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Abstract

In this paper, we investigate state estimation for systems with packet dropouts. According to whether there are acknowledgment
(ACK) signals sent by the actuator to the estimator indicating the status of control packet dropouts or not, the systems are
classified into two types: ACK systems, those with ACK signals, and non-ACK (NACK) systems, those without. We first obtain
the optimal estimator (OE) for NACK systems with Markovian packet dropouts. However, the number of the components
in the OE grows exponentially, making its stability analysis complicated and its computation time-consuming. Therefore, we
proceed to design a computationally efficient approximate optimal estimator (AOE) using a relative-entropy-based approach.
We prove that the proposed AOE has the same stability as the OE. We show that, even the separation principle does not hold
for NACK systems, the stability of the OE can also be investigated separately; and discover that the OE for an NACK system
has the same stability as the OE for the corresponding ACK system, even their structures are quite different. Finally, for
strongly observable NACK systems, we establish a necessary and sufficient condition for the stability of the OE and the AOE.
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1 Introduction

1.1 Research Background and Literature Review

There is no doubt that state estimation is an important
topic in both theoretical research and practical applica-
tions. In the past decade, a substantial body of literature
has been devoted to state estimation for systems with
packet dropouts [5, 34]. This is owing to the development
of communication and network techniques, which allows
the components in control systems being connected over
a distant range to share information. Due to network-
induced constraints [18, 32, 37] or malicious network at-
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tacks [31, 36], data transmitted over networks may be
randomly dropped.

Three commonly used models for control systems with
packet dropouts are shown in Fig. 1. The key differ-
ence between these two model lies in the acknowledg-
ment (ACK) channel. This channel is particularly used
by the actuator to send an ACK signal (0 or 1) to in-
form the estimator whether control packets are dropped
or not. A system has an ACK channel in Fig. 1 (b) is
called an ACK system, and a system in Fig. 1 (a) without
such an ACK channel is called a non-ACK (NACK) sys-
tem. It is well known [25] that the separation principle—
that is, the controller and the estimator can be designed
separately—holds for ACK systems but fails for NACK
ones [25]. That is why the majority of estimation-related
issues for ACK systems can be investigated by using the
model in Fig. 1 (c) without considering control inputs.

In real-world applications, a typical example of ACK (re-
sp. NACK) systems is networked systems with a trans-
mission control protocol (TCP) (resp. a user datagram
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Fig. 1. NACK system, ACK system, and system with only
observation packet dropouts. The blocks P, S, E, C, and A
denote the plant, sensor, estimator, controller and actuator,
respectively.

protocol (UDP)) [15, 25], where TCP has an ACKmech-
anism for packet dropouts while UDP has not [6]. Un-
der TCP, the sender retransmits the dropped packets
until acknowledged by the receiver that the packet has
been successfully received. Such an ACK-based mecha-
nism guarantees the success of data delivery, but it may
cause transmission delay, since due to continuous packet
dropouts, a packet may be retransmitted several times
before successfully received. Such ACK systems are suit-
able for applications that require guaranteed delivery
(e.g., industrial manufacturing [19] and process moni-
toring [2]), where delay is not of the prime concern. UD-
P, at the cost of some delivery reliability, allows more
timely and consistent communication without waiting
for ACK signals and then retransmitting the dropped
packets, and therefore such NACK systems are prefer-
able choices for real-time networked systems [23].

This paper studies state estimation problems for NACK
systems, and the recent advancement of state estimation
for ACK and NACK systems is reviewed as follows. For
convenience of formulation, we denote an ACK system,
an NACK system, and a system in Fig. 1 (c) by S∗

ACK
,

S∗
NACK

, and S∗
Obs

, respectively, where the superscript ∗ =
i.i.d (or ∗ = Markov) means the packet dropout follows
an i.i.d. Bernoulli distribution (or a Markov process).

Works onACK systems:The optimal estimator (OE)
for an S i.i.d

Obs
or SMarkov

Obs
system is a time-varying Kalman

filter [26, 35], and the OE for S i.i.d
Obs

systems is stable if
the observation packet loss rate is less than a critical
value [26]. For SMarkov

Obs
systems, the stability conditions

of the OE have been obtained for scalar, second-order,
and certain classes of high-order systems in [9, 35], and
for diagonalizable non-degenerate systems in [21]. As
the separation principle holds for ACK systems, these
estimation-related results obtained for S i.i.d

Obs
and SMarkov

Obs

systems also hold for S i.i.d
ACK

and SMarkov

ACK
systems, respec-

tively. However, the OE for NACK systems [13, 16] d-
iffers a lot from the OE for ACK systems, and the pro-
posedmethods in the aforementioned literature for ACK
systems are not applicable to NACK systems.

Works on NACK systems: The OE for an S i.i.d
NACK

sys-
tem and its stability conditions were first obtained for
NACK systems with only control packet dropouts [16],
and then extended to systems with both control and ob-
servation packet dropouts [13]. The stability of the OE
only depends on the observation packet loss rate; howev-
er, the OE consists of an exponentially growing number
of components, making its computation time-consuming
[13]. To address the computational problem, two approx-
imate optimal estimators (AOEs) [3, 12] were develope-
d to compute the optimal estimates for S i.i.d

NACK
systems

with relatively less computational efforts.

