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Abstract 

Travel time uncertainty has significant effects on travel reliability and travelers’ generalized trip 

cost. However, travel time uncertainty has not been considered in existing ride-sharing models, leading 

to an inaccurate estimation of the benefit from ride-sharing and irrational ride-sharing matches. To fill 

in the gap, this paper proposes a stochastic ride-sharing model, in which travel time is assumed to be 

stochastic and follow a time-independent general distribution that has a positive lower bound. Due to 

travel time uncertainty, travelers may not arrive at their destinations on time. Different from the 

traditional models taking time windows as hard constraints, the proposed ride-sharing system only 

requires each participant announcing a role and the desired arrival time window. In the model, the 

generalized trip cost consists of the cost of driving a vehicle, the cost of travel time, and the cost of 

schedule delay early and late. This study investigates the effect of the unit variable cost of driving, 

travelers’ values of time (VOTs), and travel time uncertainty on the cost saving of ride-sharing trips 

compared to driving-alone trips. A bi-objective ride-sharing matching model is proposed to maximize 

both the total generalized trip cost saving and the number of matches. The proposed ride-sharing 

model is further extended to consider time-dependent travel time uncertainty, and the Monte Carlo 

simulation (MCS) method is developed to evaluate the mean generalized trip cost. Finally, numerical 

examples are provided to illustrate the properties of the two proposed models. The results show that 

the unit variable cost of driving, travelers’ VOTs, travel time uncertainty, and the selection of the 

weight in the objective function have significant impacts on the performance of the proposed 

ride-sharing system with travel time uncertainty. The results also show that a feasible ride-sharing 

match based on deterministic travel time can become infeasible in a stochastic ride-sharing system. It 

is therefore important to consider travel time uncertainty when determining the matches.  

Keywords: Ride-sharing; travel time uncertainty; generalized trip cost; feasible match. 
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1. Introduction 

Ride-sharing involves a joint trip of at least two participants who share a vehicle and must coordinate their 

itineraries. With technological advances in GPS navigation devices, smartphones, and mobile internet, 

ride-sharing becomes a popular transportation mode by which travelers with similar schedules and itineraries 

can quickly match up, share a vehicle for a trip, and share travel costs such as gas, toll, and parking fees. From 

the viewpoint of participants (including both drivers and riders), ride-sharing can save travel cost and reduce 

travel time. From the viewpoint of society, ride-sharing can mitigate traffic congestion, conserve fuel, and 

reduce air pollution (Ferguson, 1997; Kelley, 2007; Morency, 2007; Chan and Shaheen, 2012; Liu et al., 2017). 

From the viewpoint of private companies, ride-sharing can generate a substantial profit. As a result, lots of 

ride-sharing platforms provided by private companies, such as Lyft, Uber, Sidecar, and Didi Chuxing, are 

established. The key problem in a ride-sharing system lies in how to coordinate itineraries and schedules 

between participants, which directly determines the performance of the whole system. 

Ride-sharing problems can be roughly classified into two categories: static (e.g., Baldacci et al., 2004; 

Calvo et al., 2004; Yan et al., 2014; Naoum-Sawaya et al., 2015; Xu et al., 2015; Xiao et al., 2016; Bruck et al., 

2017 ) and dynamic (e.g., Winter and Nittel, 2006; Agatz et al., 2011, 2012; Stiglic et al., 2015, 2016; Chen et 

al., 2017a, b; Ma and Zhang, 2017; Wang et al., 2018). In static ride-sharing problems, it is assumed that both 

riders and drivers must provide information on their origins, destinations, and time schedule preferences (i.e., 

desired departure times and/or arrival times) before the matching decision made by the platform. Different 

from static ride-sharing problems, dynamic ride-sharing problems assume that the trip information of both 

riders and drivers are sent to the platform in real time, and the platform matches up drivers and riders on very 

short notice or even en-route. In a dynamic ride-sharing system, time is usually discretized into many planning 

horizons, and the rolling horizon framework is adopted (e.g., Agatz et al., 2011, 2012; Stiglic et al., 2015, 

2016; Masoud and Jayakrishnan, 2017). For each planning horizon, a matching problem should be solved to 

coordinate riders and drivers, which can be viewed as a static ride-sharing matching problem. Therefore, a 

dynamic ride-sharing problem can be viewed as a sequence of static ride-sharing problems. 

Ride-sharing problems can be formulated as either flow-based models (e.g., Yan et al., 2014; Xu et al., 

2015; Xiao et al., 2016; Ma and Zhang, 2017; Ordóñez and Dessouky, 2017; Di et al., 2018) or 

individual-based models (e.g., Baldacci et al., 2004; Calvo et al., 2004; Agatz et al., 2011, 2012; 

Naoum-Sawaya et al., 2015; Stiglic et al., 2015, 2016; Bruck et al., 2017; Masoud and Jayakrishnan, 2017; 

Ordóñez and Dessouky, 2017; Wang et al., 2018). The flow-based models treat travelers as flow, and usually 

formulate the ride-sharing problems as traffic assignment problems or equilibrium problems, in which travel 

times are assumed to be endogenized by travelers’ choice (e.g. route choice, departure time choice, mode 

choice). Compared with the individual-based models, the flow-based models are easier to be solved. Therefore, 
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the flow-based models are more suitable for large network planning and policy evaluations. As ride-sharing 

participants are discrete in nature, the individual-based models are more suitable for practical ride-sharing 

operations—matching drivers with riders. Different from the flow-based models, the individual-based models 

usually assume that the endogenous congestion caused by ride-sharing is not considered, and travel times are 

known or estimated before ride-sharing matching (e.g., Agatz et al., 2011, 2012; Stiglic et al., 2015, 2016; 

Masoud and Jayakrishnan, 2017; Wang et al., 2018). 

Ride-sharing services on the market can usually offer automated matching (Furuhata et al., 2013). In the 

literature, various optimization models are developed to formulate the matching problem in ride-sharing 

systems (Baldacci et al., 2004; Agatz et al., 2011; Stiglic et al., 2015, 2016). Generally, there are three types of 

objectives in existing ride-sharing matching models: to minimize system-wide vehicle miles (e.g., Baldacci et 

al., 2004; Calvo et al., 2004; Agatz et al., 2011; Wang et al., 2018), to minimize system-wide travel time or 

cost (e.g., Winter and Nittel, 2006), and to maximize the number of participants (e.g., Baldacci et al., 2004; 

Calvo et al., 2004; Winter and Nittel, 2006; Stiglic et al., 2016; Masoud and Jayakrishnan, 2017). The first two 

objectives are compatible with each other, and help to reduce network-wide pollution and congestion. The 

third objective maximizes the number of satisfied drivers and riders in the system, which may be beneficial to 

a private ride-sharing provider whose revenue is linked to the number of successful ride-sharing arrangements 

(Agatz et al., 2012). 

The major constraints in the matching problem for a ride-sharing system include the participants’ time 

preferences, the availability of spare seats, and travel distance/time/cost reduction (Agatz et al., 2012). The 

participants’ time preferences are usually captured by time windows (e.g., Agatz et al., 2011; Stiglic et al., 

2015), each of which contains the earliest departure time and the latest arrival time. The trip of each potential 

participant should start within the time window announced by the participant. The availability of spare seats 

tends to be a softer constraint than the participants’ time preferences. In the existing matching models, drivers 

who offer a ride can take either a single rider or multiple riders (e.g., Baldacci et al., 2004; Calvo et al., 2004; 

Winter and Nittel, 2006; Agatz et al., 2011; Ghoseiri et al., 2011; Stiglic et al., 2015; Chen et al., 2017b). 

Reducing travel cost is a primary motivation for the ride-sharing users choosing to participate, and hence most 

of the matching models include the constraints on feasible ride-sharing matches. Whether a match is feasible 

or not relies on trip cost saving from ride-sharing. 

In the literature, the travel times of ride-sharing participants are assumed to be deterministic (e.g., Baldacci 

et al., 2004; Agatz et al., 2011; Stiglic et al., 2015; Xu et al., 2015; Xiao et al., 2016; Liu et al., 2017; Ma and 

Zhang, 2017). However, travel times are stochastic in reality, especially during peak hours. The uncertainty 

can be caused by stochastic road capacity (e.g., Li et al., 2009; Lindsey, 2009; Fosgerau, 2010; Peer et al., 

2010; Xiao et al., 2015), stochastic traffic demand (e.g., Alpha and Minh, 1979; Clark and Watling, 2005; 

Fosgerau, 2010; Li et al., 2010; Fu et al., 2014), and unexpected driving behavior (e.g., Pattanamekar et al., 
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2003, Li et al., 2010). Due to travel time uncertainty, the participants’ time preferences cannot always be 

satisfied. Travel time uncertainty can bring costs such as the costs of schedule delay late or early, which leads 

to higher travelers’ generalized trip cost. As a result, feasible matching obtained by deterministic matching 

models may not be feasible anymore when travel times are stochastic. This implies that traditional 

deterministic matching models can output ineffective ride-sharing matches. Moreover, infeasible matching 

obtained by deterministic matching models may be feasible when travel times are stochastic. This implies that 

traditional deterministic matching model may also miss effective ride-sharing matches. Therefore, it is 

significant to consider travel time uncertainty in ride-sharing systems. 

In this paper, we propose a static ride-sharing model in a road network with the consideration of 

time-independent travel time uncertainty. We mainly focus on the operational level of a ride-sharing platform, 

and hence we formulate the ride-sharing problem with travel time uncertainty as an individual-based model. 

Following existing individual-based models (e.g., Agatz et al., 2011, 2012; Stiglic et al., 2015, 2016; Masoud 

and Jayakrishnan, 2017; Wang et al., 2018), we assume that the endogenous congestion caused by ride-sharing 

is not considered. It is also assumed that the travel times of all travelers are uncertain, and the ride-sharing 

platform can collect enormous quantities of travel data so that the variability of travelers’ travel times can be 

exactly estimated by the platform, and the users of the ride-sharing platform make departure time choice 

without any consideration of other users' choice. Different from the traditional concept of treating time 

windows as hard constraints, the proposed ride-sharing system only requires each participant announcing 

his/her role (e.g., be a driver, a rider, or either a driver or a rider) and the desired arrival time window. Due to 

travel time uncertainty, travelers may not arrive at their destinations on time. A penalty cost of schedule delay 

early or late is introduced to account for travel time uncertainty. The effects of the unit variable cost of driving, 

travelers’ values of time (VOTs), and travel time uncertainty on the cost of driving alone and the cost saving 

of a ride-sharing trip are analyzed. Furthermore, a bi-objective ride-sharing matching model is proposed to 

maximize both the total mean generalized trip cost saving and the number of matches. Numerical examples 

are also developed to illustrate the properties of the proposed model. 

The stochastic ride-sharing model with time-independent travel time uncertainty is further extended to 

formulate a stochastic ride-sharing model with time-dependent travel time uncertainty. For a general road 

network with time-dependent link travel time distributions, it is very difficult to exactly obtain the convolution 

of time-dependent link travel time distributions, i.e., the time-dependent trip (i.e., path) travel time 

distributions. Hence, it is also very difficult to exactly obtain the mean generalized trip cost, which relies on 

the distribution of time-dependent trip travel time. In this paper, the Monte Carlo Simulation (MCS) method is 

used to evaluate the mean generalized trip cost (e.g., Szeto et al., 2011; Meng and Liu, 2012; Liu and Meng, 

2013; Long et al., 2018). The MCS method is determined by the sample size. The MCS method can guarantee 

a higher accuracy if a larger sample size is adopted. Theoretically, if the sample size is infinite, the MCS 
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method is exact, and the MCS method can be more accurate than analytical approximation methods if the 

sample size is large enough. Another merit of the MCS method is that the stochastic variables can be defined 

by any distributions. 

The main contributions of our research are as follows. 

First, we propose a ride-sharing problem in road networks with time-independent travel time uncertainty. 

To the best of our knowledge, we are the pioneers to develop a stochastic ride-sharing model, in which 

travelers’ travel times are stochastic and follow a general distribution that has a lower bound. 

Second, we introduce the generalized trip cost functions for both driving-alone and ride-sharing trips, and 

analyze their mathematical properties. 

Third, we extend the stochastic ride-sharing model with time-independent travel time uncertainty to a 

stochastic ride-sharing model with time-dependent travel time uncertainty. The MCS method is developed to 

evaluate the mean generalized trip cost. 

Fourth, we illustrate the properties of the models. In particular, we show the effects of the unit variable 

cost of driving, travelers’ VOTs, travel time uncertainty, and various objectives on the performance of the 

proposed ride-sharing models. 

The remainder of this paper is organized as follows. The ride-sharing problem in road networks with 

time-independent travel time uncertainty is formulated in Section 2. In Section 3, the ride-sharing problem in 

road networks with time-dependent travel time uncertainty is proposed. Numerical examples are provided in 

Section 4. Section 5 presents the conclusions of this paper. 

2. Stochastic ride-sharing model with time-independent travel time uncertainty 

2.1. Problem description 

In a road network, it is assumed that there is a ride-sharing platform for travelers. All users of the 

ride-sharing platform have private cars and can finish their trips by driving alone (e.g., Agatz et al., 2011; 

Stiglic et al., 2015, 2016; Lee et al., 2015). Each user can claim one of the three roles in the platform: (1) a 

driver, (2) a rider, and (3) either a driver or a rider. Let Φ , dΦ , rΦ , and /d rΦ  be the set of ride-sharing 

participants ( /d r d rΦ = Φ ∪ Φ ∪ Φ ), the set of users who select to be a driver, the set of users who select to 

be a rider, and the set of users who select to be either a driver or a rider, respectively. We regard the operation 

of the ride-sharing platform as the business of a company for providing a service, and the total number of 

travelers to be served is limited. Hence, the number of travelers served takes a very small proportion to the 

total number of travelers in the whole network, and their travel choices (e.g., whether to join ride-sharing, 

departure time choice) have little impact on road congestion. Therefore, the endogenous congestion caused by 

ride-sharing is not considered. In addition, the number of zones which are taken as origins or destinations of 

travelers is also limited, and the company optimizes and suggests the departure times for all travelers served. 
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Traveler ( , )i ii o d=  denotes the user who travels from origin io  to destination id . We have the 

following two definitions: 

Definition 1 (Driving-alone trip). If traveler i drives alone from origin io  to destination id , then the trip of 

traveler i is defined as driving-alone trip i. 

Definition 2 (Ride-sharing trip). Let travelers i and j ( i j≠ ) be a driver and a rider, respectively. If traveler i 

departs from origin io , picks up rider j at origin jo , drops off rider j at destination jd , and finally arrives at 

destination id , then the combined trip of travelers i and j is defined as ride-sharing trip (i, j). 

In the considered road network, it is assumed that the travel times of all users are stochastic. In addition, 

the ride-sharing platform can collect the enormous quantities of travel data, and on this basis estimate the 

variability to travelers’ travel times. The ride-sharing participants only need to announce their roles (i.e., be a 

driver, a rider, or either a driver or a rider) and desired arrival time windows. As shown in Fig. 1, we consider 

a driving-alone trip i, which has a stochastic travel time iτ . Without loss of generality, we assume that the 

travel time iτ  follows a distribution with the range [ , ]i iτ τ− + , and has a mean value of iτ , where iτ −  and 

iτ +  are the minimum and maximum travel times of driving-alone trip i, respectively. Because travel times 

must be positive in reality, we define 0iτ − > . Note that there is no restriction that iτ +  must be finite. Let 

( )if τ  and ( )iF τ  be the probability density function and cumulative distribution function of the travel time 

iτ , respectively. ( )if τ  is assumed to be positive for all ( , )i iτ τ τ− +∈ .  

oi
iτ

di  
Fig. 1. A driving-alone trip. 

