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Abstract

Lutein is a carotenoid highly concentrated in the macula of the retina. Lutein cannot be 
synthesized and must be supplied in the diet, for example, dark green leafy vegetable and 
egg yolk. Lutein is believed to absorb blue light, leading to the protection of retina from 
light-related damage. It can also protect the retina against oxidative stress and inflam-
mation. In fact, dietary and supplementary lutein have been shown to be associated with 
possible reduced risk of age-related macular degeneration, a leading cause of elderly 
blindness, attributed largely to lutein’s antioxidant properties. Lutein is also beneficial as 
a nutritional supplement in preventing diabetic retinopathy. Moreover, lutein is very safe 
and widely used. In this chapter, we will discuss the basic chemistry of lutein; its uptake, 
transport, distribution, and functions in the normal eye. Lastly, the effects of lutein in 
age-related eye diseases will be summarized.
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1. Introduction

Decades of research have indicated that abundant intake of carotenoid-rich food is correlated 

with the reduced risk of several age-related ocular diseases, for example, age-related macular 

degeneration (AMD) and diabetic retinopathy (DR). To date, among more than 1000 carot-

enoids discovered in nature, about 50 have been identified in the human diet [1]. However, 

only 25 dietary carotenoids and 9 of their metabolites have been found in human plasma, of 

which lutein, its stereoisomers zeaxanthin and meso-zeaxanthin are highly concentrated in 

the human retina [2].

Lutein is one of xanthophyll carotenoids (oxygen-containing carotenoids) which exist in the 

dark green leafy vegetables, yellow fruits and vegetables, and egg yolk [1]. Since animals are 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



not able to produce lutein, they need to depend on the dietary consumption. After absorption 

of lutein with fat, it is attached to the lipoprotein and then transported into the circulation; 
subsequently, with the serum concentration of 0.2 μm, lutein reached throughout the body 

and accumulated in the eye, especially in the retina, to serve certain biological functions [3]. 

In the human eye, the distribution of lutein varies. Lutein is found in higher quantities within 

the peripheral retina, retina pigment epithelium (RPE), choroid and ciliary body while exhib-

iting low concentrations in the iris and lens [2].

According to the most updated data from WHO, 253 million people suffer from vision 
impairment, and 81% people who are blind or have moderate or severe vision impairment are 

aged 50 or above [4]. A large number of studies have indicated that lutein plays an important 

role in decreasing the risk of AMD, the leading cause of blindness in the elderly people in 

the developed countries [5, 6]. Clinical trials have demonstrated that lower concentration of 

lutein in retina and serum was observed in DR patients when compared with patients without 

diabetes [7]. Moreover, DR patients receiving lutein and zeaxanthin supplements have shown 

improvement in visual acuity and contrast sensitivity, indicating a possible benefit in delay-

ing the onset and development of DR [7]. In this chapter, we will introduce the background 

information of lutein, summarize its functions in the normal eye, and discuss the effects of 
lutein in age-related eye diseases.

2. Lutein

2.1. Chemistry and structure of lutein

Carotenoids are classified into two subgroups: carotenes, which are hydrophobic, consist of 
strictly hydrocarbons and xanthophylls, which are more hydrophilic, contain at least one oxy-

gen atom in the polyene chain. The common characteristic of the carotenoid family is a C
40

H
56

 

structure containing a long conjugated double-bound chain carrying the liner and cyclic alter-

natives. Lutein and zeaxanthin belong to the xanthophylls subgroup. They are characterized 

by the two hydroxyl groups attached to the end ionone rings in the nine conjugated carbon 
bounds polyene chain (Figure 1). The difference between lutein and its stereoisomer zeaxan-

thin is the position of the double bound in the terminal ring. In the human body, lutein and 

zeaxanthin could be transformed to each other via meso-zeaxanthin. Due to the presence of 

hydroxyl groups, lutein and zeaxanthin are more hydrophilic and polar in the serum and tis-

sues, allowing them to react with oxygen produced in the liquid phase and scavenge reactive 

oxygen species (ROS) more efficiently. Due to the presence of chiral centers, lutein can exhibit 
eight stereoisomeric forms, of which (R,R,R) is mainly found in nature. On the other hand, 

zeaxanthin has three stereoisomeric forms, including (R,R), (S,S), and (R,S-meso).

2.2. Sources and safety of lutein

Lutein cannot be synthesized in human and lower animals, thus it must depend on the 

dietary supply in nature. Lutein, along with its structure isomer zeaxanthin is present in vari-

ous natural foods, including kale, spinach, brussels sprout, broccoli, corn, lettuce, green peas, 
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orange pepper, kiwi fruit, orange, zucchini, and squash. Dark-green leafy vegetables are the 

major source of lutein, especially in kale and spinach, containing 15,800–39,550 μg/100 g and 

7040–11,940 μg/100 g, respectively [1]. There are 44 and 26 mg of lutein per cup of cooked 

kale and spinach, respectively [8]. However, the dietary origin of lutein varies in different 
countries, depending on the preference for specific foods. In Canada, lutein mostly comes 
from spinach, broccoli, lettuce, corn, and oranges; while in Germany, spinach and green leafy 
salads contribute almost 50% of the total lutein supply [1]. Egg yolks, although does not con-

tain lutein as high as kale and spinach, are treated as a great source of xanthophylls due to 

the high fat content in eggs, resulting in increased bioavailability. The concentrations of lutein 

and zeaxanthin are 292 ± 117 μg/yolk and 213 ± 85 μg/yolk (average weight of yolk is 17–19 g), 

respectively [9]. It has been demonstrated that consumption of 6 eggs/week increased the 

macular pigment optical density (MPOD) significantly, while the serum concentration of total 
cholesterol, triacylglycerols, high density lipoprotein cholesterol, and low density lipoprotein 

cholesterol stayed unaffected [10]. Because of the limitation in separating and quantifying 

lutein and zeaxanthin, most researches and databases frequently report the combined data 

of these two compounds in food. Thus, it may result in the inappropriate estimation of lutein 

content in several xanthophyll-rich foods (e.g. oranges and grapes). The microalgae, espe-

cially the genus Chlorella, are also an important natural source of lutein. Compared to the 

marigold flower, the conventional source of lutein in market, microalgae have faster growth 
rate and can be obtained throughout the year. Therefore, they can be used as a potential 

source for commercial lutein products.

