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Abstract

With the advancement of behavioral economics, the use of exponential discounting for decision making

in neoclassical economics has been questioned since it cannot provide a realistic way to explain cer-

tain decision-making behavior. The purpose of this paper is to investigate strategic decision making

on dividend distribution policies of insurance companies when the management adopts a more realistic

way for discounting, namely stochastic quasi-hyperbolic discounting. The use of this more realistic way

for discounting is motivated by some recent developments in behavioral economics. A game theoretic

approach is adopted to establish economic equilibrium results, namely subgame perfect Markov equilib-

rium strategies. It is shown that (1) under certain mild technical conditions, the barrier strategy with

an optimal barrier, which is widely used in the traditional approach to optimal dividend problems, is

a perfect Markov equilibrium strategy, (2) the optimal barrier is lower than the barrier of an optimal

strategy obtained from the respective time-consistent optimal dividend problem, and (3) the solution

based on the barrier strategy does not exist in some situations.

Keywords (I) Control; dividends; hyperbolic discounting; non-exponential discounting; ruin theory.

1 Introduction

Strategic decision making on dividend payments of insurance companies is one of the major research topics

in actuarial science. The landmark article by (De Finetti, 1957) seems to be an early attempt to provide

a scientific way to study the topic at least from the perspective of actuarial science. A key issue for

the decision making is to decide the discount factor to be used in evaluating the expected present values

of cash flows from future dividend payments. Discounting is used to model time preference for present

over future income due to human impatience as noted in the masterpiece on the theory of interest in

neoclassical economics by (Fisher, 1930), where the rate of interest was determined as the marginal rate
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of substitution for present and future goods (or the relative price between present and future goods).

The scientific treatments in the traditional actuarial approach to optimal dividend payments focus on

exponential discounting, which is a key tool for discounting used in utility models in neoclassical economics

by (Samuelson, 1937). The rationale of adopting exponential discounting is to describe time consistency.

However, with the advancement of behaviorial economics, the use of exponential discounting has been

challenged. In particular, the time consistency described by exponential discounting has been questioned.

An early inquiry for time inconsistency may be traced back to the monograph by (Mises, 1949). It was

noted in (Thaler, 1997) that Irving Fisher in his theory of interest (Fisher, 1930) has already reckoned the

significance of irrational and psychological factors in determining human’s impatience and attributed the

lack of impatience to that “the future is seldom considered in true proportions”. There are experimental

or empirical studies on human or other animals’ behavior against time consistency for intertemporal choice

described by exponential discounting. For example, an early experimental study conducted by (Thaler,

1981) presented empirical evidence against time consistency of discounting. Some other experimental or

empirical studies supporting non-exponential discounting, such as hyperbolic discounting, are (Frederick,

Loewenstein, & O’Donoghue, 2002) and the relevant literature therein.

Time-inconsistent preferences, besides playing an important role in describing behaviorial and psycho-

logical features of human’s impatience, represent an intellectual challenging issue when they are applied

to optimization problems in economics, finance and insurance. Specifically, certain standard approaches,

such as dynamic programming, to studying optimization problems cannot be directly applied when decision

makers have time-inconsistent preferences, particularly for those described by non-exponential discounting,

and are choosing alternatives in the presence of uncertainty. In particular, with the time-inconsistent pref-

erences, a strategy that is deemed to be optimal for a decision maker at the present time may no longer be

optimal in the future. Contemporary approaches have been introduced to deal with optimization problems

with time-inconsistent preferences. A notable example is the work by (Bjork & Murgoci, 2010), where

a theoretically solid result linking decision making processes with time-inconsistent preferences and those

with time-consistent preferences was established. Specifically, (Bjork & Murgoci, 2010) proved that for a

general time-inconsistent problem under a general controlled Markov process, there exists “an associated

time-consistent problem such that the optimal control and respective value function for the time-consistent

problem coincides with the equilibrium control and respective value function for the time-inconsistent prob-

lem”. Consequently, instead of attempting to seek optimal controls, one may seek equilibrium strategies.

The idea is that “a decision the controller makes at every instant of time is thought of as a game problem

against all the decisions the future incarnations of the controller may make”.

In finance, decision making with time-inconsistent preferences has aroused interests of researchers. For

example, (Ekeland & Pirvu, 2008) and (Maŕın-Solano & Navas, 2010) addressed an optimal consumption

and portfolio management problem when preferences are time-inconsistent. (Zou, Chen, & Wedge, 2014)

studied consumption and portfolio decisions with stochastic hyperbolic discounting while (Harris & Laibson,

2013) considered the optimal consumption problem under the same setting. (Zhao, Shen, & Wei, 2014)
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investigated a consumption-investment problem with a general discount function and a logarithmic utility

function in a non-Markovian framework by treating the problem as an N -person differential game. (Dong

& Sircar, 2014) studied time-inconsistent portfolio investment problems while (Grenadier & Wang, 2007)

investigated optimal investment under uncertainty and stochastic hyperbolic discounting.

Decision making in insurance with time-inconsistent preferences has also attracted attention from re-

searchers. Specifically, some recent works have adopted hyperbolic discount functions. (Zhao, Wei, & Wang,

2014) considered an optimization problem where the dividend rates are bounded, the surplus process fol-

lows a Brownian motion and the discounting function is a mixture of exponential discount functions and

the pseudo-exponential discount function, respectively. (Li, Li, & Zeng, 2015) addressed the same problem

but for the dual compound Poisson model. (Chen, Li, & Zeng, 2014) considered the singular dividend op-

timization problem for the dual risk model with exponential jumps when stochastic hyperbolic discounting

was applied. (Li, Chen, & Zeng, 2015) solved a singular dividend optimization problem for a diffusion

model for the surplus process with stochastic hyperbolic discounting. (Chen, Wang, Deng, & Zeng, 2016)

investigated an optimal combined dividend-financing strategy in a dual risk model with exponential jumps

when stochastic quasi-hyperbolic discounting was adopted.

This paper aims to investigate strategic decision making on dividend payments of insurance companies

when the management adopts a more realistic way for discounting, namely stochastic quasi-hyperbolic

discounting, a type of non-exponential discounting. With a view to deviating from the neoclassical ap-

proach to discounting in optimal dividend problems, this paper intends to study the impact of a behavioral

approach to human’s impatience described by this non-exponential discounting on optimal dividend strate-

gies. Specifically, we discuss a theoretical treatment for the problem by investigating a singular dividend

optimization problem with the time-inconsistent preferences described by stochastic quasi-hyperbolic dis-

counting. A linear diffusion model for the surplus of an insurance company with general coefficients, where

the drift and volatility coefficients are generic functions of the current surplus, is considered. Two par-

ticular cases for the diffusion model, namely the random walk process and the mean-reverting process,

are considered. These two processes play an important role for modelling dynamics in economics and

econometrics. To provide a theoretically solid approach to studying the optimization problem, a game

theoretic approach is adopted to establish economic equilibrium results, namely subgame Markov perfect

equilibrium (MPE) strategies. Our study leads to several theoretical results. Firstly, under certain mild

technical conditions, the barrier strategy with an optimal barrier, which is widely used in the traditional

approach to optimal dividend problems, is a MPE strategy. Secondly, the optimal barrier is lower than

the barrier of an optimal strategy obtained from the respective time-consistent optimal dividend problem.

Thirdly, the solution based on the barrier strategy does not exist in some situations. Our theoretical results

also illustrate that the time-inconsistent preferences described by stochastic quasi-hyperbolic discounting

would induce an economic incentive for the management of an insurance company, who is supposed for

simplicity to have the same objective as that of the shareholders, to distribute dividends sooner than later.

It is hoped that these results would shed light on understanding the impacts of non-exponential discounting
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on strategic decision making on dividend payments of insurance firms.

This paper also intends to contribute to the literature from the modelling and theoretical perspectives.

The linear diffusion model for the surplus process considered here may include many commonly used diffu-

sion models for surplus processes of insurance companies in the literature as particular cases. Particularly, in

many of the existing works as noted above, the drift and volatility coefficients are supposed to be constant.

An extension to the situation of general coefficients presented here poses a significant technical challenge

from the theoretical perspective. Specifically, applying stochastic optimal control theory always involves

differential equations. In the situation to be discussed here, the model coefficients are no longer constants

and are general functions of the surplus process (even the forms of the functions are not specified); thus, the

differential equation associated with the optimization problem has variable coefficients. Notably, the first

and second-order coefficients are functions which could be of unspecified forms. This renders it difficult, if

not impossible, to determine an explicit expression of the solution to the differential equation. Therefore,

the standard approach used in the above references, which first attempts to determine the explicit solution

of the associated differential equation, (which is often simple with an exponential structure), and then uses

the explicit expression to verify that the solution is indeed the optimal solution, is no longer applicable

here. We solve the problem by investigating the existence of solutions to the differential equations, and

then deriving and utilizing some important properties of the solutions. Informed by one of the referees,

we noticed that an extension of the impulse control problem for a linear diffusion model under the same

stochastic quasi-hyperbolic discounting has been done in (Chen, Li, & Zeng, 2018), which further confined

the admissible set of strategies to be of a barrier lump-sum type. In our paper, we address a singular

control problem, where the admissible set of dividend strategies is any adapted càdlàg stochastic process.

These two types of stochastic control problems and the regular (classical) type of control problems, are

very different in terms of technical details and the properties that the optimality results have even in the

same setting. There are a long and separate list of literatures for each type of control problems under

exponential discounting. This paper and (Chen et al., 2018) extend the work for different types of control

problems and have made their own contributions to each respective type of control problems. Neither one

is an extension or a duplication of the other.

In Section 2, we formulate the optimization problem. We study a special class of dividend strategies,

namely barrier strategies, and derive theoretical properties of the associated return function in Section 3.

We present the optimality results in Section 4 and provide numerical illustrations in Section 5. A conclusion

is provided in Section 6. All the proofs are included in Appendix.

2 Problem Formulation

Consider a complete probability space (Ω,F ,P) and let {Wt; t ≥ 0} be a standard Brownian motion on

(Ω,F ,P). Let Rt represent the amount of the cash reservoir (surplus) at time t in the absence of control,

which evolves according to the following diffusion process: dRt = µ(Rt−)dt + σ(Rt−)dWt, t ≥ 0, where
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both µ(x) and σ(x) are Lipschitz continuous on [0,+∞), µ(x) is concave on [0,+∞), and σ(x) is positive

and non-vanishing for x ≥ 0. This dynamic is very general and it includes most of models used in the

research singular control problems in the diffusion setting as special cases. Suppose R0− is F measurable

and define F0,W
t to be the minimal P-complete σ-field generated by R0− and {Ws; 0 ≤ s ≤ t}. Write

F0,W = {F0,W
t ; t ≥ 0}.

The company controls dividend payments dynamically over time. Let Lt denote the cumulative amount

of dividends paid out up to time t and define the dividend strategy by L = {Lt; t ≥ 0}. It is natural to

assume that Lt is non-decreasing and right continuous with left limits, and that Lt depends on the path of

R over the time period [0, t). Therefore, L is F0,W -predictable. Let RLt denote the surplus at time t under

the dividend strategy L. It then follows the dynamics:

dRLt = µ(RLt−)dt+ σ(RLt−)dWt − dLt, t ≥ 0. (2.1)

Assume that for each unit of dividend paid out, the shareholders receive only β units (0 < β < 1) due

to proportional transaction costs. Further assume that decision makers have time-inconsistent preferences.

More specifically, we use a time-inconsistent discounting that reflects that “people choose as if they discount

future rewards at a greater rate when the delay occurs sooner in time”. We use the stochastic quasi-

hyperbolic model where higher discount rate (weight) is applied to dividend payments in the present

period compared to the future periods. This is same as the stochastic quasi-hyperbolic discounting used

in (Grenadier & Wang, 2007), (Harris & Laibson, 2013), (Zou et al., 2014) and (Chen et al., 2016). The

time is split into infinite number of periods and for each period there is a decision maker who controls

dividend distribution during her “present” period (this period) only. We start with the decision maker at

time 0, called “self 0” here. “Self 0” is an economic self born at time s0 := 0 whose life time is divided into

a “present”, which is from time s0 to time s0 + η0, and a “future”, which lasts from time s0 + η0 to +∞. A

new economic self, “self 1”, is born at time s1 =: s0 +η0. The present of “self 1” is the time period from s1

to s1 +η1 and the future starts from s1 +η1 to +∞. Proceeding in this manner, define sn = sn−1 +ηn−1, for

any n = 1, · · · , recursively, where {η0, η1, · · · } is a sequence of i.i.d. random variables that is independent

of {Wt; t ≥ 0} and is exponentially distributed with mean 1/λ (λ > 0). For any n = 0, 1, · · · , “self n” is

born at time sn, whose “present” period is from sn to sn + ηn and “future” period from sn + ηn to +∞.

“Self n” controls and can only control her “present”, the time interval from sn to sn + ηn. Each “self” is

present-biased. More specifically, “self n” discounts the dividends paid in her present period exponentially

with discount force δ (δ > 0) and discounts the dividends in her future less than her present with the

same exponential discounting force δ and an additional discount factor α (0 < α ≤ 1). Thus, if we let

Dn(s, t) represent the “self n”’s present value at time s of 1 unit of dividend received at time t, then

Dn(s, t) = e−δ(t−s) for sn ≤ s < t < sn + ηn and Dn(s, t) = αe−δ(t−s) for t ≥ sn + ηn > s ≥ sn.

For any t ≥ 0, and any x ∈ R , define

Pt,x(·) = P(·|Rt− = x), Et,x[·] = E[·|Rt− = x], Px(·) = P(·|R0− = x), Ex[·] = E[·|R0− = x].
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For any strategy π, define the time to ruin of the company at time t by

T πt = inf{s ≥ t : Rπs ≤ 0}, (2.2)

and write T π = T π0 . Throughout the paper, we also use L frequently to represent a control strategy, and

TL to represent the time to ruin under the strategy L.