According to the definitions, we have  

( ) ( )
i

i iF f d
τ

τ
τ ω ω

−
= ∫  and (1) 

( )i

i
i if d

τ

τ
τ τ τ τ

+

−
= ∫ . (2) 

We also define the following function: 

( ) ( )
i

i iG f d
τ

τ
τ ω ω ω

−
= ∫ . (3) 

Because 0iτ − >  and ( )if τ  is positive for all ,i iτ τ τ− + ∈   , Eq. (3) implies that ( )iG τ  is a strictly 

increasing function. Hence, we have 

( ), [ , )i i i iGτ τ τ τ τ− +> ∀ ∈ . (4) 

As shown in Fig. 2, we consider a ride-sharing trip (i, j). Let ijτ  be the total travel time of ride-sharing 

trip (i, j), and ijτ


 be the travel time of driver i traveling from origin io  to destination jd . Without loss of 

generality, we assume that the travel time ijτ  ( ijτ


) follows a distribution with the range [ , ]ij ijτ τ− +  ([ , ]ij ijτ τ− +
 

), 

and has a mean value of ijτ  ( ijτ


), where ijτ −  ( ijτ −


) and ijτ +  ( ijτ +


) are the minimum and maximum travel 
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times of the whole ride-sharing trip (i, j) (for driver i traveling from origin io , through origin jo , and to 

destination jd ), respectively. Let ( )ijf τ  ( ( )ijf τ


) and ( )ijF τ  ( ( )ijF τ


) be the probability density function 

and cumulative distribution function of the stochastic travel time ijτ  ( ijτ


), respectively. We assume that

( )ijf τ  ( ( )ijf τ


) is positive for all ( , )ij ijτ τ τ− +∈  ( ( , )ij ijτ τ τ− +∈
 

). 

According to the definitions, we have 

( ) ( )
ij

ij ijF f w dw
τ

τ
τ

−
= ∫ , (5) 

( ) ( )
ij

ij ijF f w dw
τ

τ
τ

−
= ∫



 

, (6) 

( )ij

ij
ij ijf d

τ

τ
τ τ τ τ

+

−
= ∫ , and (7) 

( )ij

ij
ij ijf d

τ

τ
τ τ τ τ

+

−
= ∫





 

. (8) 

oi di

oj dj

jτ

ijτ


ijτ

 

Fig. 2. A ride-sharing trip. 

We also define the following functions: 

( ) ( )
ij

ij ijG f d
τ

τ
τ ω ω ω

−
= ∫  and  (9) 

( ) ( )
ij

ij ijG f d
τ

τ
τ ω ω ω

−
= ∫



 

. (10) 

The following notations are adopted throughout this paper: 

*
it  The middle point of the desired arrival time window of traveler i 

i∆  The half interval of arrival time flexibility of traveler i 
*
ie  The optimal departure time of driving-alone trip i 
*
ije  The optimal departure time of ride-sharing trip (i, j) 

( )iC t  The generalized cost of driving-alone trip i departing from origin io  at time t 
*
iC  The minimum mean generalized cost of driving-alone trip i 
( )ijC t  The total generalized cost of ride-sharing trip (i, j) departing from origin io  at time t 

*
ijC  The minimum mean total generalized cost of ride-sharing trip (i, j) 

ijδ  The generalized cost saving of ride-sharing trip (i, j) 

ijx  A 0-1 decision variable; if ride-sharing trip (i, j) is formed, then 1ijx = ; otherwise, 0ijx =  
Ω  The set of feasible ride-sharing trips 
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2.2. Generalized trip costs 

2.2.1. The generalized cost of a driving-alone trip 

The generalized cost of a driving-alone trip consists of three components: (1) driving cost (including fuel 

cost and vehicle wear and tear cost), (2) in-vehicle travel time cost, and (3) a “penalty” for reaching the 

destination early or late. Hence, the generalized cost of driving-alone trip i departing from origin io  at time t 

can be formulated as follows: 
* *

0( ) max{0, } max{0, }i i i i i i i i iC t t t t tµ µτ ατ β τ γ τ= + + + ⋅ − ∆ − − + ⋅ + − − ∆ , (11) 

where 0µ  is the fixed driving cost, µ  is the unit variable cost of driving, α  is the unit cost of in-vehicle 

travel time, β  and γ  are the unit costs of early and late arrivals, respectively. According to the empirical 

results (Small, 1982), we have 0 β α γ< < < . 

By definition, the mean generalized cost of driving-alone trip i can be formulated as follows: 
*

*

*
0

*

[ ( )] ( ) ( ) ( )

               ( ) ( ) .

i i

i

i

i i

t t

i i i i i

i i it t

E C t t t f d

t t f d

τ

τ

µ µ α τ β τ τ τ

γ τ τ τ

−

+

−∆ −

+∆ −

= + + + − ∆ − −

+ + − − ∆

∫

∫
 (12) 

Equivalently, we have 
* * *

0
* * * *

[ ( )] ( ) ( ) ( ) ( )

                ( ) ( ) ( ) ( ).
i i i i i i i i i i

i i i i i i i i i i i

E C t t t F t t G t t
t t t t F t t G t t

µ µ α τ β β

γ τ γ γ

= + + + − ∆ − − ∆ − − − ∆ −

+ + − − ∆ + + ∆ − + ∆ − − + ∆ −
 (13) 

According to Eq. (13), the mean generalized trip cost [ ( )]iE C t  is a function of departure time t. The 

first-order and second-order derivatives of [ ( )]iE C t  with respect to t can be obtained as follows: 
* *[ ( )] ( ) ( )i i i i i i i

d E C t F t t F t t
dt

β γ γ= − − ∆ − + − + ∆ −  and (14) 

2
* *[ ( )] ( ) ( )i

i i i i i i
d E C t f t t f t t

dt
β γ= − ∆ − + + ∆ − . (15) 

Based on these derivatives, we have the following assumptions: 

Assumption 1: 2i i iτ τ+ −− ≤ ∆  is satisfied. 

Assumption 2: 2i i iτ τ+ −− > ∆  is satisfied. 

Proposition 1. Under Assumption 1, any time instants in * *[ , ]i i i i i it tτ τ− +− ∆ − + ∆ −  are the optimal 

departure times of driving-alone trip i. 

Proof: Under Assumption 1, we have * *
i i i i i it tτ τ− +− ∆ − ≤ + ∆ − . For any departure time 

* *[ , ]i i i i i it t tτ τ− +∈ − ∆ − + ∆ − , we have  
* * *( )i i i i i i i it t t t τ τ− −− ∆ − ≤ − ∆ − − ∆ − ≤  and (16) 
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* * *( )i i i i i i i it t t t τ τ+ ++ ∆ − ≥ + ∆ − + ∆ − = . (17) 

According to inequalities (16) and (17), we have *( ) ( ) 0i i i i iF t t F τ −− ∆ − = = , *( ) ( ) 0i i i i iG t t G τ −− ∆ − = = , 
*( ) ( ) 1i i i i iF t t F τ ++ ∆ − = = , and *( ) ( )i i i i i iG t t G τ τ++ ∆ − = = . Substituting these equations into Eq. (13), we 

have 

0[ ( )] ( )i iE C t µ µ α τ= + + . (18) 

Eq. (18) implies that the traveler of driving-alone trip i does not experience any “penalty” for reaching the 

destination early or late. Hence, the traveler of driving-alone trip i arrives at his/her destination on time and 

bears the minimum mean generalized trip cost. □ 

Proposition 2. Under Assumption 2, the optimal departure time of driving-alone trip i, i.e., *
ie , is unique, and 

we have 

* * * *( ) ( ) 0i i i i i i i iF t e F t eβ γ γ− − ∆ − + − + ∆ − = . (19) 

Proof: Under Assumption 2, we have * *
i i i i i it tτ τ+ −+ ∆ − < − ∆ − . For all *

i i it t τ +≤ + ∆ − , according to Eq. 

(14), we have 
* *

* * * *

[ ( )] / ( ) ( )

( ( )) ( ( ))

( ) ( ) 0.

i i i i i i i

i i i i i i i i i i i i

i i i i

dE C t dt F t t F t t
F t t F t t
F F

β γ γ

β τ γ γ τ

β τ γ γ τ

+ +

− +

= − − ∆ − + − + ∆ −

≤ − − ∆ − + ∆ − + − + ∆ − + ∆ −

< − + − =

 (20) 

Similarly, for all *
i i it t τ −≥ − ∆ − , we have 

* * * *[ ( )] / ( ( )) ( ( ))

( ) ( ) 0.
i i i i i i i i i i i i i

i i i i

dE C t dt F t t F t t
F F

β τ γ γ τ

β τ γ γ τ

− −

− +

≥ − − ∆ − − ∆ − + − + ∆ − − ∆ −

> − + − =
 (21) 

Inequalities (20) and (21) imply that [ ( )]iE C t  is monotonically decreasing when *
i i it t τ +≤ + ∆ −  and is 

monotonically increasing when *
i i it t τ −≥ − ∆ − . Hence, we have * * *( , )i i i i i i ie t tτ τ+ −∈ + ∆ − − ∆ − . Under 

Assumption 2, for all * *( , )i i i i i it t tτ τ+ −∈ + ∆ − − ∆ − , we have *
i i it t τ +> + ∆ − , which implies 

* * +i i i i it t t t τ +− ∆ − < ∆ − < . We also have *
i i it t τ −< − ∆ − , which implies * *

i i i i it t t t τ −+ ∆ − > − ∆ − > . 

Hence, we have * ( , )i i i it t τ τ− +− ∆ − ∈  and * ( , )i i i it t τ τ− ++ ∆ − ∈ . This implies 2 2[ ( )] / 0id E C t dt >  and 

[ ( )]iE C t  is strictly convex for all * *( , )i i i i i it t tτ τ− +∈ − ∆ − + ∆ − . Therefore, the optimal departure time of 

each driving-alone trip is unique. According to the first-order optimal condition, we have [ ( )] / 0idE C t dt =  

at *
it e= . Using Eq. (14), we can obtain Eq. (19). This completes the proof. □ 

According to Proposition 2, if 0i∆ = , the optimal departure time of driving-alone trip i is unique, and we 

have * * * *( ) ( ) 0i i i i i iF t e F t eβ γ γ− − + − − = , which implies ( )* * 1 / ( )i i ie t F γ β γ−= − + . This result is 

consistent with the result of Xiao et al. (2017). 

Based on Eq. (19), we can prove the following two propositions. 
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Proposition 3. The optimal departure time of each driving-alone trip is independent of both the values of µ  

and α . 

Proof: If 2i i iτ τ+ −− ≤ ∆  is satisfied, according to Proposition 1, any time instants in 
* *[ , ]i i i i i it tτ τ− +− ∆ − + ∆ −  are optimal departure times of driving-alone trip i. This implies that the optimal 

departure time of each driving-alone trip is independent of both the values of µ  and α . If 2i i iτ τ+ −− > ∆  

is satisfied, based on Eq. (19), the partial derivative of *
ie  with respect to µ  and α  can be obtained as 

follows: 

* *

0i ie e
µ α

∂ ∂
= =

∂ ∂
.  (22) 

Eq. (22) also implies that the optimal departure time of each driving-alone trip is independent of both the 

values of µ  and α . This completes the proof. □ 

Proposition 4. Under Assumption 2, if the value of β  is larger or the value of γ  is smaller, then the 

optimal departure time of each driving-alone trip becomes later, and vice versa. If the value of /β γ  is larger, 

then the optimal departure time of each driving-alone trip becomes later, and vice versa. 

Proof: Based on Eq. (19), the partial derivative of *
ie  with respect to β , γ  and /β γ  can be obtained as 

follows: 
* * *

* * * *

( )
( ) ( )

i i i i i

i i i i i i i i

e F t e
f t e f t eβ β γ

∂ − ∆ −
=

∂ − ∆ − + + ∆ −
,  (23) 

* * *

* * * *

1 ( )
( ) ( )

i i i i i

i i i i i i i i

e F t e
f t e f t eγ β γ

∂ − + ∆ −
= −

∂ − ∆ − + + ∆ −
, and (24) 

* * *

* * * *

( )
( / ) ( ) ( )

i i i i i

i i i i i i i i

e F t e
f t e f t e

γ
β γ β γ
∂ − ∆ −

=
∂ − ∆ − + + ∆ −

.  (25) 

According to the proof of Proposition 2, we have * * *( , )i i i i i i ie t tτ τ+ −∈ + ∆ − − ∆ − . This implies that 
* *( ) 0i i i iF t e− ∆ − >  and * *1 ( ) 0i i i iF t e− − ∆ − > . Hence, we have * / 0ie β∂ ∂ > , * / 0ie γ∂ ∂ < , and 

* / ( / ) 0ie β γ∂ ∂ > , which, respectively, imply that *
ie  increases as the value of β  increases, or the value of 

γ  decreases, or the value of /β γ  grows up. This completes the proof. □ 

Substituting *
it e=  and Eq. (19) into Eq. (13), we can obtain the minimum mean generalized cost of 

driving-alone trip i as follows: 
* * * * * *

0
* * * *

[ ( )] ( ) [ ( ) ( )]

                          ( ) ( ) ( ).
i i i i i i i i i i i i i

i i i i i i i i i i

C E C e F t e F t e
G t e G t e

µ µ α τ γ β

γ τ β γ

= = + + + ∆ + ∆ − − − ∆ −

+ − ∆ − − ∆ − − + ∆ −
 (26) 

Proposition 5. Under Assumption 2, if the values of µ , α , β , and γ  increase, then the minimum mean 
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generalized cost of each driving-alone trip increases, and vice versa. 

Proof: Based on Eq. (26) and using Eqs. (23) and (24), the partial derivative of *
iC  with respect to µ , α , 

β , and γ  can be obtained as follows: 
* *
i i

i
C C τ
µ α

∂ ∂
= =

∂ ∂
, (27) 

*
* * * * * *( ) ( ) ( )i
i i i i i i i i i i i

C t e F t e G t e
β

∂
= − ∆ − − ∆ − − − ∆ −

∂
, and (28) 

*
* * * * * *( )[ ( ) 1] ( )i

i i i i i i i i i i i i
C t e F t e G t eτ
γ

∂
= + + ∆ − + ∆ − − − + ∆ −

∂
. (29) 

By definition, we have 0iτ > , and hence * */ / 0i iC Cµ α∂ ∂ = ∂ ∂ > . Let 1( ) ( ) ( )i ig F Gτ τ τ τ= − . We 

have 1( ) ( ) 0ig Fτ τ′ = >  for all iτ τ −> . This implies that 1( )g τ  is a strictly increasing function with 

respect to τ  for all iτ τ −> . When iτ τ −≤ , we have 1( ) ( ) ( ) 0i i i ig F Gτ τ τ τ− −= − = . With * *
i i i it e τ −− ∆ − > , 

we have * *
1( ) 0i i ig t e− ∆ − > . This implies * / 0iC β∂ ∂ > . Let 2 ( ) [1 ( )] ( )i i ig F Gτ τ τ τ τ= + − − . We have 

1( ) ( ) 1 0ig Fτ τ′ = − <  for all iτ τ +< . This implies that 2 ( )g τ  is a strictly decreasing function with respect 

to τ  for all iτ τ +< . When iτ τ +≥ , we have 2 ( ) [ ( ) 1] ( ) 0i i i i i ig F Gτ τ τ τ τ+ + += + − − = . With 
* *
i i i it e τ ++ ∆ − < , we have * *

2 ( ) 0i i ig t e+ ∆ − > . This implies * / 0iC γ∂ ∂ > . In summary, *
iC  is strictly 

increasing with respect to the values of µ , α , β , and γ , respectively. This completes the proof. □ 

Proposition 5 implies that the values of µ , α , β , and γ  can influence the minimum mean 

generalized cost of driving-alone trips when travel time uncertainty exists. However, if there is no uncertainty 

(i.e., i i iτ τ τ− += = ), according to the proof of Proposition 1, the traveler of driving-alone trip i arrives at 

his/her destination on time with the minimum generalized trip cost if the trip departs from origin io  during 

the time period * *[ , ]i i i i i it tτ τ− ∆ − + ∆ − . This implies that the values of β  and γ  have no influence on 

the minimum generalized cost of driving-alone trips if there is no uncertainty. By definition, we have 0iτ > . 