Figure 1. Chemical structures of macular pigments.
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According to the National Health and Nutrition Examination Survey, the intake of lutein and 

zeaxanthin combined is approximately 1–2 mg/day in USA [11]. In addition, German adults 

consume 1.9 mg/day in average and 1.4 mg/day of lutein consumption was reported for 

Canadians [1]. No adverse effects were reported after the supplementation of dietary lutein 
up to 20 mg/day for 48 weeks, 30 mg/day for 120 days, and 40 mg/day for more than 8 weeks 

[12–14]. Animal studies have demonstrated similar results. For rat, uptake of lutein up to 

35 mg/day for 8 weeks or 208 mg/kg/day for 13 weeks, or 639 mg/kg/day was not associated 

with any exposure-related toxicity and adverse events [15, 16]. Thus, lutein is recognized as 

Generally Recognized as Safe (GRAS) by FDA. Although there is no relationship between 
side effects and long term, high dose supplementation of lutein, the total intake should not 
exceed 20 mg/day according to the report from Council for Responsible Nutrition (CRN) in 

2006 [17]. Generally, the recommendation dose of lutein supplements is 10 mg/day. A recent 
case report has demonstrated bilateral “foveal sparkles” in an Asian woman who has taken 

a 20 mg/day lutein supplements together with a high consumption of dietary lutein. After 7 

months of discontinuous uptake of lutein supplements but insistence of her high-lutein diet, 

the crystal dissolved in the right eye, but still existed in the left eye [18]. However, it is worth 

noting that upon the population-based surveys, consumption of lutein has gradually declined 

in the USA and Europe. Therefore, actions should be taken to emphasize the importance of 

adequate intake of carotenoid-rich food, especially from dark-green leafy vegetables.

2.3. Absorption, metabolism, and transport of lutein

Since lutein and zeaxanthin are soluble in the fat, the absorption of these compounds follows a 

similar path like other lipophilic nutrients. After uptake of carotenoid-rich foods, xanthophylls 

are released from the food matrix with the aid of a variety of enzymes (e.g. esterase) and disperse 

in the stomach. The free xanthophylls then form micelles by incorporating with biliary phos-

pholipids, bile salts, or dietary fats, which makes them more easily absorbed into the mucosal 

cells in the small intestine. Subsequently, they are transported from intestinal tract to the liver 

in the form of chylomicrons, where xanthophylls such as lutein and zeaxanthin are repackaged, 

carried by the relevant lipoproteins and released into the systemic circulation. In the circu-

lation system, lipoproteins are responsible for transporting hydrophobic lipid including fat, 

plasma lipid, carotenoids, retinoids, etc. There are four types of lipoproteins: ultra-low density 
lipoproteins (ULDL), also known as chylomicrons; very low density lipoproteins (VLDL); low 

density lipoproteins (LDL); and high density lipoproteins (HDL). Compared to the non-polar 

carotenes such as lycopene and β-carotene, which are loaded onto VLDL and LDL, lutein and 
zeaxanthin are primarily transported by HDL. Both lutein and zeaxanthin are distributed in a 

variety of human tissues, but the distribution of them is not balanced among different tissues 
and organs. Retina, especially the macula, is regarded as the region where lutein, zeaxanthin, 

and its metabolite meso-zeaxanthin are concentrated, accounting for 25% of total carotenoids. 

Therefore, lutein, zeaxanthin, and meso-zeaxanthin are known as macular pigments (MPs), 

which play an important role in maintaining the normal functions of the eye. Although lutein 

is richest in the retina, it is also absorbed and distributed in other tissues such as adipose tissue 

in human body. It has been estimated that level of lutein in the retina was affected in obesity 
group, suggesting adipose tissue may compete with retina in terms of xanthophylls uptake [19].
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There are several factors that affect the bioavailability of lutein and zeaxanthin, including 
Species of carotenoids, Linkage at molecular level, Amount of carotenoids ingested per 

meal, food Matrix, Effectors of carotenoid absorption and conversion, Nutrient status of 
the individual, Genetic factors, Host-related factors, and Interactions among these factors 
(short for SLAMENGHI) [20, 21]. Compared with β-carotene, the bioavailability of lutein 
supplied in a diet containing a large range of vegetables is much higher. The reason should 

be the presence of the hydroxyl groups in lutein, which makes it more polar and hydro-

philic, leading to higher release of lutein into the aqueous medium. In addition, uptake 

of dietary fat together with lutein facilitated the formation of micelles and absorption of 

lutein in the gastrointestinal tract. It has been demonstrated that 3–5 g fat per meal is suit-

able to enhance the serum concentration of lutein [22]. However, lower bioavailability of 

lutein was observed when certain dietary fibers were present in foods. Sucrose polyester, 
a nonabsorbable fat substitute, impairs the ingestion of carotenoids such as lutein due to 

its preference for incorporation with nonabsorbable sucrose polyester rather than with 

micelles. The methods of food processing like heating, which improves release of lutein 

from food matrix, also influence the bioavailability of lutein. Furthermore, interactions 
between different types of carotenoids also affect the bioavailability. Studies have shown 
that lutein hampered the absorption of β-carotene, while β-carotene reduced the bioavail-
ability of lutein [20].

