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Abstract—In online social networks (OSNs), celebrities are
usually paid to promote products via posting or forwarding ads
or related information. Imagine that one day, everyone is allowed
to register as a spreader and participate in the campaign to sell
influence, how much money should be claimed? Two factors play
vital roles in deciding the price. One is how influence is valued
by buyers (advertisers). The other is how one’s price is affected
by that of others. In this paper, we consider that the influence is
valued as the number of final ‘activations’ under some existing
information diffusion processes, and focus on the latter, namely,
the price competition.

We model the scenario as a pricing game where spreaders
compete with each other under selection policies of the advertiser,
who is trying to maximize its profit. Three cases of the advertiser
are considered. i) An omniscient advertiser always selects the
optimal set of spreaders. We show that the competition is so
fierce that each spreader can only claim its unique influence in
the Nash equilibrium (NE), and the equilibrium is also unique.
ii) The greedy advertiser selects spreaders using the simple-
greedy algorithm. We deduce that the unique NE exists when
the number of spreaders is less than 4; however, the existence of
NE cannot be guaranteed when there are at least 4 spreaders.
iii) The advertiser adopts a ‘double-greedy’ method that greedily
selects spreaders one by one in accordance with their registration
order. We conclude that the unique NE exists and the utility of
the platform is at least 1/2 to the optimal and also bounded by
1/2 to the influence of all spreaders.

Index Terms—price competition, social networks, viral mar-
keting, game theory.

I. INTRODUCTION

W ITH the prosperity of online social networks (OSNs),
like Facebook or Twitter, sponsored viral marketing

has become increasingly prevalent. It sponsors influential users
in OSNs, usually celebrities, as spreaders to publish or for-
ward advertising information so as to promote products. New
emerging advertising companies, such as TapInfluence.com,
even enables anyone to register as a potential spreader with
self-claimed prices ([1]). The advantage of such a marketing
strategy is that it leverages the ‘word-of-mouth’ effect. People
trust and will be influenced by the ones they follow. Once
a user got influenced and forwarded the information, a.k.a.
activated, he/she in turn influences his/her own followers and
helps spread the information further. The final number of acti-
vated users in the OSN weighs the influence of those spreaders,
and sponsoring them is actually buying their influence.
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Depicted in Fig. 1, the general framework of sponsored
viral marketing consists of three parties: sponsor, platform,
and spreader ([2]). Sponsors are usually companies, which
initiate and pay for the viral marketing campaign of its
products. Due to the lack of knowledge of viral marketing in
OSNs, the sponsor delegates the task to a professional agent,
possibly an advertising company or the OSN host, which we
named platform, to carry out the campaign. The platform
selects among users, who have registered for the campaign,
as spreaders and pays them to conduct the actual promotion,
posting advertising information for instance. The information
will diffuse in the OSN and hopefully forwarded by a large
number of users, i.e. goes ‘viral’.

platform spreadersponsor

...

advertiser

Fig. 1: The general framework of sponsored viral marketing

In real life, multiple actors exist in each party. A sponsor
has multiple platforms to choose from, and conversely, a
platform also has many sponsors to cooperate with. Similarly,
the platform and the spreader can also choose who to work
with. Moreover, these actors are autonomous and rational,
meaning that they will try to maximize their own utilities
facing competition and choices. However, considering the
whole picture is beyond the scope of this paper. We aggregate
the sponsor and the platform as a profit-maximizing advertiser
and focus more on the pricing competition of spreaders in a
single marketing campaign.

The selection of spreaders is vital in sponsored viral mar-
keting. Actually, the problem of selecting k spreaders such
that their influnce is maximized, known as the Influence
Maximization problem (IMP), has been studied for over a
decade. People have proposed various information propagation
models ([3]–[7]) to capture the diffusion process and proved
the submodularity of the influence ([8]), i.e. the final number
of activated users. IMP was thus substantially tranformed into
a submodular maximzation problem subject to a cardinality
constraint. It is proved to be NP-hard and the simple-greedy
algorithm is the best to achieve 1− 1/e to the optimality ([3],
[9]). More efforts were focused on designing heuristics ([10]–
[12]) or techniques to accelerate the computation process
([13]–[16]).
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Another line of research related to the selection strategy
is called Unconstrained Submodular Maximization (USM). It
tries to maximize a non-negative submodular function, which
is allowed to be non-monotone ([9], [17], [18]). The state-
of-the-art solution is the ‘double-greedy’ algorithm invented
by Buchbinder et al. [18], achieving 1/2 approximation to
optimality with its randomized version and 1/3 with the
deterministic version. We will show that similar to IMP and
USM, the profit(utility) function of the advertiser is also
submodular but not guaranteed to be non-negative, which
results in no algorithms will have a guaranteed performance
if no additional assumptions are made ([17]). However, both
algorithms, simple-greedy algorithm for IMP and double-
greedy algorithm for USM, are used in the literature on
profit maximization ([19], [20]) with some minor assumptions.
Therefore, we assume three cases of the selection policies: i)
The ideal condition in which the advertiser always selects the
optimal set of spreaders. ii) The simple-greedy algorithm is
adopted ([19]). iii) The double-greedy algorithm is adopted
([20]).

With the selection policy known to the spreaders, the price
competition is modeled as a game. Clearly, a higher price is
more appealing to a spreader, but it reduces its chance to be
selected at the same time. Spreaders will determine their own
prices considering their influences, peer prices and also the
selection policy. The existence and uniqueness of the Nash
equilibrium (NE) is the focus of this paper.

We note that this scenario is closely related to works
specifically studying pricing games ([21], [22]) and especially,
case i) coincides with the model in [21]. Comparing with our
previous work [23], we summarize the contributions of this
work as follows:
• We explicitly address the case of an omniscient advertiser

that always selects the optimal set of spreaders. Consis-
tent with the model of [21], we show that the unique NE
exists.