1.2 Underlying issues and research motivation

To the best of our knowledge, no results have been re-
ported on the OE and the AOE for SMarkov

NACK
systems.

Unlike the systems with i.i.d. packet dropouts in which
only one factor (the packet dropout rate) affects pack-
et dropouts, two temporally correlated factors (pack-
et recovery and failure rates) govern Markovian packet
dropouts. It is pointed out in [35] that for ACK systems,
due to the temporal correlation, the methods developed
for the i.i.d. packet dropout case are not applicable to
the Markovian case, and the estimator stability analysis
for the Markovian case is more challenging. Similarly,
we found that these two factors and the temporal cor-
relation also bring technical difficulties in applying the
methods proposed for S i.i.d

NACK
systems to SMarkov

NACK
ones.

• For the OE, as far as we know, there are two methods
[13, 16] available for analyzing the estimator stability
for S i.i.d

NACK
systems. The temporal correlation makes it

difficult to construct well-defined pdfs as in [13, 16]
with desired properties for analyzing the OE stability
for SMarkov

NACK
systems.

• For the AOE, the existing methods [3, 12] are not
applicable to SMarkov

NACK
systems either, since (i) The

method proposed in [3] assumes that there is a max-
imal number for consecutive packet dropouts, but
we allow an arbitrary number of consecutive packet
dropouts. Thus, the assumption does not hold for the
system we considered. (ii) The results in [4, 7, 33]
suggest that “when the system parameters which
cannot be observed directly (like the status of the
control packet dropout in an SMarkov

NACK
system) evolve

according to Markov processes, the error covariance
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of the LMMSE estimator does not necessarily has a
Riccati-equation-like recursive form.” Hence, it would
be infeasible for SMarkov

NACK
systems to develop a recur-

sive linear minimum mean square error (LMMSE)
estimator, like the one developed in [12], to study the
stability of an AOE.

• The aforementioned methods involve dealing with the
probability of the control packet dropout status. This
quantity is governed by one factor (the packet dropout

rate) in S i.i.d
NACK

systems, and it—that is, α
[i]
k in (15)—

contains two temporally correlated factors and be-
comes more complicated in SMarkov

NACK
systems, which

makes it difficult to extend these methods to SMarkov

NACK

systems.

It can be seen from the discussion above that for SMarkov

NACK

systems, these two temporally correlated factors make
the estimator stability analysis more difficult than that
for S i.i.d

NACK
systems. To deal with the temporal correla-

tion in Markov processes, continuous efforts [9, 21, 24,
35] have been devoted to developing new techniques for
ACK systems in the last decade, but few method is pro-
posed for NACK systems. It motivates us to explore new
methods for SMarkov

NACK
systems to address the following t-

wo problems: Problem 1: What are the stability con-
ditions for the OE? How do the packet recovery/failure
rates of observation and control inputs affects the OE
stability? Problem 2: How to design an AOE with a
good estimation performance?

1.3 Main results and contributions

To our best knowledge, this paper is the first attempt
to investigate the estimation issues for NACK systems
with Markovian packet dropouts. Our main results and
contributions are summarized as follows:

1) From the OE perspective, (i) we obtain the OE for an
SMarkov

NACK
system, and show that even when the separa-

tion principle does not hold for NACK systems and
the OE for SMarkov

Obs
systems differs a lot from the OE

for SMarkov

NACK
systems, interestingly, the estimator sta-

bility for SMarkov

NACK
systems can also be analyzed by us-

ing the model SMarkov
Obs

in Fig. 1 (c). (ii) We show that
for a strongly observable SMarkov

NACK
system, the OE sta-

bility is independent of the observation packet failure
rate and the control packet recovery/failure rate; and
the OE is stable if and only if the observation packet
recovery rate is greater than a threshold value.

2) From an approximation estimation perspective, we
develop a relative-entropy-based (RE-based) AOE
for SMarkov

NACK
systems. It needs to mention that rela-

tive entropy (also known as Kullback-Leibler diver-
gence) has been utilized to reduce the components of
a Gaussian mixture in various fields, from stationary
data sets [20, 30] to dynamic systems [22, 29]. How-
ever, usually, no analytical solutions are available to

RE-based Gaussian mixture reduction problems [8],
which has to be solved numerically. Consequently, the
stability/performance of RE-based methods is usu-
ally evaluated by simulation methods and difficult to
be theoretically determined. We prove that the pro-
posed RE-based AOE has the same stability as the
OE.

The rest of the paper is organized as follows: In Sec-
tion 2, the system setup is introduced. The OE and an
AOE are proposed in Sections 3 and 4, respectively. The
performance and stability of the OE/AOE are studied
in Sections 5 and 6, respectively. In Section 7, numerical
examples are given to illustrate our main results. The
conclusions are presented in Section 8. The proofs of the
lemmas are given in the appendix section.