According to Eq. (27), the minimum generalized cost of each driving-alone trip also increases as the values of 

µ  and α  increase if there is no uncertainty. 

Definition 3. (First-order stochastic dominance). The distribution b ( )F ⋅  first-order stochastically dominates 

a ( )F ⋅  if and only if, for every non-decreasing function :u R R→ , we have 

a b( ) ( ) ( ) ( ).u dF u dFτ τ τ τ≤∫ ∫  (30) 

Lemma 1. (Mas-Colell et al., 1995, Proposition 6.D.1). The distribution b ( )F ⋅  first-order stochastically 

dominates the distribution a ( )F ⋅  if and only if a b( ) ( )F Fτ τ≥  for every τ . 

According to Definition 3 and Lemma 1, if a b( ) ( )F Fτ τ≥  is satisfied for every τ , we have Eq. (30) is 
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satisfied for every non-decreasing function :u R R→ . Definition 3 and Lemma 1 will be used to prove the 

following proposition: 

Proposition 6. Under Assumption 2, if the cumulative distribution function of the travel time of driving-alone 

trip i, i.e., iτ , changes from ,a ( )iF τ  to ,b ( )iF τ  and ,a ,b( ) ( )i iF Fτ τ≥  is satisfied for every τ , then the 

optimal departure time of driving-alone trip i can become earlier or remain unchanged, and its minimum mean 

generalized trip cost can become larger or remain unchanged. 

Proof: To simplify the notation, we add subscripts ‘a’ and ‘b’ to the functions and parameters corresponding 

to the cumulative distribution function of the travel time before and after the change, respectively. To prove 

this proposition, we need to prove that * *
,a ,bi ie e≥  and * *

,a ,bi iC C≤  are satisfied. 

With ,a ,b( ) ( )i iF Fτ τ≥  for every τ , Eq. (2), Definition 3, and Lemma 1 imply ,a ,bi iτ τ≤ . Based on Eq. 

(19), we have  
* * * * * * * *

,a ,a ,a ,a ,b ,a ,b ,a( ) ( ) ( ) ( )i i i i i i i i i i i i i i i iF t e F t e F t e F t eγ β γ β γ= − ∆ − + + ∆ − ≥ − ∆ − + + ∆ − . (31) 

According to Eq. (19) and inequality (31), we have 
* * * * * * * *

,b ,b ,b ,b ,b ,a ,b ,a( ) ( ) ( ) ( )i i i i i i i i i i i i i i i iF t e F t e F t e F t eγ β γ β γ= − ∆ − + + ∆ − ≥ − ∆ − + + ∆ − .(32) 

,b ( )iF τ  is strictly increasing for all ,b ,b( , )i iτ τ τ− +∈ , so inequality (32) implies * *
,a ,bi ie e≥ .  

We define the following function: 

* * * *
0 ,b ,b

* * * *
,b 0 ,b ,b

0

( ),  if  ,

( ) ( ),   if  ,
,                                    otherwise.

i i i i i i

i i i i i i i

t e t e

u e t t e

µ µτ ατ β τ τ

τ µ µτ ατ γ τ τ

µ µτ ατ

 + + + − ∆ − − < − ∆ −
= + + + + − − ∆ > + ∆ −
 + +

 (33) 

With 0 β α γ< < < , we have ,b ( ) / 0idu dτ τ > . Hence ,b ( )iu τ  is a strictly increasing function with 

respect to τ . With ,a ,b( ) ( )i iF Fτ τ≥  for every τ , according to Lemma 1, we have 

* * * * *
,a ,a ,a ,a ,b ,b ,a ,b ,b ,b ,b ,b[ ( )] [ ( )] ( ) ( ) ( ) ( ) [ ( )]i i i i i i i i i i i iC E C e E C e u dF u dF E C e Cτ τ τ τ

+∞ +∞

−∞ −∞
= ≤ = ≤ = =∫ ∫ . (34) 

Inequality (34) implies that the minimum mean generalized cost of driving-alone trip i can be larger or 

remain unchanged when the cumulative distribution function of the travel time iτ  changes from ,a ( )iF τ  to 

,b ( )iF τ . This completes the proof. □ 

2.2.2. The generalized cost of a ride-sharing trip 

The total generalized cost of a ride-sharing trip consists of four components: (1) the driving cost of the 

driver, (2) the total in-vehicle travel time cost of both the driver and the rider, (3) the “penalty” for the driver 

reaching the destination early or late, and (4) the “penalty” for the rider reaching the destination early or late. 

The total generalized cost of ride-sharing trip (i, j) departing from io  at time t can be formulated as follows: 
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* *
0

* *

( ) ( ) max{0, } max{0, }

            max{0, } max{0, }.
ij ij ij i i ij ij i iij

j j j jij ij

C t t t t t

t t t t

µ µτ α τ τ β τ γ τ

β τ γ τ

= + + + + ⋅ − ∆ − − + ⋅ + − − ∆

+ ⋅ − ∆ − − + ⋅ + − − ∆



 

 (35) 

By definition, the mean total generalized cost of ride-sharing trip (i, j) can be formulated as follows: 
*

*

*

*

*
0

* *

*

[ ( )] ( ) ( ) ( )

                ( ) ( ) ( ) ( )

                ( )

i i

ij

ij j j

i i ij

ij

j j

t t

ij ij ij i i ijij

t t

i i ij j j ijt t

j j ijt t

E C t t t f d

t t f d t t f d

t t f

τ

τ

τ

τ

µ µτ α τ τ β τ τ τ

γ τ τ τ β τ τ τ

γ τ

−

+

−

+

−∆ −

−∆ −

+∆ −

+∆ −

= + + + + − ∆ − −

+ + − − ∆ + − ∆ − −

+ + − − ∆

∫

∫ ∫

∫











( ) .dτ τ

 (36) 

Equivalently, we have 
* * *

0

* * * *

* * *

[ ( )] ( ) ( ) ( ) ( )

                 ( ) ( ) ( ) ( )

                 ( ) ( ) (

ij ij ij i i ij i i ij i iij

i i ij i i ij i i ij i i

j j j j j jij ij

E C t t t F t t G t t

t t F t t G t t t t

t t F t t G t t

µ µτ α τ τ β β

γ γ γ τ

β β

= + + + + − ∆ − − ∆ − − − ∆ −

+ + ∆ − + ∆ − − + ∆ − + + − − ∆

+ − ∆ − − ∆ − − − ∆ −



 

* * * *

)

                 ( ) ( ) ( ) ( ).j j j j j j j jij ij ijt t F t t G t t t tγ γ γ τ+ + ∆ − + ∆ − − + ∆ − + + − − ∆
  

 (37) 

According to Eq. (37), the mean generalized trip cost [ ( )]ijE C t  is a function of departure time t. The 

first-order and second-order derivatives of [ ( )]ijE C t  with respect to t can be obtained as follows: 

* *

* *

[ ( )]
( ) ( )

                   ( ) ( ) 2

ij
ij i i ij i i

j j j jij ij

dE C t
F t t F t t

dt
F t t F t t

β γ

β γ γ

= − − ∆ − − + ∆ −

− − ∆ − − + ∆ − +
 

 and (38) 

 
2

* * * *
2

[ ( )]
( ) ( ) ( ) ( )ij

ij i i ij i i j j j jij ij

d E C t
f t t f t t f t t f t t

dt
β γ β γ= − ∆ − + + ∆ − + − ∆ − + + ∆ −

 

. (39) 

Let ( ) [ ( )] /ij ijt dE C t dtϕ = , 2 2( ) [ ( )] /ij ijt d E C t dtϕ′ = , * *max{ , }ij j j i i ijije t tτ τ− − −= − ∆ − − ∆ −


, and  
* *min{ , }ij j j i i ijije t tτ τ+ + += + ∆ − + ∆ −



. We have the following two assumptions:  

Assumption 3: ij ije e− +≤  is satisfied. 

Assumption 4: ij ije e− +>  is satisfied. 

We have the following propositions: 

Proposition 7. Under Assumption 3, any time instants in [ , ]ij ije e− +  are the optimal departure times of 

ride-sharing trip (i, j).  

Proof: For any departure time [ , ]ij ijt e e− +∈ , we have  
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* * * *

* * * *

* * * *

* * * *

( ) ,

( ) ,

( ) ,  

( ) .

i i i i ij i i i i ij ij

i i i i ij i i i i ij ij

j j j j ij j j j j ij ij

j j j j ij j j j j ij ij

t t t e t t

t t t e t t

t t t e t t

t t t e t t

τ τ

τ τ

τ τ

τ τ

− − −

+ + +

− − −

+ + +

 − ∆ − ≤ − ∆ − ≤ − ∆ − − ∆ − =


+ ∆ − ≥ + ∆ − ≥ + ∆ − + ∆ − =


− ∆ − ≤ − ∆ − ≤ − ∆ − − ∆ − =
+ ∆ − ≥ + ∆ − ≥ + ∆ − + ∆ − =

 

 




 (40) 

According to the system of inequalities (40), we have 

* *

* *

* *

*

*

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 1,

( ) ( ) ,  

(

ij i i ij ij j jij ij ij

ij i i ij i j jij ij ij

ij i i ij ij j jij ij ij

ij i i ij ij ij

j jij

F t t F F t t F

G t t G G t t G

F t t F F t t F

G t t G

G t t

τ τ

τ τ

τ τ

τ τ

− −

− −

+ +

+

− ∆ − = = − ∆ − = =

− ∆ − = = − ∆ − = =

+ ∆ − = = + ∆ − = =

+ ∆ − = =

+ ∆ −

  

  

  



) ( ) .ij ij ijG τ τ+








 = =   

 (41) 

Substituting Eq. (41) into Eq. (37), we have 

0[ ( )] ( )ij ij ij ijE C t µ µτ α τ τ= + + +


. (42) 

Eq. (42) implies that both the rider and the driver of ride-sharing trip (i, j) do not experience any “penalty” for 

reaching their destinations early or late. Hence, the travelers of ride-sharing trip (i, j) arrive at their 

destinations on time and have the minimum mean generalized trip cost. This completes the proof. □ 

According to Proposition 6, under Assumption 3, the optimal departure time of each ride-sharing trip is 

independent of the values of µ , α , β , and γ . 

Proposition 8. Under Assumption 4, the optimal departure time of ride-sharing trip (i, j), i.e., *
ije , is unique, 

and we have *( ) 0ij ijeϕ =  and *( ) 0ij ijeϕ′ > . 

Proof: By definition, we have *( ) 0ij i if t t− ∆ − ≥ , *( ) 0ij i if t t+ ∆ − ≥ , *( ) 0j jijf t t− ∆ − ≥


, and 
*( ) 0j jijf t t+ ∆ − ≥



. Eq. (39) implies that 2 2[ ( )] / 0ijd E C t dt ≥ , and hence [ ( )]ijE C t  is convex with 

respect to t. Based on the necessary optimality condition [ ( )] / 0ijdE C t dt = , [ ( )]ijE C t  achieves its 

minimum at *
ijt e= . Equivalently, *( ) 0ij ijeϕ =  and we have 

* * * * * * * * *( ) 2 ( ) ( ) ( ) ( ) 0ij ij ij i i ij ij i i ij j j ij j j ijij ije F t e F t e F t e F t eϕ γ β γ β γ= − − ∆ − − + ∆ − − − ∆ − − + ∆ − =
 

.  (43) 

For all ij ijt e e+ −≤ < , by definition, we have * *min{ , }j j i i ijijt t tτ τ+ +≤ + ∆ − + ∆ −


 and 
* *max{ , }j j i i ijijt t tτ τ− −< − ∆ − − ∆ −



. Hence, we have (a) *
j j ijt t τ ++ ∆ − ≥



 and *
i i ijt t τ ++ ∆ − ≥ , and (b)

*
j j ijt t τ −− ∆ − >



 or *
i i ijt t τ −− ∆ − > . According to Eq. (38), we have 

* *[ ( )]
2 ( ) ( ) ( ) ( )

                ( ) ( )=0.

ij
ij i i ij ij j j ijij ij

ij ij ij ij

dE C t
F t t F F t t F

dt
F F

γ β γ τ β γ τ

β τ β τ

+ +

− −

= − − ∆ − − − − ∆ − −

< − −

 

 

 (44) 

For all ij ijt e e− +≥ > , we have (a) *
j j ijt t τ −− ∆ − ≤



 and *
i i ijt t τ −− ∆ − ≤ , and (b) *

j j ijt t τ ++ ∆ − <


 or 
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*
i i ijt t τ ++ ∆ − < . According to Eq. (38), we have 

* *[ ( )]
2 ( ) ( ) ( ) ( )

                2 ( ) ( )=0.

ij
ij ij ij i i ij j j ijij ij ij

ij ij ijij

dE C t
F F t e F F t e

dt
F F

γ β τ γ β τ γ

γ γ τ γ τ

− − − −

+ +

= − − + ∆ − − − + ∆ −

> − −

  



 (45) 

Inequalities (44) and (45) imply that [ ( )] / 0idE C t dt <  for all ijt e+≤ , and [ ( )] / 0idE C t dt >  for all 

ijt e−≥ . These results imply * ( , )ij ij ije e e+ −∈ . 

To prove the uniqueness of the solution to nonlinear equation (43), we have the following definitions:  

* *

* *

* *

, ,

, ,  

g ,g .

j j j jij ij ij ij

ij i i ij ij i i ij

j j ij i i ijij ij

h t h t

h t h t

t t

τ τ

τ τ

τ τ

− − + +

− − + +

− − − −

 = − ∆ − = + ∆ −
 = − ∆ − = + ∆ −


= + ∆ − = + ∆ −

   

 

 (46) 

By definition, we have gij ijh− +> , gij ijh− +>
 

, max{ , }ij ijije h h− − −=


 and min{ , }ij ijije h h+ + +=


. Similar to the 

proof of Proposition 2, we have * ( , )j j ij ijt t τ τ− +− ∆ − ∈
 

 or * ( , )j j ij ijt t τ τ− ++ ∆ − ∈
 

 for all [ , ]ij ijt h h+ −∈
 

, and 
* ( , )i i ij ijt t τ τ− +− ∆ − ∈  or * ( , )i i ij ijt t τ τ− ++ ∆ − ∈  for all [ , ]ij ijt h h+ −∈ . If ( , )ij ijt h g+ −∈

 

, we have 
*
j jij ijt tτ τ− +< + ∆ − <

 

. This implies *( ) 0j jijf t t+ ∆ − >


 for all ( , )ij ijt h g+ −∈
 

. Similarly, we have 
*( ) 0ij i if t t+ ∆ − >  for all ( , )ij ijt h g+ −∈ . 

If gijt −≥


, we have *
j j ijt t τ −+ ∆ − ≤



 and *
j j ijt t τ −− ∆ − ≤



. Hence, we have 

* *[ ( )]
2 ( ) ( ) ( ) ( )

                2 ( ) ( )= 0.

ij
ij i i ij i i ij ij ij ij

ij ij ij ij

dE C t
F t t F t t F F

dt
F F

γ β γ β τ γ τ

γ β τ γ τ γ β

− −

+ +

= − − ∆ − − + ∆ − − −

≥ − − − >

     (47) 

Similarly, if gijt −≥ , we also have [ ( )] / 0ijdE C t dt > . Hence, we have [ ( )] / 0ijdE C t dt >  for all 

min{g ,g }ij ijt − −≥


. This implies that * min{g ,g }ij ij ije − −<


. 

