 

to analyze multi-phase situations, and the total densities of dislocations for different phases can be 

separately estimated. As indicated in Fig. 5(b), the qualified points (satisfying the divergence-free 

requirement) are distributed in different grains, and the present method enables estimation of the 

distribution of the total densities in each grain, although the mean value of total densities for all qualified 

points is presented here. Recently, the GND density calculation from EBSD measurement has attracted 

much attention in investigating the microstructure of dislocations. With the present method, given the 

calculated GND density, the estimation of the mean or distribution of the total dislocation density for the 

sample is possible without additional experiments. The deformation mechanism of the material can be 

understood better given the distribution of the total densities of the dislocations. 
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6. Conclusion 

    A novel approach was presented to predict the total dislocation densities from the distribution of GND 

densities through the machine learning method of convolutional neural networks. The convolutional 

neural networks are trained and then applied to post-process EBSD data. Unlike previous approaches 

involving phenomenological descriptions to roughly estimate the total dislocation densities locally, 

machine learning is used to analyze the local total density from the GND density map over a small 

neighborhood and achieved good accuracy. Although only the GND densities from one slip plane in a two 

dimensional case are considered at the training process, the estimation of the mean dislocation density is 

in accordance with macroscopic experimental stress increments by Taylor’s formula. With the rapid 

developments in computer vision and machine learning, our new approach is promising in extracting the 

total dislocation density from geometrically necessary dislocation densities based on EBSD measurement, 

and will help explore plastic deformation from an understanding of the dislocation microstructures. 
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Appendix 

A1. The architecture of the convolutional neural networks 

Table A1. The architecture of the convolutional neural networks. The layer names are composed of layer 

types (Input, Conv, Dropout, and so on) and the numbers (0, 1_1,4, and so on). 

Layer name Connected to 
Padding 

type 

(Filter size), 

# of filters 
Output size 

Input_0    7×7×3 

Conv_1_1 Input_0 Same (3, 3), 25 7×7×25 

Conv_1_2 Conv_1_1  (1, 1), 25 7×7×25 

Conv_2_1 Input  (1, 1), 10 7×7×10 

Conv_2_2 Conv_2_1 Same (3, 3), 25 7×7×25 

Conv_3_1 Input  (1, 1), 25 7×7×25 

Maxpooling_3_2 Conv_3_1 Same (3, 3) 7×7×25 

Concatenate_4 
Conv_1_2, 

Conv_2_2, 

Maxpooling_3_2 

  7×7×75 

Conv_5 Concatenate_4 Same (3, 3), 30 7×7×30 

Conv_6 Conv_5 Same (3, 3), 35 7×7×35 

Conv_7 Conv_6 Same (3, 3), 40 7×7×40 

Conv_8 Conv_7 Same (3, 3), 45 7×7×45 

Conv_9 Conv_8 Same (3, 3), 50 7×7×50 

Conv_10 Conv_9 Same (3, 3), 55 7×7×55 

Conv_11 Conv_10 Same (3, 3), 60 7×7×60 

Conv_12 Conv_11 Same (3, 3), 65 7×7×65 

Conv_13 Conv_12 Valid (2, 2), 70 6×6×70 

Conv_14 Conv_13 Valid (2, 2), 75 5×5×75 

Conv_15 Conv_14 Valid (2, 2), 80 4×4×80 

Conv_16 Conv_15 Valid (2, 2), 85 3×3×85 

Conv_17 Conv_16 Valid (2, 2), 90 2×2×90 

Conv_18 Conv_17 Valid (2, 2), 95 1×1×95 

Dropout_19 Conv_18   1×1×128 

Conv_20 Dropout_19 Valid (1, 1), 128 1×1×128 

Dropout_21 Conv_20   1×1×128 
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Flatten_22 Dropout_21   128 

Fully_connected_23 Flatten_22   6 

 

 

A2. The influence of the area of the cropped map 

    It is natural to assume that a larger neighborhood area Ω for the prediction will result in higher accuracy. 

However, a large Ω may introduce other complications in reality. The hidden geometrical information in 

a GND density map that is useful in the estimation of 𝜌𝑡 involves those dislocation lines that are connected 

between the pixels within the area Ω . In reality, a variety of dislocation mechanisms may induce 

terminated instead of continuous lines in the area, such as Frank-Read source, climb and cross slip 

segments out of the slip plane, and so on. Therefore, if Ω is too large to include many terminating 

dislocation segments, the accuracy will be reduced rather than enhanced. Another reason not to use a large 

Ω is that the boundary pixels of the given uncropped 𝛒GND map do not have enough neighbor pixels to 

form a cropped map of area Ω. A boundary pixel is therefore associated with a mapping area smaller than 

the present Ω = 7 × 7 pixels, and the missing area will be larger for a larger Ω. For the present Ω = 7 × 7 

pixels, each grain (assuming square in shape) should have at least 7 × 7 pixels in order to result in a valid 

cropped map for the machine learning model. Although the results for Ω = 7 × 7 pixels are not perfect, 

the use of similar sizes is still suggested in the future. 
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