Notation:

• p(·) denotes a probability density function (pdf).
• N (µ, P ) denotes a Gaussian pdf of with the mean µ
and the covariance P .

• P(·), E[·], Cov[·] stand for a probability measure,
mathematical expectation, and covariance, respec-
tively. Ey[·] means that the mathematical expectation
is taken with respect to the random variable y.

• (·)′ denotes the transpose of a matrix or a vector.
• (·)2I with the identity matrix I denotes (·)(·)′.
• tr(M) denotes the trace of a matrix M .
• (·)2 denotes the binary representation, e.g., (11)2 = 3.
• M ∈ M

n
+ or M > 0 denotes M is a positive definite

matrix.
• i

b
a denotes the set {i ∈ N|a ≤ i ≤ b}, where N is the
set of natural numbers.

• For a matrix sequenceMk, k ∈ N, supMk and infMk

denote the supremum and the infimum of the sequence
Mk, respectively.

2 System Setup and Preliminaries

2.1 System setup

Consider the following discrete-time linear system

xk =Axk−1 + νkBuk + ωk

yk =Cxk + υk
(1)

where xk ∈ R
n is the system state, uk ∈ R

nu is the
control input, yk ∈ R

ny is the observation. ωk and υk
are zero mean Gaussian noises with covariances Q > 0
and R > 0, respectively.

NACK system: The NACK system considered in
this paper is the one in (1) with the system model in
Fig. 1 (a). For an NACK system, say S, the correspond-
ing ACK system refers to the one, with the system
model in Fig. 1 (b), has the same parameters as the
NACK system S.
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Communication channels: The packet dropout-
s over the controller-to-actuator (C-A) and the
sensor-to-estimator (S-E) channels are modeled by
Markov processes {νk} and {γk}, respectively. Define

Γk , {γ1, . . . , γk} and Υk , {ν1, . . . , νk}.

Their transition matrices are the following:

[
P(γk+1 = 0|γk = 0) P(γk+1 = 1|γk = 0)

P(γk+1 = 0|γk = 1) P(γk+1 = 1|γk = 1)

]
= P

[
P(νk+1 = 0|νk = 0) P(νk+1 = 1|νk = 0)

P(νk+1 = 0|νk = 1) P(νk+1 = 1|νk = 1)

]
= Q

where P =

[
1− p1 p1

p2 1− p2

]
and Q =

[
1− q1 q1

q2 1− q2

]
.

p1 and q1 are called packet recovery rates; p2 and q2 are
called packet failure rates.

Estimator: All the observations that actually received
by the estimator up to time k is Yk ,

{
yj|γj = 1, 1 ≤ j ≤

k
}
. This paper will, based on the received observations

Yk, derive the OE and then design an AOE.

Controller: This paper, like the works [13, 26], only fo-
cuses on the estimation problems and is not intended
to design controllers and estimators in parallel. For the
controller, we assume, like the case in [13, 16], that con-
trol inputs uk are deterministic and bounded. Denote
the upper bound of Buku

′
kB

′ by U .

Assumption 1 (A,Q1/2) is controllable and (A,C) is
observable. ωk, υk, νk, γk, and x0 ∼ N (x̄0, P0) are mu-
tually independent. The Markov chains νk and γk are
irreducible and stationary.

2.2 Preliminaries

Lemma 1 [28, p. 88, (3.7)–(3.14); p. 98] LetX = AZ+
Bu+W and Y = CX + V , where Z ∼ N (Z, PZ), W ∼
N (0, Q), V ∼ N (0, R), and A,B,C, u are constants.
Then

p(X) = N (X,PX) (2a)

p(X |Y ) = N (X +K(Y − CX), (I −KC)PX) (2b)

p(Y ) = N (CX,CPXC
′ +R) (2c)

where X = AZ + Bu, PX = APZA
′ + Q,K =

PXC
′(CPXC

′ +R)−1.

Define some operators as follows:

g(P, γ,X, Y ) = APA′ +X − γAPC′(CPC′ + Y )−1CPA′

g(P, γ) = g(P, γ,Q,R)

h(P,K) = (I −KC)P (I −KC)′ +KRK ′

φ(P, γ) = P − γPC′(CPC′ +R)−1CP (3)

Lemma 2 The following facts hold.

(i) ∀K, h(P,KP ) ≤ h(P,K), whereKP = PC′(CPC′+
R)−1.

(ii) φ(P, 1) = h(P,KP ).
(iii) If X ≤ Y , then g(X, r) ≤ g(Y, r), h(X,K) ≤

h(Y,K), and φ(X, γ) ≤ φ(Y, γ), γ = 0 or 1.
(iv) IfX ≤ Y ,Q1 ≤ Q2,R1 ≤ R2, then g(X, γ,Q,R) ≤

g(Y, γ,Q,R), g(X, γ,Q1, R) ≤ g(X, γ,Q2, R), and
g(X, γ,Q,R1) ≤ g(X, γ,Q,R2).