We use π(n,→)(L,L̃) to represent the strategy when self “n” adopts L and the future selves adopt L̃.

Let π
(n,→)(L,L̃)
t represent the cumulative dividend payments from time sn to t under π(n,→)(L,L̃). Then,

π
(n,→)(L,L̃)
sn− = 0, dπ

(n,→)(L,L̃)
t = dLt for t ∈ [sn, sn+1) and dπ

(n,→)(L,L̃)
t = dL̃t for t ≥ sn+1. The payoff to

“self n” is the expected present value at time sn of all the future dividends received up to the time of ruin.

Given Rsn− = x, for any x ≥ 0, self n’s payoff function of the strategy π(n,→)(L,L̃) is

Pn(x;L, L̃) =Esn,x

[ ∫ Tπ
(n,→)(L,L̃)

sn
∧(sn+ηn)

sn

βe−δ(t−sn)dLt

+ I{sn + ηn ≤ T π
(n,→)(L,L̃)

sn }
∫ Tπ

(n,→)(L,L̃)
sn

sn+ηn

αβe−δ(t−sn)dL̃t

]
. (2.3)

In the above payoff function, the first term is the present value at time sn of all the dividends paid out

from time sn to sn + ηn (the “present” period of “self n”) and the second term is the present value at time

sn of the dividends paid out after sn + ηn.

“Self n” controls the dividend distribution during the present period [sn, sn + ηn) and does not have

control over her future. However, she does care about the dividend distribution in her future. For each

self, her objective is to choose a strategy for dividend distribution during her present period so that the

expectation of the total discounted dividends is maximized. Note that Pn(x;L, L̃) involves the dividends

paid during the future period of “self n”, [sn+1,+∞), which is controlled sequentially by the future selves

n+ 1, n+ 2, · · · . This is an intrapersonal game. We will apply the stationary Markov-perfect equilibrium

concept (MPE) here. MPE is a refinement of subgame perfect equilibrium, which only considers Makov

strategies, i.e., strategies with the action at any time depends on the current time and state (the current

surplus) only. We assume that each “self” is sophisticated, and that each “self” selects strategies during

[sn, sn+1) based on her anticipation that her future “selves” will take the same optimal actions. For more

information on MPE, please refer to (Harris & Laibson, 2013) and the references therein.

A dividend strategy L is said to be admissible if the process L is {F0,W
t }-adapted, non-decreasing, right

continuous with left limits, and Markovian. We use Π to denote the set of admissible strategies.

Notably, any admissible strategy, L, is right continuous with left limits. We can thus decompose it as

follows: Lt = Lct +
∑

0≤s≤t(Ls − Ls−), where {Lct} represents the continuous part of L.

Since {Wt; t ≥ 0} and {Lt; t ≥ 0} for any L ∈ Π are {F0,W
t }-adapted, from (2.1) and the definition of

TL in (2.2) we can see that TL is an F0,W -stopping time for any L ∈ Π.

Definition 2.1 For any n = 0, 1, · · · , the objective of “self n” is to find the optimal admissible stationary

Markov-perfect equilibrium (MPE) strategy, L∗, such that Pn(x;L∗, L∗) = supL∈Π Pn(x;L,L∗).
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We can see that each strategy and its payoff function are the same for different selves. Therefore, we

only consider the case for “self 0” and study the following performance/payoff function:

P(x;L, L̃) := P0(x;L, L̃)

= Ex

∫ Tπ
(0,→)(L,L̃)∧η0

0
βe−δtdLt + I{η0 ≤ T π

(0,→)(L,L̃)}
∫ Tπ

(0,→)(L,L̃)

η0

αβe−δtdL̃t

 . (2.4)

If a stationary MPE (denoted by L∗) exists, we define the value function V (x) = P0(x;L∗, L∗).

(Chen et al., 2018) studied a particular case of an impulse control problem with a fixed transaction

cost for each dividend payment, under the same surplus model (in the absence of control) and the same

formulation for discounting as those considered in this paper. However, (Chen et al., 2018) considered

impulse control strategies and further confined the class of admissible strategies to be those of a barrier

lump-sum type. Note that a barrier lump-sum strategy can be characterised by two parameters, say a

and b, with b > a ≥ 0 and that it prescribes to pay dividends with a view to reducing the surplus to

a whenever the underlying surplus exceeds the level b. Consequently, it appears that the class of all the

barrier lump-sum strategies is a small subset of the class of impulse strategies, which itself is a subset of

the set of admissible strategies, Π (all adapted non-decreasing and càdlàg Markov processes), considered

in this paper. In other words, the class of control strategies considered in this paper is more general than

the one considered in (Chen et al., 2018).

Although the performance functional in (Chen et al., 2018), when setting K = 0 (i.e. assuming no

fixed transaction costs), is identical to the one adopted in this paper, the problem considered there, (when

K = 0), does not lead to a singular control problem as considered in this paper since the class of admissible

strategies considered in there, as mentioned above, are limited to barrier lump-sum strategies rather than a

wider class of admissible strategies Π (all adapted non-decreasing and càdlàg Markov processes) considered

in this paper. When assuming K = 0, the optimal solution, say the MPE strategy, considered in (Chen et

al., 2018) (if exists) may not be an optimal solution in this paper, say an optimal strategy in Π, and the

optimization results obtained there only hold for K > 0.

Remark 2.1 Because an admissible strategy is non-decreasing, for any admissible strategies, L and L̃,

P(x;L, L̃) ≥ 0 for x ≥ 0.

We further assume that µ(y)−µ(x)
y−x ≤ λ(1− α) + δ for y > x ≥ 0 throughout the paper. Unlike in (Chen et

al., 2018) (which requires µ′(x) ≤ δ), we do not require µ(x) to be differentiable here. In the special case

that µ(x) is differentiable, this condition is equivalent to µ′(x) ≤ λ(1− α) + δ for x ≥ 0, (which is weaker

than the condition in (Chen et al., 2018) as λ(1−α)+δ < δ). We can interpret µ′(x) as the growth rate for

a surplus/cash reservoir of x and δ as the risk discount rate. It is indeed natural in many cases to assume

that the risk discount rate equals the growth rate plus a risk margin, which implies that the growth rate

is smaller than the risk discount rate. Our assumption is slightly less stringent than this as we require the

growth rate to be smaller than the risk discount rate plus a positive number. Cases when such condition

is violated cannot be addressed by using the same approach and will be considered in our future research.
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3 The barrier strategies and their associated payoff functions

In most of the existing works concerning the singular dividend control problem for diffusion models with

consistent time preferences (i.e., exponential discounting), the optimal strategy either exists and is a barrier

strategy or does not exist. For the special cases with hyperbolic discounting that have been addressed, the

optimal strategies are of a similar type to the consistent counterparts (see for instance, (Li et al., 2015)

and (Chen et al., 2014)). This motivates us to study the barrier strategies first. We start by defining the

barrier strategies and then move on to investigate the associated payoff functions.

Definition 3.1 For any b ≥ 0, (i) let Lb denote the barrier strategy that prescribes to pays no dividends

when the surplus is below b and to pay out all of the excess surplus over b as dividends if the surplus is

above b, to keep the controlled surplus, XLb, reflected at b after the initial time; and (ii) define

Vb(x) = P(x;Lb, Lb), x ≥ 0. (3.1)

For b > 0, the strategy Lb prescribes to pay a dividend (R0− − b)+ at time 0 and then to keep the

controlled surplus RL
b

a diffusion reflected at b. If b = 0, the strategy Lb prescribes to pay all surplus out

as dividends at time 0, and ruin occurs immediately. Therefore, the payoff is βx if the initial surplus is x.

If the initial surplus is less than or equal to 0, ruin occurs immediately at time 0 and there are no dividend

payments at all, which results in a payoff of 0. Therefore,

V0(x) = βx for x ≥ 0, and Vb(x) = 0, for b ≥ 0 and x ≤ 0. (3.2)

Furthermore, we can show that Vb(x) is non-negative and non-decreasing.

Lemma 3.1 For any b ≥ 0, Vb(x) ≥ 0 for x ≥ 0 and Vb(x) is non-decreasing on [0,+∞).

To assist with the investigation of the stationary MPE strategy, we will study the following functions.

Definition 3.2 For any fixed b ≥ 0 and L ∈ Π, define the functions PE(·;L) and V E
b (·) by

PE(x;L) = Ex

[∫ TL

0
βe−δtdLt

]
, V E

b (x) = PE(x;Lb), x ≥ 0. (3.3)

The functions colorblue as defined above are the return functions (the expected present value of the

total dividends) when the exponential discounting e−δt is used. These functions have the following useful

properties.

Throughout the paper, we define f ′(0) and f ′′(0) to be, respectively, the first and second-order right

derivatives of f(·) at 0.

Lemma 3.2 (i) For any b > 0, the function V E
b (x) is continuously differentiable and twice continuously

differentiable for x ≥ 0, except for the point x = b, and it satisfies

σ2(x)

2
V E
b
′′
(x) + µ(x)V E

b
′
(x)− δV E

b (x) = 0, 0 ≤ x < b, (3.4)

V E
b (0) = 0, V E

b
′
(b) = β, V E

b
′
(x) = β, x > b, lim

b↓0
V E
b (b) = 0, lim

b↓0
V E
b (x) = V E

0 (x). (3.5)
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For any b ≥ 0, the function V E
b (x) is non-negative and strictly increasing on [0,+∞).

(ii) For any b > 0, if V E
b
′′
(b−) ≤ 0, then V E

b
′′
(x) ≤ 0 for x ∈ [0, b).

We will now present some theoretical properties of the payoff functions associated with barrier strategies.

Those properties will be useful in the analysis of some later results. We will first show that the payoff

function of a barrier strategy is the solution to a boundary-value problem.

Lemma 3.3 (i) For any b > 0, there is a unique solution that is twice continuously differentiable on

(0,+∞) to the following boundary value problem,

σ2(x)

2
f ′′(x) + µ(x)f ′(x)− (λ+ δ)f(x) + λαV E

b (x) = 0 for 0 ≤ x < b, f(0) = 0, f ′(b) = β. (3.6)

(ii) Let Sb(x) denote the above solution. Then, for any b > 0,

Vb(x) = P(x;Lb, Lb) =


Sb(x) 0 ≤ x ≤ b

Sb(b) + β(x− b) x > b,

and lim
b↓0

Vb(b) = 0. (3.7)

Remark 3.1 From the last lemma it follows immediately that Vb(x) is continuously differentiable on

[0,+∞) and twice continuously differentiable on [0, b) ∪ (b,+∞); additionally,

σ2(x)

2
V ′′b (x) + µ(x)V ′b (x)− (λ+ δ)Vb(x) + λαV E

b (x) = 0 for 0 ≤ x < b, (3.8)

Vb(0) = 0, V ′b (b) = β, V ′b (x) = β, V ′′b (x) = 0 for x > b. (3.9)

We now define two quantities that will play key roles in the characterization of MPE strategies.

Definition 3.3 (i) Define bE = inf{b > 0 : V E
b
′′
(b−) ≥ 0}, and bE = +∞ if V E

b
′′
(b−) < 0 for all b > 0.

(ii) Define b∗ = inf{b > 0 : V ′′b (b−) ≥ 0}, and b∗ = +∞ if V ′′b (b−) < 0 for all b > 0.

From the last lemma and the last remark, we observe that Vb(x) may not be twice differentiable at x = b.

The quantity b∗ is the barrier of a barrier strategy under which the payoff function with stochastic quasi-

hyperbolic discounting is also twice differentiable at b and thus Vb (see (3.7)) is a smooth pasting of the

solution of an ODE and the linear function, and it is said to satisfy the “heuristic principle of smooth

fit”. Similarly, the quantity, bE , is the barrier of a barrier strategy under which the payoff function in the

exponential discounting case satisfies the “heuristic principle of smooth fit”.

Using the definitions for bE and b∗ and the ordinary differential equations that they satisfy, we can

derive the following relationship between bE and b∗.

Lemma 3.4 The following holds: 0 ≤ b∗ ≤ bE.

We derive the following properties of b∗ and the payoff function associated with Lb
∗
, when b∗ < +∞.

Theorem 3.5 If µ(0) ≤ 0, then b∗ = 0. If µ(0) > 0, then b∗ > 0.

Lemma 3.6 If b∗ < +∞, the function V E
b∗ is concave on [0, b∗).

The above results will be used to derive the optimality results in the next section.
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4 Optimality results

In this section we will derive the optimality results. We will first study the properties of the payoff function

associated with barrier strategies for the cases when b∗ is finite and when b∗ is infinite separately. We will

show that in the first case the barrier strategy, Lb∗, is a MPE strategy and no barrier strategies are MPE

strategies in the second case. We will also provide two examples which consider two widely used surplus

models. For the two examples, the optimal strategies will be obtained and an analysis for the degree of

the impact of time-inconsistency on the optimal strategies will be provided.

Theorem 4.1 Suppose µ(0) > 0. (i) For any finite b ∈ [0, b∗], Vb(x) is concave on (0, b]. (ii) If b∗ < +∞,

the function Vb∗(x) is twice continuously differentiable and concave on (0,+∞). (iii) If 0 < b∗ < +∞, the

following hold:

σ2(x)

2
V ′′b∗(x) + µ(x)V ′b∗(x)− (λ+ δ)Vb∗(x) + λαV E

b∗ (x) = 0 for 0 < x ≤ b∗ (4.1)

Vb∗(0) = 0, V ′b∗(b
∗) = β, Vb∗(x) = Vb∗(b

∗) + β(b∗ − x) for x ≥ b∗, (4.2)

V ′b∗(x) = β, V ′′b∗(x) = 0 for x ≥ b∗, V ′b∗(x) ≥ β for x ≥ 0. (4.3)

We show below that if there is an optimal barrier strategy, then the strategy is also a MPE stratey.