3. Lutein and the eye

3.1. Lutein in the retina

The eye is made up of three separate layers, including the cornea and the sclera forming the 

outer fibrous layer; the uveal tract, which consists of the iris, ciliary body and choroid, forming 
the middle vascular layer; and the retina forming the inner neural tunic (Figure 2). In the cen-

tral and posterior part of retina, there is an oval-shaped yellow area (approximately 5–6 mm 

in diameter) known as macula, which contains the highest concentration of photoreceptors. It 

is characterized by the yellow pigments that are entirely composed of lutein and zeaxanthin. 

The fovea, in the center of macula, is a small pit which is in charge of central vision and 

high-resolution visual acuity as a result of closely assembled cone cells. In addition, the retina 

consists of 10 layers from the outermost to the innermost, including RPE, photoreceptor cell 

layer, external limiting membrane (ELM), outer nuclear layer (ONL), outer plexiform layer 

(OPL), inner nuclear layer (INL), inner plexiform layer (IPL), ganglion cell layer (GCL), nerve 
fiber layer (NFL), and internal limiting membrane (ILM).

Although MPs exhibit high concentration in the retina, the distribution varies in different 
regions of the retina. The highest concentration of MPs is observed in the fovea at about 

0.1–1 mM, which is over 100-fold higher than the rest area of retina. Moreover, the ratio of 

lutein and zeaxanthin also differs in different parts of retina. In the peripheral retina, lutein is 
the major carotenoids and the ratio of lutein to zeaxanthin is 2:1, whereas the ratio is reversed 
to 1:2 in the fovea.
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Of the 25 dietary carotenoids found in human tissues and blood, the selectively high rate of 

absorption and accumulation of lutein and zeaxanthin in human retina remained unclear 

until the discovery of specific macular carotenoid-binding proteins. Bernstein et al. have 
demonstrated that tubulin, a hydrosoluble protein, could bind to both lutein and zeaxanthin, 

and may be involved in the high distribution of MPs in the retina, but presented relatively 

low binding affinity and specificity. As a result, the research team continued to identify 
carotenoid-binding proteins with higher affinity and specificity. Subsequently, glutathione 
S-transferase P1 (GSTP1) was identified to bind zeaxanthin in the macula specifically com-

pared to GSTM1 and GSTA1, the members of GST protein family [24]. GSTP1 was further 
confirmed to prevent lipid membrane from oxidation. In 2011, steroidogenic acute regulatory 
domain protein 3 (StARD3), one of lipid transfer-related protein family, was discovered as the 

lutein-binding protein [25]. Further studies need to be carried out to reveal more functions of 

StARD3. Generally, GSTP1 and StARD3 selectively bind zeaxanthin and lutein, respectively, 
leading to the high concentration and stabilization in human retina. In addition, the retinoid 

transporters including inter-photoreceptor retinoid-binding protein (IRBP) and retinol bind-

ing protein 4 (RBP4) are believed to be involved in the transport of MPs from circulation to 

retina [26].

3.2. Lutein and visual functions

3.2.1. Blue light filter

The peak value of MPs absorption is about 460 nm, which lies in the range of wave length of 

blue light (450–495 nm). Therefore, MPs can absorb 40–90% of incident high-energy, visible 

blue light depending on the concentration. The absorption offers protection from light-induced 
damages and reduction of light scatter in the retina. Junqhans A et al. [27] have investigated 

the efficacy of various carotenoids as the blue light filter using unilamellar liposomes with a 

Figure 2. The human eye. (A) A schematic diagram demonstrating the anatomy of the human eye [23]. (B) A schematic 

image of optical coherence tomography (OCT) showing the vertical section of the center of the retina.
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fluorescent dye which was excitable by blue light. Different carotenoids were incorporated 
with the lipophilic membrane, and fluorescence intensity was lower in carotenoid-containing 
liposomes than in control group when exposed to blue light, indicating a role of carotenoids 

as the blue light filter [27]. It is noted that lutein is more efficient in filtering blue light than zea-

xanthin and meso-zeaxanthin because of the orientation in the biological membranes [27, 28].

3.2.2. Antioxidant function

A free radical is defined as a molecule, atom, or ion containing an unpaired electron. Because 
of the unpaired electron in the outer shell, the free radical is chemically highly reactive and 

unstable. Therefore, the free radical will react with other substances, even with themselves 

to reach steady state. Free radicals generated from oxygen are called reactive oxygen species 

(ROS), including superoxide anion (O
2
—), perhydroxyl radical (also known as hydroperoxyl 

radical, HO
2
), and hydroxyl radical (OH) [29]. Superoxide can be inverted into only hydrogen 

peroxide (H
2
O

2
) and H

2
O

2
 together with singlet oxygen (non-radical compound) by enzy-

matic and non-enzymatic reactions, respectively [30]. Singlet oxygen, perhydroxyl radical, 

and hydroxyl radical are oxidants causing oxidation of protein, DNA as well as lipid per-

oxidation in cell membrane lipid bilayer, resulting in damages to the integrity of biological 

membrane and subsequently cell necrosis [29]. In physiological condition, production and 

detoxification of ROS are balanced in the body. However, when the balance is disrupted, no 
matter the increase in ROS generation or reduction of endogenous antioxidants, damages in 
the body occur. Thus it has been defined as “oxidative stress”.

The retina is constantly exposed to ROS due to its high consumption of oxygen, conversion 

of light photons into electrochemical signals, and a number of mitochondria in rods. Massive 

blood supplies to the choroid in the retina make it the highest oxygen uptake tissue in the 

human body. Continuous exposure to the light photons, especially the blue light, triggers 

photo-oxidative reactions and damages DNA in RPE cells. Mitochondria, which are believed 

to be the major site for the generation of ROS, are rich in the inner segments of rod cells. It 

has been estimated that about 5% activated oxygen electrons in mitochondria could leak out 

as they go through the complicated electron transport chain, forming superoxide radicals 

[31]. Furthermore, a high content of polyunsaturated fatty acids in the outer segments of rods 
makes it more prone to peroxidation. In general, retina exhibits high susceptibility to ROS, 

resulting in irreversible oxidative damages.