The OE for an SMarkov
ACK

system has been obtained in [21].
Denote its prediction and estimation error covariances

by P
ACK

k and PACK

k , respectively. From [21, Eqs. (2)–(5)],
it follows that

P
ACK

k = APACK

k−1A
′ +Q (4a)

PACK

k = φ(P
ACK

k , γk), with P
ACK

0 = P0. (4b)

3 Optimal Estimation

In this section, we derive the OE for an SMarkov
NACK

system.

Definition 1 (Optimal estimate) The optimal esti-
mate x̂k is the one that minimizes Exk

[
(xk − x̂k)

2
I

∣∣Yk
]
.

It is well known [1] that the desired optimal estimate
x̂k = E[xk|Yk]. Thus, we derive the conditional pdf
p(xk|Yk) as follows.

3.1 Representation of control packet dropouts

The random variables {νk, . . . , ν1}, where νj = 0 or 1
and 1 ≤ j ≤ k, have 2k different values, which for-
m a probability space, denoted by Ωk. Define a one-
to-one mapping ψ : Ωk → N by j = ψ(νk, . . . , ν1) =
(νk . . . ν1)2 + 1, that is, j = νk2

k−1 + . . .+ ν12
0 + 1. By

ψ, we can denote an element (νk, . . . , ν1) ∈ Ωk by Υ
[i]
k

as follows: For 1 ≤ i ≤ 2k,

Υ
[i]
k = (νk, . . . , ν1) ∈ Ωk with i = ψ(νk . . . ν1).

It is easy to verify that the following equalities hold: for
1 ≤ i ≤ 2n,

Υ[i]
n =

{
{νn = 0,Υ

[i]
n−1}, i ∈ i

2n−1

1

{νn = 1,Υ
[i−2n−1]
n−1 }, i ∈ i

2n

2n−1+1.
(5)

Lemma 3 The following facts hold:
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(i) For j1, j2 ∈ {0, 1},

p(νn+1=j2|νn=j1,Υ
[i]
n−1)=p(νn+1=j2|νn=j1)

(6)

p(νn+1=j1|Υ
[i]
n , Yn)=p(νn+1=j1|Υ

[i]
n ) (7)

(ii)

p(νn+1 = 0|Υ[i]
n ) =

{
(1 − q1), i ∈ i

2n−1

1

q2, i ∈ i
2n

2n−1+1

p(νn+1 = 1|Υ[i]
n ) =

{
q1, i ∈ i

2n−1

1

(1 − q2), i ∈ i
2n

2n−1+1

3.2 Conditional probability density functions of xk

By using the total probability law,

p(xk|Yk) =
2k∑

i=1

p(xk|Yk,Υ
[i]
k )p(Υ

[i]
k |Yk) (8)

p(xk+1|Yk) =
2k+1∑

i=1

p(xk+1|Yk,Υ
[i]
k+1)p(Υ

[i]
k+1|Yk) (9)

The conditional pdfs on the right-hand side of (8) and
(9) are obtained in Lemmas 4 and 5.

Lemma 4

p(xk|Yk,Υ
[i]
k ) = N (m̂

[i]
k , M̂k) (10)

p(xk+1|Yk,Υ
[i]
k+1) = N (m

[i]
k+1,Mk+1), (11)

where

m
[i]
k+1 =

{
Am̂

[i]
k , i ∈ i

2n−1

1

Am̂
[i−2n−1]
k +Buk+1, i ∈ i

2n

2n−1+1

Mk+1 = AM̂kA
′ +Q (12)

Kk+1 =Mk+1C
′(CMk+1C

′ +R)−1

m̂
[i]
k+1 = m

[i]
k+1 + γk+1Kk+1(yk+1 − Cm

[i]
k+1)

M̂k+1 = (I − γk+1Kk+1C)Mk+1 (13)

with m̂
[1]
0 = x0 and M̂0 = P0.

Lemma 5 Let α
[i]
n+1 , p(Υ

[i]
n+1|Yn) and α̂

[i]
n ,

p(Υ
[i]
n |Yn)

α̂[i]
n =

(
µ
[i]
n∑2n

i=1 µ
[i]
n α

[i]
n

)γn

· α[i]
n (14)

α
[i]
n+1 =





α̂
[i]
n (1− q1), i ∈ i

2n−1

1

α̂
[i]
n q2, i ∈ i

2·2n−1

2n−1+1

α̂
[i−2n]
n q1, i ∈ i

3·2n−1

2·2n−1+1

α̂
[i−2n]
n (1− q2), i ∈ i

4·2n−1

3·2n−1+1

(15)

where µ
[i]
n , p(yn|Υ

[i]
n , Yn−1).