Theorem 4.2 If b∗ < +∞, then the strategy Lb
∗

is a MPE strategy, that is, Vb∗(x) = P(x;Lb
∗
, Lb

∗
) =

supL∈Π P(x;L,Lb
∗
), x ≥ 0.

We will show below that if the optimal barrier does not exist (e.g., b∗ = +∞), then the payoff function

for the barrier strategy increases as the barrier increases and no barrier strategies are MPE strategies.

Lemma 4.3 If b∗ = +∞, then (i) V E
b1

(x) ≤ V E
b2

(x) for x ≥ 0 and any 0 ≤ b1 < b2; and (ii) Vb1(x) ≤ Vb2(x)

for x ≥ 0 and any 0 ≤ b1 < b2.

Theorem 4.4 If b∗ = +∞, then no barrier strategy is a MPE strategy.

As an immediate result of the above lemmas and theorem, we have the following corollary.

Corollary 4.5 (i) If µ(0) ≤ 0, then b∗ = 0, L0 is a MPE strategy and V (x) = V0(x) = βx for x ≥ 0. (ii)

If µ(0) > 0 and b∗ < +∞, then Lb
∗

is a MPE strategy and V (x) = Vb∗(x). (iii) If µ(0) > 0 and b∗ = +∞,

then no barrier strategy is a MPE strategy.

We can see that when µ(0) ≤ 0, the MPE strategy is to distribute all surplus as dividends immediately,

which results in immediate ruin. This is the so-called take-the-money-and-run strategy. For cases with

µ(0) > 0, if b∗ is finite, the barrier strategy with barrier b∗ is a MPE strategy. In such case, the optimal

barrier b∗ and the value function Vb∗(x) can be obtained by solving (b, f(·)) to

σ2(x)

2
f ′′(x) + µ(x)f ′(x)− (λ+ δ)f(x) + λαV E

b (x) = 0, 0 ≤ x < b, (4.4)

f(0) = 0, f ′(b) = β, f ′′(b) = 0, f ′(x) = β, x ≥ b, (4.5)
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where V E
b (x) is the solution to σ2(x)

2 f ′′(x) +µ(x)f ′(x)− δf(x) = 0 for 0 ≤ x < b, with f(0) = 0, f ′(b) = β,

f ′′(b) = 0, and f ′(x) = β for x ≥ b.

By Lemma 3.4, we have 0 ≤ b∗ ≤ bE . Thus, if the optimal strategy in the corresponding optimization

problem with exponential discounting is a barrier strategy (which means bE < +∞), then b∗ < +∞ and

the optimal solution under stochastic quasi-hyperbolic discounting is also the barrier strategy with barrier

b∗. Note that the barrier strategy, Lb
E

, is the optimal strategy in the exponential discounting case, and

Lb
∗

is the MPE strategy in the time-inconsistent case. This may convey some economic insights into

understanding the impact of behaviorial impatience described by non-exponential discounting, particularly

stochastic quasi-hyperbolic discounting, on strategic dividend payments policies. Specifically, under the

premise of stochastic quasi-hyperbolic discounting in the time-inconsistent situation, the decision maker,

say the management of an insurance company here, would value not too distant future income higher than

distant future income. This would induce an economic incentive to distribute dividends sooner than later

with a view to maximizing the profit arising from the expected discounted aggregate dividend payments.

Of course, it goes without much saying that we do not take into account an agency problem here, so that

the management and the shareholders of the insurance company are deemed to have the same objective of

maximizing the total expected discounted dividends. In practice, the agency problem may exist.

From the above discussion we can see that b∗ may be infinite only if µ(0) > 0 and bE = +∞. However,

this is a sufficient condition only since b∗ ≤ bE . According to the definition of b∗, a necessary condition for

b∗ to be infinitely large is supb≥0 V
′′
b (b) < 0, which is equivalent to

supb>0

{
(λ+ δ)Vb(b)− µ(b)β − λαV E

b (b)
}
< 0 by (4.1).

In the following two examples we will show that the barrier strategy is indeed a MPE strategy for

the most widely studied model in the dividend optimization literature (the Brownian motion model) and

for a more general model, in which the drift is a linear function of the state of the model. From the

perspectives of economics and econometrics, the Brownian motion model (Example 1 below) describes the

situation where the surplus process follows a random walk process while the Ornstein-Uhlenbeck model

(Example 2 below) describes the situation where the surplus process follows a mean-reverting process. In

a discrete-time situation, the former may be described by a white noise process while the latter may be

described by an autoregressive process.

Example 1: The Brownian Motion Model. Assume µ(x) ≡ µ(≥ 0) and σ(x) ≡ σ(> 0). The

controlled surplus process is a controlled Brownian motion: dXL
t = µdt + σdWt − dLt, t ≥ 0. It follows

by Lemma 3.2 that V E
b (·) is continuously differentiable and satisfies σ2

2 V
E
b
′′
(x) + µV E

b
′
(x) − δVb(x) = 0

for 0 < x < b, V E
b (0) = 0, V E

b
′
(b) = β, and V E

b
′
(x) = β for x > b. Let r1 and −r2 represent the positive

and negative roots, respectively, of the equation 1
2σ

2x2 +µx−δx = 0. Solving the above equations, we have

V E
b (x) =


β(er1x−e−r2x)

r1er1b+r2e−r2b
, 0 ≤ x ≤ b,

β(er1b−e−r2b)
r1er1b+r2e−r2b

+ β(x− b), x > b.

By Definition 3.3, bE = inf{b > 0 : V E
b
′′
(b) ≥ 0}. Then, by

using the expression for V E
b as above we can obtain bE =

2 ln(
r2
r1

)

r1+r2
. Because b∗ ≤ bE , we can conclude that

b∗ is finite and that the barrier strategy Lb
∗

is a MPE strategy.
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Example 2: The Ornstein-Uhlenbeck Model. Consider the Ornstein-Uhlenbeck type model where

µ(x) = p + rx and σ(x) = σ with p ≥ 0, σ > 0 and 0 < r < δ. The controlled process is dXL
t =

(p + rXL
t )dt + σdWt − dLt, t ≥ 0. Here, we can interpret r as the force of interest that the surplus is

earning. It is natural to assume that r is lower than the risk discount rate, δ, that shareholders use to

discount dividend payment cash flows, as δ is generally r plus a risk margin. It follows by Lemma 3.2 that

V E
b (·) is continuously differentiable and satisfies the following equations

σ2

2
V E
b
′′
(x) + (p+ rx)V E

b
′
(x)− δVb(x) = 0 for 0 < x < b, V E

b
′
(x) = β for x > b. (4.6)

and the conditions: V E
b (0) = 0 and V E

b
′
(b) = β. Consider the homogeneous equation

σ2

2
g′′(x) + (p+ rx)g′(x)− δg(x) = 0, x > 0. (4.7)

Following the same procedure used in (Cai, Gerber, & Yang, 2006), we can convert the above equation

into a Kummer’s confluent hypergeometric equation. Let t = − (p+rx)2

rσ2 and h(t) := g(x). We can see that

the above equation is equivalent to the following Kummer’s confluent hypergeometric equation: th′′(t) +

(c− t)h′(t)− a1h(t) = 0, for t < − p2

rσ2 with a1 = − δ
2r and c = 1

2 . Two independent solutions to the above

equation are (see page 505 of (Abramowitz & Stegun, 1968)) h1(t) = U(a1, c, t) and h2(t) = etU(c −

a1, c,−t), where the function U(·, ·, ·) is the confluent hypergeometric function of the second kind. Hence,

if we define, g1(x) = U(a1,
1
2 ,−

(p+rx)2

rσ2 ) and g2(x) = e−
(p+rx)2

rσ2 U(1
2 − a1,

1
2 ,

(p+rx)2

rσ2 ), then g1 and g2 are two

independent solutions to (4.7). Therefore, for some constants, K1 and K2, V E
b (x) = K1g1(x)+K2g2(x). By

noting V E
b (0) = 0 and V E

b
′
(b) = β, we obtain K1g1(0)+K2g2(0) = 0 and K1g

′
1(b)+K2g

′
2(b) = β. Let K1(b)

and K2(b) represent K1 and K2 that solve the above equations. Then, V E
b (x) = K1(b)g1(b) +K2(b)g2(b),

where K1(b) = g2(0)β
g2(0)g′1(b)−g1(0)g′2(b)

and K2(b) = − g1(0)β
g2(0)g′1(b)−g1(0)g′2(b)

.

For any f and g, we say f(x) ∼ g(x) iff limx→∞
f(x)
g(x) = 1. It follows from Eq. (13.5.2) on page 508 of

(Abramowitz & Stegun, 1968) that g1(x) = U(a1,
1
2 ,−

(p+rx)2

rσ2 ) ∼ (− (p+rx)2

rσ2 )−a1 and g2(x) = e−
(p+rx)2

rσ2 U(1
2−

a1,
1
2 ,

(p+rx)2

rσ2 ) ∼ e−
(p+rx)2

rσ2 ( (p+rx)2

rσ2 )a1−0.5. Note ∂
∂zU(a, b, z) = −aU(a+ 1, b+ 1, z). Thus,

g′1(x) = a1
2(p+ rx)

σ2
U(a1 + 1, 1.5,−(p+ rx)2

rσ2
) ∼ a1

2

σ2
(− 1

rσ2
)−a1−1(p+ rx)−2a1−1

g′2(x) = −(p+ rx)

σ2
e−

(p+rx)2

rσ2

(
2U(

1

2
− a1,

1

2
,
(p+ rx)2

rσ2
) + (1− 2a1)U(1.5− a1, 1.5,

(p+ rx)2

rσ2
)

)
∼ − 2

σ2
e−

(p+rx)2

rσ2 (
1

rσ2
)−

1
2

+a1(p+ rx)2a1 .

Furthermore, g′′1(x) ∼
(
a1

2r
σ2 (− 1

rσ2 )−a1−1 + ( 2
σ2 )2a1(a1 + 1)(− 1

rσ2 )−a1−2
)

(p+rx)−2a1−2, and g′′2(x) ∼ (1.5−

a1)( 2
σ2 )2e−(

(p+rx)2

rσ2 )( 1
rσ2 )a1− 1

2 (p+ rx)2a1+1. Then, K1(b)g′′1(b) =
βg2(0)g′′1 (b)

g2(0)g′1(b)−g1(0)g′2(b)
∼ β(δ−r)

p+rb and

K2(b)g′′2(b) =
−g1(0)βg′′2(b)

g2(0)g′1(b)− g1(0)g′2(b)
∼ −(−1)a1+1 g1(0)β(1.5− a1) 2

σ2 e
−(

(p+rb)2

rσ2 )( 1
rσ2 )2a1+1(p+ rb)4a1+2

g2(0)a1
.

As a result, V E
b (b) = K1(b)g′′1(b) +K2(b)g′′2(b) ∼ β(δ−r)

p+rb . Noticing that δ− r > 0, we can therefore conclude

that there exists b1 > 0 so that V E
b1

′′
(b1) > 0. It follows from (4.6) and V E

b (0) = 0 that V E
b
′′
(0) =

2
σ2 (−pV E

b
′
(0+) + δV E

b (0+)) = − 2p
σ2 pg

′(0+) < 0. Then, limb↓0 V
E
b
′′
(b) = K1(0)g′′1(0) + K2(0)g′′2(0) =
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limb↓0(K1(b)g′′1(0) + K2(b)g′′2(0)) = limb↓0 V
E
b
′′
(0) < 0. Define h(b) = V E

b
′′
(b) = K1(b)g′′1(b) + K2(b)g′′2(b)

for b > 0. We can see that h(b) is continuous on (0,+∞). By noticing limb↓0 h(b) = limb↓0 V
E
b
′′
(b) < 0,

hb1(b1) > 0 and the continuity of h(·), we can conclude that there exists a positive b such that V E
b
′′
(b) = 0.

Hence, from Definition 3.3 (i), we can see that bE < +∞ and is the smallest positive solution to V E
b
′′
(b) = 0.

As b∗ ≤ bE (see (3.4)), we conclude that b∗ <∞. Thus, Lb
∗

is a MPE strategy.

5 Numerical illustration

We will provide numerical illustrations by considering the two examples studied in the last section. It

is intended that the numerical examples would illustrate how the optimal strategies may be implemented

and that they would provide concrete illustrations for the economic insights that may be conveyed by the

theoretical results on optimality established in the last section.

Example 1 (continued): The Brownian Motion Model. Now assume µ = 1, σ = 2, δ = 0.1,

β = 0.95, λ = 1 and α = 0.95. It follows by the formula for bE in Example 1 in the last section that

bE = 5.738786. It follows by Remark 3.1 that

σ2

2
V ′′b (x) + µV ′b (x)− (δ + λ)Vb(x) + λαV E

b (x) = 0 for 0 < x < b, (5.1)

Vb(0) = 0, V ′b (b) = β, V ′b (x) = β for x > b.

Let θ1 and −θ2 represent the positive and negative roots, respectively, of the equation 1
2σ

2x2+µx−(λ+δ) =

0. We can see that eθ1x and e−θ2x are two linearly independent solutions to σ2

2 f
′′(x)+µf ′(x)−(λ+δ)f(x) =

0. Define f1(x) = eθ1x and f2(x) = e−θ2x. The Wronskian of f1 and f2 is W (x) = f1(x)f ′2(x)−f2(x)f ′1(x) =

−(θ1 + θ2)e(θ1−θ2)x. By applying the variation of coefficients method, we know that any solution to (5.1)

has the following general form: C1f1(x) +C2f2(x)− f1(x)
∫ x

0

−2λαf2(y)V Eb (y)

W (y)σ2 dy+ f2(x)
∫ x

0

−2λαf1(y)V Eb (y)

W (y)σ2 dy.