Depending on the unique structure of MPs, one of the major biological functions of MPs in 

the retina is the prevention from oxidative damages via either physical quenching of singlet 

oxygen or chemical scavenging of free radicals. In the process of quenching of non-radical 

compound, such as singlet oxygen, the energy of singlet oxygen is transferred to the mole-

cules of MPs, leading to excited triplet state of MPs and ground state of oxygen. Subsequently, 

the MPs in the triplet state dissipate the energy and return into the ground state. Since it is a 

physical mechanism, the structure of MPs is not changed, thus can be reused in the quench-

ing cycles. It has been estimated that among carotenoids, lutein can react with singlet oxygen 

more strongly [32]. In contrast to physical mechanism, scavenging of ROS is achieved through 

chemical reactions in two ways. First, ROS accepts the missing electrons from MPs in which 
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electrons are available in the polyene chain, thus cannot induce oxidation of lipid, protein and 

DNA in cells. Second, lutein and zeaxanthin insert themselves into the cell membrane to pair 

the single electron in ROS, making the lipid bilayers more rigid. Lutein was found to insert 

into the biological membranes in perpendicular and parallel orientation, while zeaxanthin 

follows the perpendicular orientation in the lipid membrane [28]. It is the transmembrane 

alignment of MPs that reduce the susceptibility of lipid bilayers to oxidative injury and main-

tain the integrity and rigidity of biological membranes [33].

ROS is directly or indirectly involved in the most pathological processes observed in the retina, 

including inflammation, neuron degeneration, angiogenesis, or cell apoptosis. In the process 
of inflammation, excessive generation of ROS has been found to simulate many pro-inflam-

matory pathways. Moreover, oxidative injury is also associated with certain downstream 

signaling pathways in inflammation. Our research team has evaluated the anti-inflammatory 
effects of lutein in mouse model of ischemia/reperfusion and demonstrated that several pro-
inflammatory factors, including nuclear factor-kappa B (NF-κB), interleukin 1β(IL-1β), and 
cyclooxygenase-2 (Cox-2), from Müller cells were significantly decreased in lutein-treated 
group when compared with control group, suggesting protection effects of lutein in retinal 
ischemia/reperfusion damage was achieved by its anti-inflammatory property [34]. Similarly, 

supplementation of lutein and zeaxanthin decreased NF-κB activity, while increased levels of 
erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1), which are the key factors 

to initiate phase II antioxidant protection to eliminate oxidative stress, in rats fed with high 

fat diet [35].

3.2.3. Other functions

In addition to the functions mentioned above, lutein also plays an important role in maintain-

ing other visual performance. A huge number of studies have shown that lutein and/or zea-

xanthin, or in combination with other antioxidants have improved visual acuity and contrast 

sensitivity in healthy, young adults, in subjects with AMD at early and/or advanced stage, 

and in people with diabetes. High levels of MPs have been reported to decrease the influence 
of bright lights via quick recover from bright lights and improvement of ability to see in glare 

conditions. Daily uptake of lutein (20 mg/day) for a year increased visual contrast and glare 

sensitivity in healthy Chinese drivers, thus benefiting driving or other vision-related tasks 
performed at night [17]. Furthermore, MPs are able to speed conversion of photic impulses 

into electrical impulses in retina as well as the transmission to the visual cortex in the brain by 

keeping neurons in healthy state [36].

Furthermore, lutein has been shown to have neuroprotective effects in the retina. We have 
reported that in mouse model of ischemia/reperfusion, lutein decreased the expression of 

nitrotyrosine, and nuclear poly(ADP-ribose) (PAR) in GCL and INL, which are the mark-

ers for oxidative stress; thus exhibited protection effects on cell loss and cell apoptosis in 
inner retinal neurons [37]. Similar results were observed in the cerebral ischemia/reperfu-

sion injury [38]. We further used the in vitro model of oxidative stress and hypoxia to evalu-

ate the neuroprotective function of lutein in retinal ganglion cells. Our data revealed that 

lutein could protect ganglion cells from either H
2
O

2
-induced oxidative stress or CoCl

2
 (cobalt 
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chloride)-induced chemical hypoxia [39]. Moreover, in the treatment of CoCl
2
 on Müller cells, 

lutein not only improved cell viability and enhanced cell survival but also inhibited the for-

mation of autophagosome [40]. In the rat model of retinal detachment, lutein preserved cells 

in ONL and rhodopsin expression, indicating its neuroprotective and anti-apoptotic effects 
[41]. In general, lutein could protect retinal neurons from hypoxia-induced injury.

4. Lutein and AMD

4.1. AMD

AMD is the leading cause of visual impairment in people 65 years and above in developed 

countries. It is a slowly progressive disease that affects the central retina or macula. As esti-
mated by the United Nations, approximately 20–25 million people are affected by AMD 
across the world, and the prevalence inevitably rises with the increasing of aged populations. 

By the end of 2020, it is expected that only in the USA, the number of AMD patients will reach 

to almost 3 million [42].

AMD is a complicated, multifactorial ocular disease, and the exact etiology still remains 

unclear. However, a number of risk factors are thought to be related to the pathogenesis of 

AMD. Of all those factors, age is the most obvious risk factor. Both the incidence and preva-

lence of AMD increase with age. Many investigators revealed that the family members of 

AMD patients were more prone to develop this disease, demonstrating the genetic factors 

in the genesis of AMD. Furthermore, the incidence in Caucasians is higher than that in other 

ethnic populations. There is no apparent sex preference in AMD patients, although some 

studies have indicated that women may be more susceptible [43]. In addition to the unmodi-

fied factors mentioned above, several other factors that can be modified are also involved in 
the pathogenesis of AMD. Smoking is considered as a frequent environmental risk factor, 

which is proved to double the AMD risk through increasing the oxidative stress in the macula 

[44]. Excessive exposure to the sunlight can lead to lipid peroxidation on cell membranes. 