With ij ije e− +>  and min{ , }ij ijije h h+ + +=


, we have two cases: (i) ij ije h+ +=


 (i.e., ijijh h+ +≤


) and (ii) 

ij ije h+ +=  (i.e., ijijh h+ +≥


). In Case (i), with * ( , )ij ij ije e e+ −∈  and * min{g ,g }ij ij ije − −<


, we have * ( ,g )ij ij ije h+ −∈
 

. 

With *( ) 0j jijf t t+ ∆ − >


 for all ( , )ij ijt h g+ −∈
 

, we have 2 2[ ( )] / 0id E C t dt > . This implies that [ ( )]iE C t  

is strictly convex for all ( , )ij ijt h g+ −∈
 

. Therefore, the optimal departure time *
ije  is unique and *( ) 0ij ijeϕ′ > . 

Similarly, in Case (ii), we have * ( ,g )ij ij ije h+ −∈ . With *( ) 0ij j jf t t+ ∆ − >  for all ( , )ij ijt h g+ −∈ , we have 
2 2[ ( )] / 0id E C t dt > . This also implies that [ ( )]iE C t  is strictly convex for all ( , )ij ijt h g+ −∈

 

. Therefore, the 

optimal departure time *
ije  is also unique and *( ) 0ij ijeϕ′ > . This completes the proof. □ 

Substituting *
ijt e=  into Eq. (37), and rearranging the resultant equation, we have 

* * * * * * *
0

* * * * * * * *

* * * * *

( ) ( ) ( ) ( )

       ( ) ( ) ( ) ( )

       ( ) ( ) (

ij ij ij i i ij ij i i ij ij i i ijij

i i ij ij i i ij ij i i ij ij ij i i

j j ij j j ij j jij ij

C t e F t e G t e

t e F t e G t e e t

t e F t e G t

µ µτ α τ τ β β

γ γ γ τ

β β

= + + + + − ∆ − − ∆ − − − ∆ −

+ + ∆ − + ∆ − − + ∆ − + + − − ∆

+ − ∆ − − ∆ − − − ∆



 

*

* * * * * * * *

)

       ( ) ( ) ( ) ( ).
ij

j j ij j j ij j j ij ij j jij ij ij

e

t e F t e G t e e tγ γ γ τ

−

+ + ∆ − + ∆ − − + ∆ − + + − − ∆
  

 (48) 
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Based on Eq. (48), we can obtain the following propositions. 

Proposition 9. Under Assumption 4, the optimal departure time of each ride-sharing trip is independent of 

both the values of µ  and α . However, if the value of β  decreases or the value of γ  increases, then the 

optimal departure time of each ride-sharing trip decreases, and vice versa. 

Proof: Based on Eq. (43), we have 
* * * * * * * * *( ) ( ) ( ) ( ) ( )ij ij ij i i ij ij i i ij j j ij j j ijij ije f t e f t e f t e f t eϕ β γ β γ′ = − ∆ − + + ∆ − + − ∆ − + + ∆ −

 

, (49) 

* *( ) ( )
0ij ij ij ije eϕ ϕ

µ α
∂ ∂

= =
∂ ∂

, (50) 

*
* * * *( )

( ) ( )ij ij
ij i i ij j j ijij

e
F t e F t e

ϕ
β

∂
= − − ∆ − − − ∆ −

∂ 

, and (51) 

*
* * * *( )

2 ( ) ( )ij ij
ij i i ij j j ijij

e
F t e F t e

ϕ
γ

∂
= − + ∆ − − + ∆ −

∂ 

. (52) 

According to the proof of Proposition 6, under Assumption 4, we have *( ) 0ij ijeϕ′ >  and * ( , )ij ij ije e e+ −∈ , 

i.e., * * *max{ , }ij j j i i ijije t tτ τ− −< − ∆ − − ∆ −


 and * * *min{ , }ij j j i i ijije t tτ τ+ +> + ∆ − + ∆ −


. Thus, we have (a)
* *
j j ij ijt e τ −− ∆ − >



 or * *
i i ij ijt e τ −− ∆ − > , and (b) * *

j j ij ijt e τ ++ ∆ − <


 or * *
i i ij ijt e τ ++ ∆ − < . Therefore, we have 

* * * *max{ ( ), ( )} 0ij i i ij j j ijijF t e F t e− ∆ − − ∆ − >


 and * * * *min{ ( ), ( )} 1ij i i ij j j ijijF t e F t e+ ∆ − + ∆ − <


. Those imply 

that * * * *( ) ( ) 0ij i i ij j j ijijF t e F t e− ∆ − + − ∆ − >


 and * * * *( ) ( ) 2 0ij i i ij j j ijijF t e F t e+ ∆ − + + ∆ − − <


. Based on Eqs. 

(49)-(52), the partial derivative of *
ije  with respect to µ , α , β , and γ  can be obtained as follows: 

* * * *

* * *

( ) ( )1 1 1 0 0
( ) ( ) ( )

ij ij ij ij ij ij

ij ij ij ij ij ij

e e e e
e e e

ϕ ϕ
µ α ϕ µ ϕ α ϕ

∂ ∂ ∂ ∂
= = − ⋅ = − ⋅ = − ⋅ =

′ ′ ′∂ ∂ ∂ ∂
, (53) 

* *
* * * *

* *

( )1 1 [ ( ) ( )] 0
( ) ( )

ij ij ij
ij i i ij j j ijij

ij ij ij ij

e e
F t e F t e

e e
ϕ

β ϕ β ϕ
∂ ∂

= − ⋅ = ⋅ − ∆ − + − ∆ − >
′ ′∂ ∂ 

, and  (54) 

* *
* * * *

* *

( )1 1 [ ( ) ( ) 2] 0
( ) ( )

ij ij ij
ij i i ij j j ijij

ij ij ij ij

e e
F t e F t e

e e
ϕ

γ ϕ γ ϕ
∂ ∂

= − ⋅ = − ⋅ + ∆ − + + ∆ − − <
′ ′∂ ∂ 

. (55) 

Eq. (53) implies that the optimal departure time of each ride-sharing trip is independent of both the values 

of µ  and α . Inequalities (54) and (55) imply that the optimal departure time of each ride-sharing trip 

decreases if the value of β  decreases or the value of γ  increases. This completes the proof. □ 

Proposition 10. Under Assumption 4, if the value of /β γ  is larger, then the optimal departure time of each 

ride-sharing trip becomes later, and vice versa. 

Proof: Using Eq. (43), we define * *( ) ( ) / 0ij ij ij ije eω ϕ γ= = . We have * *( ) ( ) / 0ij ij ij ije eω ϕ γ′ ′= >  and  
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*
* * * *( )

( ) ( )
( / )

ij ij
ij i i ij j j ijij

e
F t e F t e

ω
β γ

∂
= − − ∆ − − − ∆ −

∂ 

. (56) 

The partial derivative of *
ije  with respect to /β γ  can be obtained as follows: 

* *
* * * *

* *

( )1 1 [ ( ) ( )] 0
( / ) ( ) ( / ) ( )

ij ij ij
ij i i ij j j ijij

ij ij ij ij

e e
F t e F t e

e e
ω

β γ ω β γ ω
∂ ∂

= − ⋅ = ⋅ − ∆ − + − ∆ − >
′ ′∂ ∂ 

.  (57) 

Inequality (57) implies that *
ije  increases as the value of /β γ  grows up. This implies that the optimal 

departure time *
ije  increases when the value of /β γ  increases. This completes the proof. □ 

Proposition 11. Under Assumption 4, if the values of µ , α , β , and γ  increase, then the minimum mean 

generalized cost of each ride-sharing trip increases, and vice versa. 

Proof: Based on Eq. (48), the partial derivative of *
ijC  with respect to µ , α , β , and γ  can be obtained 

as follows:  
*
ij

ij

C
τ

µ
∂

=
∂

, (58) 

*
ij

ij ij

C
τ τ

α
∂

= +
∂ 

, (59) 

*
* * * * * *

* * * * * *

( ) ( ) ( )       

          ( ) ( ) ( ),

ij
i i ij ij i i ij ij i i ij

j j ij j j ij j j ijij ij

C
t e F t e G t e

t e F t e G t e
β

∂
= − ∆ − − ∆ − − − ∆ −

∂

+ − ∆ − − ∆ − − − ∆ −
 

 and (60) 

*
* * * * * *

* * * * * *

( )[ ( ) 1] ( )   

          + ( )[ ( ) 1] ( ).

ij
ij i i ij ij i i ij ij i i ij

j j ij j j ij j j ijij ij ij

C
t e F t e G t e

t e F t e G t e

τ
γ

τ

∂
= + + ∆ − + ∆ − − − + ∆ −

∂

+ + ∆ − + ∆ − − − + ∆ −
  

 (61) 

By definition, we have 0ijτ >


 and 0ijτ > , and hence * / 0ijC µ∂ ∂ >  and * / 0ijC α∂ ∂ > . According to 

the proof of Proposition 8, we have (a) * *
j j ij ijt e τ −− ∆ − >



 or * *
i i ij ijt e τ −− ∆ − > , and (b) * *

j j ij ijt e τ ++ ∆ − <


 or 
* *
i i ij ijt e τ ++ ∆ − < . Similar to the proof of Proposition 4, we can prove that 

* * * * * *( ) ( ) ( )i i ij ij i i ij ij i i ijt e F t e G t e− ∆ − − ∆ − − − ∆ −  and * * * * * *( ) ( ) ( )j j ij j j ij j j ijij ijt e F t e G t e− ∆ − − ∆ − − − ∆ −
 

 are 

non-negative, and at least one of them is positive. Hence, we have * / 0ijC β∂ ∂ > . Similar to the proof of 

Proposition 4, we can prove that * * * * * *( )[ ( ) 1] ( )ij i i ij ij i i ij ij i i ijt e F t e G t eτ + + ∆ − + ∆ − − − + ∆ −  and 
* * * * * *( )[ ( ) 1] ( )j j ij j j ij j j ijij ij ijt e F t e G t eτ + + ∆ − + ∆ − − − + ∆ −

  

 are non-negative, and at least one of them is 

positive. Hence, we have * / 0ijC γ∂ ∂ > . Therefore, *
ijC  is strictly increasing with respect to µ , α , β , 

and γ , respectively. This completes the proof. □ 

Proposition 11 implies that the values of µ , α , β , and γ  can influence the minimum mean 

generalized cost of ride-sharing trips when travel time uncertainty exists. If there is no uncertainty (i.e., 
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ij ij ijτ τ τ− += =  and ij ij ijτ τ τ− += =
  

), we can consider two cases: (i) ij ije e− +≤ , and (ii) ij ije e− +> , where 
* *max{ , }ij j j i i ijije t tτ τ− = − ∆ − − ∆ −



 and * *min{ , }ij j j i i ijije t tτ τ+ = + ∆ − + ∆ −


. In Case (i), according to the 

proof of Proposition 7, both the rider and the driver of ride-sharing trip (i, j) arrive at their destinations on time 

with their minimum generalized trip costs if the trip departs from origin io  during the time period [ , ]ij ije e− + . 

This implies that the parameters β  and γ  have no influence on the minimum generalized cost of 

driving-alone trips if there is no uncertainty. In Case (ii), we have two sub-cases: (ii.i) 
* *
j j i i ijijt tτ τ− ∆ − > + ∆ −



, and (ii.ii) * *
i i ij j j ijt tτ τ− ∆ − > + ∆ −



. In Case (ii.i), according to Eq. (35), we 

have  
* * *

* * *

* * * *
0

* *

( ) ( ) if ,

( ) if ,
( ) ( ) if ,( ) ( )
( ) if 

i i ij j j i i ijij

i i ij i i ij i i ij

i i ij j j i i ij j jij ijij ij ij ij

j j jij

t t t t t t

t t t t t
t t t t t t tC t
t t t

β τ β τ τ

β τ τ τ
β τ γ τ τ τµ µτ α τ τ
γ τ

− ∆ − − + − ∆ − − ≤ − ∆ −

− ∆ − − − ∆ − < ≤ + ∆ −
− ∆ − − + + − − ∆ + ∆ − < ≤ − ∆ −= + + + +

+ − − ∆ −



 





*

* * *

,

( ) ( ) if .
j j jij ij

ij i i j j j jij ij

t t

t t t t t t

τ τ

γ τ γ τ τ






 ∆ − < ≤ + ∆ −
 + − − ∆ + + − − ∆ + ∆ − <

 

 

 (62) 

With γ β> , according to Eq. (62), we have * *
ij i i ije t τ= + ∆ −  and *

0 ( )ij ij ij ijC µ µτ α τ τ= + + +


 

( )ij ije eβ − ++ − . Similarly, in Case (ii.ii), we have * *
ij j j ije t τ= + ∆ −



 and *
0 ( )ij ij ij ijC µ µτ α τ τ= + + +



 

( )ij ije eβ − ++ − . These results imply that the minimum generalized cost of ride-sharing trips is independent of 

the value of γ , and increases as the value of β  grows up. By definition, we have 0ijτ >  and 0ijτ >


. 

According to Eqs. (58) and (59), the minimum generalized cost of each ride-sharing trip also increases as the 

values of µ  and α  increase if there is no uncertainty. 

Proposition 12. Under Assumption 4, if the cumulative distribution functions of the travel times of 

ride-sharing trip (i, j), i.e., ijτ  and ijτ


, respectively, change from ,a ( )ijF τ  to ,b ( )ijF τ  and from ,a ( )ijF τ


 

to ,b ( )ijF τ


, and ,a ,b( ) ( )ij ijF Fτ τ≥  and ,a ,b( ) ( )ij ijF Fτ τ≥
 

 are satisfied for all τ , then the optimal 

departure time of ride-sharing trip (i, j) can become earlier or remain unchanged, and its minimum mean 

generalized trip cost can become larger or remain unchanged. 

Proof: To simplify the notation, we add subscripts ‘a’ and ‘b’ to the functions and parameters corresponding 

to the cumulative distribution functions of travel times ijτ  and ijτ


 before and after the changes, respectively. 

To prove this proposition, we need to prove that * *
,a ,bij ije e≥  and * *

,a ,bij ijC C≤  are satisfied. 

With ,a ,b( ) ( )ij ijF Fτ τ≥  and ,a ,b( ) ( )ij ijF Fτ τ≥
 

 for all τ , Eq. (38), and the definitions of ,a ( )ij tϕ  and 

,b ( )ij tϕ , we have ,a ,b( ) ( )ij ijt tϕ ϕ≥ . By the definitions of *
,aije  and *

,bije , we have *
,a ,a( ) 0ij ijeϕ =  and 

*
,b ,b( ) 0ij ijeϕ = . Hence, we have * * *

,a ,b ,b ,b ,a ,a( ) ( ) 0 ( )ij ij ij ij ij ije e eϕ ϕ ϕ≥ = = . Meanwhile, based on Eq. (39) and 

the definition of ,a ( )ij tϕ′ , we have ,a ( ) 0ij tϕ′ ≥  for all ( , )t ∈ −∞ +∞ . This implies that ,a ( )ij tϕ  is 

non-decreasing. According to Proposition 8, we have *
,a ,a( ) 0ij ijeϕ′ > . This together with 
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* *
,a ,b ,a ,a( ) ( )ij ij ij ije eϕ ϕ≥  gives * *

,a ,bij ije e≥ .  