Hence, for some constants C1 and C2,

Vb(x) = C1e
θ1x + C2e

−θ2x − 2λα

σ2(θ1 + θ2)
eθ1x

∫ x

0

e−θ2yV E
b (y)

e(θ1−θ2)y
dy +

2λα

σ2(θ1 + θ2)
e−θ2x

∫ x

0

eθ1yV E
b (y)

e(θ1−θ2)y
dy.

Since Vb(0) = 0, we have C2 = −C1. By plugging in V E
b (y) = β(er1y−e−r2y)

r1er1b+r2e−r2b
(see Example 1 in the last

section) and C2 = −C1, we obtain

Vb(x) =C1(eθ1x − e−θ2x) +M(b)

(
−e

r1x − eθ1x

r1 − θ1
− e−r2x − eθ1x

r2 + θ1
+ +

er1x − e−θ2x

r1 + θ2
+
e−r2x − e−θ2x

r2 − θ2

)
,

where M(b) = 2λαβ
(θ1+θ2)σ2(r1er1b+r2e−r2b)

. Hence, V ′b (x) = C1(θ1e
θ1x + θ2e

−θ2x) + M(b)N(x) with N(x) =(
− r1er1x−θ1eθ1x

r1−θ1 + r2e−r2x+θ1eθ1x

r2+θ1
+ r1er1x+θ2e−θ2x

r1+θ2
− r2e−r2x−θ2e−θ2x

r2−θ2

)
. By letting V ′b (b) = β, we have C1 =

β−M(b)N ′(b)
T (b) with T (b) = (θ1e

θ1b + θ2e
−θ2b). Furthermore, V ′′b (x) = (θ2

1e
θ1x − θ2

2e
−θ2x)C1(b) + M(b)N ′′(x).

Thus, b∗ is the positive solution to the equation:, (θ2
1e
θ1b − θ2

2e
−θ2b)C1(b) + M(b)N ′′(b) = 0. By plugging

in the numerical value of the model parameters provided above and solving the above equation we obtain

b∗ = 5.243. Thus, the barrier strategy, L5.243, is a MPE strategy.

Example 2 (continued): The Ornstein-Uhlenbeck Model. Suppose σ = 1, p = 1, r = 0.05, δ = 0.1

and β = 0.95. It has been shown in the last section that bE is finite and is the smallest positive solution of
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b to V E
b
′′
(b) = 0. Furthermore, V E

b is the solution to (4.6). Hence, bE and V E
bE

(·) when restricted to (0, bE)

is the solution of (b, f(·)) to σ2

2 f
′′(x) + (p + rx)f ′(x) − δf(x) = 0 for 0 < x < b with f(0) = 0, f ′(b) = β

and f ′′(b) = 0. By plugging in the numerical values of the parameters and then solving these equations

numerically, we obtain bE = 3.101.

It was shown in the last section that Lb
∗

is a MPE strategy. From the paragraph following Corollary

4.5, we know that b∗ and Vb∗ when restricted to (0, b∗) are the solutions of (b, f(·)) to the equation

σ2

2 f
′′(x) + (p + rx)f ′(x) − (λ + δ)f(x) + λαV E

b (x) = 0 for 0 < x < b with boundary conditions f(0) = 0,

f ′(b) = β and f ′′(b) = 0, where V E
b is the solution to the equation σ2

2 V
E
b
′′
(x)+(p+rx)V E

b
′−δV E

b (x) = 0 for

0 < x < b with V E
b (0) = 0 and V E

b
′
(b) = β. By plugging the numerical values of the parameters provided

as well as using the numerical values of α and λ provided in Tables 1 and 2 to solve the boundary-value

problem, we obtain b∗, which is presented in Tables 1 and 2.

Table 1: The values of the optimal barrier with λ = 1 and varying values of α

α 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

b∗ 1.101 1.158 1.222 1.294 1.375 1.469 1.581 1.719 1.905 2.197 3.101

In Table 1, we can see that a higher α corresponds to a higher optimal barrier b∗. This may make

intuitive sense. Say a higher α implies a lower discount placed on dividends receivable in the future periods

and hence higher present values for future dividend payments. Therefore, it is optimal to raise the dividend

barrier so that ruin will occur later; this produces dividends over a longer period.

Notice that when α = 1, b∗ = 3.101 = bE . This can be explained in that when α = 1, the decision

maker is applying exponential discounting; the optimization problem then reduces to the time-consistent

problem, and therefore b∗ is the same as bE . These observations are in line with the economic intuition

that is conveyed by the theoretical results established in this paper.

Table 2: The values of the optimal barrier with α = 0.9 and varying values of λ

λ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b∗ 3.101 2.925 2.739 2.574 2.433 2.314 2.210 2.120 2.040 1.969 1.905

In Table 2, we can see that when λ increases, b∗ decreases. This is because, with a higher λ, the future

periods will arrive earlier. There is a higher discount for dividends in the future periods than the present

period. Thus, the decision maker needs to pay dividends earlier and reduce the dividend barrier to achieve

a higher expected present value of dividends.

When λ = 0, b∗ = 3.101 = bE . This is because λ represents the arrival rate of the future period

and λ = 0 means that the present period lasts forever. In this example, the decision maker is using the

exponential discounting at the same discount rate δ for all future dividends, and hence the optimization

problem reduces to the time-consistent case. As a result, b∗ = bE .
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6 Conclusion

It is the intention of this paper to provide a theoretical study on the impact of behaviorial and psycho-

logical features of human’s impatience on strategic decision making of dividend payments of insurance

companies. Specifically, these features of human’s impatience manifest themselves as time-inconsistent

preferences, which are technically described by stochastic quasi-hyperbolic discounting. A linear diffusion

model was considered for the surplus process of an insurance company. The model generalizes those in the

relevant literature. We studied the optimality of a class of widely used strategies, say barrier strategies,

which were shown to be the optimal strategy in most cases with similar setting when decision makers are

time-consistent. We showed that a barrier strategy with an optimal barrier is a perfect Markov equilibrium

(PME) strategy. We also provided a condition under which the barrier strategy is no longer a PME strategy.

Appendix

Proof of Lemma 3.1. The non-negativity of Vb(x) on [0,∞) follows immediately from its definition in

(3.1) and Remark 2.1. We now proceed to show that Vb(x) is non-decreasing on [0, b]. Let Lb represent

the barrier strategy with the barrier, b. For any x > 0, let Rx,bt represent the controlled stochastic process

dRx,bt = µ(Rx,bt− )dt+ σ(Rx,bt− )dWt − dLbt with Rx,b0− = x. Now consider Rx1,b
t and Rx2,b

t with 0 ≤ x1 < x2 ≤ b.

By extending the comparison theorem (Theorem 1.1 in (Ikeda & Watanabe, 1977)) slightly we can show

that with probability 1, Rx2,b
t ≥ Rx1,b

t for all t ≥ 0, and thus, when Rx2,b
t is distributing dividends, Rx1,b

t may

or may not distribute dividends, and when Rx1,b
t is distributing dividends, Rx2,b

t also distributes dividends

at the same rate with probability 1. As a result, Vb(x1) ≤ Vb(x2) for 0 ≤ x1 ≤ x2 ≤ b. For any x1 and x2

with x1 ≤ b < x2, we obtain Vb(x1) ≤ Vb(b) ≤ Vb(b) +x2− b = Vb(x2). For any x1 and x2 with b ≤ x1 < x2,

Vb(x1) ≤ Vb(b) + x1 − b ≤ Vb(b) + x2 − b = Vb(x2). Thus, Vb(·) is non-decreasing. �

Proof of Lemma 3.2 (i) Throughout this proof, we use VU (·) to represent the same function defined in

Equation (4.3) of (Shreve, Lehoczky, & Gaver, 1984). Now let us set some of the quantities in that reference

as follows: U = b, P = 0, β = δ and a(·) ≡ µ(·). We can see that the process ξU involved in the definition

for VU in (Shreve et al., 1984) coincides with the barrier strategy, LU , in this paper, and therefore, from the

definitions for V E
b in this paper we observe V E

b (·) ≡ βVb(·). From the paragraph following Equation (4.3)

in (Shreve et al., 1984), we know that for any b ≥ 0, Vb(·) satisfies σ2(x)
2 Vb

′′(x) + a(x)Vb
′(x) − βVb(x) = 0

for x ∈ (0, b), Vb(0) = P = 0 and V ′b (b) = 1. Further note that V E
b
′
(x) = β for x > b (see (3.5)). The

above implies that (3.4) and (3.5) hold. We conclude that limb↓0 V
E
b (b) = 0 and limb↓0 V

E
b (x) = V E

0 (x) by

taking limits on the expression for VU (x) in Equation (4.8) of (Shreve et al., 1984) and noting V E
0 (x) = βx.

Since, V E
b (x) = βVb(x) and V E

0 (x) = βx, the last two equations in (3.5) follow immediately. Noting that

V E
b (0) = 0 and V E

b
′
(b) = 1, it follows by Lemma 4.1 in (Shreve et al., 1984) that V ′E(x) = βV ′b (x) > 0 for

x ∈ [0, b]. Hence, by noting V E
b
′
(x) = β for x > b (see (3.5)), we conclude that V E

b is strictly increasing

on [0,+∞). (ii) Alternatively, all of the statements in (i) follow immediately by noticing that V E
b (x)/β is

identical to the function Tb(f, 1) (defined in (Zhu & Chen, 2013)) with f ≡ 0 and using the property of

Tb(f, 1) in (Zhu & Chen, 2013). The statement in (ii) follows by Lemma 3.6 in (Zhu & Chen, 2013). �
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Following are some important results that will be used to prove some later lemmas and theorems.

Lemma A.1 For any v ≥ 0, any L ∈ Π and any b ≥ 0, let π̄v,L,L
b

represent the strategy such that

dπ̄v,L,L
b

t = dLt for 0 ≤ t < v and dπ̄v,L,L
b

t = dLbt for t ≥ v. The following hold:

Ex

[ ∫ TL∧η0

0
βe−δtdLt

]
= Ex

[
β

∫ TL

0
e−(λ+δ)tdLt

]
, x ≥ 0, (A.1)

Ex

[
I{η0 ≤ TL}αe−δη0V E

b (RLη0−)

]
= Ex

[∫ TL

0
e−(λ+δ)sλαV E

b (RLs−)ds

]
, x ≥ 0, (A.2)

Ex

[
I{η0 ≤ T π̄

η0,L,L
b

}
∫ T π̄

η0,L,L
b

η0

βe−δtdπ̄η0,L,Lb

t

]
= Ex

[∫ TL

0
e−(λ+δ)sλV E

b (RLs−)ds

]
, x ≥ 0. (A.3)

Proof. Note that η0 is an exponential random variable with mean 1/λ. By conditioning on η0 and using

the independence between η0 and (L, TL) (due to the independence between η0 and RL), we obtain that

for x ≥ 0,

Ex

[ ∫ TL∧η0

0
βe−δtdLt

]
=

∫ ∞
0

Ex

[
β

∫ TL∧s

0
e−δtdLt

]
λe−λsds = Ex

[∫ ∞
0

βλe−λs

(∫ TL∧s

0
e−δtdLt

)
ds

]

= Ex

[
β

∫ TL

0
e−δt

(∫ ∞
t

λe−λsds

)
dLt

]
= Ex

[
β

∫ TL

0
e−(λ+δ)tdLt

]
, (A.4)

Ex

[
I{η0 ≤ TL}e−δη0V E

b (RLη0−)

]
=

∫ ∞
0

Ex

[
I{s ≤ TL}e−δsV E

b (RLs−)
]
λe−λsds

= Ex

[∫ TL

0
e−(λ+δ)sλV E

b (RLs−)ds

]
, x ≥ 0. (A.5)

Now we proceed to prove (A.3). We can also see that η0 is independent of (π̄s,L,L
b
, Rπ̄

s,L,Lb

) and thus, it is

also independent of T π̄
s,L,Lb

. Hence, by conditioning on η0 and then taking expectation we have

Ex

[
I{η0 ≤ T π̄

η0,L,L
b

}
∫ T π̄

η0,L,L
b

η0

e−δtdπ̄η0,L,Lb

t

]
=

∫ ∞
0

Ex

[
I{s ≤ T π̄s,L,L

b

}
∫ T π̄

s,L,Lb

s
e−δtdπ̄s,L,L

b

t

]
λe−λsds

=

∫ ∞
0

Ex

[
I{s ≤ T π̄s,L,L

b

}Ex
[ ∫ T π̄

s,L,Lb

s
e−δtdπ̄s,L,L

b

t

∣∣∣∣F0,W
s−

]]
λe−λsds, x ≥ 0, (A.6)

where the last equality follows by noticing that {s ≤ T L̄
s,L,Lb} = {RT L̄

s,L,Lb

v > 0 for all v ∈ [0, s)} given

R0 > 0 and therefore I{s ≤ T π̄
s,L,Lb} is F0,W

s− measurable. It follows by the strong Markov property of

Rπ̄
s,L,Lb

and π̄s,L,L
b

that for x ≥ 0,

Ex

[ ∫ T π̄
s,L,Lb

s
βe−δtdπ̄s,L,L

b

t

∣∣∣∣F0,W
s−

]
= e−δsEx

[ ∫ T π̄
s,L,Lb

s
βe−δ(t−s)dπ̄s,L,L

b

t

∣∣∣∣F0,W
s−

]