3.3 Optimal estimator for NACK systems

From (8), (10), and α̂
[i]
k in Lemma 5, it follows that

p(xk|Yk) =
2k∑

i=1

α̂
[i]
k N (m̂

[i]
k , M̂k). (16)

Theorem 1 (Optimal estimator) The OE for an
SMarkov

NACK
system in (1) is the following:

x̂k =

2k∑

i=1

α̂
[i]
k m̂

[i]
k , Pk = M̂k +

2k∑

i=1

α̂
[i]
k (m̂

[i]
k − x̂k)

2
I ,

(17)

where α̂
[i]
k , m̂

[i]
k , and M̂k can be computed by Lemmas 4

and 5. Moreover, PACK
k = M̂k.

Proof: For a Gaussian mixture like (16), the mean x̂k
and the covariance Pk take the forms as in (17), which

is the existing result in [1, p. 213]. PACK

k = M̂k can be
proved by noting that PACK

k in (4a)(4b) evolves in the

same way as M̂k in (12)(13), with PACK
0 = M̂0 = P0.

4 Approximate Optimal Estimator

In this section, we first develop a relative-entropy-based
approach to reduce the number of the components in
p(xk|Yk), and then propose a computationally efficient
algorithm to approximately compute the optimal esti-
mate.

4.1 Relative-entropy-based Gaussian mixture reduction

Relative entropy, a well-known measure of the deviation
between two pdfs, and the relative-entropy-based Gaus-
sian mixture reduction (RE-based GM reduction) prob-
lem are introduced as follows [10].

Definition 2 (Relative entropy) For two pdfs f1(x)
and f2(x), x ∈ R

n, the relative entropy of f1 with
respect to f2, denoted D(f1, f2), is defined as

D(f1, f2) ,

∫

Rn

f1(x) log(f1(x)/f2(x))dx.
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Definition 3 (RE-based GM reduction) For a giv-

en Gaussian mixture f1(x) =
∑N

i=1 αiN (µi, Pi), x ∈
R

n, the RE-based GM reduction problem is to de-

termine a Gaussian mixture f2(x) =
∑M

i=1 α
∗
iN (µ∗

i , P
∗
i )

with M < N , such that D(f1, f2) is minimized. That is,
to solve the following optimization problem:

D
(
f1,

M∑

i=1

α∗
iN (µ∗

i , P
∗
i )
)
, min

α♯

i
,µ♯

i
,P ♯

i

D
(
f1,

M∑

i=1

α♯
iN (µ♯

i , P
♯
i )
)

where µ♯
i ∈ R

n, P ♯
i ∈ M

n
+, α

♯
i ∈ [0, 1] with

∑M
i=1 α

♯
i = 1.

Lemma 6 For a given N-component Gaussian mixture

p(x) =
∑N

i=1 αiN (mi, Pi), x ∈ R
n, the optimization

problem

D

(
p(x),N (m∗, P ∗)

)
= min
m∈Rn,P∈Mn

+

D

(
p(x),N (m,P )

)

has a unique solution that

m∗ =

N∑

i=1

αimi, P
∗ =

N∑

i=1

αi

(
Pi + (m∗ −mi)

2
I

)
. (18)

Lemma 7 Let ν
[i]
k , p(νk = i|Yk−1) and ν̂

[i]
k , p(νk =

i|Yk), for i = 0 or 1. Then,

ν
[0]
k = (1 − q1)ν̂

[0]
k−1 + q2ν̂

[1]
k−1 (19a)

ν
[1]
k = q1ν̂

[0]
k−1 + (1− q2)ν̂

[1]
k−1 (19b)

ν̂
[i]
k =

(
1

c
̟

[i]
k

)γk

ν
[i]
k (19c)

where ̟
[i]
k , p(yk|νk = i, Yk) and c =

∑1
i=0̟

[i]
k ν

[i]
k .

Lemma 8 If p(xk−1|Yk−1) = N (x̂intk−1, P
int
k−1), then

p(xk|νk = i, Yk) = N (ẑ
[i]
k , Ẑk), with i = 0 or 1, where

ẑ
[i]
k and Ẑk are computed as follows:

z
[i]
k = Ax̂intk−1 + iBuk (20a)

Zk = AP int

k−1A
′ +Q (20b)

ẑ
[i]
k = z

[i]
k +Kε

k(yk − Cz
[i]
k ) (20c)

Ẑk = (I −Kε
kC)Zk(I −Kε

kC)
′ +Kε

kR(K
ε
k)

′ (20d)

where Kε
k = γkZkC

′(CZkC
′ +R)−1.

Lemma 9 If p(xk−1|Yk−1) = N (x̂intk−1, P
int

k−1), then

(i) p(xk|Yk) =
∑1

i=0 ν̂
[i]
k N (ẑ

[i]
k , Ẑk), where ν̂

[i]
k and Ẑk

are computed in Lemmas 7 and 8.

(ii) The optimal estimate x̂εk , E[xk|Yk] and its EEC

P ε
k , E[(xk − x̂εk)

2
I |Yk] are the following:

x̂εk =

1∑

i=0

ν̂
[i]
k ẑ

[i]
k (21)

P ε
k = Ẑk +

1∑

i=0

ν̂
[i]
k (x̂εk − ẑ

[i]
k )2I . (22)

(iii) Eyk
[P ε

k ] ≤ φ(P
ξ

k, γk), where P
ξ

k = AP int

k−1A
′ +

ν
[0]
k ν

[1]
k Uk +Q, and ν

[i]
k is computed by (19a)(19b).