• In the case of simple-greedy advertiser, theorems are
revised and proved with specific examples. We show that
the unique NE exists when spreaders are fewer than 4,
and present examples that have no NE when there are at
least 4 spreaders.

• We design a selection strategy for the advertiser based on
the double-greedy algorithm, and prove that the unique
NE exists. We further prove that under the equilibrium,
the profit for the advertiser is at least 1/2 to the optimal
and also bounded by 1/2 to the influence of all spreaders.

The rest of this paper is organized as follows. In Section II,
we formally introduce the pricing game. In Sections III, IV
and V, we analyze pure NE with an omniscient platform, the
platform adopting the simple-greedy algorithm, and double-
greedy algorithm, respectively. Finally, we conclude this paper
in Section VI.

II. PRICING GAME IN SPONSORED VIRAL MARKETING

In this section, we first define sponsored viral marketing
and specify the utilities of each party. Then we discuss their
properties and elaborate on the spreader selection algorithms.

Finally, we propose the pricing game and formulate the
equilibrium set of interest.

A. Sponsored Viral Marketing

We use a graph G = (V,E) to represent the OSN, where
V and E are the set of users and directed social links,
respectively. (u, v) ∈ E means v ‘follows’ u and is able to
see information posted by u. In other words, u has social
influence on v. We use T ⊆ V to represent the set of all
registered potential spreaders, and their registration order is
[t1, t2, ..., t|T |]. Correspondingly, V \ T represents the set of
‘ordinary’ users. For each potential spreader, i ∈ T , promoting
information incurs a private cost ci and its claimed price is pi.

After the price set p := {pi | i ∈ T} is proposed
to the advertiser, a set of spreaders X(p) ⊆ T will be
selected by the selection policy X to conduct the marketing
campaign via spreading advertisements on the OSN site. Their
influence unfolds as some of their followers sees and forwards
the information so that more users can see and become a
forwarder in turn. We call a user forwarding the information
an activation, and assume it to be the standard unit for all
transactions. This inherently assumes that the advertiser and
the spreader agree on the valuation of a single activation and
we note that it is just for ease of expression. The model can
be easily extended to incorporate hierarchical valuations by
multiplying different coefficients.

If we denote σ(S) as the expected number of final activa-
tions and p(S) =

∑
i∈S pi as the money paid to spreaders,

where S represents a set of spreaders, the expected profit of
the advertiser given price set p can be expressed as:

uXa (p) = ua(X(p)) := σ(X(p))−
∑

i∈X(p)

pi

For each spreader i ∈ T , clearly, pi ≥ ci and the utility is
the profit pi − ci if i is selected; otherwise, it is simply zero.
Therefore, the utility of spreader i can be expressed as:

uXi (p) = uXi (pi|p−i) := (pi − ci) · I{i ∈ X(p)}

where p−i := p \ {pi} and I{·} is the indicator function. In
this paper, we assume that ci ≈ 0, i.e. neglect the cost, and
leave the case of arbitrary cost in our future work.

B. Properties of uXa and the Selection Policy X

The influence function σ has been proved to be non-
negative, monotone and submodular within various infor-
mation diffusion models ([3]–[7]). The monotone property
implies that σ(S) grows with the expansion of S, while, known
as the ‘diminishing return’ property, submodularity implies
that ∀ M ⊆ N ⊆ T and ∀ i ∈ V ,

σ(i|M) ≥ σ(i|N)

where σ(i|M) := σ(M ∪ {i}) − σ(M) and similarly, for
σ(i|N). In the following, if no confusion will be caused, we
omit the parentheses for set parameters. For instance, σ(x) is
short for σ({x}).

Although computing of σ is proved to be #P-hard ([14]), it
is possible to compute a metric in polynomial time ([10], [11],
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[16]) to approximate it. For example in [10], a degree-based
index was proposed as a substitute of Monte-Carlo evaluation
with a comparable accuracy. Therefore, instead of specifying
the diffusion model, we assume σ to be a value oracle that
maps subsets of T to non-negative real numbers, and retains
the properties of information diffusion models. We note that in
real life, it is possible to have such an oracle under agreements
of all parties.

Submodularity is the essential property that makes greedy
algorithms work with guaranteed performance for IMP and
USM. It can be easily proved that the utility uXa is still
submodular. However, the non-negative and monotone prop-
erties do not hold any longer. This can be seen by a toy
example with only two potential spreaders, T = {i, j}, where
σ(i) = σ(j) = 10, σ(T ) = 15, and pi = pj = 8. We can find
that:

ua(T ) = σ(T )− p(T ) = −1 < 0

ua(i) = σ(i)− pi = 2 > ua(T )

The selection policy X tries to find the optimal spreader set
S∗ ⊆ T to maximize the profit:

σ(S∗)− p(S∗)

As pointed out by Feige et al. [17], no efficient approximation
algorithm can be found for general submodular maximization
since verifying whether the maximum of the function is greater
than zero is NP-hard and requires exponentially many queries.

However, it is still valuable to consider the simple-greedy
algorithm as [19] have shown that, when prices of spreaders
are relatively low, the performance degenerates linearly with
reference to the cardinality of the selected set. The double-
greedy algorithm still has its performance guarantee after a
pruning process of spreaders. By ruling out those candidates
with excessively high prices, the non-negativity of the utility is
achieved. We refer to [20] for the detailed realization. There-
fore, we address three cases of X , namely, the ‘omniscient’
policy Xo that always selects the optimal S∗; the policy Xs

based on the simple-greedy algorithm; and the policy Xd based
on the double-greedy algorithm.