= e−δsE
Rπ̄

s,L,Lb

s−

[ ∫ T π̄
0,L,Lb

0
βe−δtdπ̄0,L,Lb

t

]
= e−δsE

Rπ̄
s,L,Lb

s−

[ ∫ TL
b

0
βe−δtdLbt

]
= e−δsV E

b (Rπ̄
s,L,Lb

s− ), (A.7)

where the second to the last equality follows by noting π̄0,L,Lb = L̄b and the last equality follows by

Definition 3.2 for V E
b (·). Notice that π̄s,L,L

b
coincides with L for the time period [0, s). Therefore,

Rπ̄
s,L,Lb

v = RLv , 0 ≤ v < s, (A.8)

I{s ≤ T π̄s,L,L
b

} = I{Rπ̄s,L,L
b

v > 0 for all v ∈ [0, s)} = I{RLv > 0 for all v ∈ [0, s)} = I{s ≤ TL}. (A.9)
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Multiplying (A.6) by β and the combining it with (A.7) yields

Ex

[
I{η0 ≤ T π̄

η0,L,L
b

}
∫ T π̄η0,L,Lb
η0

βe−δtdπ̄η0,L,Lb

t

]
=
∫ +∞

0 λe−(λ+δ)s × Ex

[
I{s ≤ T π̄η0,L,L

b

}V E
b (Rπ̄

η0,L,L
b

s− )

]
ds

= Ex

[∫ TL
0 e−(λ+δ)sλV E

b (RLs−)ds
]

for x ≥ 0, where the last equality follows by (A.8) and (A.9). �

Define the operator G ∈ C2(R+) by,

Gf (x) =
σ2(x)

2
f ′′(x) + µ(x)f ′(x)− (δ + λ)f(x). (A.10)

Proof of Lemma 3.3 (i) As in (Zhu & Yang, 2016), we use the Variation of Parameters method to

construct solutions to the non-constant coefficient differential equation, (3.4). Let v1(·) represent the

unique classical solution to σ2(x)
2 f ′′(x) + µ(x)f ′(x)− (λ+ δ)f(x) = 0 with initial value conditions f(0) = 1

and f ′(0) = 1, and v2(·) represent the unique classical solution to the same equation with initial value

conditions f(0) = 1 and f ′(0) = 0. Then, the pair v1(x) and v2(x) form a set of linearly independent

solutions to the homogeneous equation corresponding to (3.6). Define W (x) = v1(x)v′2(x) − v2(x)v′1(x).

The function, W (x), is the Wronskian of the fundamental set of solutions v1 and v2 and, is always non-

zero. Further define B(x) = v1(x)
∫ x

0
v2(y)
W (y)

2λαV Eb (y)

σ2(y)
dy − v2(x)

∫ x
0
v1(y)
W (y)

2λαV Eb (y)

σ2(y)
dy. Then, any solution to

the equation (3.6) can be expressed in the form K1v1(·) +K2v2(·) +B(x), where K1 and K2 are constants.

Define gb(x) = K1(b)v1(x) +K2(b)v2(x) +B(x), where K1(b) and K2(b) are the solutions, say K1 and K2,

of the following equations, K1v1(0) +K2v2(0) +B(0) = 0 and K1v
′
1(b) +K2v

′
2(b) +B′(b) = β. Noting that

v1(0) = v2(0) = 1 and B(0) = 0, we can solve

K1(b) =
β −B′(b)

v′1(b)− v′2(b)
, K2(b) = −K1(b) =

B′(b)− β
v′1(b)− v′2(b)

. (A.11)

We can verify that gb(0) = 0, that gb(·) is twice continuously differentiable, and that g′b(b) = β. Hence, the

existence of a twice continuously differentiable solution to (3.6) is proven.

(ii) From (i) we note Sb(x) ≡ gb(x), and therefore Sb(0) = 0. Define

wb(x) = Sb(x) for 0 ≤ x ≤ b and wb(x) = β(x− b) + Sb(b) for x > b. (A.12)

We can observe that wb(x) is continuously differentiable on [0,+∞) and twice continuously differentiable

on the same interval except for the point b. Using Itô’s formula and (2.1), we obtain that for any t > 0,

Ex

[
e−(λ+δ)(TL

b∧t)wb(R
Lb

TLb∧t)− wb(R
Lb

0−)

]

= Ex

[ ∫ TL
b∧t

0
e−(λ+δ)sGwb(R

Lb

s−)ds+

∫ TL
b∧t

0
e−(λ+δ)sσ(RL

b

s−)w′b(R
Lb

s−)dWs

−
∫ TL

b∧t

0
e−(λ+δ)sw′b(R

Lb

s−)dLb,cs +
∑

0≤s≤TLb∧t

e−(λ+δ)s
(
wb(R

Lb

s )− wb(RL
b

s−)
)]
, (A.13)

where {Lb,cs } is the continuous part of {Lbs}. Notice by the definition of Lb, RL
b

s− ∈ [0, b] for 0 < s ≤ TL
b
.

Further note that wb(y) = Sb(y) for y ∈ [0, b] and Sb(y) satisfies (3.6). Hence,

Gwb(R
Lb

s−) = −λαV E
b (RL

b

s−) for 0 < s ≤ TLb . (A.14)
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Because RL
b

s− ∈ [0, b] for 0 < s ≤ TL
b
, the process,

{∫ TLb∧t
0 e−(λ+δ)sσ(RL

b

s−)w′b(R
Lb
s−)dWs; t ≥ 0

}
, is a

Px-martingale, which implies

Ex

∫ TL
b∧t

0
e−(λ+δ)sσ(RL

b

s−)w′b(R
Lb

s−)dWs

 = 0. (A.15)

It follows by the definition of Lb in Definition 3.1(i) that

LbsI{RL
b

s− ≤ b} = Lbs−I{RL
b

s− ≤ b}, RL
b

s I{RL
b

s− ≤ b} = RL
b

s−I{RL
b

s− ≤ b}, (A.16)

Lbs − Lbs− = (RL
b

s− − b)I{RL
b

s− > b}, dLb,cs = I{RLbs− = b}dLb,cs . (A.17)

Note that by (A.12) we have wb(y)− wb(b) = β(y − b) for y > b. As a result of this and (A.16),∑
0≤s≤TLb∧t

e−(λ+δ)s(wb(R
Lb

s )− wb(RL
b

s−)) =
∑

0≤s≤TLb∧t

e−(λ+δ)s(wb(R
Lb

s )− wb(RL
b

s−))I{RLbs− > b}

=−
∑

0≤s≤TLb∧t

e−(λ+δ)sβ(RL
b

s− − b)I{RL
b

s− > b} = −
∑

0≤s≤TLb∧t

e−(λ+δ)sβ(Lbs − Lbs−), (A.18)

where the last equality follows by (A.17). By (A.17), we can also obtain∫ TL
b∧t

0
e−(λ+δ)sw′b(R

Lb

s−)dLb,cs =

∫ TL
b∧t

0
e−(λ+δ)sw′b(b)I{RL

b

s− = b}dLb,cs =

∫ TL
b∧t

0
e−(λ+δ)sβdLb,cs , (A.19)

where the last equality follows by w′b(b) = β (by (A.12) and S′b(b) = g′b(b) = β) and (A.17) again. It follows

from (A.13), (A.14), (A.15), (A.18) and (A.19) that Ex

[
e−(λ+δ)(TL

b∧t)wb(R
Lb

TLb∧t
)− wb(RL

b

0−)
]

=

−Ex

[∫ TLb∧t
0 e−(λ+δ)sλαV E

b (RL
b

s−)ds+ β
∫ TLb∧t

0 e−(λ+δ)sdLbs

]
, which implies

wb(x) =Ex

∫ TL
b∧t

0
e−(λ+δ)sλαV E

b (RL
b

s−)ds+ β

∫ TL
b∧t

0
e−(λ+δ)sdLbs + e−(λ+δ)(TL

b∧t)wb(R
Lb

TLb∧t)

 .
Recall that RL

b

s− ∈ [0, b] for s ∈ (0, TL
b
] and that Lbs is non-decreasing in s. By taking t → +∞ on both

sides of the above equation and then using the dominated convergence for the first and third terms in the

right-hand side of the equation as well as the monotone convergence for the second term, we obtain

wb(x) =Ex

∫ TL
b

0
e−(λ+δ)sλαV E

b (RL
b

s−)ds

+ Ex

β ∫ TL
b

0
e−(λ+δ)sdLbs

+ Ex

[
e−(λ+δ)TL

b

wb(R
Lb

TLb
)

]
,

=Ex

∫ TL
b

0
e−(λ+δ)sλαV E

b (RL
b

s−)ds

+ Ex

β ∫ TL
b

0
e−(λ+δ)sdLbs

 , (A.20)

where the last equality follows by noting that wb(R
Lb

TLb
) = wb(0) = Sb(0) = 0.

Noting that the strategy π(0,→)(Lb,Lb) coincides with π̄η0,Lb,Lb , we have

T π
(0,→)(Lb,Lb)

= T π̄
η0,L

b,Lb

. (A.21)

Further note that π(0,→)(Lb,Lb) coincides with Lb during the time period [0, η0). Hence, Rπ
(0,→)(Lb,Lb)

t = RL
b

t

for 0 ≤ t < η0. Therefore,

I{T π(0,→)(Lb,Lb) ≥ η0} = I{Rπ(0,→)(Lb,Lb)

t > 0 for all t ∈ [0, η0)}

=I{RLbt > 0 for all t ∈ [0, η0)} = I{TLb ≥ η0}, (A.22)
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T π
(0,→)(Lb,Lb)

I{T π(0,→)(Lb,Lb)
< η0} = inf

t∈[0,η0)
{Rπ(0,→)(Lb,Lb)

t ≤ 0}I{T π(0,→)(Lb,Lb)
< η0}

= inf
t∈[0,η0)

{RLbt ≤ 0}I{T π(0,→)(Lb,Lb)
< η0} = inf

t∈[0,η0)
{RLbt ≤ 0}(1− I{T π(0,→)(Lb,Lb) ≥ η0})

= inf
t∈[0,η0)

{RLbt ≤ 0}(1− I{TLb ≥ η0}) = inf
t∈[0,η0)

{RLbt ≤ 0}I{TLb ≤ η0} = TL
b
I{TLb ≤ η0}, (A.23)

where the second last equality follows by (A.22). As a result of (A.22) and (A.23),

T π
(0,→)(Lb,Lb) ∧ η0 = T π

(0,→)(Lb,Lb)
I{T π(0,→)(Lb,Lb)

< η0}+ η0I{T π
(0,→)(Lb,Lb) ≥ η0}

= TL
b
I{TLb < η0}+ η0I{TL

b ≥ η0} = TL
b ∧ η0. (A.24)

It follows by (2.4) that

P(x;Lb, Lb) = Ex

[ ∫ Tπ
(0,→)(Lb,Lb)∧η0

0
βe−δtdLbt + I{η0 ≤ T π

(0,→)(Lb,Lb)}
∫ Tπ

(0,→)(Lb,Lb)

η0

αβe−δtdLbt

]

= Ex

[ ∫ TL
b∧η0

0
βe−δtdLbt + I{η0 ≤ T π̄

η0,L
b,Lb}

∫ Tπ
(0,→)(Lb,Lb)

η0

αβe−δtdLbt

]
, x ≥ 0, (A.25)

where the last equality follows by (A.24) and (A.21). Combining (A.25), (A.1) and (A.3) yields

P(x;Lb, Lb) = Ex

β ∫ TL
b

0
e−(λ+δ)sdLbs

+ Ex

∫ TL
b

0
e−(λ+δ)sλαV E

b (RL
b

s−)ds

 = wb(x), x ≥ 0,

where the last equality is due to (A.20). By further noting (A.12), we complete the proof for (3.7).

Notice from the proof for (i) that Vb(b) = Sb(b) = K1(b)v1(b)+K2(b)v2(b)+B(b) for b > 0. It follows by

(A.11) that K1(b) = β−B′(b)
v′1(b)−v′2(b)

and K2(b) = −K1(b) = B′(b)−β
v′1(b)−v′2(b)

. Note that v1(x), v2(x) and B(x) are all

continuous differentiable on [0,+∞). Hence, limb↓0K1(b) and limb↓0K2(b) exist. Therefore, limb↓0 Vb(b) =

limb↓0K1(b) limb↓0 v1(b)+limb↓0K2(b) limb↓0 v2(b)+limb↓0B(b) = limb↓0(K1(b)v1(0)+K2(b)v2(0)+B(0)) =

limb↓0(K1(b) +K2(b)) = 0. �

Proof of Lemma 3.4 The inequality b∗ ≥ 0 is obvious according to Definition 3.3(ii). Consider any b > 0.