We define the following two functions: 

* * * *
0 ,b ,b

* * * *
0 ,b ,b,b

0

( ),  if  ,

( ) ( ),   if  ,

,                                     otherwise,

j j ij j j ij

ij j j j j ijij

t e t e

u e t t e

µ µτ ατ β τ τ

τ µ µτ ατ γ τ τ

µ µτ ατ

 + + + − ∆ − − < − ∆ −
= + + + + − − ∆ > + ∆ −
 + +



 and (63) 

* * * *
0 ,b ,b

* * * *
,b 0 ,b ,b

0

( ),  if  ,

( ) ( ),   if  ,

,                                    otherwise.

i i ij i i ij

ij ij i i i i ij

t e t e

u e t t e

µ µτ ατ β τ τ

τ µ µτ ατ γ τ τ

µ µτ ατ

 + + + − ∆ − − < − ∆ −
= + + + + − − ∆ > + ∆ −
 + +

 (64) 

With 0 β α γ< < < , we have ,b ( ) / 0ijdu dτ τ >


 and ,b ( ) / 0ijdu dτ τ > . Hence ,b ( )iju τ


 and ,b ( )iju τ  are 

strictly increasing functions with respect to τ . With ,a ,b( ) ( )ij ijF Fτ τ≥  and ,a ,b( ) ( )ij ijF Fτ τ≥
 

 for all τ , 

according to Lemma 1, we have 

,b ,a ,b ,b,b ,a ,b ,b( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ij ij ij ijij ij ij iju dF u dF u dF u dFτ τ τ τ τ τ τ τ
+∞ +∞ +∞ +∞

−∞ −∞ −∞ −∞
+ ≤ +∫ ∫ ∫ ∫   

. (65) 

By definition, we have 

* * *
,a ,a ,a ,a ,b ,b ,a,b ,a[ ( )] [ ( )] ( ) ( ) ( ) ( )ij ij ij ij ij ij ijij ijC E C e E C e u dF u dFτ τ τ τ

+∞ +∞

−∞ −∞
= ≤ = +∫ ∫ 

 and (66) 

* *
,b ,b ,b ,b ,b,b ,b[ ( )] ( ) ( ) ( ) ( )ij ij ij ij ijij ijC E C e u dF u dFτ τ τ τ

+∞ +∞

−∞ −∞
= = +∫ ∫ 

. (67) 

Inequalities (65) and (66) and Eq. (67) imply * *
,a ,bij ijC C≤ . This completes the proof. □ 

2.3. Feasible ride-sharing trips 

The most important motivation for travelers using a ride-sharing trip is that both the driver and the rider 
can benefit from a ride-sharing trip. Therefore, a feasible ride-sharing matching can be defined as follows: 

Definition 4 (Feasible ride-sharing trip). A ride-sharing trip (i, j) is defined as a feasible ride-sharing trip if the 
following condition is satisfied: 

* * *( )ij i jC C Cε≤ ⋅ + , (68) 

where ε  is the tolerance, and 0 1ε< ≤ . 

The above definition implies that the larger the tolerance is, the more the ride-sharing trip is a feasible one. 

Using inequality (68), we can define the set of feasible ride-sharing trips as follows: 

Definition 5 (Set of feasible ride-sharing trips). The set of feasible ride-sharing trips is formulated as follows: 

{ }* * *
/ /( , ) | ( ) and , ,ij i j d d r r d ri j C C C i j i jεΩ = ≤ ⋅ + ≠ ∀ ∈Φ ∪ Φ ∈Φ ∪ Φ . (69) 

Definition 6 (Mean generalized ride-sharing trip cost saving). The mean generalized cost saving of 
ride-sharing trip (i, j) is defined as follows: 
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* * *( )ij i j ijC C Cκ = + − . (70) 

Proposition 13. If 0i ijτ τ− <  and 0j ijτ τ− ≤


, the mean generalized cost saving of ride-sharing trip (i, j) 

decreases as the value of α  increases, and vice versa. 

Proof: Based on Eq. (70), we have 

* **
ij j iji C CCκ

α α α α
∂ ∂ ∂∂

= + −
∂ ∂ ∂ ∂

. (71) 

Substituting Eqs. (27) and (59) into Eq. (71) and using 0i ijτ τ− <  and 0j ijτ τ− ≤


, we have 

( ) 0ij
i j ij ij

κ
τ τ τ τ

α
∂

= + − + <
∂ 

. (72) 

Eq. (72) implies that the mean generalized cost saving of ride-sharing trip (i, j) decreases as the value of 

α  increases. This completes the proof. □ 

Remark 1: The condition 0i ijτ τ− <  means that the average travel time of driving-alone trip i is less than 

that of the whole ride-sharing trip (i, j). This condition usually holds except both driver i and rider j have the 

same origin and destination. The condition 0j ijτ τ− ≤


 means that the average travel time of driving-alone 

trip j is not greater than that of driver i traveling from origin io  to origin jo  for picking up rider j, and then 

traveling to destination jd . This condition must hold. 

Proposition 14. If 0i j ijτ τ τ+ − > , the mean generalized trip cost saving of ride-sharing trip (i, j) increases 

as the value of µ  increases, and vice versa. 

Proof: According to Eq. (70), we have 

* **
ij j iji C CCκ

µ µ µ µ
∂ ∂ ∂∂

= + −
∂ ∂ ∂ ∂

. (73) 

Substituting Eqs. (27) and (58) into Eq. (73), we have 

0ij
i j ij

κ
τ τ τ

µ
∂

= + − >
∂

. (74) 

Eq. (74) implies that the mean generalized trip cost saving of ride-sharing trip (i, j) increases as the value 

of µ  increases. This completes the proof. □ 

Remark 2: The condition 0i j ijτ τ τ+ − >  means that compared with separately implementing driving-alone 

trips i and j, ride-sharing trip (i, j) can save the mean travel time. This condition cannot always hold because 

ride-sharing trip (i, j) cannot always save average travel time. 
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Based on the set of feasible ride-sharing trips, we define the set of candidate drivers and the set of 

candidate riders, respectively, as follows: 

/{ |  such that ( , ) }r d rI i j i j= ∃ ∈Φ ∪ Φ ∈Ω  and (75) 

/{ |  such that ( , ) }d d rJ j i i j= ∃ ∈Φ ∪ Φ ∈Ω . (76) 

According to Eqs. (69) and (75), a candidate driver can be a ride-sharing participant who selects to be (1) 

a driver or (2) either a driver or a rider. According to Eqs. (69) and (76), a candidate rider can be a 

ride-sharing participant who selects to be (1) a rider or (2) either a driver or a rider. 

We can define the set of candidate riders for each driver and the set of candidate drivers for each rider, 

respectively, as follows: 

{ | ( , ) },i j i j i IΘ = ∈Ω ∀ ∈  and (77) 

{ | ( , ) },j i i j j JΞ = ∈Ω ∀ ∈ . (78) 

2.4. The static ride-sharing matching model 

In this paper, we only consider a static ride-sharing matching problem. It is assumed that all users of the 

ride-sharing platform announce their trip schedule one day before, and the ride-sharing company makes 

money by providing the ride-sharing service. The company can deduct a percentage of the total benefit from 

all matched ride-sharing trips, and its revenue can also link to the number of successful ride-sharing 

arrangements (i.e., the number of satisfied drivers and riders in the system) (Agatz et al., 2012). Therefore, the 

platform optimizes users’ matching to maximize the total benefit from all matched ride-sharing trips and the 

number of matches. Using the set of feasible ride-sharing trips, the set of candidate drivers, and the set of 

candidate riders, the matching problem can be formulated as a maximum weight bipartite matching problem, 

which is a mixed-integer linear programming (MILP) problem and is given as follows: 

0
( , ) ( , )

max (1 ) ij ij ij
i j i j

x xφ κ φκ
∈Ω ∈Ω

− +∑ ∑  (79) 

s.t. 1,
i

ij
j

x i I
∈Θ

≤ ∀ ∈∑ , (80) 

   1,
j

ij
i

x j J
∈Ξ

≤ ∀ ∈∑ , and (81) 

   { }0,1 , ( , )ijx i j= ∀ ∈Ω , (82) 

where φ  is a non-negative parameter and [0,1]φ ∈ , 0κ  is a positive parameter and denotes the monetary 

value of forming one more ride-sharing match, and ijκ  follows an earlier definition (see Eq. (70)). The 

objective (79) is to maximize a weighted combination of the mean total generalized trip cost saving and the 

number of matches. The objective is to maximize the total generalized trip cost saving (i.e., minimize the total 
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generalized trip cost) if 0φ = , and to maximize the number of matches if 1φ = . Constraint (80) ensures that 

each driver is matched with no more than one rider. Constraint (81) ensures that each rider is matched with no 

more than one driver. Constraint (82) is the definitional constraint for ride-sharing trip matching decision 

variables. 

2.5. The setting of travel time distributions 

We assume that the travel times of all links are stochastic. For the ease of calculating the mean generalized 

cost saving ijκ  in the road network with time-independent travel time uncertainty, we assume that the travel 

times follow a distribution modified from a Gamma distribution. The definition of the Gamma distribution can 

be stated as follows (Hogg et al., 2013): 

Definition 7 (Gamma distribution). The distribution with the following probability density function (PDF) is 

called the Gamma distribution with the positive parameters ϖ  and θ , and it is denoted as ( , )ϖ θΓ : 

1 /

,  if 0,
( | , ) ( )

0,  otherwise,

xx e x
f x

ϖ θ

ϖϖ θ θ ϖ

− −
≥= Γ




 (83) 

where ( )ϖΓ  is the Gamma function and defined by 

1

0
( ) xx e dxϖϖ

∞ − −Γ = ∫ . (84) 

The mean and variance of a random variable following the PDF defined by Eq. (83) are ϖθ  and 2ϖθ , 

respectively. According to the additivity property of Gamma distributions, we have the following lemma 

(Hogg et al., 2013): 

Lemma 2. If we have a sequence of independent random variables 

~ ( , ), {1,2, , }i iX i nϖ θΓ ∀ ∈  , (85) 

then 
1

n
ii

X
=∑  follows ( )1

,n
ii

ϖ θ
=

Γ ∑ . 

Definition 8. (Shifted Gamma distribution). Let X  follows the Gamma distribution ( , )ϖ θΓ . The 

distribution of Y X τ −= +  is called the shifted Gamma distribution with the parameters τ − , τ , and θ , 

and is denoted as ( , , )τ τ θ−Γ , where τ −  is the minimum value of Y , and τ θϖ τ −= +  is the mean of 

Y . 

Note that the shifted Gamma distribution ( , , )τ τ θ−Γ  immediately follows the Gamma distribution 

( / , )τ θ θΓ  if 0τ − = . If Y  follows the shifted Gamma distribution ( , , )τ τ θ−Γ , then X Y τ −= −  

follows the shifted Gamma distribution (0, , )τ τ θ−Γ − , and also follows the Gamma distribution ( , )ϖ θΓ , 

where ( ) /ϖ τ τ θ−= − . 
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Proposition 15. If we have a sequence of independent random variables 

~ ( , , ), {1,2, , }i i iY i nτ τ θ−Γ ∀ ∈  , (86) 

then 
1

n
ii

Y
=∑  follows ( )1 1

, ,n n
i ii i

τ τ θ−
= =

Γ ∑ ∑ . 

Proof: Let i i iX Y τ −= −  for all {1,2, , }i n∈  . We have 

~ ( , ), {1,2, , }i iX i nϖ θΓ ∀ ∈  , (87) 

where ( ) /i i iϖ τ τ θ−= − . 

According to Lemma 2, we have 
1

n
ii

X
=∑  follows the Gamma distribution ( )1

,n
ii

ϖ θ
=

Γ ∑  and hence 

the mean of the distribution 
1 1

n n
i ii i

E X ϖ θ
= =

  = ∑ ∑ . As ( ) /i i iϖ τ τ θ−= − , 
1 1

( )n n
i i ii i

ϖ θ τ τ −
= =

= −∑ ∑ . 

Hence, we have 

1 1 1
( )n n n

i i i ii i i
E X ϖ θ τ τ −

= = =
  = = − ∑ ∑ ∑ . (88) 

 
By definition, we also have 

1 1 1

n n n

i i i
i i i

Y X τ −

= = =

= +∑ ∑ ∑  and (89) 

1 1 1

n n n

i i i
i i i

E Y E Xτ −

= = =

   = +      
∑ ∑ ∑ . (90) 

 
Substituting Eq. (88) into Eq. (90), we get  

1 1 1 1

n n n n

i i i i
i i i i

E Y τ ϖ θ τ−

= = = =

  = + =  
∑ ∑ ∑ ∑ . (91) 

 

Based on Definition 8, Eqs. (89) and (91), 
1

n
ii

Y
=∑  follows ( )1 1

, ,n n
i ii i

τ τ θ−
= =

Γ ∑ ∑ . This completes the 

proof. □ 

 Let at  be the travel time on link a, which follows the shifted Gamma distribution ( , , )a at t θ−Γ , where 

at
−  and at  are the minimum and mean travel times of link a, respectively. The uncertainty of the travel time 

of link a can increase in two ways: (1) fix the minimum value at
−  but increase the mean value at , and (2) fix 

both the minimum value at
−  and the mean value at  but increase the parameter value θ . In the first way, 

both the mean and variance of the link travel time increase. In the second way, the mean link travel time 

remains unchanged but only the variance of the link travel time increases. In order to better represent the 

changes of travel time uncertainty in the first way, we introduce a non-negative scale parameter λ  such that 
0( )a a a at t t tλ− −= + − , where 0

at  is the reference mean travel time of link a. We note that the value of λ  can 

represent the level of network traffic congestion. When the value of λ  is larger, the road network is more 

congested. Especially, if 0λ = , we have a at t−= , which implies that the travel time of link a is deterministic; 
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if 1λ = , we have 0
a at t= , which implies that the mean travel time of link a equals its reference mean travel 

time. When the mean travel times of all links equal their reference mean travel times, the corresponding mean 

travel time of each trip is defined as the reference mean trip travel time.  

According to the additivity property of shifted Gamma distributions (see Proposition 15), the travel time 

iτ  ( i I∀ ∈ ) follows the shifted Gamma distribution ( , , )i iτ τ θ−Γ , and the travel times ijτ  and ijτ


 

( ( , )i j∀ ∈Ω ) follow the shifted Gamma distributions ( , , )ij ijτ τ θ−Γ
 

 and ( , , )ij ijτ τ θ−Γ , respectively.  

Proposition 16. If the value of λ  increases, then the distributions ( , , )i iτ τ θ−Γ , ( , , )ij ijτ τ θ−Γ  and 

( , , )ij ijτ τ θ−Γ
 

 after the increase first-order stochastically dominate those before the increase. 

Proof: We consider that the value of λ  increases from aλ  to bλ . To simplify the notation, we add 

subscripts ‘a’ and ‘b’ to the functions and parameters corresponding to aλ  and bλ . By definition, we have 
0

,a a ( )i i i iτ τ λ τ τ− −= + − , 0
,b b ( )i i i iτ τ λ τ τ− −= + − , 0

,a a ( ) /i i iϖ λ τ τ θ−= − , and 0
,b b ( ) /i i iϖ λ τ τ θ−= − , 

where 0
iτ  is the reference mean travel time of driving-alone trip i and 0

i iτ τ −> . With a bλ λ<  and 0θ > , 

we have ,a ,bi iϖ ϖ< . Define a,b ,a ,b( ) ( ) ( )i iH F Fτ τ τ= − . By definition, we have  

,a ,b

,a ,b

,a ,b ,a ,b ,b

,a

1 1( )/ ( )/

a,b ,a ,b
,a ,b

1,a ( )/

,b,a

( ) ( )( ) ( ) ( )
( ) ( )

( )1 ( ) ( )
( )( )

i ii i

i ii i

i i i i i i

i

t t
i i

i i t t
i i

i t
i i

ii

t e t eH F F dt dt

t t e dt

ϖ ϖτ θ τ θτ τ

ϖ ϖ

ϖ ϖ ϖ ϖ ϖ τ θ
ϖ

τ ττ τ τ
θ ϖ θ ϖ

ϖ
τ θ τ

ϖθ ϖ

− −

− −

−

− −− − − −− −

− − − − −− −

− −
= − = −

Γ Γ

 Γ
= − − − 

ΓΓ   

∫ ∫

0
.