C. Pricing Game of Spreaders
Given the value oracle σ and spreader selection policy X ∈

{Xo, Xs, Xd}, we are able to define the pricing game among
spreaders. Each potential spreader i, as an autonomous and
rational actor, will try to propose an optimal pi to maximize
its utility. Naturally, they will compete with each other since a
higher price is more desirable while on the other hand, it also
reduces its chance to be selected. We model this scenario as a
game and assume that both σ and X are known to all players.

In this paper, we focus on studying the set of pure Nash
equilibria of the pricing game,

NASHX = {p ∈ R|T |+ | uXi (pi|p−i) ≥ uXi (p′i|pi),
∀p′i ∈ R+,∀i ∈ T}

which is the set of price vectors that no player wants to
deviate unilaterally. If NASHX is not empty, we can expect
spreaders’ prices will converge to some price vectors other
than an arbitrary one.

III. THE PRICING GAME WITH Xo

Given the price vector p, the advertiser with spreader
selection policy Xo always selects the set S∗:

S∗ ∈ arg max
S⊆T

ua(S)

Note that such S∗ may not be unique. In case of ties, we
assume that Xo will choose the one with most spreaders, so
that the decision is deterministic.

In [21], Babaioff et al. studied such a scenario in online
combinatoral markets in which a single buyer with a combina-
torial preference to purchase goods from n sellers, where each
of them supplies only one product and individually decides
their prices. They assumed a demand correspondence that
selects the optimal sets of sellers to maximize the utility of
the buyer and defined a decision map that chooses the optimal
set deterministically if ties happen. We can treat spreaders in
sponsored viral marketing as sellers and the advertiser as the
sole buyer. Therefore, by results in [21], we can immediately
draw the conclusion on NASHXo :

Theorem 1. NASHXo has the unique element p such that
∀i ∈ T ,

pi = σ(i|T \ i)

and Xo(p) = T .

It means that in equilibrium, each spreader i will claim the
price as the influence solely brought by it, i.e. σ(T )−σ(T \i).
It can be easily shown that anyone claiming a higher price will
not be selected.

IV. THE PRICING GAME WITH Xs

Although the result with Xo is neat, it is unpractical to
assume an omniscient policy. In this section, we assume the
selection policy is based on the simple-greedy algorithm. To-
gether with tie-breaking rules, we elaborate the policy in detail
with pseudo-codes, following which, we analyze NASHXs .

A. The Simple-Greedy Policy Xs

The detailed process is described in Algorithm 1. Similar
to the widely used simple-greedy algorithm in IMP ([3]), Xs

iteratively selects the candidate that is currently ‘optimal’. We
address the differences with the original algorithm as follows:
• Trying to maximize ua, in each iteration, Xs should com-

pare marginal utility of adding each candidate spreader
into S: ua(i|S), which is the marginal influence σ(i|S)
deduced by pi (line 3).

• Xs shall not terminate as long as there is a candidate
spreader to provide positive marginal gain. Moreover, a
spreader providing zero marginal gain should be selected
as well if others provide negative marginal gains. There-
fore, the algorithm terminates when all available potential
spreaders generate negative marginal gains (lines 5-7).

• Since we are considering pure NE, there should be a clear
tie-breaking rule for the case that multiple spreaders bring
the same maximal marginal gain in a single iteration. We
adopt the rule that the bigger σ the better. If ties still
happen, the lexicographically first will be selected (lines
8-14).



IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. X, NO. X, XXXX 2018 4

Algorithm 1 The simple-greedy policy Xs

Input: G = (V, E), T , σ(·), p
Output: S ⊆ T

Initialisation: S ← ∅
1: while T \ S 6= ∅ do
2: for all i ∈ T \ S do
3: calculate ua(i|S) = σ(i|S)− pi
4: end for
5: if maxi∈T\S ua(i|S) < 0 then
6: break
7: end if
8: max set = {arg maxi∈T\S ua(i|S)}
9: if |max set| > 1 then

10: max set← {arg maxj∈max set σ(j)}
11: if |max set| > 1 then
12: max set← {lexicographically first in max set}
13: end if
14: end if
15: S ← S ∪max set
16: end while
17: return S

B. NASHXs when |T | ≤ 3

In our previous work ([23]), we analyzed NASHXs with
the size of T . In the following, we revise the theorems
while giving some better proofs. Before proceeding to the
main conclusions, we specify several notations for ease of
representation: ∀i, j ∈ T ,
• δi := σ(i | T \ i). It represents the influence (number of

activations) provided by i given all of its competitors are
selected. In other words, it represents the unique influence
of i. It should be noted that δi is strictly greater than 0
since even if i has no influence on any others, it can
still bring one single activation, namely, itself. Similar as
the price set, we use bold symbol δ to denote the set
{δi | i ∈ T}, and use δ(i) interchangeably with δi.

• µij := σ(i)+σ(j)−σ({i, j}). Its physical meaning is the
mutual influence between i and j. As a natural extension,
µij|S is calculated with σ conditioned on S, and we use
µ(i, j) and µij interchangeably.

• If ∃Bi(p−i) > 0 such that:

uXi (pi|p−i) =

{
pi, 0 < pi < Bi(p−i)

0, pi ≥ Bi(p−i)
(1)

We call Bi(p−i) the edge-price of i and use Bi(p−i)− ε
to denote the highest price that i will claim, where ε→
0+ has its physical meaning as the smallest change in
price.

We start with the following observations:

Lemma 1. ∀ i ∈ T , claiming price of δi implies i ∈ Xs(p).
Moreover, if ∃ p ∈ NASHXs , then Xs(p) = T and pi ≥ δi.

Proof: In any iteration t that the spreader i has not been
chosen, if St is the set of selected spreaders, naturally St ⊆
T \ i. By the submodularity of ua,

ua(i | St) ≥ ua(i | T \ i)

Claiming δi implies ua(i | St) ≥ 0. Note that it satisfies any
iteration, therefore, i must be selected before Xs terminates.