Hypertension, overweight or obesity, poor nutrition status, and cardiovascular diseases are 

also correlated with AMD.

AMD is classified into a non-exudative or atrophic (dry) form, accounting for 90% of AMD, 
and an exudative (wet) form, accounting for only 10% of AMD. The atrophic form is char-

acterized by the accumulation of drusen under the macula formed by photo-oxidation of 

lipids plus proteins, and progressive degeneration of RPE cells in the macula, affecting central 
vision to varying degrees. The exudative form is associated with choroidal neovascularization 

(CNV) in the submacular area and subsequent retinal hemorrhage, leading to severe central 

vision loss.

The most destructive type of AMD is the exudative or wet form because of the sudden loss of 

vision. Therapies for the wet form of AMD mainly focus on halting the progression of CNV, of 

which intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) drugs have 
been widely adopted by ophthalmologists as a standard treatment due to the up-regulation of 
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VEGF in the development of CNV. Although it has been proved that anti-VEGF compounds 
can restrict growth of abnormal blood vessels, therefore making vision stabilized or even 

improved, the cost of each injection is relatively high and monthly intravitreal injection may 

be required for some patients. In contrast, the current treatments for non-exudative AMD 

are very limited. Hitherto, no medicine has yet approved for dry AMD in the world. Hence, 

strategies to delay the onset of this severe visual loss have been focused on the decrease of 

modified risk factors. Among these modified risk factors, oxidative stress is recognized as one 
of the major contributing factors in AMD. Since lutein is a powerful antioxidant that is highly 

concentrated in the retina, the effects of lutein on AMD have been widely investigated.

4.2. Clinical trials

4.2.1. Observational studies (dietary intake and serum concentrations of lutein)

Initially, the relationship between dietary consumption of lutein plus zeaxanthin and AMD 

has attracted much attention from researchers. Although the results of these studies were not 
consistent, most of them have demonstrated that a high dietary intake of lutein and zeaxanthin 

is correlated with lower risk of AMD. A systematic review and meta-analysis was performed 

to analyze six longitudinal cohort studies and found that intake of lutein and zeaxanthin 

had different effects on early and late AMD [45]. Consumption of these dietary xanthophylls 

was strongly associated with the reduced risk of late AMD (relative risk [RR] 0.74; 95% con-

fidence interval [CI] 0.57, 0.97) and neovascular AMD (RR 0.68; 95%CI 0.51, 0.92). However, 
an inverse relation was not observed between dietary intake of lutein plus zeaxanthin and 

the risk of early stage AMD. In the Age-Related Eye Disease Study (AREDS) report No. 22, 

4519 subjects aged 60–80 years were included for the analysis of association between dietary 

lutein plus zeaxanthin and AMD status. Compared with the lowest quintiles of dietary lutein 

and zeaxanthin intake, there were a 55, 35, and 27% lower probability to develop geographic 

atrophy, neovascular AMD, and large or extensive intermediate drusen, respectively [6]. 

Similarly, in the Blue Mountains Eye Study, Tan and colleagues [46] evaluated dietary intake 

of different antioxidants in relation to the long-term risk of incident AMD in Australia, and 
indicated a 65% reduction in neovascular AMD between the individuals having highest and 

lowest uptake of lutein and zeaxanthin. The data from Rotterdam Study further revealed the 
influence of both genetic and environmental risk factors on AMD, demonstrating a protec-

tive role of high intake of dietary antioxidants including lutein and zeaxanthin, β carotene, 
omega-3 fatty acids, and zinc, in AMD at early stage [47].

As early as 1993, Eye Disease Case-Control Study (EDCCS) has reported the direct correlation 

between serum levels of lutein plus zeaxanthin and AMD risk, demonstrating a distinct risk 

reduction of neovascular AMD to one-third in subjects with highest serum concentration of 

lutein and zeaxanthin when compared to those in the lowest group [48]. The research per-

formed by Delcourt et al. [49] has further confirmed that AMD was significantly related with 
plasma lutein and zeaxanthin and tended to be associated with plasma lutein. A recent study 

carried out in an Irish population-based sample was in accord with the results discussed 

above, presenting a lower plasma concentration of lutein in AMD patients no matter whether 
they were aware of their suffering from AMD or not [50].
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4.2.2. Observational studies (MPs levels in the retina)

In addition to dietary intake and serum concentration of lutein and zeaxanthin, MPs level 

in the retina was also inversely associated with the risk of AMD. In a case-control study, 

the actual amounts of lutein and zeaxanthin in donor retinas with and without AMD were 

measured. Levels of lutein and zeaxanthin in three concentric areas (inner, medial, and outer) 

centered on the fovea were markedly lower in AMD donor retinas than these in control donor 

retinas, especially in the outer area, where logistic regression analysis suggested that donors 

in highest quartile of MPs levels had an 82% lower risk for AMD when compared with those 

in the lowest quartile after adjustment of age and sex [51]. This is the first report showing the 
decreased retinal levels of lutein and zeaxanthin in AMD patients, which was consistent with 

above findings concluded from diet and serum xanthophylls concentrations. Subsequently, 
MPOD, an indicator for MPs levels in retina in vivo, has been widely studied between healthy 

individuals and AMD patients. There was a MPOD decline in healthy eyes as the individuals 

aged, and MOPD in healthy eyes at high risk of AMD was significantly lower than those at no 
such risk [52, 53]. Moreover, Bernstein and his co-workers [54] evaluated MPs levels in rela-

tion to the incidence of AMD using noninvasive resonance Raman spectroscopy, and found 

32% reduction of retinal lutein and zeaxanthin levels in AMD versus normal participants. 