4.2 Approximate optimal estimator

Lemma 9 (i) and (ii) maps (x̂intk−1, P
int

k−1, ν̂
[i]
k−1) to

(x̂εk, P
ε
k , ν̂

[i]
k ). Denote this map by

(x̂εk, P
ε
k , ν̂

[i]
k ) = L(x̂intk−1, P

int

k−1, ν̂
[i]
k−1).

Based on the results in Lemmas 6 and 9, we propose an
algorithm (Algorithm 1) to approximately compute x̂k.

Algorithm 1 Approximate state estimation algorithm
for NACK systems.

Initial conditions: x̂ε0 = x̂int0 = x0, P
ε
0 = P int

0 = P0,

ν̂
[0]
0 , and ν̂

[1]
0 .

Computation of x̂εk and P ε
k , k ∈ N:

Step 1 (Initial conditions): Approximate
p(xk−1|Yk−1) by a Gaussian pdf N (x̂intk−1, P

int

k−1), that

is, let p(xk−1|Yk−1) = N (x̂intk−1, P
int

k−1).
Step 2 (State estimate): Calculate x̂εk (that is, the
desired approximation for x̂k) by

(x̂εk, P
ε
k , ν̂

[i]
k ) = L(x̂intk−1, P

int

k−1, ν̂
[i]
k−1) (23)

and p(xk|Yk) as in Lemma 9 (i).
Step 3: Approximate p(xk|Yk) by aGaussian pdf
N (x̂intk , P

int

k )—which will be used as an initial condi-
tion for approximately computing x̂k+1—via solving
the following RE-based GM reduction problem: for
m ∈ R

n, P ∈ M
n
+,

D
(
p(xk|Yk),N (x̂intk , P int

k )
)
= min

m,P
D
(
p(xk|Yk),N (m,P )

)
.

Theorem 2 (Approximate optimal estimator)
Algorithm 1 can be presented in a recursive form, called
the approximate optimal estimator (AOE), as follows:

(x̂εk, P
ε
k , ν̂

[i]
k ) = L(x̂εk−1, P

ε
k−1, ν̂

[i]
k−1) (24)

6



with x̂ε0 = x0, P
ε
0 = P0, ν̂

[0]
0 , and ν̂

[1]
0 . Meanwhile,

Eyk
[P ε

k ] ≤ φ(P
ξ

k, γk), (25)

where P
ξ

k = AP ε
k−1A

′ + ν
[0]
k ν

[1]
k Uk + Q and ν

[i]
k is com-

puted by (19a) and (19b).

Proof: By comparing with (23) and (24), it is clear that
to prove (24) is to prove

x̂intk = x̂εk and P int

k = P ε
k . (26)

(26) holds for k = 0, due to x̂ε0 = x̂int0 = x0 and P ε
0 =

P int
0 = P0 in Algorithm 1. Suppose that it holds for k =

1, . . . , n−1. In Step 2 of Algorithm 1, x̂εk, P
ε
k , p(xn|Yn) =∑1

i=0 ν̂
[i]
k N (ẑ

[i]
k , Ẑk) can be obtained by Lemma 9 (i)(ii).

x̂intn and P int
n in the desired Gaussian pdf N (x̂intn , P

int
n ) in

Step 3 of Algorithm 1 can be calculated as follows: by

letting {N = 2, αi = ν̂
[i]
n , mi = ẑ

[i]
n , and Pi = Ẑn} in

Lemma 6, and using (18), we have x̂intn =
∑1

i=0 ν̂
[i]
n ẑ

[i]
n

and P int
n =

∑1
i=0 ν̂

[i]
n

(
Ẑn+(x̂εn−ẑ

[i]
n )2I

)
. Comparing them

with (21) and (22), we have x̂intn = x̂εn and P int
n = P ε

n . It
follows from mathematical induction that (24) holds for

k ∈ N. Lemma 9 (iii) shows that Eyk
[P ε

k ] ≤ φ(P
ξ

k,K
ξ
k)

holds, with P
ξ

k = AP int

k−1A
′ + ν

[0]
k ν

[1]
k Uk + Q. (25) is

proved by noting that P ε
k = P int

k for k ≥ 1.

5 Performance of OE and AOE

In this section, we study the averaged estimation per-
formance of the OE and the AOE. After providing some
preliminaries, the lower and upper bounds of EYk

[Pk]
and EYk

[P ε
k ] are obtained in Theorem 3. For Yk = ∅, we

define E∅[Pk] , Pk.

Define Sk and Sk as follows:

Sk+1 = ASkA
′ +Q+

1

4
U,

Sk = φ(Sk, γk), with S0 = P0. (27)

It is easy to check that Sk+1 = g(Sk, γk, Q + 1
4U,R).