No one will claim a price lower than its δ in any NE since
increasing to δ obviously is a better choice. Also, everyone
will be selected in an NE because for any i /∈ Xs(p), choosing
price δi increases its utility.

We can define the social welfare W (p, X) as the sum utility
of all parties, i.e.

W (p, X) := ua(X(p)) +
∑
i∈T

uXi (pi | p−i) = σ(X(p))

then if the Nash equilibria NASHXs is not empty, Lemma 1
implies that

W (p, Xs) = σ(T )

for any p being an NE price vector. That is to say, the maximal
welfare is achieved by any NE, and thus both the Price of
Anarchy and the Price of Stability equal one. In fact, such
pure NE exists and is unique when |T | ≤ 3.

Theorem 2. A unique pure Nash equilibrium price set p exists
when |T | ≤ 3. In particular, p = δ when |T | = 2; while
|T | = 3, if T = {x, y, z},

px = δx + [min{µxy, µxz} − µyz]+

py = δy + [min{µyz, µyx} − µzx]+

pz = δz + [min{µzx, µzy} − µxy]+
(2)

and minus ε if any price is an edge-price.

The superscript [ · ]+ represents taking non-negative values
only. It is worthy noting that when |T | = 2, the conclusion
coincides with Theorem 1 that each player is forced to claim
the lowest price δ, i.e., its unique influence, in the NE.
However, when one more spreader exists, one player may get
more utilities than δ in NE. We adapt our proofs in [23] for
the consistency.

Proof: First, consider the case of T = {x, y}. Clearly, δ
is an NE because

ua(x) = ua(y) = µxy

then either one in T claiming a higher price alone will not get
selected in the second iteration (it fails in the first iteration).

Now suppose ∃p′ 6= δ is also an NE, then both of p′x and p′y
must be higher than their δ prices. The one left in the second
iteration will not be selected by Xs since it provides a negative
marginal profit. This contradicts Lemma 1 that all players will
be selected in an NE. Therefore, δ is the only NE.

Then for the case of T = {x, y, z}, we can immediately
state that an NE price vector must contain at least two δ prices.
Assuming the NE prices, after the first iteration, say x was
selected, the remaining two boil down to the case of solely
two spreaders, except that all values of σ are conditioned on
x. Therefore, py will be σ({y, z}|x)−σ(z|x) = σ(y|{x, z}) =
δy . Similarly, we know pz = δz .

By symmetry, we can assume µxy ≥ µyz ≥ µzx and further
separate it into two situations:

1) µxy ≥ µyz = µzx. In other words, equations in (2)
reduce to p = δ. We prove that δ is the unique NE.



IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. X, NO. X, XXXX 2018 5

By Lemma 1, we know all of them will be selected.
Particularly in the first iteration of Xs, we have

ua(x) = σ(x)− σ(x|yz) = γ − µyz

where γ :=
∑

i∈T σ(i) − σ(T ). By symmetry and the
conditions of µ, we have

ua(x) = ua(y) ≥ ua(z)

Therefore, x or y will be selected according to the tie-
breaking rule. If either one, say x, is selected, then
neither of the remaining two, namely, y or z, will change
its price. We can easily see x will not change its price
either; otherwise, y and z will be selected one by one
and x will not be selected eventually.
For the uniqueness, if we assume ∃p′ 6= δ is also an
NE, p′ must have at least two prices greater than the
corresponding δ. By the statement above, we know p′

cannot be an NE.
2) µxy ≥ µyz > µzx. Equations in (2) can be restated as:

px = δx

py = δy + µyz − µzx

pz = δz

Then we have

ua(y) = ua(x) = γ − µyz ≥ ud(z) = γ − µxy

We note that δy + µyz − µzx becomes an edge-price
By if y fails the first iteration by tie-breaking rules.
Because if so, py ≥ δy + µyz − µzx implies y will fail
the first iteration, and the subsequent two iterations as
well, which can be seen by the arguments of |T | = 2.
Therefore, y is selected firstly and cannot unilaterally
increase its price to get a higher utility. By the same
arguments in situation 1), x and z will not increase their
prices unilaterally. Therefore, the price set is an NE.
For the uniqueness, we argue that if another NE p′

exists, it must be that x or z has a price greater than
δ, say px > δx. Note that in this case, y and z will
be selected in the first two iterations, and x will not be
selected in the third iteration, which violates Lemma 1.

By the arguments above, we can see the unique NE exists
when |T | ≤ 3 and the detailed prices are stated by equations
(2).

To better understand Theorem 2, we can illustrate the case
of T = {x, y, z} as shown in Fig. 2. Circles with different
colors represent the influences of different spreaders, and the
intersection of two circles means their mutual influence µ. The
one opposite the smallest µ can take an extra utility in the NE.
In the situation 2) of the proof, i.e. µxy ≥ µyz > µzx, y can
claim a price µyz − µzx higher than δy in the NE. Intuitively,
it is because y has the largest ‘substituting power’: µxy +µyz .

However, in the case of |T | ≥ 4, which is much more
common in real life, the existence of NE cannot be guaranteed.

Fig. 2: Illustration of the case of T = {x, y, z}

C. NASHXs when |T | ≥ 4

Theorem 3. The existence of NE cannot be guaranteed when
|T | ≥ 4.

We prove the theorem by constructing cases in which NE
does not exits. Especially, we consider the value oracle that

σ(S) = |neighbor(S) ∪ S|

i.e. the node coverage function. It is non-negative, monotone,
submodular and can be treated as a naive representation of
influence. Under such settings, we can state that:

Proposition 1. If p is an NE price set with graph G, such that
spreaders in T are selected in order (s1, s2, s3...), then p−s1
is an NE in graph G−s1 , which is a subgraph of G with s1
and its covered nodes excluded, and the selection order still
holds.