It follows by Lemma 3.2 that V E
b satisfies the equation (3.4) and that V E

b
′
(b) = β. As a result,

σ2(b)

2
V E
b
′′
(b−) = −µ(b)β + δV E

b (b) = −µ(b)β + (λα+ δ)V E
b (b)− λαV E

b (b). (A.26)

It follows by Lemma 3.3 that Vb satisfies the equation (3.6), and Vb
′(b) = β. Hence, σ2(b)

2 Vb
′′(b−) =

−µ(b)β + (λ+ δ)Vb(b)− λαV E
b (b), which along with (A.26) implies

σ2(b)

2
Vb
′′(b−)− σ2(b)

2
V E
b
′′
(b−) = (λ+ δ)Vb(b)− (λα+ δ)V E

b (b). (A.27)

Note by (2.4), (3.1) and π̄η0,Lb,Lb = Lb that Vb(b) = Eb

[ ∫ η0∧TL
b

0 βe−δtdLbt + I{η0 ≤ TL
b}
∫ TLb
η0

αβe−δtdLbt

]
,

and by (3.3) that V E
b (b) = Eb

[ ∫ η0∧TL
b

0 βe−δtdLbt + I{η0 ≤ TL
b}
∫ TLb
η0

βe−δtdLbt

]
. Therefore,

Vb(b)− V E
b (b) = −(1− α)βEb

[
I{η0 ≤ TL

b}
∫ TL

b

η0

e−δtdLbt

]
. (A.28)
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It follows by noticing π̄η0,Lb,Lb = Lb and using (A.3) that

βEb

[
I{η0 ≤ TL

b}
∫ TL

b

η0

e−δtdLbt

]
= Eb

[
I{η0 ≤ T π̄

η0,L
b,Lb}

∫ T π̄
η0,L

b,Lb

η0

βe−δtdLbt

]

=Eb

[ ∫ TL
b

0
e−(λ+δ)tλV E

b (RL
b

t−)dt

]
≤ V E

b (b)

∫ +∞

0
λe−(λ+δ)sdt =

λ

λ+ δ
V E
b (b), (A.29)

where the inequality in the second to the last step follows by noting that the controlled surplus will

never exceed b under the barrier strategy Lb, conditional on R0− = b, and noting that the function

V E
b is increasing for b > 0 by Lemma 3.2. By combining (A.28) and the equation (A.29), we obtain

Vb(b)− V E
b (b) ≥ −(1− α) λ

λ+δV
E
b (b), which implies Vb(b) ≥ λα+δ

λ+δ V
E
b (b). This, along with (A.27), implies

σ2(b)

2

(
Vb
′′(b−)− V E

b
′′
(b−)

)
≥ 0, b > 0. (A.30)

(a) Suppose 0 < bE < +∞. It follows by the definition of bE in Definition 3.3(i) that V E
bE
′′
(bE−) =

0. Therefore, from (A.30) we conclude σ2(bE)
2 VbE

′′(bE−) ≥ 0. It then follows by the definition for b∗ in

Definition (3.3)(ii) that 0 ≤ b∗ ≤ bE . (b) Suppose bE = 0. It follows by the definition for bE in Definition

3.3(i) that lim supb↓0
σ2(b)

2 V E
b
′′
(b−) ≥ 0. Then by taking lim infb↓0 on both sides of (A.30) and using the last

inequality, we arrive at lim infb↓0
σ2(b)

2 V E
b
′′
(b−) ≥ 0, which together with the definition for b∗ in Definition

3.3(ii), implies that b∗ = 0 = bE . (c) If bE = +∞, the inequality b∗ ≤ bE is trivial. �

Proof of Theorem 3.5 Note that the function Vb satisfies (3.6) on [0, b) (by Lemma 3.3). Therefore,

lim
x↓0

V ′′b (x) =
−µ(0) limx↓0 V

′
b (x) + (λ+ δ)Vb(0)− λαV E

b (0)
σ2(0)

2

= −
2µ(0) limx↓0 V

′
b (x)

σ2(0)
, (A.31)

where the last equality follows by Vb(0) = 0 in (3.9) and V E
b (0) = 0 in (3.5). Note that limx↓0 V

′
b (x) ≥ 0

(due to the non-decreasing property of Vb). It then follow from (A.31) that limx↓0 V
′′
b (x) ≥ 0 if and

only if µ(0) ≤ 0. As a result, by combining the definition of b∗ in Definition 3.3(ii) and the inequality

limx↓0 V
′′
b (x) ≥ 0 in (A.31), we can conclude that b∗ = 0 if µ(0) ≤ 0 and b∗ > 0 if µ(0) > 0. �

Proof of Lemma 3.6 Recall by Lemma 3.4 that 0 ≤ b∗ ≤ bE . Then by Definition 3.3(i), V E ′′
b∗ (b∗−) ≤ 0.

Hence, by Lemma 3.2(ii), V E
b∗
′′
(x) ≤ 0 for any x ∈ [0, b∗]. Thus, V E

b∗ is concave on (0, b∗). �

Proof of Theorem 4.1 It follows by Theorem 3.5 that b∗ > 0. (i) Note from Lemma 3.3 that Vb(x) is

continuously differentiable on (0,+∞) and twice continuously differentiable on (0,+∞)\{b}. For b = 0,

Vb(x) = V0(x) = βx for x ≥ 0 (see (3.7)). The concavity of Vb is obvious. We now consider any finite

b ∈ (0, b∗]. It follows by Definition 3.3(ii) that

V ′′b (b−) = lim
x↑b

d2

dx2
V ′′b (x) ≤ 0, b ∈ (0, b∗). (A.32)

Because the function Vb satisfies (3.6) on [0, b) (by Lemma 3.3), we have

lim
x↓0

V ′′b (x) =
−µ(0) limx↓0 V

′
b (x) + (λ+ δ)Vb(0)− λαV E

b (0)
σ2(0)

2

= −
2µ(0) limx↓0 V

′
b (x)

σ2(0)
≤ 0, (A.33)

where the last equality follows by Vb(0) = 0 in (3.9) and V E
b (0) = 0 in (3.5) and the last inequality

by µ(0) ≤ 0 and limx↓0 V
′
b (x) ≥ 0 (due to the non-deceasing property of Vb). We now use proof by
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contradiction to show that the function Vb is always concave on (0, b]. Suppose this is not true. Then

there exists some point in the interval (0, b] such that the second order derivative of Vb at this point is

strictly greater than 0. Recall that V ′′b (0+) ≤ 0 (see (A.33)) and V ′′b (b−) ≤ 0 (see (A.32)). Hence, if we

use V ′′b (0) and V ′′b (b) to represent V ′′b (0+) and V ′′b (b−), respectively, it follows by the continuity of V ′′b (x)

on (0, b) that there exist x1 and x2 with 0 ≤ x1 < x2 ≤ b such that V ′′b (x1) = 0 = V ′′b (x2) and V ′′b (x) > 0

for x ∈ (x1, x2). Recall that the function Vb satisfies (3.6) on [0, b) (see Lemma 3.3). Thus, we have

σ2(x)
2 V ′′b (x) = −µ(x)V ′b (x)+(λ+δ)Vb(x)−λαV E

b (x). It follows by the above equations that for x ∈ (x1, x2),

−µ(x)V ′b (x)+(λ+δ)Vb(x)−λαV E
b (x) > 0 = −µ(xl)V

′
b (xl)+(λ+δ)Vb(xl)−λαV E

b (xl), l = 1, 2. As a result,

(µ(xl)V
′
b (xl)−µ(x)V ′b (x)) +λα(V E

b (xl)−V E
b (x)) > (λ+ δ)(Vb(xl)−Vb(x)), x ∈ (x1, x2), l = 1, 2. Now, by

dividing both sides of the above equation by xl − x and then taking lim supx↓x1
if l = 1 and lim supx↑x2

if

l = 2, we arrive at

µ(x1)V ′′b (x1) + λαV E
b
′
(x1) + (lim sup

x↓x1

µ(x)− µ(x1)

x− x1
− λ− δ)V ′b (x1) ≤ 0, (A.34)

µ(x2)V ′′b (x2) + λαV E
b
′
(x2) + (lim sup

x↑x2

µ(x)− µ(x2)

x− x2
− λ− δ)V ′b (x2) ≥ 0. (A.35)

It follows by (A.34) and V ′′b∗(x1) = 0 that

(λ+ δ − lim sup
x↓x1

µ(x)− µ(x1)

x− x1
)V ′b (x1) ≥ λαV E

b
′
(x1) ≥ λαV E

b
′
(x2) ≥ (λ+ δ − lim sup

x↑x2

µ(x)− µ(x2)

x− x2
)V ′b (x2),

(A.36)

where the second to the last inequality follows by the concavity of V E
b on (0, b) (Lemma 3.6), and the

last inequality by (A.35) and V ′′b (x2) = 0 It follows by V ′′b (x) > 0 for x ∈ (x1, x2) and the non-decreasing

property of Vb that

0 ≤ V ′b (x1) < V ′b (x2). (A.37)

Note that we are considering b that is finite and smaller than b∗. It follows by Lemma 3.4 that b ≤ b∗ ≤ bE ,

which together with Definition 3.3(i) implies V E
b
′′
(b−) ≤ 0. This along with Lemma 3.2(ii) leads to

V E
b
′′
(x) ≤ 0 for x ∈ [0, b). Then by V E

b
′
(b) = β (see (3.7)) and 0 ≤ x1 < b, we obtain

V E
b
′
(x1) ≥ V E

b
′
(b) = β. (A.38)

Recall that µ(y)−µ(x)
y−x ≤ λ(1 − α) + δ ≤ λ + δ for y > x ≥ 0 and that µ(x) is concave. The concavity of µ

implies

0 ≤ λ+ δ − lim sup
x↓x1

µ(x)− µ(x1)

x− x1
≤ λ+ δ − lim sup

x↑x2

µ(x)− µ(x2)

x− x2
, (A.39)

which, along with (A.37), implies (λ+δ−lim supx↓x1

µ(x)−µ(x1)
x−x1

)V ′b (x1) < (λ+δ−lim supx↑x2

µ(x)−µ(x2)
x−x2

)V ′b (x2)

if λ + δ − lim supx↓x1

µ(x)−µ(x1)
x−x1

6= 0. If λ + δ − lim supx↓x1

µ(x)−µ(x1)
x−x1

= 0, then by (A.39) we have

(λ + δ − lim supx↓x1

µ(x)−µ(x1)
x−x1

)V ′b (x1) = 0 < λβ ≤ λαV E
b
′
(x1), where the last inequality is due to (A.38).

We have now obtained a contradiction to (A.36) in each case.
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(ii) From Remark 3.1 (i), we already know that Vb∗(x) is continuously differentiable on (0,+∞) and twice

continuously differentiable on (0,+∞)\{b∗}. To prove the twice continuous differentiability at b∗, it suffices

to show that the left second-order derivative of V S
b∗(x) at x = b∗ equals the right second-order derivative,

which is true by noticing V ′′b∗(b
∗−) = 0 (by the definition for b∗ in Definition 3.3(ii) and b∗ > 0) and

V ′′b∗(b
∗+) = 0 (by (3.7)). It further follows that V ′′b∗(b

∗) = 0. We now proceed to prove the concavity. From

(i) we know that Vb∗ is concave on (0, b∗] and V ′′b∗(b
∗) = 0. Hence by noting that Vb∗(x) ≡ 0 for x ≥ b∗ (by

Lemma 3.3), we conclude Vb∗ is also concave on [b∗,+∞) and V ′′b∗(x) ≡ 0 for x ≥ b∗. The equation (4.1)

follows from (3.8), and all the equations in (4.2) follow from (3.9) and (3.9). The equations in (4.3) are

immediate results of the twice continuous differentiability of Vb∗ on [0,+∞) and (4.2). Since Vb∗ is concave

on [0,+∞) and V ′b∗(x) = β for x ≥ b∗, we conclude V ′b∗(x) ≥ β for x ≥ 0. �

Remark A.1 Suppose that L is an admissible strategy so that V ′b (RLs−) ≥ β for 0 ≤ s ≤ TL. Recall that

{Lcs} is the continuous part of {Ls}. Notice that for any L ∈ Π, if RLs ≤ RLs− and RLs− − RLs = Ls − Ls−,

and that Vb(·) is non-decreasing. Thus, for any stopping time τ ,
∑

0≤s≤TL∧τ e
−(λ+δ)s(Vb(R

L
s )−Vb(RLs−)) ≤∑

0≤s≤TL∧τ e
−(λ+δ)sβ(RLs −RLs−) = −

∑
0≤s≤TL∧τ βe

−(λ+δ)s(Ls − Ls−) and∫ TL∧τ
0 e−(λ+δ)sV ′b (RLs−)dLcs ≥

∫ TL∧tn
0 e−(λ+δ)sβdLcs. As a result,

∑
0≤s≤TL∧τ

e−(λ+δ)s(Vb(R
L
s )− Vb(RLs−))−

∫ TL∧τ

0
e−(λ+δ)sV ′b (RLs−)dLcs

≤ −β
∑

0≤s≤TL∧τ

e−(λ+δ)s(Ls − Ls−)−
∫ TL∧tn

0
e−(λ+δ)sβdLcs = −β

∫ TL∧tn

0
e−(λ+δ)sdLs.

Proof of Theorem 4.2 Note by Definition 3.1 (ii) that Vb∗(x) = P(x;Lb
∗
, Lb

∗
)(x) ≤ supL∈Π P(x;L,Lb

∗
).

According to the definition for a MPE strategy, we can see that it is sufficient to show that Vb∗(x) ≥

supL∈Π P(x;L,Lb
∗
), x ≥ 0. Theorem 4.1 shows that Vb∗(·) is twice continuously differentiable on (0,+∞).

Note that for any b ≥ 0, Vb(x) is continuously differentiable on [0,+∞) and twice continuously differentiable

on [0, b) ∪ (b,+∞). Define for any b ≥ 0,

hb(x) =
σ2(x)

2
V ′′b (x) + µ(x)V ′b (x)− (λ+ δ)Vb(x) + λαV E

b (x), x ∈ [0, b) ∪ (b,+∞). (A.40)

It follows immediately by (3.8) that

hb(x) = 0, x ∈ [0, b). (A.41)

Suppose b∗ < +∞. We now show that

hb∗(x) ≤ 0, x > 0. (A.42)

We distinguish two cases: (a) 0 < b∗ < +∞ and (b) b∗ = 0. (a) Suppose 0 < b∗ < +∞. By (A.41)

and the continuous differentiability of V ′′b∗(x) we have hb∗(x) = 0 for x ∈ [0, b∗]. For any x > 0, let y−x,n

and y+
x,n represent the sequences such that y−x,n ↑ x and y+

x,n ↓ x as n → +∞, lim supy↑x
hb∗ (y)−hb∗ (x)

y−x =

lim supn→+∞
hb∗ (y−x,n)−hb∗ (x)

y−x,n−x
and lim supy↓x

hb∗ (y)−hb∗ (x)
y−x = lim supn→+∞

hb∗ (y+
x,n)−hb∗ (x)

y+
x,n−x

. Since µ(·) and σ(·)
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are Lipschitz continuous, for any x ≥ 0, we can find sub-sequences of y−x,n and y+
x,n, say y−x,nk and y+

x,nk
, such

that limk→+∞
µ(y+

x,nk
)−µ(x)

y+
x,nk
−x , limk→+∞

σ(y+
x,nk

)−σ(x)

y+
x,nk
−x , limk→+∞

µ(y−x,nk )−µ(x)

y−x,nk−x
, and limk→+∞

σ(y−x,nk )−σ(x)

y−x,nk−x
exist.