However, it was notable that lower MPOD has also been linked with other risk factors for 

AMD, such as smoking and family history of this disease [55]. This result further supported 

the hypothesis that lutein and zeaxanthin could prevent or delay the development of AMD 

by increasing MPOD.

4.2.3. Interventional studies (supplementation of lutein)

Observational results in relation to AMD have triggered a mass of interests in assessing effects 
of lutein supplementation on the risk of AMD. The supplementation trial was first reported 
in the Lutein Antioxidant Supplementation Trial (LAST) study [56]. This was a prospective, 

double-masked, placebo-controlled, randomized study to evaluate supplementation of lutein 

alone or lutein with other antioxidants, vitamins, and minerals in 90 atrophic AMD patients. 

After 12 months, higher MPOD, improved visual acuity and contrast sensitivity were observed 

in both of these groups than in placebo group. However, longer duration of the study, larger 

number of samples, and both genders are needed to examine the long-term effects of lutein or 
the combination of lutein with other nutrients in the treatment of dry AMD. Three years later, 

LASTII was performed to further analyze the specific factors that affected MPOD, includ-

ing age, baseline levels of MPs, and combination of lutein and other antioxidants [57]. There 

was an increase in MPOD with supplementation, while a moderate reduction of MPOD was 

observed without supplementation. Patients with lowest baseline MPOD value were most 

likely to have a dramatic increase in MPOD than those with medium to high baseline MPOD 

during one-year supplementation of lutein or lutein with other nutrients. The reason might be 

the saturation mechanism that had an impact on the retinal transportation and stabilization 

of MPs.

In the Combination of Lutein Effects in the Aging Retina (CLEAR) study, Murray et al. 
[58] supplemented the patients at early stage AMD with 10 mg lutein esters per day for up 
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to 1 year. MPOD increased significantly after 8 months of supplementation, and plasma 
concentration of lutein increased by 1.8-fold to 7.6-fold compared to the baseline values. In 

addition, visual acuity in lutein group remained stable while the declined visual acuity was 

exhibited in the placebo group, indicating that stabilization of visual acuity was probably 

maintained by the elevated MPs level. These results were in accord with the study carried 

out by Ma et al. [13, 59], who demonstrated the significant improved responses of multifocal 
electroretinogram (mfERG) in lutein group and in lutein plus zeaxanthin group, and tended 
to be related to the increase of MPOD.

In a randomized controlled clinical trial (known as the Carotenoids with Coantioxidants in 

Age-Related Macular Degeneration [CARMA] study), 433 patients who were identified to be 
at highest risk of progression to advanced AMD received a daily supplementation of lutein, 

zeaxanthin, vitamin C, vitamin E, zinc, and copper at the duration of 12–36 months [60]. Visual 

acuity was increased in the intervention groups at 12 months, but not statistically significant 
until 24 months. Contrast sensitivity was slightly improved without significance. Level of 
MPs declined steadily in the placebo group, while MPs was increased in the supplemented 

groups throughout the whole trial. A rise of plasma concentration of all contents in the sup-

plementation, especially lutein and zeaxanthin, was observed after 6 months. Although the 

increase of all antioxidants in blood was not associated with VA improvement, higher serum 

level of lutein slowed the progression of AMD. Fewer eyes progressed to severe state in the 

intervention group than in the placebo group (15.3 vs. 18%).

The Age-Related Eye Disease Study 2 (AREDS2) was a randomized, placebo-controlled, dou-

ble-masked trial conducted in the USA from 2006 to 2012 [61]. The participants involved in 

AREDS2 were subjects aged 50–85 years at risk for progression to advanced AMD with bilat-

eral large drusen or large drusen in one eye and advanced AMD in the fellow eye. The main 

objective of AREDS2 was to evaluate the effects of lutein, zeaxanthin, and omega-3 long-chain 
polyunsaturated fatty acids adding into the AREDS formulation, which was composed of vita-

min C (500 mg), vitamin E (400IU), β-carotene (15 mg), and zinc (80 mg zinc oxide) with copper 
(2 mg cupric oxide). After the follow-up of 6.5 years on average, the AREDS supplements was 

proved to significantly decrease the development to advanced AMD, and an approximately 
25% reduction in risk of progressing to late AMD was observed at 5 years [62]. Moreover, 

the beneficial effects of this AREDS formula were found to persist for 5 more years of follow-
up after the end of this trial [63]. However, supplementation of β-carotene may lead to the 
increased risk of lung cancer in cigarette smokers [64, 65]. In addition, 80 mg/day zinc is out 

of tolerance for individuals and high amount of zinc was associated with increased genitouri-

nary complications [62, 66]. Therefore, AREDS2 supplementation was changed as follows: the 
primary randomization was composed of AREDS formulation with (1) lutein (10 mg) + zea-

xanthin (2 mg), (2) fish oil (350 mg DHA + 650 mg EPA), (3) lutein + zeaxanthin + EPA + DHA, 
and (4) placebo; the secondary randomization included (1) AREDS formulation, (2) AREDS 

formulation with low zinc (25 mg), (3) AREDS formulation without β-carotene, and (4) AREDS 
formulation with low zinc (25 mg) and without β-carotene. Former and current smokers are 
randomly assigned to the groups without β-carotene. In the primary analysis, no further 
reduced risk of developing advanced AMD was observed when comparing each of the treat-

ment groups with placebo group [61]. Although the preconceived goal of 25% incremental 

Progress in Carotenoid Research182



improvement over the original effective AREDS formulation was not achieved, analyses of 
patients with lutein and zeaxanthin supplements versus those without lutein and zeaxanthin 

supplements demonstrated a 10% decrease in the risk of progression to advanced AMD in the 

group with lutein and zeaxanthin [67]. Furthermore, the analyses of comparing participants 

receiving lutein and zeaxanthin with those receiving β-carotene were performed. The risk of 
developing advanced and neovascular AMD was significantly decreased in the group with 
lutein and zeaxanthin. In analyses restricted to eyes with bilateral large drusen at baseline, 

protective effects of lutein and zeaxanthin were more prominent. Therefore, considering ben-

eficial effects of lutein and zeaxanthin as well as harmful effects of β-carotene on smokers, 
replacement of β-carotene with lutein and zeaxanthin in AREDS2 formula is preferred.