τ

∫
 (92) 

By definition, we have ,a ,b( ) ( ) 0i i i iF Fτ τ− −= =  and ,a ,blim ( ) lim ( ) 1i iF Fτ ττ τ→+∞ →+∞= = . Those imply 

that a,b ( ) 0iH τ − =  and a,blim ( ) 0Hτ τ→+∞ = . Taking derivative for Eq. (92), we have 

,a ,b ,a ,b ,b

,a

1 ( )/,a

,ba,b

,a

( )
( ) ( )

( )( )
( )

i i i i i i

i

i
i a

i

i

e
dH

d

ϖ ϖ ϖ ϖ ϖ τ τ θ

ϖ

ϖ
τ τ θ τ τ

ϖτ
τ θ ϖ

−− − − − −− − Γ
− − − Γ =

Γ
. (93) 

According to Eq. (93), we have a,b ( ) 0dH dτ τ <  if a,biτ τ τ− < <  and a,b ( ) 0dH dτ τ >  if a,bτ τ> , 

where 

,a ,b
,a ,b

1

,a
a,b

,b

( )
( )

i i
i ii

i
i

ϖ ϖ
ϖ ϖϖ

τ τ θ
ϖ

−
−−  Γ = +  Γ  

 and a,b a,b( ) 0H τ = .  

The above results imply that a,b ( ) 0H τ ≥  for every τ . Equivalently, we have ,a ,b( ) ( )i iF Fτ τ≥  for 

every τ . Similarly, we can prove that ,a ,b( ) ( )ij ijF Fτ τ≥  and ,a ,b( ) ( )ij ijF Fτ τ≥
 

 for every τ . This 

completes the proof. □ 

Proposition 16 implies that if the value of λ  increases, the distributions of travel times that follow 

shifted Gamma distributions after the increase first-order stochastically dominate those before the increase. 
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However, as illustrated by the numerical examples in Section 4.1, the counterpart cannot be established if the 

value of θ  increases. 

Remark 3: Besides the shifted Gamma distribution, other distributions can be used in the proposed model. If 

other distributions are used, the convolution of distributions may be needed before determining the mean 

generalized ride-sharing trip cost saving. 

3. Stochastic ride-sharing model with time-dependent travel time uncertainty 

3.1. Representation of time-dependent travel time uncertainty 

We consider a road network G (N, A) with multiple origins and destinations, where N  and A  are 

defined as the set of nodes and the set of arcs (links), respectively. We discretize the time period T of interest 

into a finite set of time intervals { 1,2, , }K k K= =  . Let 1kt − , kt , and kt  be the start time, the end time 

and the middle time of time interval k. It is assumed that each link a A∈  has a stochastic travel time ,a kτ  

during interval k K∈ . Without loss of generality, we assume that the travel time ,a kτ  follows a distribution 

with the range , ,[ , ]a k a kτ τ− + , and has a mean value of ,a kτ , where ,a kτ −  and ,a kτ +  are the minimum and 

maximum travel times of travelers traveling through link a during interval k, respectively. Because travel 

times must be positive in reality, we define , 0a kτ − > . Let , ( )a kf τ  and , ( )a kF τ  be the probability density 

function and cumulative distribution function of the travel time ,a kτ , respectively. We use the mean value of 

the travel time ,a kτ  to reflect the congestion level of link a during interval k. It is assumed that all trips use 

the paths with the minimum mean travel times. Let ( )iP k  be the path of driving alone trip i that departs 

origin io  during interval k. Let ( )ijP k  be the path of ride-sharing trip (i, j) that departs origin io  during 

interval k. 

3.2. Evaluating the mean generalized trip cost 

We consider a given driving-alone trip i departing at time instant t , where 
1 11( , ]k kt t t−∈ . By assumption, 

path 1( )iP k  is used by driving-alone trip i. Let iw  be the number of links on path 1( )iP k , and va  be the 

vth link on path 1( )iP k . We have 1 1 2( ) { , , , }
ii wP k a a a=  . Let 

vat  and vk  be the time instant and time 

interval of driving-alone trip i entering link va . The following MCS method with a sample size of M can be 

used to obtain the mean generalized cost of driving-alone trip i departing at time instant t : 

Procedure 1: MONTECARLO_ DRIVING-ALONETRIPCOST (i, t, M) 
Set 1m = . 
while m M≤  do 

Set 1v = , 
1

( )m
at t= , and ( )

1 1
mk k= . 

while iv w≤  do 

Sample the link travel time ( )
v

m
aτ  according to the travel time density function ( ),

( )m
v va k

f τ . 

Calculate the link entry time 
1

( ) ( ) ( )
v v v

m m m
a a at t τ

+
= + . 
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Find ( )
1

m
vk +  such that ( ) ( )1 1 1

( )
1

( , ]m mv v v

m
a k k

t t t
+ + +−

∈ . 

1v v= +  
end do 
Update the trip travel time 

1

( ) ( )
wi

m m
i at tτ

+
= −  

Calculate the trip travel cost ( ) ( )m
iC t  according to Eq. (11), where ( )m

i iτ τ= . 

Estimate the mean generalized trip cost ( ) ( 1) ( )( ) [( 1) ( ) ( )] /m m m
i i iC t m C t C t m−= − + . 

1m m= +  
end do 
Output the mean generalized trip cost ( ) ( )M

iC t . 

The inputs to Procedure 1 are driving-along trip i, departure time t, and the sample size M . In this 

procedure, firstly, the link travel time of each link on path 1( )iP k  was sampled according to its density 

function. Then, the sampled link travel times were used to calculate the path travel time of driving-along trip i. 

The path travel time and the departure time were then used to update its generalized trip cost and the updated 

generalized trip cost was further used to determine the mean generalized trip cost. The above steps were 

repeated by M  times and finally, the mean generalized trip cost ( ) ( )M
iC t  was outputted. 

We consider a given ride-sharing trip (i, j) departing at time instant t  during interval 1k , where 

1 11( , ]k kt t t−∈ . By assumption, path 1( )ijP k  is used by ride-sharing trip (i, j) departing at time instant t . Let 

ijw  and ijw


 be the numbers of links on path 1( )ijP k  from origin io  to destinations id  and jd , 

respectively. Let va  be the vth link on path 1( )ijP k . By definition, ijw  is the number of links on path 

1( )ijP k , and 1 1 2( ) { , , , , , }
ijijij w wP k a a a a=



  . The following MCS method with a sample size of M can be 

used to obtain the mean generalized cost of ride-sharing trip (i, j) departing at time instant t : 

Procedure 2: MONTECARLO_ RIDE-SHARINGTRIPCOST (i, j, t, M) 
Set 1m = . 
while m M≤  do 

Set 1v = , 
1

( )m
at t= , and ( )

1 1
mk k= . 

while iv w≤  do 

Sample the link travel time ( )
v

m
aτ  according to the travel time density function ( ),

( )m
v va k

f τ . 

Calculate link entry time 
1

( ) ( ) ( )
v v v

m m m
a a at t τ

+
= + . 

Find ( )
1

m
vk +  such that ( ) ( )1 1 1

( )
1

( , ]m mv v v

m
a k k

t t t
+ + +−

∈ . 

1v v= +  
end do 
Update the trip travel time 

1

( ) ( )
w j

m m
aij t tτ

+
= −



 and 
1

( ) ( )
wi

m m
ij at tτ

+
= − . 

Calculate the generalized trip cost ( ) ( )m
ijC t  according to Eq. (35), where ( ) ( )m

ij ij tτ τ=
 

 and 
( ) ( )m

ij ij tτ τ= . 

Estimate the mean generalized trip cost ( ) ( 1) ( )( ) [( 1) ( ) ( )] /m m m
ij ij ijC t m C t C t m−= − + . 

1m m= +  
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end do 
Output the mean generalized trip cost ( ) ( )M

ijC t . 

The inputs to Procedure 2 are ride-sharing trip (i, j), departure time t, and the sample size M . In this 

procedure, firstly, the link travel time of each link on path 1( )ijP k  was sampled according to its density 

function. Then, the sampled link travel times were used to calculate the path travel time of ride-sharing trip (i, 

j). The path travel time and the departure time were then used to update its generalized trip cost and the 

updated generalized trip cost was further used to determine the mean generalized trip cost. The above steps 

were repeated by M  times and finally, the mean generalized trip cost ( ) ( )M
ijC t  was outputted. 

3.3. Ride-sharing match schemes by Monte Carlo Simulation methods 

Before using the ride-sharing matching model (79)-(82) to determine an optimal ride-sharing match 

scheme, the ride-sharing platform should firstly estimate the optimal departure time and the minimum trip cost 

of each driving-alone trip and ride-sharing trip. Our method is that each time interval is divided into smaller 

sub-intervals. Let kH  be the set of sub-intervals of time interval k, and H  be the set of all sub-intervals. 

Let ht  be the middle time instant of sub-interval h H∈ . By using Procedures 1 and 2, we can obtain the 

values of ( )i hC t ( ,i h H∀ ∈Φ ∈ ) and ( )ij hC t  ( , ,i j h H∀ ∈Φ ∈Φ ∈ ), respectively. The optimal departure 

time of a driving-alone trip i can be approximated by *
*

i
i h

e t= , where * arg min { ( )}i h H i hh C t∈= , and the 

optimal departure time of a ride-sharing trip (i, j) can be approximated by *
*

ij
ij h

e t= , where 
* arg min { ( )}ij h H ij hh C t∈= . The minimum mean generalized costs of driving-alone trips and ride-sharing trips 

can be, respectively, estimated as follows: 

*
* ( ) min{ ( )},

i
i i i hh h H

C C t C t i
∈

= = ∀ ∈Φ  and (94) 

*
* ( ) min{ ( )}, ,

ij
ij ij ij hh h H

C C t C t i j
∈

= = ∀ ∈Φ ∈Φ *
* ( ) min{ ( )}, , ,

ij
ij ij ij hh h H

C C t C t i j h H
∈

= = ∀ ∈Φ ∈Φ ∈ . (95) 

Substituting Eqs. (96) and (97) into Eqs. (69) and (70), we can obtain the set of feasible ride-sharing trips 

Ω  and the mean generalized ride-sharing trip cost saving ijκ , respectively. Then, we can solve the MILP 

problem (79)-(82) to obtain the optimal ride-sharing match scheme. 

4. Numerical examples  

To demonstrate the properties of the proposed models, we present four numerical examples in this section. 

All experiments were run on a computer with an Intel (R) Xeon(R) E5-2420 2.20GHz CPU and a 32.0GB 

RAM. The ride-sharing matching model in this paper was solved by a commercial software package, IBM 

ILOG CPLEX (version 12.5). Unless otherwise stated, the following parameters are set as follows: α  = 0.8 

HK$/min, β  = 0.5 HK$/min, γ  = 3.0 HK$/min, µ  = 1.2 HK$/min, 0µ  = 0 HK$, and 0ε = . 

4.1. A driving-alone trip 

In this example, we consider a single driving-alone trip. The trip travel time follows a shifted Gamma 
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distribution. Unless otherwise stated, we have θ = 10.0 min and 1λ = . The minimum and reference mean 

travel times of this driving-alone trip are set to be 30 min and 50 min, respectively. The preferred arrival time 

of the driver is 9:00 am. 

4.1.1. The effect of the unit variable cost of driving and traveler’s VOTs 

We set different values to the unit variable cost of driving ( µ ), and traveler’s VOTs (α , β , and γ ) and 

obtained the optimal departure time and the mean generalized cost of the driving-alone trip as illustrated in 

Fig. 3. We can observe from Figs. 3(a) and 3(b) that the optimal departure time remains unchanged as the 

values of µ  and α  increase. This result is consistent with Proposition 2 that the optimal departure time of 

a driving-alone trip is independent of both the values of µ  and α . The results presented in Figs. 3(c) and 

3(d) show that the optimal departure time of the driving-alone trip becomes earlier when the value of β  is 

smaller or the value of γ  is larger, which is consistent with Proposition 3. One can also observe from Fig. 3 

that the mean generalized cost of the driving-alone trip uniformly increases as the values of µ , α , β , and 

γ  increase. This result is consistent with Proposition 4. 
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Fig. 3. The effect of the unit variable cost of driving and traveler’s VOTs on the optimal departure time and 
the mean generalized cost of a driving-alone trip. 

4.1.2. The effect of travel time uncertainty 

With different values of λ , we obtained the corresponding cumulative distribution function of the 

driving-alone trip and its curves is shown in Fig. 4. One can observe that the distribution of the travel time of 
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the driving-alone trip after the increase of the value of λ  first-order stochastically dominates that before the 

increase. This result is consistent with Proposition 16. We also calculated the corresponding optimal departure 

time and mean generalized cost of the driving-alone trip and the results are shown in Fig. 5. It is observed that 

the optimal departure time of the driving-alone trip becomes earlier and the mean generalized cost of the 

driving-alone trip becomes larger when the value of λ  is larger (i.e., the uncertainty of the driving-alone trip 

travel time is larger). This result is consistent with Proposition 5 that the optimal departure time of a 

driving-alone trip becomes earlier and its mean generalized cost is larger when its travel time uncertainty is 

larger. Besides, Fig. 5 indicates that the cost of driving (including both the fixed and variable driving cost) and 

the in-vehicle travel time cost have a larger increase than the costs of early and late arrivals. This is because an 

increase in λ  leads to an increase in the mean trip travel time, and a traveler’s driving cost and in-vehicle 

travel time cost are very sensitive to the mean trip travel time. However, the driver can avoid a large increase 

in the costs of early and late arrivals by adjusting his/her departure time choice. 
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Fig. 4. The effect of the value of λ  on the cumulative distribution function of a driving-alone trip. 

 
Fig. 5. The effect of the value of λ  on the optimal departure time and the trip cost of a driving-alone trip. 

We increased the value of θ  from 0 min to 20 min with other parameters fixed, and obtained the 



29 
 

cumulative distribution function of travel time, the optimal departure time, and the mean generalized cost of 

the driving-alone trip as revealed in Figs. 6 and 7. One can observe from Fig. 6 that the distribution of the 

travel time of the driving-alone trip after the increase of the value of θ  does not always first-order 

stochastically dominates that before the increase. It is also observed from Fig. 7 that the optimal departure 

time of the driving-alone trip becomes earlier and the generalized cost of the driving-alone trip becomes larger 

when the value of θ  is larger. This result implies that the optimal departure time of a driving-alone trip 

becomes earlier and its mean generalized cost is larger when its travel time uncertainty is larger. We can 

further observe that the total driving cost and the cost of in-vehicle time do not change when the value of θ  

grows up. This is because the mean trip travel time remains unchanged although the variance of the link travel 

time increases as the value of θ  changes. However, an increase in travel time uncertainty can lead to an 

increase in the costs of early and late arrivals, leading to an increase in the mean generalized cost. 
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Fig. 6. The effect of the value of θ  on the cumulative distribution function of a driving-alone trip. 

 
Fig. 7. The effect of the value of θ  on the optimal departure time and the trip cost of a driving-alone trip. 

4.2. A ride-sharing trip 

In this example, we consider a ride-sharing trip (i, j) with two scenarios. The preferred arrival times for 
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rider i and driver j are both 9:00 am in Scenario 1, and are 8:45 am and 9:00 am in Scenario 2, respectively. In 

both scenarios, rider i and driver j have the same destination. The trip travel times follow shifted Gamma 

distributions. Unless otherwise stated, we have θ = 10.0 min and 1λ = . The trip travel times related to the 

ride-sharing trip for both scenarios are provided in Table 1. 