This, along with 0 = limn→+∞
hb∗ (y−x,nk )−hb∗ (x)

y−x,nk−x
for x ∈ (0, b∗] (by (A.41)), (A.41) and the differentiability

of Vb∗ and V E
b∗ , implies the existence of limk→+∞

V ′′
b∗ (y−x,nk )−V ′′

b∗ (x)

y−x,nk−x
and

0 = lim
k→+∞

hb∗(y
−
x,nk

)− hb∗(x)

y−x,nk − x
=
σ2(x)

2
lim

k→+∞

V ′′b∗(y
−
x,nk

)− V ′′b∗(x)

y−x,nk − x
+

(
µ(x) + σ(x) lim

k→+∞

σ(y−x,nk)− σ(x)

y−x,nk − x

)

× V ′′b∗(x) +

(
lim

k→+∞

µ(y−x,nk)− µ(x)

y−x,nk − x
− λ− δ

)
V ′b∗(x) + λαV E

b∗
′
(x), x ∈ (0, b∗]. (A.43)

Note that Vb∗ is concave (Theorem 4.1(ii)). Thus, V ′′b∗(x) ≤ 0 for 0 < x < b∗. From (4.3) further notice

V ′′b∗(x) = 0 for x ≥ b∗, and thus, V
(3)
b∗ (x) = 0 ≤ lim

k→+∞

V ′′b∗(yb∗,nk)− V ′′b∗(b∗)
yb∗,nk − b∗

for x > b∗. (A.44)

By using (A.40) and (A.44), and noting V ′b∗(x) = β for x ≥ b∗ (see (4.3)), we have hb∗(x) = µ(x)β − (λ+

δ)Vb∗(x) + λαV E
b∗ (x) for x ≥ b∗. Hence, by using V ′b∗(x) = β for x ≥ b∗ (see (4.3)), and V E

b∗
′
(x) = β for

x ≥ b∗ (see (3.5)) we get

lim
k→+∞

hb∗(y
+
x,nk

)− hb∗(x)

y+
x,nk − x

=

(
lim

k→+∞

µ(y+
x,nk

)− µ(x)

y+
x,nk − x

− λ− δ

)
β + λαβ, x ≥ b∗

≤

(
lim

nk→+∞

µ(y−b∗,n)− µ(b∗)

y−b∗,nk − b
∗ − λ− δ

)
β + λαβ, (A.45)

where the last inequality follows by the concavity of µ(x). Furthermore, by setting x = b∗ in (A.43) and

then using V ′b∗(x) = β for x ≥ b∗, V E
b∗
′
(x) = β for x ≥ b∗, and V ′′b∗(x) = 0 for x ≥ b∗ again we obtain

0 =
σ2(b∗)

2
lim

k→+∞

V ′′b∗(y
−
b∗,nk

)− V ′′b∗(b∗)
y−b∗,nk − b

∗ +

(
lim

k→+∞

µ(y−b∗,nk)− µ(b∗)

y−b∗,nk − b
∗ − λ− δ

)
β + λαβ

≥

(
lim

k→+∞

µ(y−b∗,nk)− µ(b∗)

y−b∗,nk − b
∗ − λ− δ

)
β + λαβ ≥ lim

k→+∞

hb∗(y
+
x,nk

)− hb∗(x)

y+
x,nk − x

, x ≥ b∗, (A.46)

where the second to the last inequality follows by (A.44) and the last inequality by (A.45). Thus,

lim supy↓x
hb∗ (y)−hb∗ (x)

y−x ≤ 0 for x ≥ b∗, which, along with the continuity of h, implies hb∗(x) ≤ hb∗(b
∗) = 0

for x > b∗.

(b) Suppose b∗ = 0. It follows by Definition 3.3 that inf{b > 0 : limx↑b
d2

dx2P(x;Lb, Lb) ≥ 0} = 0.

Therefore, we can find a strictly positive sequence {bn} with limn→+∞ bn = 0 such that for each n,

V ′′bn(bn−) = lim
x↑bn

d2

dx2
P(x;Lbn , Lbn) ≥ 0. (A.47)

By noting (A.40), V ′bn(bn) = β (by (3.9)) and V ′′bn(bn+) = 0 (by (3.9)), we can obtain

hbn(bn+) = µ(bn)β − (λ+ δ)Vbn(bn) + λαV E
bn (bn)

≤ σ2(bn)

2
V ′′bn(bn−) + µ(bn)β − (λ+ δ)Vbn(bn) + λαV E

bn (bn) = hbn(bn−) = 0, (A.48)

where the inequality in the third to the last step follows from (A.47), the second to the last equality

follows by using (A.40) again, and the last equality is due to (A.41). Noticing from (3.9) that V ′bn(x) = β
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for x ≥ bn, V ′′bn(x) = 0 for x > bn and V
(3)
bn

(x) = 0 for x ≥ bn and from (3.6) that V E
bn

′
(x) = β for

x ≥ bn, we can derive from (A.40) that lim supy↓x
hbn (y)−hbn (x)

y−x = (lim supy↓x
µ(y)−µ(x)

y−x − λ− δ)β + λαβ =

(lim supy↓x
µ(y)−µ(x)

y−x −δ)β−λ(1−α)β ≤ 0 for x > bn, where the last inequality follows from the assumption

µ(y)−µ(x)
y−x ≤ λ(1− α) + δ ≤ λ+ δ for y > x ≥ 0. Therefore,

hbn(x) ≤ hbn(bn+) ≤ 0, x > bn, (A.49)

where the last inequality follows from (A.48). By noting Vbn(x) = β(x − bn) + Vbn(bn) for x > bn (see

(3.9)), limn→∞ bn = 0 and V0(x) = βx (see (3.2)), we can see

V0(x) = lim
n→+∞

Vbn(x), V ′0(x) = β = lim
n→+∞

V ′bn(x), V ′′0 (x) = 0 = lim
n→+∞

V ′′bn(x). (A.50)

Note limn→∞ bn = 0. Then from (3.7) it follows that

lim
n→∞

Vbn(bn) = 0. (A.51)

It follows by the assumption b∗ = 0, (A.40), (A.50) and limn→∞ Vbn(x) = V E
0 (x) (see (3.5)) that hb∗(x) =

h0(x) = limn→+∞ hbn(x) ≤ 0 for x ≥ 0, where the last inequality follows by (A.49).

Let L be any admissible strategy and define π̄η0,L,Lb
∗

s = LsI{s < η0}+ Lb
∗
s I{s ≥ η0}. For convenience

we use π̄s to represent this throughout this proof. We can see that π̄ is also admissible. Recall the definition

of G in (A.10). By applying the Itô’s formula, and using (2.1), we can obtain that for any t > 0,

Ex

[
e−(λ+δ)T π̄∧tVb∗(R

π̄
T π̄∧t)− Vb∗(R

π̄
0−)
]

= Ex

[ ∫ T π̄∧t

0
e−(λ+δ)sGVb∗ (R

π̄
s−)ds+

∫ T π̄∧t

0
e−(λ+δ)sσ(Rπ̄s−)V ′b (Rπ̄s−)dWs

−
∫ T π̄∧t

0
e−(λ+δ)sV ′b∗(R

π̄
s−)dπ̄cs +

∑
0≤s≤T π̄∧t

e−(λ+δ)s(Vb∗(R
π̄
s )− Vb∗(Rπ̄s−))

]
, (A.52)

where π̄cs is the continuous part of π̄. It follows from the definition of G in (A.10) and (A.40) that

GVb∗ (R
π̄
s−) = hb∗(R

π̄
s−)− λαV E

b∗ (Rπ̄s−) ≤ −λαV E
b∗ (Rπ̄s−) for 0 < s ≤ T π̄. (A.53)

where the last inequality is due to hb∗(x) ≤ 0 for x ≥ 0 (by (A.42)). Note that the stochastic process,{∫ T π̄∧t
0 e−(λ+δ)sσ(Rπ̄s−)V ′b∗(R

π̄
s−)dWs; t ≥ 0

}
, is a Px-local martingale. Therefore, there exists a positive

increasing sequence of stopping times {tn} with limn→+∞ tn = +∞ such that

Ex

[∫ T π̄∧tn
0 e−(λ+δ)sσ(Rπ̄s−)V ′b∗(R

π̄
s−)dWs

]
= 0. By noting that V ′b∗(y) ≥ β for y ≥ 0 (see (3.1)), we can see

V ′b∗(R
π̄
s−) ≥ β for s ∈ [0, T π̄]. Then from Remark A.1, we know

∑
0≤s≤T π̄∧tn

e−(λ+δ)s(Vb∗(R
π̄
s )− Vb∗(Rπ̄s−))−

∫ T π̄∧tn

0
e−(λ+δ)sV ′b∗(R

π̄
s−)dπ̄cs ≤ −β

∫ T π̄∧tn

0
e−(λ+δ)sdπ̄cs,

which together with (A.52) and (A.53) implies Ex

[
e−(λ+δ)(T π̄∧tn)Vb∗(R

π̄
T π̄∧tn)− Vb∗(Rπ̄0−)

]
≤

−Ex

[
β
∫ T π̄∧tn

0 e−(λ+δ)sdπ̄s

]
−Ex

[∫ T π̄∧tn
0 e−(λ+δ)sλαV E

b∗ (Rπ̄s−)ds
]
. By noting Ex

[
Vb∗(R

π̄
0−)
]

= Vb∗(x) and

taking lim infn→+∞ on the above equation and then using the monotone convergence twice as well as Fatou’s
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Lemma, we obtain Vb∗(x) ≥ Ex

[∫ T π̄
0 e−(λ+δ)sλαV E

b∗ (Rπ̄s−)ds
]
+Ex

[
β
∫ T π̄

0 e−(λ+δ)sdπ̄s

]
+Ex

[
e−(λ+δ)T π̄Vb∗(R

π̄
T π̄)
]
.

Noting Vb∗(R
π̄
T π̄) = Vb∗(0) = 0 (by (4.2)), we obtain that

Vb∗(x) ≥Ex

[∫ T π̄

0
e−(λ+δ)sλαV E

b∗ (Rπ̄s−)ds

]
+ Ex

[
β

∫ T π̄

0
e−(λ+δ)sdπ̄s

]
. (A.54)

By (2.4) we have

P(x;L,Lb
∗
) =Ex

[ ∫ T π̄∧η0

0
βe−δtdπ̄t + I{η0 < T π̄}α

∫ T π̄

η0

βe−δtdπ̄t

]
=Ex

[
β

∫ T π̄

0
e−(λ+δ)sdπ̄s

]
+ Ex

[∫ T π̄

0
e−(λ+δ)sλαV E

b∗ (Rπ̄s−)ds

]
, x ≥ 0, (A.55)

where the last equality follows by noting that the strategy π̄ = π̄η0,L,Lb
∗

coincides with L before η0 and Lb
∗

after η0, and using (A.1) and (A.3). Combining (A.54) and (A.55) yields Vb∗(x) ≥ P(x;L,Lb
∗
) for x ≥ 0.

Due to the arbitrariness of L, we can obtain Vb∗(x) ≥
∑

L∈Π P(x;L,Lb
∗
) for x ≥ 0. �

Proof of Lemma 4.3 Suppose b∗ = +∞. (i) We now use VU (·) again to represent the same function

defined in Equation (4.3) of (Shreve et al., 1984) and set some of the quantities in that reference as follows:

U = b, P = 0, β = δ and a(·) ≡ µ(·). As noted in an earlier proof, the process ξU involved in the definition

for VU in (Shreve et al., 1984) coincides with the barrier strategy, LU , in this paper, and therefore, from

the definition for V E
b in this paper we can observe that V E

b (·) ≡ βVb(·). Note that U∗ is defined to be the

solution, if any, to V ′′U (U) = 0 in the reference. From the definition for bE in this paper we can observe

that if bE = +∞, then U∗ does not exist. Then from the paragraph following Equation (4.9) in (Shreve et

al., 1984) we know V E
b1

(x) ≤ V E
b2

(x) for x ≥ 0 and 0 < b1 < b2. (ii) Define a modified performance index:

Tg(L)(x) = Ex

[∫ η0∧TL

0
βe−δtdLt + I{η0 < TL}αe−δη0g(RLt )

]
. (A.56)

We can see that

Vb(x) = P(x;Lb, Lb) = TV Eb (Lb)(x), x ≥ 0. (A.57)

Let Πb denote the set of the admissible strategies so that the corresponding controlled surpluses are always

below b. Then, Πb ∈ Π. Define

Mb,g(x) = sup
L∈Πb

Tg(L)(x), x ≥ 0. (A.58)

We show in the following that

Vb(x) = Mb,V Eb
(x), x ≥ 0. (A.59)

It follows from (A.57) and (A.58) that Vb(x) = TV Eb (Lb)(x) ≤ supL∈Πb
TV Eb (L)(x) = MV Eb ,b

(x) for x ≥ 0.