Let Ks
k = SkC

′(CSkC
′ + R)−1. By using Ks

k, a upper
bound of EYk

[Pk] is obtained in the following lemma.

Lemma 10 Let P
ℓ

k = APk−1A
′ + 1

4Uk + Q. Then

EYk
[Pk] ≤ γkh(EYk−1

[P
ℓ

k],K
s
k) + (1− γk)EYk−1

[P
ℓ

k].

Theorem 3 (Performance bounds) The lower and
upper bounds of the OE/AOE estimation performance
are the following:

PACK

k ≤ EYk
[Pk] ≤ Sk (28a)

PACK

k ≤ EYk
[P ε

k ] ≤ Sk. (28b)

Proof of (28a): From (17) and the result PACK

k = M̂k

in Theorem 1, it follows that PACK

k ≤ Pk, which implies
that PACK

k ≤ EYk
[Pk] holds.

EYk
[Pk] ≤ Sk is proved by mathematical induction as

follows. Ey0 [P0] ≤ S0 holds since P0 = S0 and there
is no y0 in P0. Suppose that EYk

[Pk] ≤ Sk holds for
k = 0, . . . , n − 1. Consider the case k = n as follows.

When γn = 0, by Lemma 10, EYn
[Pn] ≤ EYn−1 [P

ℓ

n] =

EYn−1[APn−1A
′ + 1

4Uk + Q] ≤ ASn−1A
′ + 1

4U + Q =

Sn = Sn, where the last equality is obtained by noting
that γn = 0.

When γn = 1, by Lemma 10,EYn
[Pn] ≤ h(EYn−1 [P

ℓ

n],K
s
n) ≤

h(Sn,K
s
n) = φ(Sn, 1) = Sn, where EYn−1 [P

ℓ

n] ≤ Sn

proved above and Lemma 2(ii)(iii) are used. The proof
of (28a) is completed.

Proof of (28b): Proof of PACK

k ≤ EYk
[P ε

k ]: We first
prove PACK

k ≤ P ε
k by mathematical induction as fol-

lows. It holds for k = 0 due to PACK
0 = P ε

0 = P0. Sup-
pose that PACK

k ≤ P ε
k holds for k = 0, . . . , n − 1. Then,

PACK
n

(a)
= φ(APACK

n−1A
′+Q, γn)

(b)

≤ φ(AP ε
n−1A

′+Q, γn)
(c)
=

Ẑn

(d)

≤ P ε
n, where we obtain

(a)
= by (4a) and (4b),

(b)

≤ by

Lemma 2 (iii), and
(c)
= by (20b), (20d), P int

n−1 = P ε
n−1 in

(26), and Lemma 2 (ii); and we obtain
(d)

≤ by (22). Hence,
PACK
n ≤ P ε

n holds, which implies PACK
n ≤ EYn

[P ε
n].

Proof of EYk
[P ε

k ] ≤ Sk: We prove it by mathemati-
cal induction. Note that P ε

0 = S0 = P0 and that P ε
0

does not contain y0. Thus, Ey0 [P
ε
0 ] = P ε

0 = S0. Sup-
pose that it holds for k = 0, . . . , n − 1. Consider the

case k = n. When γn = 0, EYn
[P ε

n] = EYn−1,yn
[P ε

n]
(a)

≤

EYn−1[φ(P
ξ

n, 0)]
(b)
= EYn−1 [P

ξ

n]
(c)

≤ Sn
(d)
= Sn, where

(a)

≤

is obtained by (25),
(b)
= and

(d)
= are obtained by noting

that γn = 0 in (3) and (27), and
(c)

≤ is obtained as fol-

lows: EYn−1[P
ξ

n] = EYn−1 [AP
ε
n−1A

′ + ν
[0]
n ν

[1]
n Un + Q] ≤

ASn−1A
′ + (1/4)U +Q = Sn. When γn = 1, EYn

[P ε
n] =

EYn−1,yn
[P ε

n ] ≤ EYn−1 [φ(P
ξ

n, 1)] = EYn−1 [h(P
ξ

n,K
ξ
n)] ≤

EYn−1[h(P
ξ

n,K
s
n)] = h(EYn−1 [P

ξ

n],K
s
n) ≤ h(Sn,K

s
n) =

φ(Sn, 1) = Sn. The proof of (28b) is completed.
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6 Stability of OE and AOE

In this section, we establish the stability conditions for
the OE and the AOE.

Definition 4 (Estimator stability) An estimator is
said to be stable in a mean sense (or stable for short), if
the averaged estimation error covariance is bounded, that
is, supEIk

[Pk] < +∞ for the OE, and supEIk
[P ε

k ] <

+∞ for the AOE, where Ik , {Yk,Γk}.

6.1 Stability relationship

Lemma 11

supEIk
[P

ACK

k ] < +∞ ⇔ supEIk
[Sk] < +∞ (29)

supEIk
[PACK

k ] < +∞ ⇔ supEIk
[Sk] < +∞. (30)

Theorem 4 (Stability relationship) For a given
NACK system in (1), which satisfies Assumption 1, the
following three statements are equivalent.