Table 1. The trip travel times related to ride-sharing trip (i, j). 

Scenario Travel time iτ  (min) jτ  (min) ijτ


 (min) ijτ  (min) 

Scenario 1 
Minimum travel time 30 20 40.5 40.5 

Reference mean travel time 50 33.3 67.5 67.5 

Scenario 2 
Minimum travel time 30 20 39.5 39.5 

Reference mean travel time 40 26.7 52.7 52.7 

4.2.1. The effect of the unit variable cost of driving and traveler’s VOTs 

We set different values of the unit variable cost of driving and traveler’s VOTs for the ride-sharing 

participants in Scenario 1, and got the optimal departure times and the mean generalized cost savings of the 

ride-driving trip as shown in Fig. 8. We can observe from Figs. 8(a) and 8(b) that the optimal departure time 

remains unchanged as the values of µ  and α  increase. However, a larger value of µ , i.e., a larger unit 

variable cost of driving, can lead to a larger mean generalized ride-sharing trip cost saving, and a larger value 

of α , i.e., a larger unit cost of in-vehicle travel time, can lead to a smaller mean generalized ride-sharing 

trip cost saving. This is because a ride-sharing trip increases total travel time while decreases total driving 

time compared to a driving-alone trip. The results presented in Figs. 8(c) and 8(d) show that the optimal 

departure time of the ride-sharing trip becomes earlier when the value of β  is smaller or the value of γ  is 

larger. This result is consistent with Proposition 7. We can also observe from Fig. 8 that the mean generalized 

ride-sharing trip cost saving uniformly increases when the value of the unit variable cost of driving grows up. 

This result is consistent with Proposition 8. We also set different values of the unit variable cost of driving 

and traveler’s VOTs for the ride-sharing participants in Scenario 2, and the results are similar to those in 

Scenario 1. 

4.2.2. The effect of travel time uncertainty 

We conducted the sensitivity analysis of solutions to the travel time uncertainty of the ride-sharing trip (i.e., 

changing the mean or the variance of trip travel times for the ride-sharing trip), and obtained the optimal 

departure time of each ride-sharing trip and the optimal departure time of each driving-alone trip for both 

scenarios for different values of λ  and θ  as shown in Fig. 9. It is seen from Figs. 9(a) and 9(b) that the 

optimal departure time of the ride-sharing trip becomes earlier in both scenarios as travel time uncertainty is 



31 
 

larger, i.e., the mean or the variance of the travel time of the ride-sharing trip is larger. This result is consistent 

with Proposition 10. Besides, the optimal departure time of the ride-sharing trip in each scenario is earlier than 

that of each driving-alone trip. This is because the ride-sharing trips in both scenarios adopt earlier departure 

times to coordinate the driver and the rider. 
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Fig. 8. The effect of the unit variable cost of driving and traveler’s VOTs on the optimal departure time and 
the mean generalized cost saving of the ride-sharing trip in Scenario 1. 
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Fig. 9. The effect of travel time uncertainty on the optimal departure times. 

The mean generalized cost savings of the driving-alone trip for both scenarios are presented in Fig. 10. 

One can observe from Figs. 10(a) and 10(b) that the mean generalized cost saving of the ride-sharing trip is 

initially positive in Scenario 1 and decreases and becomes negative as the values of λ  and θ  increase. The 

travel time of the ride-sharing trip becomes deterministic when 0λ =  or θ = 0 min, and travel time 
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uncertainty increases as the values of λ  and θ  increase. Hence, the results presented in Fig. 10 associated 

with Scenario 1 indicate that a feasible ride-sharing match based on deterministic travel times can become 

infeasible when travel time uncertainty increases. Fig. 10(a) indicates that as the value of λ  increases in 

Scenario 2, the mean generalized cost saving of the ride-sharing trip increases and becomes positive when 

1λ ≥ . Fig. 10(b) indicates that the mean generalized cost saving of the ride-sharing trip increases θ  from 0 

to 6.0 min and initially the mean generalized cost saving is negative and then becomes positive when 

[ ]2,10θ ∈  min. Hence, the results presented in Fig. 10 associated with Scenario 2 indicate that an infeasible 

ride-sharing match with deterministic travel times can become a feasible one when travel time uncertainty 

increases. 
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Fig. 10. The effect of travel time uncertainty on the mean generalized cost saving of the driving-alone trip. 

4.3. Ride-sharing in the Chicago sketch network with time-independent travel time uncertainty 

In this example, the Chicago sketch network is adopted to illustrate the properties of the proposed 

stochastic ride-sharing model with time-independent travel time uncertainty. The network has 387 zones, 933 

nodes, and 2950 links. The relevant network data were taken from the transportation network datasets 

maintained by Bar-Gera (2018) (http://www.bgu.ac.il/~bargera/tntp/). The free flow travel time of each link is 

adopted as its minimum link travel time. The travel time of each link follows a shifted Gamma distribution. 

Unless otherwise stated, we set θ = 10.0 min and 1λ = . Let ρ  be the proportion of ride-sharing 

participants who select to be either a driver or a rider. The proportions of ride-sharing participants who select 

to be a ride-sharing driver and who select to be a ride-sharing rider are the same. Each participant randomly 

took a zone as his/her origin and another zone as his/her destination. It is assumed that all trips use the paths 

with the minimum mean travel times. The mean travel time of each link was randomly generated from 1.5 

times to 2.5 times of its minimum link travel time. The preferred arrival time of each traveler follows a 

truncated normal distribution with a lower bound value of 7:30, an upper bound value of 9:30, a mean value of 

8:30, and a variance value of 30 min. All ride-sharing participants have the same arrival time flexibility of 5 

min. Unless otherwise stated, we use the following parameters: N = 7500,  = 0.5ρ , and  = 0.5φ . 

http://www.bgu.ac.il/%7Ebargera/tntp/chicago/sketch/ChicagoSketch_net.zip
http://www.bgu.ac.il/%7Ebargera/tntp/
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The proposed ride-sharing system aims to maximize the number of feasible matches (i.e., the ride-sharing 

match rate) and the total mean generalized trip cost saving from all matched ride-sharing trips. The 

ride-sharing match rate and the mean generalized cost saving rate are defined as follows, respectively: 
*

( , )
2

100%
| |

ij
i j

M

x
ω ∈Ω= ×

Φ

∑
 and  

*

( , )
* 100%
ij ij

i j
C

i
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x

C

κ
ω ∈Ω

∈Φ

= ×
∑
∑

,  

where | |Φ  is the number of ride-sharing participants and the numerator in the first equation is the number of 

people involved in all feasible matches. 

4.3.1. The effect of the unit variable cost of driving and travelers’ VOTs 

We set different values of the unit variable cost of driving and travelers’ VOTs for the ride-sharing 

participants, and obtained the ride-sharing match rates and the mean generalized cost saving rates as shown 

in Fig. 11. It is observed that both the ride-sharing match rate and the mean generalized cost saving rate 

monotonically increase as the unit variable cost of driving increases or travelers’ VOTs decrease. This is 

because an increase in the value of the unit variable cost of driving or a decrease in travelers’ VOTs can lead 

to an increase in the mean generalized cost saving of each feasible ride-sharing trip. This eventually 

increases the participants of ride-sharing in the system. 
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Fig. 11. The effect of the unit variable cost of driving and travelers’ VOTs on the ride-sharing match rate and 
the mean generalized cost saving rate. 

4.3.2. The effect of trip travel time uncertainty and the number of ride-sharing participants  

We set different values of λ  and different numbers of ride-sharing participants, and obtained the 

corresponding ride-sharing match rate and mean generalized cost saving rate as illustrated in Fig. 12. It is 

observed that both the ride-sharing match rate and the cost saving rate monotonically increase as the value of 

λ  increases. If the value of λ  grows up, the average link travel times increase. Hence, the results presented 

in Fig. 12 imply that ride-sharing participants can get more generalized trip cost saving in a more congested 

network, which encourages more ride-sharing participation. Besides, it is illustrated that both the ride-sharing 

match rate and the cost saving rate monotonically increase as the number of ride-sharing participants increases. 

This is because the ride-sharing system can provide more feasible and better matches when there are more 

ride-sharing participants. 

We set different values of θ , and obtained the corresponding ride-sharing match rate and mean 

generalized cost saving rate as shown in Fig. 13. We can notice that the ride-sharing match rate slightly 

increases and the mean generalized cost saving rate monotonically decreases as the value of θ  increases. 

This implies that travelers can get less generalized trip cost saving from ride-sharing participation if the 

network has a higher uncertainty of travel time. The results presented in Fig. 13 also confirm that both the 

ride-sharing match rate and the cost saving rate monotonically increase as the number of ride-sharing 

participants increases. 
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Fig. 12. The effect of the value of λ  and the number of ride-sharing participants on the ride-sharing match 

rate and the mean generalized cost saving rate. 
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Fig. 13. The effect of the value of θ  and the number of ride-sharing participants on the ride-sharing match 

rate and the mean generalized cost saving rate. 

4.3.3. The effect of travelers’ role tendency 

We set different values of ρ  and different numbers of ride-sharing participants, and got the ride-sharing 

match rates and the mean generalized cost saving rates as shown in Fig. 14. We can observe that both the 

ride-sharing match rate and the mean generalized cost saving rate monotonically increase as the value of ρ  

increases. This is because more ride-sharing participants selecting to be either a driver or a rider can bring 

more feasible ride-sharing matches, which can lead to a larger feasible solution set for the ride-sharing match 

model. The results presented in Fig. 14 also confirm that both the ride-sharing match rate and the cost saving 

rate monotonically increase as the number of ride-sharing participants increases. 
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Fig. 14. The effect of the value of ρ  and the number of ride-sharing participants on the ride-sharing match 

rate and the mean generalized cost saving rate. 

4.3.4. A comparison with the ride-sharing system without capturing uncertainty 

A given ride-sharing trip is defined as a missed feasible match if the ride-sharing trip is feasible in the 
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stochastic ride-sharing system but infeasible in the deterministic ride-sharing system. A given ride-sharing trip 

is defined as an improper match if the trip is infeasible in the stochastic ride-sharing system but feasible in the 

deterministic ride-sharing system. The percentage of missed feasible matches mϖ  and the percentage of 

improper matches iϖ  are defined as follows: 
| ( ) | | ( ) (0) |

100%
| ( ) |m

θ θ
ϖ

θ
Ω − Ω Ω

= ×
Ω



  and  

| (0) | | ( ) (0) |
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| ( ) |i

θ
ϖ

θ
Ω − Ω Ω

= ×
Ω



,  

where ( )θΩ  is the set of feasible matches associated with the parameter θ  and | ( ) |θΩ  is the number of 

feasible matches associated with the parameter θ . In particular, 0θ =  implies no travel time uncertainty 

and (0)Ω  is the set of feasible matches in the deterministic ride-sharing system. ( ) (0)θΩ Ω  is the set of 

feasible matches in both the deterministic and stochastic ride-sharing systems. 

We varied the value of θ  and the number of ride-sharing participants, and obtained the sets of feasible 

matches for the deterministic and stochastic ride-sharing systems. Fig. 15 shows the percentage of missed 

feasible matches and the percentage of improper matches. It is observed that both percentages grow up as 

travel time uncertainty increases. This implies that the deterministic ride-sharing match model considers more 

improper ride-sharing matches and misses more feasible ride-sharing matches when travel time uncertainty is 

larger. It can also observe from Fig. 15 that the number of ride-sharing participants has little influence on the 

percentage of missed feasible matches and the percentage of improper matches. 
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Fig. 15. The effect of travel time uncertainty on the percentage of missed feasible matches and the percentage 

of improper matches. 

To illustrate the importance of capturing uncertainty, we compared the performance of the ride-sharing 

systems with and without capturing uncertainty. The mean total generalized cost of each ride-sharing trip in 

each obtained ride-sharing system was evaluated by Eq. (37). We adopted the feasible ride-sharing match rate 

and the mean generalized cost saving rate to illustrate the performance of the two ride-sharing systems. 
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We varied the value of φ  in the objective function (79) and solved the static ride-sharing matching model 

for both the deterministic and stochastic ride-sharing systems. Fig. 16 shows the feasible ride-sharing match 

rate and the mean generalized cost saving rate for both the deterministic and stochastic ride-sharing systems. 

Compared with the ride-sharing system without capturing uncertainty, the ride-sharing system that captures 

uncertainty can significantly improve the ride-sharing match rate and increase the mean generalized cost 

saving rate. This result implies that travel time uncertainty should be captured in the ride-sharing system. 
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Fig. 16. The effect of the value of φ  on the feasible ride-sharing match rate and the mean generalized cost 

saving rate of the ride-sharing system with and without capturing uncertainty.  

4.4. Ride-sharing in the Chicago sketch network with time-dependent travel time uncertainty 

In this example, the Chicago sketch network is also adopted to illustrate the properties of the proposed 

stochastic ride-sharing model with time-dependent travel time uncertainty. It is assumed that the travel time of 

each link during each time interval follows has a uniform distribution. The mean link travel time is set as 

follows: 

0 2
, 2max 0, ( )

U
U Ca

a k a a k at t
R

ξττ τ ξτ
 

= + − − 
 

, (96) 

where 0
aτ  is the free flow travel time of link a, C

at  and R  are the middle time and the half-width of 

morning rush hours of link a, ξ  is a non-negative parameter, and U
aτ  is the reference maximum mean 

travel time minus the free flow travel time of link a during the morning rush hours. We note that the value of 

ξ  can reflect the level of network traffic congestion. When the value of ξ  is larger, the road network is 

more congested. The minimum travel time of travelers traveling through link a during interval k is set as 
0

, ,(1 )a k a a kτ ζτ ζ τ− = + − , where ζ  is a non-negative parameter and [0,1]ζ ∈ . When the value of ζ  is 

http://www.bgu.ac.il/%7Ebargera/tntp/chicago/sketch/ChicagoSketch_net.zip
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larger, the road network has larger travel time uncertainty. Especially, if  = 0ζ , the minimum travel time 

,a kτ −  equals the mean travel time ,a kτ , and there is no uncertainty. If  = 1ζ , the minimum travel time ,a kτ −  

equals the free-flow travel time 0
aτ . The parameter C

at  was randomly generated from a truncated normal 

distribution with a lower bound value of 7:30, an upper bound value of 9:30, a mean value of 8:30, and a 

variance value of 15 min. The value of R  is two hours. U
aτ  was randomly generated from 1.5 times to 2.5 

times of the free flow travel time of link a. The length of each time interval is 10 min. Unless otherwise stated, 

we use the following parameters: N = 7500, 1ξ = , 0.5ζ = ,  = 0.5φ , and 10000M = . 

4.4.1. The effect of sample sizes 

We set different sample sizes ( M ) to obtain the optimal ride-sharing match schemes. The obtained 

optimal ride-sharing match schemes were reevaluated by the MCS method with a sample size of 10000M = . 

The resultant ride-sharing match rate and the mean generalized cost saving rate are shown in Fig. 17. We can 

observe that both the ride-sharing match rate and the mean generalized cost saving rate monotonically 

increase as the value of M  increases, and the two curves in Fig. 17 are concave. This implies that a further 

increase in the value of M leads to almost no change in the two values if the value of M is large enough. 
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Fig. 17. The effect of the sample size on the ride-sharing match rate and the mean generalized cost saving rate. 