...

S

... q1q2
q
n

Q

k
k
k

k
k
k

k
k
k

s
1

s
2

s
m

Fig. 3: Topology for Lemma 2

We first observe the following example shown in Fig. 3. The
spreaders are separated into two categories: S and Q, which
are represented by red and blue circles, respectively. For each
pair of (s, q), ∀s ∈ S and ∀q ∈ Q, µ(s, q) = k, i.e. they
mutually cover k ∈ Z+ ordinary users, who are illustrated by a
hollowed circle with letter k. We further assume σ(s) > σ(q),
meaning s always wins when they are in a tie. Each q has
no more mutual connections with any other spreader, while
spreaders in S can have some mutual coverages, which are
not shown in the figure. Moreover, each spreader may have
its own distinct coverage.

Lemma 2. In the graph shown in Fig. 3. If for any m ≤ m0

and n = n0, with m0, n0 ∈ Z+, NE exists and for each NE,
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spreaders in Q are selected after S, then for n = n0 + 1, NE
still exists, and the selection order holds as well.

Proof: We use pm,n to represent the price set of spreaders
when |S| = m, |Q| = n. First, we can see if pm0,n0 is an NE
and Q is selected after S, then pm0,n0(qi) = δ(qi).

Then when qn0+1 is added, if ∃ pm0,n0+1 which is an NE,
we know ∀q ∈ Q will not be selected before any s ∈ S.
Otherwise, supposing qs is the first such spreader in Q, and
S′ ⊂ S is selected before qs, we can extract a subgraph with
S′ and its coverage excluded, in which pm0−|S′|,n0+1

−S′ is an
NE (by Proposition 1) and qs is selected firstly. It yields a
contradiction. Therefore, Q is still selected after S, and we
can also have pm0,n0+1(qi) = δ(qi).

Furthermore, we can conclude that pm0,n0+1 with{
pm0,n0+1(s) = pm0,n0(s) + k

pm0,n0+1(q) = δ(q)
,∀s ∈ S, q ∈ Q

is an NE where pm0,n0 is an NE for |Q| = n0. The existence
of qn+1 adds k coverages to each σ(s), therefore, s can
increase its price by k and still stay in equilibrium.

With Lemma 2, we derive the NE in several special cases
for ease of calculations afterwards.

Case 1: m = 1. When n = 1, by Theorem 2, we know
the unique NE is δ, and the selection order is (s1, q1). When
n ≥ 1, Lemma 2 implies that the price set with{

p1,n(s1) = δ(s1) + (n− 1) ∗ k
p1,n(qi) = δ(qi), i = 1, 2, ..., n

is an NE with selection order (s1, Q). It can be easily seen
that the NE is also unique.

Case 2: m = 2, µ(s1, s2) ≥ k. If n = 1, it is the situation
1) in the proof of Theorem 2. Therefore, the unique NE is also
δ, and the selection order is (S, q1). When n ≥ 1, Lemma 2
together with Case 1 imply that the price set with{

p2,n(sj) = δ(sj) + (n− 1) ∗ k, j = 1, 2

p2,n(qi) = δ(qi), i = 1, 2, ..., n

is an NE with selection order (S,Q), where the order of s1
and s2 is decided by the tie-breaking rule. With a proof by
contradiction, we can see the NE is unique as well.
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k
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Fig. 4: Cases 2 & 3 with m = 2, n = 2

Case 3: m = 2, µ(s1, s2) = r < k. It is a little different
from Case 2. When n = 1, it is the situation 2) in the proof
of Theorem 2. We can see the unique NE is with{

p2,1(si) = δ(si), i = 1, 2

p2,1(q1) = δ(q1) + k − r − ε
(3)

The selection order is (q1, S), and thus Lemma 2 is not directly
applicable.

Consider the case of n = 2, which is illustrated in Fig. 4.
Suppose q1 is selected firstly in an NE p2,2, by Proposition 1,
we know p2,2(q2) = δ(q2) + k − r − ε and p2,2(si) = δ(si),
which implies p2,2(q1) < σ(q1)−ud(s1) = δ(q1)−r < δ(q1).
It contradicts Lemma 1. Therefore, q1 will not be selected
firstly in any NE, and neither will q2 due to the symmetry.

Now suppose s1 is selected firstly in an NE p2,2, by
Proposition 1 and Case 1, we know{

p2,2(s2) = δ(s2) + k

p2,2(qi) = δ(qi), i = 1, 2
(4)

Therefore, the highest price that s1 could claim is

σ(s1)−max[ud(s2), ud(q1), ud(q2)] = δ(s1) + r

In fact, such price set is indeed an NE with p2,2(s1) = δ(s1)+
r: fixing prices in (4), if p′s1 > δ(s1) + r, q1 and q2 will be
selected in the first two iterations, and neither of s1 or s2 will
be selected afterwards. In addition, the selection order in p2,2

is (s1, s2, Q).
By symmetry, we know another NE is with ps2 = δ(s2)+r

and ps1 = δ(s1) + k, and the selection order is (s2, s1, Q).
Therefore, utilizing Lemma 2, we know when n ≥ 2, there
are two equilibria of Case 3 that

p2,n(s1) = δ(s1) + r + (n− 2) ∗ k
p2,n(s2) = δ(s2) + (n− 1) ∗ k
p2,n(qi) = δ(qi), i = 1, 2, ..., n

with selection order (s1, s2, Q), and
p2,n(s1) = δ(s1) + (n− 1) ∗ k
p2,n(s2) = δ(s2) + r + (n− 2) ∗ k
p2,n(qi) = δ(qi), i = 1, 2, ..., n

with selection order (s2, s1, Q). Moreover, we can see these
are the only two NE. It should be noted as well that r is
allowed to be 0.