4.3. Basic research

Several animal models that mimic the pathological changes in AMD have been adapted to 

further study effects of lutein and zeaxanthin on AMD in human. Apolipoprotein E-deficient 
mice (apoE-/-), a well-established genetic mouse model of hypercholesterolemia, exhibited 

deposits on the basal laminar, vacuoles in RPE cells, and increased Bruch’s membrane thick-

ness, which are similar to the retinal changes in human AMD. These alterations were associ-

ated with the elevation of retinal lipid peroxidation and VEGF expression [68]. Administration 

of lutein alone could partially prevent the retinal alterations, and decrease expression level of 

VEGF but with no statistical significance was observed in comparison with controls. However, 
the combination of lutein and multivitamin and glutathione complex ameliorated all the mor-

phological changes observed in retina and decreased VEGF levels significantly [68, 69]. In 

the mouse models that show similar retinal changes in human dry AMD, AREDS2 formula-

tion prevented accumulation of liposomes and lipofuscin in RPE, loss of photoreceptors, and 

increased ONL thickness. In molecular level, mRNA expression levels of pro-inflammatory 
factors including inducible nitric oxide synthase (iNos), tumor necrosis factor-α(TNF-α), Cox-
2, IL-1β, and angiogenic factors such as VEGF was significantly lower in AREDS2-treated 
group than control groups [70]. Furthermore, supplementation of lutein and zeaxanthin from 

grapes or marigold extract attenuated a reduction of a-wave amplitude in ERG, suggesting 
protective effects on photoreceptor functions [71]. Mouse model for the wet form of AMD 

is induced by laser photocoagulation, characterized by the formation of CNV. It has been 

reported that pretreatment of lutein significantly inhibited macrophage infiltration in CNV 
and expression of pro-inflammatory molecules such as NF-κB that subsequently resulted in 
significant suppression of CNV development [72].

Data from in vitro studies were also consistent with findings from animal experiments. 
Addition of lutein and other antioxidants (zeaxanthin, lycopene, or α-tocopherol) led to a 
significant decrease in formation of lipofuscin in RPE cells from bovine and rabbit under 
hypoxia condition [73]. Oxidative damages in ARPE-19 cells (a human RPE-derived cell line) 

were induced by the challenge of H
2
O

2
, leading to decreased cell viability, increased cell 

apoptosis, and ROS generation. Pretreatment of lutein protected ARPE-19 cells from these 

oxidative injuries and accumulation of Alu RNA, which is related to the pathogenesis of 

AMD [74, 75]. In addition, G2/M phase arrest triggered by oxidative damage was reversed by 
lutein in a dose-dependent manner [75].
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5. Lutein and DR

5.1. DR

DR is the most common microvascular complication in diabetes. For individuals with dia-

betes aged 40 years and older, the estimated number of DR patients is 93 million around the 

world, of which 17 million are proliferative DR and 28 million are vision-threatening DR [76]. 

In the USA, approximately 2.8 million individuals may develop sight-threatening DR. DR 

used to be considered as high of prevalence in western countries, however, there is a rising 

prevalence of DR occurred in Asian countries (such as China and India) due to the changes in 

economics, diet habit, physical exercise, and so on.

According to the presence of microvascular lesions in the retina, DR is classified into early 
nonproliferative stage, featured with microaneurysms, vascular tortuosity, retinal hemor-

rhages, “hard” lipid exudates and microinfarcts in the NFL (known as the “cotton wool 
spots”), and late proliferative stage, characterized by the formation of new aberrant fragile 

blood vessels in the retina. Another important manifestation of DR is diabetic macular edema 

present at any stage, causing the abnormal thickening of retina and cystoid edema in the 

macula. Diabetic macular edema, together with retinal neovascularization, is the major cause 

of vision loss in patients with diabetes.

DR is considered to be a multifactorial disease with its exact pathogenesis being still uncer-

tain. It has been proved that increased blood glucose concentration is the key factor in the 

onset and development of DR, leading to exacerbation of hypertension and dyslipidemia, 

overproduction of ROS that subsequently damages the retina. Oxidative stress disrupts 

retinal mitochondrial functions by inner membrane oxidation and mitochondrial DNA 

damage, which in turn lead to apoptosis of retinal capillary cells [77]. In addition, inflamma-

tion is also involved in the pathogenesis of DR. Increased retinal pro-inflammatory media-

tors such as intracellular adhesion molecule-1 (ICAM-1), TNF-α, and IL-1β are induced 
in diabetes. In clinical studies, presence and progression of DR were associated with the 

increased plasma levels of TNF-α, IL-1β and VEGF [78]. VEGF is also an important factor 
in the development of DR, which leads to the increased permeability of retinal blood vessel 

and angiogenesis.

Current major treatments for DR include laser photocoagulation and/or intravitreal injection 

of anti-VEGF drugs. However, these therapies are expensive, invasive, and need to visit oph-

thalmologists at certain intervals. Therefore, lutein, a powerful antioxidant, may be adopted 

as a natural, noninvasive, long-term medication for DR.

5.2. Clinical trials

Although tremendous clinical studies have been performed to evaluate the relationship 

between carotenoids and diabetes, only a few have examined the effects of carotenoids 
including lutein and zeaxanthin on DR.
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In a prospective study, Hu et al. [7] demonstrated that plasma levels of lutein and zeaxanthin 

was significantly lower in nonproliferative DR patients than in subjects without diabetes. 
Similarly, Brazionis et al. [79] assessed the serum concentration of different carotenoids in 
relation to the DR in type 2 diabetes and found significant lower blood levels of combined 
lutein and zeaxanthin and lycopene in diabetic patients with DR compared to these without 

DR. Moreover, a significant inverse correlation between odds of DR and plasma concentration 
of combined lutein and zeaxanthin and lycopene was shown in this study [79].