Thus, it is sufficient to show that Vb(x) ≥ Mb,V Eb
(x), x ≥ 0. To this end, we apply Itô’s formula to

e−(λ+δ)(TL∧t)Vb(R
L
TL∧t) for any L ∈ Πb and then take expectation under Px, which leads to

Ex

[
e−(λ+δ)(TL∧t)Vb(R

L
TL∧t)− Vb(R

L
0−)
]

= Ex

[ ∫ TL∧t

0
e−(λ+δ)sGVb(R

L
s−)ds+

∫ TL∧t

0
e−(λ+δ)sσ(RLs−)V ′b (RLs−)dWs

−
∫ T π̄∧t

0
e−(λ+δ)sV ′b (Rπ̄s−)dLcs +

∑
0≤s≤TL∧t

e−(λ+δ)s(Vb(R
L
s )− Vb(RLs−))

]
, (A.60)
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where G is defined in (A.10), {Lcs} is the continuous part of {Ls}. From the definition of Πb we note

RLt ∈ [0, b] for any t ∈ [0, TL] and any L ∈ Πb. (A.61)

By using (A.61) and (3.8) we can obtain that for any L ∈ Πb,

GVb(R
L
s−) = −λαV E

b (RLs−) for 0 < s ≤ TL. (A.62)

From now on in the proof of (i), we assume L ∈ Πb. Noting the boundedness of {RLt : t ∈ [0, TL]} (see

(A.61)), we can observe that
{∫ TL∧t

0 e−(λ+δ)sσ(RLs−)V ′b (RLs−)dWs; t ≥ 0
}

is a Px-martingale and hence,

Ex

[∫ TL

0
e−(λ+δ)sσ(RLs−)V ′b (RLs−)dWs

]
= 0. (A.63)

Note that for any b > 0, b < +∞ = b∗. It follows by Definition 3.3(i) that V ′′b (b−) < 0 for all b ≥ 0.

Noticing that V ′b (b) = β (see (3.9)) and the concavity of Vb on [0, b) (see Theorem4.1 (i)), it follows that

V ′b (x) > β for x ∈ [0, b) and any b > 0. Since RLt ∈ [0, b] for t ∈ [0, TL] (by (A.61)), we have V ′b (RLt−) > β

for t ∈ [0, TL]. Thus, from Remark A.1, it follows that

∑
0≤s≤TL

e−(λ+δ)s(Vb(R
L
s )− Vb(RLs−))−

∫ TL

0
e−(λ+δ)sV ′b (RLs−)dLcs ≤ −β

∫ TL

0
e−(λ+δ)sdLs, (A.64)

where LC is the continuous part of L. It follows from (A.60) and (A.62)-(A.64) that

Ex

[
e−(λ+δ)TLVb(R

L
TL)− Vb(RL0−)

]
≤ −Ex

[∫ TL

0
e−(λ+δ)sλαV E

b (RLs−)ds+ β

∫ TL

0
e−(λ+δ)sdLs

]
.

By noting Ex
[
Vb(R

L
0−)
]

= Vb(x) and Vb(R
L
TL

) = Vb(0) = 0 (by (4.2)), we obtain that

Vb(x) ≥Ex

[∫ TL

0
e−(λ+δ)sλαV E

b (RLs−)ds

]
+ Ex

[
β

∫ TL

0
e−(λ+δ)sdLs

]
. (A.65)

According to the definition of the modified performance index in (A.56) we have

TV Eb (L)(x) =Ex

[ ∫ TL∧η0

0
βe−δtdLt + I{η0 < TL}αe−δη0V E

b (RLη0
)ds

]
=Ex

[
β

∫ TL

0
e−(λ+δ)sdLs

]
+ Ex

[∫ TL

0
e−(λ+δ)sλαV E

b (RLs−)ds

]
, x ≥ 0, (A.66)

where the last equality follows by (A.1) and (A.2). Combining (A.65) and (A.66) yields Vb(x) ≥ TV Eb (L)(x).

Due to the arbitrariness of L in Πb, we have Vb(x) ≥ supL∈Πb TV Eb (L)(x) = Mb,V Eb
(x).

Furthermore, noticing that Πb1 ⊂ Πb2 for any b1 and any b2 with 0 ≤ b1 ≤ b2, we have supL∈Πb1
Tg(L)(x) ≤

supL∈Πb2
Tg(L)(x), x ≥ 0. Therefore, for any b1 and any b2 with 0 ≤ b1 ≤ b2,

Mb1,g(x) = sup
L∈Πb1

Tg(L)(x) ≤ sup
L∈Πb2

Tg(x) =Mb2,g(x), x ≥ 0. (A.67)

It follows by (A.56) that for any L and any g1 ≤ g2, TV Eb1
(L)(x) = Ex

[∫ η0∧TL
0 βe−δtdLt

]
+

Ex
[
I{η0 < TL}αe−δηV E

b1
(RLt )

]
≤ Ex

[∫ η0∧TL
0 βe−δtdLt

]
+ Ex

[
I{η0 < TL}αe−δη0V E

b2
(RLt )

]
= TV Eb2

(L)(x),
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and as a result, Mb,V Eb1
(x) ≤ Mb,V Eb2

(x) for x ≥ 0. Combining this inequality with (A.59) and (A.67), we

obtain Vb1(x)=Mb1,V Eb1
(x) ≤Mb2,V Eb1

(x) ≤Mb2,V Eb2
(x) =Vb2(x) for x ≥ 0. �

Proof of Theorem 4.4 Suppose b∗ < +∞. We use proof by contradiction. Suppose there exists a b0 > 0

such that Lb0 is a MPE. That is,

P(x;Lb0 , Lb0) = sup
L∈Π
P(x;L,Lb0). (A.68)

From the definition of b∗, we can see that

V ′′b (b−) < 0, b > 0. (A.69)

Note that Vb0(x) is continuously differentiable on [0,+∞) and twice continuously differentiable on [0, b0)∪

(b0,+∞). Define

hb0(x) =
σ2(x)

2
V ′′b0(x) + µ(x)V ′b0(x)− (λ+ δ)Vb0(x) + λαV E

b0 (x), x ∈ [0, b0) ∪ (b0,+∞). (A.70)

It follows by (3.8) that

hb0(x) = 0, x ∈ [0, b), (A.71)

which implies hb0(b0−) = 0. From (A.70), we can see hb0(b0+) = hb0(b0−)+ σ2(b0)
2 (V ′′b0(b0+)−V ′′b0(b0−)) > 0,

where the last inequality follows by noting V ′′b0(b0+) = 0 and V ′′b0(b0−) < 0, which is due to (A.69). Hence,

there exists an ε0 > 0 such that

hb0(x) > 0, x ∈ (b0, b0 + ε0). (A.72)

We apply Itô’s formula to Vb0(RL
b0+ε0 ) and take expectation under Px. This gives

Ex

[
e−(λ+δ)(TL

b0+ε0∧t)Vb0(RL
b0+ε0

TL
b0+ε0∧t

)− Vb0(RL
b0+ε0

0− )

]

= Ex

[ ∫ TL
b0+ε0∧t

0
e−(λ+δ)sGVb0 (RL

b0+ε0

s− )ds+

∫ TL
b0+ε0∧t

0
e−(λ+δ)sσ(RL

b0+ε0

s− )V ′b (RL
b0+ε0

s− )dWs

−
∫ TL

b0+ε0∧t

0
e−(λ+δ)sV ′b0(RL

b0+ε0

s− )dLb0+ε0,c
s +

∑
0≤s≤TLb0+ε0∧t

e−(λ+δ)s(Vb0(RL
b0+ε0

s )− Vb0(RL
b0+ε0

s− ))

]
.

(A.73)

It follows from (A.10), (A.70), (A.71) and (A.72) that

GVb0 (RL
b0+ε0

s− ) = hb0(RL
b0+ε0

s− )− λαV E
b0 (RL

b0+ε0

s− )


= −λαV E

b0
(RL

b0+ε0

s− ) if RL
b0+ε0

s− ∈ [0, b0]

> −λαV E
b0

(RL
b0+ε0

s− ) if RL
b0+ε0

s− ∈ (b0, b0 + ε0).

(A.74)

Note that RL
b0+ε0

s− ∈ [0, b0 + ε0] is bounded for s ∈ (0, TL
b0+ε0 ]. Hence, using the martingale property and

a standard stopping argument shows

Ex

∫ TL
b0+ε0∧t

0
e−(λ+δ)sσ(RL

b0+ε0

s− )V ′b0(RL
b0+ε0

s− )dWs

 = 0. (A.75)
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Note that

V ′b0(x) = β for x ≥ b0, and hence Vb0(x) = Vb0(b0) + β(x− b0) for x ≥ b0. (A.76)

Further notice that according to the definition of the barrier strategy in Definition 3.1, we know that

RL
b0+ε0

s− = RL
b0+ε0

s for s > 0, RL
b0+ε0

0 I{RLb0+ε0

0− < b0 + ε0} = RL
b0+ε0

0− I{RLb0+ε0

0− < b0 + ε0}, (A.77)

RL
b0+ε0

0 I{RLb0+ε0

0− ≥ b0 + ε0} = (b0 + ε)I{RLb0+ε0

0− ≥ b0 + ε0}. (A.78)

It follows by using (A.77) and (A.78) that∑
0≤s≤TLb0+ε0∧t

e−(λ+δ)s(Vb0(RL
b0+ε0

s )− Vb0(RL
b0+ε0

s− )) = (Vb0(RL
b0+ε0

0 )− Vb0(RL
b0+ε0

0− ))I{RLb0+ε0

0− ≥ b0 + ε0}

=
(
Vb0(b0) + βε0 − (Vb0(b0) + β(RL

b0+ε0

0− − b0))
)
I{RLb0+ε0

0− ≥ b0 + ε0}

= −β(RL
b0+ε0

0− − (b0 + ε0))I{RLb0+ε0

0− ≥ b0 + ε0} = −β
∑

0≤s≤TLb0+ε0∧t

e−(λ+δ)sβ(RL
b0+ε0

s− −RLb0+ε0

s )

= −β
∑

0≤s≤TLb0+ε0∧t

e−(λ+δ)s(Lb0+ε0
s − Lb0+ε0

s− ), (A.79)

where the second equality follows by (A.76), and the second to the last equality by (A.77) and (A.78). By

noticing dLb0+ε,c
s = I{RLb0+ε0

s− = b0 + ε0}dLb0+ε,c
s and V ′b0(b0 + ε0) = β (see (A.76)), we can obtain

∫ TL
b0+ε0∧t

0
e−(λ+δ)sV ′b∗(R

Lb0+ε0

s− )dLb0+ε,c
s =

∫ TL
b0+ε0∧t

0
e−(λ+δ)sβdLb0+ε,c

s . (A.80)

Combining (A.73), (A.74), (A.75), (A.79) and (A.80) yields

Ex

[
e−(λ+δ)(TL

b0+ε0∧t)Vb0(RL
b0+ε0

TL
b0+ε0∧t

)− Vb0(RL
b0+ε0

0− )
]
> −Ex

[ ∫ TLb0+ε0∧t
0 e−(λ+δ)sλαV E

b0+ε0
(RL

b0+ε0

s− )ds

+β
∫ TLb0+ε0∧t

0 e−(λ+δ)sdLb0+ε0
s

]
. By noting Ex

[
Vb0(RL

b0+ε0

0− )
]

= Vb0(x), RL
b0+ε0

s− ∈ [0, x ∨ (b0 + ε0)] given

R0− = x, and taking limn→+∞ on both sides of the above inequality and using the dominated convergence

we obtain

Vb0(x) < Ex

[∫ TLb0+ε0

0 e−(λ+δ)sλαV E
b0

(RL
b0+ε0

s− )ds

]
+ Ex

[
β
∫ TLb0+ε0

0 e−(λ+δ)sdLb0+ε0
s

]
+Ex

[
e−(λ+δ)TL

b0+ε0

Vb0(RL
b0+ε0

TL
b0+ε0

)
]
. Noting Vb0(RL

b0+ε0

TL
b0+ε0

) = Vb0(0) = 0 (by (4.2)), we arrive that

Vb0(x) <Ex

β ∫ TL
b0+ε0

0
e−(λ+δ)sdLb0+ε0

s

+ Ex

∫ TL
b0+ε0

0
e−(λ+δ)sλαV E

b0 (RL
b0+ε0

s− )ds

 . (A.81)

By (2.4), it follows that

P(x;Lb0+ε0 , Lb0+ε0) = Ex

[ ∫ TL
b0+ε0∧η0

0
βe−δtdLb0+ε0

t + I{η0 < TL
b0+ε0}α

∫ TL
b0+ε0

η0

βe−δtdLb0+ε0
t

]

= Ex

β ∫ TL
b0+ε0

0
e−(λ+δ)sdLb0+ε0

s

+ Ex

∫ TL
b0+ε0

0
e−(λ+δ)sλαV E

b0+ε0(RL
b0+ε0

s− )ds

 ,

> Ex

β ∫ TL
b0+ε0

0
e−(λ+δ)sdLb0+ε0

s

+ Ex

∫ TL
b0+ε0

0
e−(λ+δ)sλαV E

b0 (RL
b0+ε0

s− )ds

 , x > 0, (A.82)
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where the equality in the second to the last step follows by noticing TL
b0+ε0 = T π̄

η0,L
b0+ε0 ,Lb0+ε0

, (A.1)

and (A.3), the equality in the last step follows according to the definition of V E
b in Definition 3.2 and the

last inequality follows by noting V E
b0

(y) < V E
b0+ε0

(y) for y > 0 (see Lemma 4.3(ii)). By combining (A.81)

and (A.82), we obtain P(x;Lb0 , Lb0) = Vb0(x) < P(x;Lb0+ε0 , Lb0+ε0) for x > 0, which is a contradiction to

(A.68). This completes the proof. �
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