4.4.2. The effect of travel time uncertainty 

We set different values of ξ  and different numbers of ride-sharing participants, and obtained the 

ride-sharing match rates and the mean generalized cost saving rates as illustrated in Fig. 18. It is observed 

that both the ride-sharing match rate and the cost saving rate monotonically increase as the value of ξ  

increases. If the value of ξ  grows up, the average link travel times increase. Hence, the results presented in 
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Fig. 18 imply that travelers can get more generalized trip cost saving from ride-sharing participation in a 

more congested network, which encourages more ride-sharing participation. This result is consistent with 

that in Section 4.3.2. Moreover, the results presented in Fig. 18 confirm that both the ride-sharing match rate 

and the cost saving rate monotonically increase as the number of ride-sharing participants increases. 
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Fig. 18. The effect of the value of ξ  on the feasible ride-sharing match rate and the mean generalized cost. 

We set different values of ζ , and obtained the ride-sharing match rates and the mean generalized cost 

saving rates as shown in Fig. 19. We can see that both the ride-sharing match rate and the mean generalized 

cost saving rate monotonically decrease as the value of ζ  increases. This implies that travelers can get less 

generalized trip cost saving from ride-sharing participation if the network has a higher uncertainty of travel 

time. We can also observe from Fig. 19 that the ride-sharing system that captures uncertainty can 

significantly improve the ride-sharing match rate and increase the mean generalized cost saving rate than the 

counterpart without capturing uncertainty, especially when the travel time uncertainty increases. This result 

confirms that travel time uncertainty should be captured in the ride-sharing system. 

4.4.3. Model size and computational efficiency of the static ride-sharing matching models 

We set different numbers of ride-sharing participants, and obtained the corresponding number of decision 

variables in the static ride-sharing matching model and CPU time for solving the model as illustrated in Table 

2. It is observed that both the number of variables and the CPU time monotonically increase as the number of 

ride-sharing participants increases. This is because an increase in the number of ride-sharing participants can 

lead to an increase in the number of feasible ride-sharing matches. This eventually increases the CPU time for 

solving the matching model. The results presented in Table 2 also show that the number of feasible 

ride-sharing trips is less than ten times of the number of ride-sharing participants and the CPU time is less 

than 50 seconds when the number of ride-sharing participants is no more than 10000. Moreover, we can see 

from Table 2 that the ride-sharing matching model that captures uncertainty has less number of variables and 
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can be solved with less CPU time than the counterpart without capturing uncertainty. 
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Fig. 19. The effect of the value of ζ  on the feasible ride-sharing match rate and the mean generalized cost 

saving rate of the ride-sharing system with and without capturing uncertainty. 

Table 2. The model size and computational efficiency of the static ride-sharing matching model 
Number of 

ride-sharing participants 
Without capturing uncertainty With capturing uncertainty 

Number of variables CPU Time(s) Number of variables CPU Time(s) 
1000 1111 0.15  941 0.05  
2000 3173 0.15  2794 0.11  
3000 8826 0.32  7666 0.37  
4000 13074 0.44  11851 0.38  
5000 23698 1.11  21179 1.63  
6000 35623 3.07  30863 3.01  
7000 45694 3.84  40692 2.30  
8000 60800 5.70  53884 4.07  
9000 72968 6.60  63849 7.14  

10000 93995 40.53  84331 7.24  

5. Conclusions 

In this paper, we propose a ride-sharing system with the consideration of travel time uncertainty. In the 

proposed ride-sharing system, a traveler’s generalized trip cost consists of the cost of driving a vehicle, the 

cost of travel time, and the costs of schedule delay early and late. The effects of the unit variable cost of 

driving, traveler’s VOTs, and travel time uncertainty on the cost of a driving-alone trip and the cost saving of 

a ride-sharing trip are analyzed. Furthermore, a bi-objective ride-sharing matching model is proposed to 

maximize both the total generalized trip cost saving and the number of matches. The proposed ride-sharing 
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system is further extended to consider time-dependent travel time uncertainty, and the MCS method is 

developed to evaluate the mean generalized trip cost. Finally, numerical examples are provided to illustrate the 

properties of the proposed models. The results show that the unit variable cost of driving, travelers’ VOTs, 

travel time uncertainty, and the selection of the weights in the objective function have significant impacts on 

the performance of the ride-sharing systems. In particular, a feasible ride-sharing match based on deterministic 

travel time can become infeasible in a stochastic ride-sharing system. It is therefore important to consider 

travel time uncertainty when determining the matches. 

This study assumes that travelers’ VOTs are identical. Moreover, a ride-sharing driver only takes a single 

rider and travelers in the ride-sharing platform announce their trip schedule one day before. However, the 

modeling framework in the paper can be easily extended to consider factors such as one driver taking multiple 

riders (e.g., Baldacci et al., 2004; Calvo et al., 2004; Ghoseiri et al. 2011), dynamic ride-sharing (e.g., Agatz et 

al., 2011, 2012; Stiglic et al., 2015, 2016; Masoud and Jayakrishnan, 2017), and different VOTs (e.g., Xiao et 

al., 2014; Wu and Huang, 2015). In other words, this study lays a good foundation for future research about 

developing a more realistic ride-sharing matching model. 

This study assumes that the distributions of link travel times are independent of the choice of the users of 

the ride-sharing platform (i.e., endogenous congestion-free). In reality, the interaction and competition among 

users in the whole network may not only endogenize the travel time, but also impact the match and price of 

ride-sharing, which is one of the main revenue sources of the private platform. In the future, the interaction 

and competition among users in a network will be considered into our model. 

Acknowledgments 

This work is jointly supported by the National Natural Science Foundation of China (71431003, 71522001, 

71871077), a grant from the Research Grants Council of the Hong Kong Special Administrative Region, 

China (HKU 17201217), and the Fundamental Research Funds for the Central Universities 

(JZ2016HGPB0736). The authors are grateful to the two reviewers for their constructive comments. 

References 

Alpha, A.S., Minh, D.L., 1979. A stochastic model for the temporal distribution of traffic demand—the peak 
hour problem. Transport. Sci. 13 (4), 315-324. 

Agatz, N.A.H., Erera, A., Savelsbergh, M.W.P., Wang, X., 2011. Dynamic ride-sharing: a simulation study in 
metro Atlanta. Transport. Res. B 45 (9), 1450-1464. 

Agatz, N., Erera, A., Savelsbergh, M., Wang, X., 2012. Optimization for dynamic ride-sharing: A review. Eur. 
J. Oper. Res. 223 (2), 295-303. 

Baldacci, R., Maniezzo, V., Mingozzi, A., 2004. An exact method for the car pooling problem based on 
Lagrangean column generation. Oper. Res. 52 (3), 422-439. 

Bar-Gera, H., 2018. Transportation network test problems. http://www.bgu.ac.il/~bargera/tntp/. (Accessed on 



42 
 

January 10, 2018) 

Bruck, B.P., Incerti, V., Iori, M., Matteo, V., 2017. Minimizing CO2 emissions in a practical daily carpooling 
problem. Comput. Oper. Res. 81, 40-50. 

Calvo, R.W., de Luigi, F., Haastrup, P., Maniezzo, V., 2004. A distributed geographic information system for 
the daily carpooling problem. Comput. Oper. Res. 31 (13), 2263-2278. 

Chan, N.D., Shaheen, S.A., 2012. Ridesharing in North America: past, present, and future. Transport Rev. 32 
(1), 93-112. 

Chen, X.M., Chen, X., Zheng, H., Chen, C., 2017a. Understanding network travel time reliability with 
on-demand ride service data. Front. Eng. Manage. 4(4), 388-398. 

Chen, X.M., Zahiri, M., Zhang, S., 2017b. Understanding ridesplitting behavior of on-demand ride services: 
An ensemble learning approach. Transport. Res. C 76, 51-70.  

Clark, S., Watling, D., 2005. Modelling network travel time reliability under stochastic demand. Transport. 
Res. B 39 (2), 119-140. 

Di, X., Ma, R., Liu, H.X., Ban, X.J., 2018. A link-node reformulation of ridesharing user equilibrium with 
network design. Transport. Res. B 112, 230-255. 

Ferguson, E., 1997. The rise and fall of the American carpool: 1970–1990. Transportation 24 (4), 349-376. 

Fu, X., Lam, W.H., Chen, B.Y. 2014. A reliability-based traffic assignment model for multi-modal transport 
network under demand uncertainty. Transport. Res. B 48 (1), 66-85. 

Furuhata, M., Dessouky, M., Ordonez, F., Brunet, M., Wang, X., Koenig, S., 2013. Ridesharing: The 
state-of-the-art and future directions. Transport. Res. B 57, 28-46. 

Fosgerau, M., 2010. On the relation between the mean and variance of delay in dynamic queues with random 
capacity and demand. J. Econ. Dynam. Control 34 (4), 598-603. 

Ghoseiri, K., Haghani, A., Hamedi, M., 2011. Real-Time Rideshare Matching Problem. Department of Civil 
and Environmental Engineering, University of Maryland, UMD-2009-05, DTRT07-G-0003. 

Hogg, R.V., McKean, J., Craig, A.T., 2013. Introduction to mathematical statistics: Pearson new international 
edition (7th). Pearson.Kelley, K., 2007. Casual carpooling enhanced. J. Pub. Transport. 10 (4), 119-130. 

Lee, A., Savelsbergh, M., 2015. Dynamic ridesharing: Is there a role for dedicated drivers? Transport. Res. B 
81, 483-497. 

Li, H., Bliemer, M., Bovy, P., 2009. Strategic departure time choice in a bottleneck with stochastic capacities. 
Working Paper, Delft University of Technology. 

Li, Z., Hensher, D.A., Rose, J.M., 2010. Willingness to pay for travel time reliability in passenger transport: A 
review and some new empirical evidence. Transport. Res. E 46 (3), 384-403. 

Lindsey, R., 2009. Cost recovery from congestion tolls with random capacity and demand. J. Urban Econ. 66 
(1), 16-24. 

Liu, W., Zhang, F., Yang, H., 2017. Modeling and managing morning commute with both household and 
individual travels. Transport. Res. B 103, 227-247. 

Liu, Z., Meng, Q., 2013. Distributed computing approaches for large-scale probit-based stochastic user 
equilibrium problems. J. Adv. Transp. 47 (6), 553–571. 



43 
 

Long, J.C., Szeto, W.Y., Ding, J., 2018. Dynamic traffic assignment in degradable networks: paradoxes and 
formulations with stochastic link transmission model. Transportmetrica B, doi: 
10.1080/21680566.2017.1405749. 

Lukacs, E., 1955. A characterization of the gamma distribution. Ann. Math. Stat. 26(2), 319-324. 

Ma, R., Zhang, H.M., 2017. The morning commute problem with ridesharing and dynamic parking charges. 
Transport. Res. B 106, 345-374. 

Mas-Colell, A., Whinston, M.D., Green, J.R., 1995. Microeconomic Theory. Oxford University Press. 

Masoud, N., Jayakrishnan, R., 2017. A decomposition algorithm to solve the multi-hop Peer-to-Peer 
ride-matching problem. Transport. Res. B 99, 1-29. 

Meng, Q., Liu, Z., 2012. Mathematical models and computational algorithms for probit-based asymmetric 
stochastic user equilibrium problem with elastic demand. Transportmetrica 8 (4), 261–290. 

Morency, C., 2007. The ambivalence of ridesharing. Transportation 34 (2), 239-253. 

Naoum-Sawaya, J., Cogill, R., Ghaddar, B., Sajja, S., Shorten, R., Taheri, N., Tommasi, P., Verago, R., Wirth, 
F., 2015. Stochastic optimization approach for the car placement problem in ridesharing systems. 
Transport. Res. B 80, 173-184. 

Ordóñez, F., Dessouky, M.M., 2017. Dynamic Ridesharing. In INFORMS TutORials in Operations Research, 
212-236. 

Pattanamekar, P., Park, D., Rilett, L.R., Lee, J., Lee, C., 2003. Dynamic and stochastic shortest path in 
transportation networks with two components of travel time uncertainty. Transport. Res. C 11 (5), 
331-354. 

Peer, S., Koster, P.R., Verhoef, E.T., Rouwendal, J., 2010. Traffic incidents and the bottleneck model. Working 
paper, <http://www.scholar.google.nl>. 

Stiglic, M., Agatz, N., Savelsbergh, M., Gradisar, M., 2015. The benefits of meeting points in ride-sharing 
systems. Transport. Res. B 82, 36-53. 

Stiglic, M., Agatz, N., Savelsbergh, M., Gradisar, M., 2016. Making dynamic ride-sharing work: The impact 
of driver and rider flexibility. Transport. Res. E 91, 190-207. 

Szeto, W.Y., Jiang, Y., Sumalee, A., 2011. A cell-based model for multi-class doubly stochastic dynamic traffic 
assignment. Comput. Aided Civil Infrastruct. Eng. 26 (8), 595-611. 

Wang, X., Agatz, N., Erera, A. 2018. Stable matching for dynamic ride-sharing systems. Transport. Sci.  52 
(4), 850-867. 

Winter, S., Nittel, S., 2006. Ad hoc shared-ride trip planning by mobile geosensor networks. Int. J. Geograph. 
Inf. Sci. 20 (8), 899-916. 

Wu, W.X., Huang, H.J., 2015. An ordinary differential equation formulation of the bottleneck model with user 
heterogeneity. Transport. Res. B 81, 34-58. 

Xiao, L.L., Huang H.J., Liu, R.H., 2015. Congestion behavior and tolls in a bottleneck model with stochastic 
capacity. Transport. Sci. 49 (1), 46-65. 

Xiao, L.L., Liu, T.L., Huang, H.J., 2016. On the morning commute problem with carpooling behavior under 
parking space constraint. Transport. Res. B 91, 383-407. 

Xiao, Y., Coulombel, N., de Palma, A., 2017. The valuation of travel time reliability: does congestion matter? 

http://www.scholar.google.nl/


44 
 

Transport. Res. B 97, 113-141. 

Xu, H., Pang, J.S., Ordónez, F., Dessouky, M., 2015. Complementarity models for traffic equilibrium with 
ridesharing. Transport. Res. B 81, 161-182. 

Yan, S., Chen, C.Y., Chang, S.C., 2014. A carpooling model and solution method with stochastic vehicle travel 
times. IEEE Trans. Intel. Transport. Syst. 15 (1), 47-61. 


	1. Introduction
	2. Stochastic ride-sharing model with time-independent travel time uncertainty
	2.1. Problem description
	2.2. Generalized trip costs
	2.2.1. The generalized cost of a driving-alone trip
	2.2.2. The generalized cost of a ride-sharing trip

	2.3. Feasible ride-sharing trips
	2.4. The static ride-sharing matching model
	2.5. The setting of travel time distributions

	3. Stochastic ride-sharing model with time-dependent travel time uncertainty
	3.1. Representation of time-dependent travel time uncertainty
	3.2. Evaluating the mean generalized trip cost
	3.3. Ride-sharing match schemes by Monte Carlo Simulation methods

	4. Numerical examples
	4.1. A driving-alone trip
	4.1.1. The effect of the unit variable cost of driving and traveler’s VOTs
	4.1.2. The effect of travel time uncertainty

	4.2. A ride-sharing trip
	4.2.1. The effect of the unit variable cost of driving and traveler’s VOTs
	4.2.2. The effect of travel time uncertainty

	4.3. Ride-sharing in the Chicago sketch network with time-independent travel time uncertainty
	4.3.1. The effect of the unit variable cost of driving and travelers’ VOTs
	4.3.2. The effect of trip travel time uncertainty and the number of ride-sharing participants
	4.3.3. The effect of travelers’ role tendency
	4.3.4. A comparison with the ride-sharing system without capturing uncertainty

	4.4. Ride-sharing in the Chicago sketch network with time-dependent travel time uncertainty
	4.4.1. The effect of sample sizes
	4.4.2. The effect of travel time uncertainty
	4.4.3. Model size and computational efficiency of the static ride-sharing matching models


	5. Conclusions
	Acknowledgments
	References