Case 4: m = 3, µ(s1, s2) ≥ µ(s1, s3) > µ(s2, s3) > k.
If n = 1, the topology is shown in Fig. 5, and r1 ≥

r3 > r2 > k. Suppose q1 is selected firstly in some NE, by
Proposition 1 and Theorem 2, the NE must have ps2 = δ(s2),
which entails that pq1 < δ(q1). Then suppose s2 is selected
firstly in some NE p3,1, we can infer that p3,1−s2 = δ−s2 , which
yields that

ps2 ≤ σ(s2)− ud(s1) = δ(s2) + r2 − r3 < δ(s2)

and similarly, assuming s3 being firstly selected in some NE
also yields ps3 < δ(s3). Finally, if s1 is selected firstly in some
NE p3,1, we have p3,1(s1) = δ(s1)+r3−r2 and p3,1−s1 = δ−s1 .
We can examine that such a p3,1 is an NE and also the unique
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one, and the selection order is (s1, {s2, s3}, q1). The order of
s2 and s3 is decided by the tie-breaking rule and ε should be
subtracted from ps1 in case of edge-price.

If n = 2, similar as arguments in Case 3, we can see that qi
cannot be selected firstly in NE. On the other hand, assuming
∀s ∈ S being selected firstly will reduce the calculation of NE
to Case 2. Following a similar process, we can deduce that the
unique NE is with

p3,2(s1) = δ(s1) + r3 − r2 + k

p3,2(sj) = δ(sj) + k, j = 2, 3

p3,2(qi) = δ(qi), i = 1, 2

Therefore, we can utilize Lemma 2 to conclude that when
n ≥ 1, the price vector with

p3,n(s1) = δ(s1) + r3 − r2 + (n− 1) ∗ k
p3,n(sj) = δ(sj) + (n− 1) ∗ k, j = 2, 3

p3,n(qi) = δ(qi), i = 1, 2, ..., n

(5)

is NE and the selection order is (s1, {s2, s3}, Q). This is also
the unique NE.
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Fig. 5: Cases 4 & 5 with m = 3, n = 1

Case 5: m = 3, µ(s1, s2) ≥ µ(s1, s3) > k, µ(s2, s3) = 0.
If n = 1, the topology is shown in Fig. 5, and r1 ≥ r3 >

k, r2 = 0. Following the same arguments in Case 4, we know
it must be s1 to be selected firstly in NE. Then we can further
calculate the NE with equations of (3):

p3,1(s1) = δ(s1) + r3

p3,1(sj) = δ(sj), j = 2, 3

p3,1(qi) = δ(qi) + k − ε

and the selection order is (s1, q1, {s2, s3}).
If n = 2, same as Case 4, we can still argue that only s ∈ S

can be selected firstly in NE. If s2 or s3 is selected firstly in
NE, we can finally conclude its prices must be lower than δ
utilizing Proposition 1 and Case 2. Therefore, it must be s1
to be selected firstly in NE as well. Then we can utilize Case
3 to have two price sets, and prove them to be the only two
equilibria with selection order S,Q. Leveraging Lemma 2, we
can conclude that when n ≥ 2, there exists two NE:

p3,n(s1) = δ(s1) + r3 + (n− 2) ∗ k
p3,n(s2) = δ(s2) + (n− 2) ∗ k
p3,n(s3) = δ(s3) + (n− 1) ∗ k
p3,n(qi) = δ(qi), i = 1, 2, ..., n

(6)

with selection order (s1, s2, s3, Q) and
p3,n(s1) = δ(s1) + min[r1, r3 + k] + (n− 2) ∗ k
p3,n(s2) = δ(s2) + (n− 1) ∗ k
p3,n(s3) = δ(s3) + (n− 2) ∗ k
p3,n(qi) = δ(qi), i = 1, 2, ..., n

(7)

with selection order (s1, s3, s2, Q). Moreover, we can see these
are the only two NE.

s
3

s
4

s
1

s
2

2(n+1)k

4(n+1)k

4(n+1)k

3(n+1)k
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Fig. 6: Topology of S for Theorem 3

Now, we can prove Theorem 3 by presenting an example
with no NE.

Proof: Firstly, Case 2 and 3 show that when |T | ≥ 4, it is
possible to have multiple Nash equilibria, i.e. the uniqueness
is not guaranteed. Then by showing examples with no NE, we
prove the existence of NE is not guaranteed either.

Utilizing the same topology in Fig. 3, we construct the
example with m = 4, and some specific µ(si, sj), whose
topology is shown in Fig. 6. We neglect δ(si) and Q in the
figure to clearly show the topology of S. In addition, we
set σ(s1) > σ(s2) > σ(s4) > σ(s3) > σ(qi). This can be
satisfied by adjusting δ properly.

The way to prove the non-existence is like this: If an NE
exists, then with such NE, a spreader must be deterministically
selected in the first iteration. By assuming a spreader as the
firstly chosen one, we reversely calculate the NE price set
(utilizing Proposition 1). Then we show such a price set cannot
be NE. After inspecting all spreaders and finding no one will
be selected firstly, we conclude that no NE exists.

First, consider n = 0, i.e. |T | = 4. Assuming that with an
NE p, in the first iteration,
• s4 is selected, by Proposition 1 and Theorem 2, we can

infer that

p(s4) < σ(s4)− ud(s1) = δ(s4)− k < δ(s4)

• s3 is selected, similarly, we have

p(s3) < σ(s3)− ud(s1) = δ(s3)− 3k < δ(s3)

• s1 is selected, the only possible p is
p(s1) = δ(s1) + k

p(s2) = δ(s2) + 3k

p(si) = δ(si), i = 3, 4

(8)
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with selection order (s1, s2, s4, s3)

Clearly, neither s3 or s4 will be selected firstly in any NE.
For the price vector set by (8), consider p′ with p′(s1) =
δ(s1) + 2k and others the same. In the first iteration, s4 is
selected since it provides the largest marginal profit of 8k.
Subsequently, s3 is selected for providing largest ua(·|s4) of
6k. Thereafter, s1 will be selected providing zero profit while
that of s2 is −k. Finally, s2 is not selected. In other words,
s1 individually increases its price and gains a higher utility.
Therefore, p, as specified by (8) is not an NE. The same
happens if we assume s2 is being selected firstly. That is to
say, no NE exists.