Retinal level of xanthophylls was examined via measurement of MPOD. Patients with DR 

had decreased MPOD in comparison with diabetic patients without DR [80]. Furthermore, 

MPOD in individuals with type 2 diabetes was significantly lower than in subjects with type 1  
diabetes and normal control, despite similar dietary uptake of carotenoids among these 

groups [81]. The lower MPOD in patients with type 2 diabetes may probably be associ-

ated with obesity, where enhanced competition of lutein and zeaxanthin intake with higher 

body fat occurred (retina vs. adipose tissue). In type 2 diabetic patients with or without DR, 

MPOD was inversely associated with glycosylated hemoglobin, a more stable indicator for 

diabetes [82].

On basis of the above observational studies, influence of lutein and zeaxanthin supplementa-

tion on DR was evaluated. Administration of lutein (6 mg/day) plus zeaxanthin (0.5 mg/day) 

for 3 months led to a significant increase of serum lutein and zeaxanthin level, as well as the 
improvement in visual acuity, contrast sensitivity, and diabetic macular edema in nonprolif-

erative DR [7]. This study was consistent with the results conclude from supplementation of 

10 mg/day lutein for 36 weeks in patients with nonproliferative DR [83]. A recent study has 

shown an increased thickness in the central fovea and improved retinal response density after 

2-year supplementation of combined lutein (10 mg/day), zeaxanthin (2 mg/day), and meso-

zeaxanthin (10 mg/day) in type 2 diabetic patients without DR, indicating beneficial effects of 
xanthophylls on visual functions in diabetes [84].

5.3. Basic research

In animal models of DR, lutein has been reported to have beneficial effects on affected reti-
nal layers and visual functions by its antioxidant, anti-inflammation, and neuroprotection 
properties. The animal models used to study DR usually include mice or rats injected with 

alloxan or streptozotocin (STZ) that can directly destroy β cells in pancreas to halt insulin 
production and subsequently induce diabetes, and spontaneous diabetic mice (db/db mice), 

a type 2 diabetic animal model.

In alloxan-induced DR mice, oxidative makers (NF-κB and malondialdehyde) were 
increased, while antioxidants including glutathione (a powerful endogenous antioxidant) 

and glutathione peroxidase were decreased. Decreased b-wave amplitude in ERG was 
also observed. Supplementation of lutein (0.2 mg/kg) prevented all the diabetes-induced 

changes [85]. The same results were reported in STZ-induced diabetic rats after administra-

tion of lutein together with DHA. Moreover, prevention of histological changes including 
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decreased ONL, INL, and GCL thickness was also observed [86]. In STZ-induced murine 

models, Sasaki et al. [87] demonstrated changes in oxidative stress-related factors (increase 

of ROS, extracellular signal-regulated kinase activation, and depletion of brain-derived 

neurotrophic factor), retinal morphological changes (reduction of IPL, INL, and ganglion 

cells), and visual functions (decrease of oscillatory potentials in ERG, indicating dysfunc-

tion of neurons in inner retina). Likewise, lutein supplements (0.1 mg wt/wt) restored all 

the diabetes-induced damages in the retina [87]. Similarly, supplements containing lutein, 

zeaxanthin, omega-3 fatty acids, and other nutrients demonstrated protective effects on 
progression of DR in STZ-induced diabetic rats. Decreased ROS level, mitochondrial DNA 

damage, and inflammatory factors such as VEGF, IL-1β, and NF-κB, as well as reduction 
of retinal apoptosis, abnormal capillaries formation were demonstrated in treatment group 

compared with placebo control group. Furthermore, nutrient supplements ameliorated 

decreased amplitudes of a- and b-wave in ERG, suggesting prevention of retinal functions 
in diabetic rats with DR [88].

Wolfberry, a Chinese traditional fruit consumed for eye protection, is high in zeaxanthin 
(176 mg/100 g) and lutein (5 mg/100 g). In db/db mice, wolfberry elevated lutein and zea-

xanthin levels in retina and liver, attenuated mitochondrial dysfunction and endoplasmic 
reticulum stress caused by hyperglycemia-induced oxidative stress, and restored retinal 

structure abnormalities [89, 90]. Furthermore, Lutein and zeaxanthin was able to protect 

cultured ARPE-19 cells from a high glucose challenge through the similar mechanisms, sug-

gesting wolfberry’s protection effects were at least partly due to high contents of lutein and 
zeaxanthin [89].

6. Conclusions

Lutein, synthesized in plants but not in mammals, is absorbed and highly accumulated 

in the macula. The uneven distribution of lutein is thought to afford a distinct function in 
the retina. Up to now, numerous epidemiological studies have demonstrated that higher 

levels of lutein in diet and plasma are correlated with lower risk of AMD, especially the late 

stage of AMD. Randomized and controlled clinical trials such as AREDS2 have reported 

that supplementation of lutein alone or with other nutrients leads to the increase of MPOD, 

improvement of visual functions, and decreased risk of progression to advanced AMD, 

especially the wet AMD. Laboratory experimental data also indicate that lutein can protect 

impaired retina by filtering blue light, attenuating oxidative stress and inflammation, and 
enhancing neuroprotection. However, the optimal dose of lutein, the best ratio of lutein 

and other antioxidants, therapeutic effects at different stages of AMD, adverse effects 
with even longer intake of lutein supplements in high dose, and the relationship between 

MPOD and AMD at different phases need to be further investigated in future studies. 
Although there are several studies assessing the effects of lutein on DR in clinical trials and 
laboratory experiments, further evaluations to fully understand its protective role in DR 

are necessary.
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