Then consider n = 1. In this case, q1 will not be selected
firstly in any NE, because no NE exists in the case of n = 0.
Assuming that with an NE p4,1, in the first iteration,
• s4 is selected, utilizing Case 4, we know the remaining

four spreaders have prices specified by (5). In particular,
p4,1(s1) = δ(s1). Therefore,

p4,1(s4) < σ(s4)− ud(s1) = δ(s4)− 2k < δ(s4)

• s3 is selected, similarly, we have

p4,1(s3) < δ(s3)− ud(s1) = δ(s3)− 6k < δ(s3)

• s1 is selected, the remaining 4 spreaders are identical to
Case 5. Therefore, the only possible p4,1 is

p4,1(s1) = δ(s1) + 2k

p4,1(s2) = δ(s2) + 6k

p4,1(si) = δ(si), i = 3, 4

p4,1(q1) = δ(s1) + k − ε

(9)

with selection order (s1, s2, q1, s4, s3).
In fact, for any n ≥ 1, s4 being selected firstly will result

in a price less than δ(s4). By equation (5) in Case 4, we know
ps1 = δ(s1) + (n− 1)k, which implies that

ps4 < σ(s4)− ud(s1) = δ(s4)− 2k < δ(s4)

Similarly, for s3, we have

ps3 < σ(s3)− ud(s1) = δ(s3)− (2n+ 4)k < δ(s3)

Therefore, neither s3 or s4 will be selected firstly in any NE.
We note that p4,1 specified in (9) is still not an NE. Suppose

that s1 unilaterally increases its price to δ(s1) + 4k, then
s4, s3, s1, q1 will be selected one by one in the first four
iterations, while s2 will not be selected eventually. Therefore,
p4,1 in (9) is not an NE. With the same arguments of s2, we
can conclude that no NE exists when n = 1.

Now, suppose we know that when n = n0 ≥ 1, there is
no NE. Then when n = n0 + 1, we immediately get that for
any NE, qi, i = 1, 2, ..., n0 + 1 will not be firstly selected.
Therefore, we just need to assume that with an NE p4,n0+1,
s1 is selected in the first iteration. Utilizing equations (6) and
(7) in Case 5, we get two possible NE:

p4,n0+1(s1) = δ(s1) + (2n0 + 1)k

p4,n0+1(s2) = δ(s2) + (4n0 + 5)k

p4,n0+1(s3) = δ(s4) + n0k

p4,n0+1(s4) = δ(s4) + (n0 − 1)k

p4,n0+1(qi) = δ(qi), i = 1, 2, ..., n0 + 1

with selection order (s1, s2, s4, s3, Q) and

p4,n0+1(s1) = δ(s1) + (2n0 + 2)k

p4,n0+1(s2) = δ(s2) + (4n0 + 6)k

p4,n0+1(s3) = δ(s3) + (n0 − 1)k

p4,n0+1(s4) = δ(s4) + n0k

p4,n0+1(qi) = δ(qi), i = 1, 2, ..., n0 + 1

with selection order (s1, s2, s3, s4, Q).
However, in both cases, s1 can unilaterally increase its price

to δ(s1) + (3n0 + 3)k, such that s4, s3, s1, Q will be selected
one by one, and eventually, s2 fails to be selected. This
can been seen by going through Xs by iterations. Therefore,
neither of the two is NE and no NE exists for n = n0 + 1.

Therefore, we have constructed examples for |T | ≥ 4 that
have no NE.

V. THE PRICING GAME WITH Xd

In this section, we consider the scenario that the advertiser
adopts spreader selection policy based on the double-greedy
algorithm. Different from the case of simple-greedy algorithm,
in which NE is not guaranteed to exist when |T | ≥ 4, there
exists an unique NE with an arbitrary number of spreaders.
We will first prove the existence and characterise the NE, and
then discuss the profit bounds for the advertiser under the
equilibrium.

A. The Double-Greedy Policy Xd

We adopt the deterministic version of the algorithm invented
by Buchbinder et al. [18]. Spreaders are processed one by one,
which is assumed to be in the registration order [t1, t2, ..., t|T |]
for the advertising campaign. Actually, whatever order is used,
we just need to assume that each celebrity is aware of its own
number in the sequence, as well as that of its competitors.

The algorithm unfolds iteratively as well but maintains two
sets of candidates, A and B. A starts from A0 = ∅, while
B starts from the full set B0 = T . In each iteration, two
marginal gains will be calculated, one of which is obtained by
adding the focus spreader into A and the other is by removing
it from B. The option providing the larger marginal gain
will be chosen and the algorithm terminates after processing
all celebrities in T . The policy Xd favors including more
celebrities, i.e. the player will be added if its two indices are
equal. Obviously, A and B will coincide after the last iteration
and there is no need to specify additional tie-breaking rules.
Xd is formally stated by pseudo codes in Algorithm 2.

B. NASHXd

Assume the spreaders are in the order [t1, t2, ..., t|T |]. For
ease of notations, we set

ϕi :=
δi + σ(ti|Si−1)

2

where Si = {t1, t2, ..., ti} and S0 = ∅. We use bold symbol
ϕ to denote the set {ϕi|i ∈ T} and use ϕ(i) interchangeably
with ϕi. We directly present the main conclusion here.



IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. X, NO. X, XXXX 2018 9

Algorithm 2 The double-greedy policy Xd

Input: G = (V,E), T , σ(·), p
Output: A|T | ⊆ T

Initialisation: A0 ← ∅, B0 ← T
1: for i = 1 to |T | do
2: ai ← ua(ti|Ai−1) = σ(ti|Ai−1)− p(ti)
3: bi ← −ua(ti|Bi−1 \ ti) = p(ci)− σ(ti|Bi−1 \ ti)
4: if ai ≥ bi then
5: Ai ← Ai−1 ∪ {ti}, Bi ← Bi−1
6: else
7: Ai ← Ai−1, Bi ← Bi−1 \ {ti}
8: end if
9: end for

10: return A|T |

Theorem 4. NASHXd = {ϕ}

Before giving the detailed proof of Theorem 5, we introduce
a lemma which is similar to Lemma 1.

Lemma 3. ∀ i ∈ T , claiming price of ϕi implies i ∈ Xd(p).
Moreover, if ∃ p ∈ NASHXd , then Xd(p) = T and pi ≥ δi.

Proof: ∀ i ∈ T , we have Ai−1 ⊆ {t1, t2, ..., ti−1} =
Si−1, Bi−1 ⊆ T . Therefore, by submodularity,

ai = ua(ti|Ai−1) ≥ ua(ti|Si−1) =
σ(ti|Si−1)− δi

2

bi = −ua(ti|Bi−1\{ti}) ≤ −ua(ti|C\{ti}) =
σ(ti|Si−1)− δi

2

i.e. ai ≥ bi ⇒ i ∈ Xd(p).
With NE price vector p, if spreader i /∈ Xd(p), then

uXd
i (pi|p \ i) = 0. Choosing p′i = ϕi will result in a higher

utility, which yields a contradiction. Therefore, Xd(p) = T ,
and obviously, no one will claim a price lower than ϕ.

Lemma 3 also implies that the maximal welfare is achieved:

W (p, Xd) = σ(Xd(p)) = σ(T )

and both the Price of Anarchy and the Price of Stability equal
one. Recall that in the case of the simple-greedy advertiser, the
existence of NE cannot be guaranteed in most cases (|T | ≥ 4),
which renders that claim on welfare meaningless. Now we turn
to the detailed proof of Theorem 4.

Proof: By Lemma 3, we know that ∀ i ∈ T , uXd
i (ϕi|ϕ \

i) = ϕi. We first prove that no spreader will unilaterally
increase its price.

Assume p′j > ϕj and others remain the same. By Lemma
3, Sj−1 ⊆ Xd(p′). Therefore, Aj−1 = Sj−1 and Bj−1 = T ,

aj = ua(tj |Aj−1) = σ(tj |Sj−1)− p′j <
σ(ti|Si−1)− δi

2

bj = −ua(tj |Bj−1 \ ti) > ϕj − δj =
σ(ti|Si−1)− δi

2

which yields that j /∈ X2(p′). Note that it is also true for
j = 1. Therefore, ϕ ∈ NASHXd .

Assume ∃ p′ ∈ NASHXd that p′ 6= ϕ. There must exist
j ∈ T such that p′j > ϕj . Assume l is the first one. By Lemma
3, pi = ϕi for i < l. Following the same arguments above,

we have l /∈ Xd(p′) which contradicts Lemma 3. Therefore,
NASHXd = {ϕ}.

C. The Profit of the Advertiser with Price Set ϕ

By Theorem 4, when in the equilibrium p = ϕ, all spread-
ers participate in the advertisement campaign, bringing the
maximal revenue, σ(T ), for the advertiser. But how about the
profit? Although it has been prevously stated that the double-
greedy algorithm does not have a guaranteed performance for
arbitrary price vectors, we can find both the upper and the
lower bounds for this specific scenario.

Theorem 5. Under the NE, i.e. p = ϕ, if S∗ is the optimal
set of spreaders that achieves the maximum profits,

1

2
u(S∗) ≤ ua(Xd(p)) ≤ 1

2
σ(T )

Proof: The upper bound can be shown by the lower bound
of the total payments to spreaders.

p(Xd(p)) = p(T ) =
∑

i∈T ϕi

=
∑

i∈T δi/2 +
∑

i∈T σ(i|Si−1)/2
≥ σ(T )/2

Therefore,

ua(X2(p)) = σ(T )− p(T ) ≤ 1

2
σ(T )

Equality holds when δ = 0, i.e., no spreader has unique
influences. The upper bound is thus tight.

If we define
S∗i := S∗ ∪ Si,

then we have
ua(S∗i−1)− ua(S∗i ) = ua(ti|S∗ ∪ Si−1)

≤ ua(ti|Si−1)
= ua(Si)− u(Si−1)

Therefore, if we take series sum for both sides,

u(S∗0 )− u(S∗|t|) ≤ u(S|T |)− u(S0)

Note that S0 = ∅, S∗0 = S∗, and S∗|T | = S|T | = T , then we
have

ua(Xd(p)) = ua(T ) ≥ 1

2
ua(S∗)

VI. CONCLUSION

In this paper, we analyzed the Nash equilibrium of the
pricing game among spreaders in the framework of sponsored
viral marketing. We conclude that if the advertiser is ideal,
i.e., alsways selects the optimal set of spreaders, or adopts
the double-greedy based spreader selection policy, the unique
NE exists. In the equilibrium, spreaders in the former case will
claim their prices as their unique influences, while in the latter,
their prices are higher and related with previously registered
competitors, and moreover, we can find the bounds for the
profits of the advertiser. If the advertiser adopts a simple-
greedy algorithm, unique NE exists when there are fewer
than four spreaders; otherwise, the existence of NE cannot
be guaranteed.
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