(i) The OE for the NACK system is stable;
(ii) The AOE for the NACK system is stable;
(iii) The OE for the corresponding ACK system is sta-

ble.

Proof: In this proof, the subscript Ik of EIk
is omitted

for brevity. We first prove the equivalence of (i) and
(iii). By Theorem 3 and (30), we have that E[PACK

k ] ≤
E[Pk] ≤ E[Sk], and that E[Sk] and E[PACK

k ] have the
same stability. (i)⇒ (iii) is proved by noting that if E[Pk]
is stable, so is E[PACK

k ] due to E[PACK

k ] ≤ E[Pk]; (i) ⇐
(iii) is proved by noting that if E[PACK

k ] is stable, so is
E[Sk] due to the same stability of E[Sk] and E[PACK

k ].
Thus, E[Pk] is stable due to E[Pk] ≤ E[Sk]. (i) ⇔ (iii) is
proved. (ii) ⇔ (iii) can be proved similarly. The proof is
completed.

6.2 Stability conditions for OE and AOE

To study the estimator stability for Markovian pack-
et dropouts, a notion called “non-degeneracy” is intro-
duced in [21, 24], which is a little bit stronger than the
conventional observability and thus is called strongly ob-
servable in this paper. This notion is defined on diago-
nalizable systems, which excludes some systems with a
non-trivial Jordan form, while most of real-world sys-
tems are diagonalizable and therefore the results ob-
tained retain a great degree of generality [21]. The def-
inition of strongly observable (that is, non-degenerate)
is given as follows. In this definition, we assume that the
system has already taken a diagonal form by a similarity
transformation.

Definition 5 (Strongly observable)
[21, Definitions 1–5] Consider the pair (A,C) in its di-
agonal standard form, that is, A = diag(ρ1, . . . , ρn) and

C = [C1, . . . , Cn]. Let ρA , max(|ρ1|, . . . , |ρn|). A block
of (A,C) is defined as AI = diag(ρi1 , . . . , ρij ) and CI =
[Ci1 , . . . , Cij ], where 1 ≤ i1 ≤ ij ≤ n and the index set
I = {i1, . . . , ij} ⊆ [1, . . . , n]. A quasi-equiblock is a block
in which |ρi1 | = . . . = |ρij |. A pair (A,C) is one-step
observable if C is full column rank. A diagonalizable sys-
tem is strongly observable (also called non-degenerate) if
every quasi-equiblock is one-step observable.

Assumption 2 A is diagonalizable and the system is
strongly observable.

Theorem 5 (Stability condition) Consider an
SMarkov

NACK
system in (1), and suppose that Assumptions 1

and 2 hold. Then, there is a threshold value pt = 1−ρ−2
A ,

where ρA is defined in Definition 5, such that

supEIk
[Pk] < +∞ and supEIk

[P ε
k ] < +∞, if p1 > pt;

for some initial P0,

supEIk
[Pk] = +∞ and supEIk

[P ε
k ] = +∞, if p1 < pt.

Proof: It is shown in [21, Theorem 8] that “under As-
sumptions 1 and 2, supEIk

[PACK

k ] < +∞ if |ρA|
2(1 −

p1) < 1; supEIk
[PACK

k ] > +∞, for some initial P0, if
|ρA|2(1−p1) > 1.” Theorem 4 shows that PACK

k , Pk, and
P ε
k have the same stability. Therefore, we have that when

p1 > pt = 1−ρ−2
A (that is, |ρA|2(1−p1) < 1), PACK

k is sta-
ble, so are Pk and P ε

k ; when p1 < pt, (|ρA|
2(1−p1) > 1),

PACK
k is unstable, so are Pk and P ε

k . The proof is com-
pleted.

7 Simulation Examples

In this section, some numerical examples are presented
to illustrate the main results of this paper. Consider the
system in (1) with the following parameters:

A = [ ρA 0
0 1.005 ], B = [−1

1 ], C = [−1 1
0 1 ], Q = R = [ 20 0

0 20 ],

whereA has been presented in a diagonal form and ρA >
1.005. The following simulations are performed under
bounded control inputs uk = 1 + exp(−k/10).

Stability: Figures 2 and 3 show the relationship be-
tween the expected EEC of the OE/AOE and the
recovery/failure rate. Let ρA take different values
{1.2910, 1.8257}, and the corresponding threshold value
qt = 1 − ρ−2

A are {0.4, 0.7}. Fig. 2 shows that EI30 [P30]
and EI30 [P

ε
30] enlarge and tend to unstable as p1 de-

ceases and approaches the threshold value qt. Fig. 3

8
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Fig. 2. The relationship between the observation recovery
rate p1 and tr(EI30 [P30]), tr(EI30 [P

ε

30]).
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Fig. 3. The relationship between tr(EI30 [P30]) and the con-
trol packet recovery rate q1/the control packet failure rate
q2/the observation failure rate p2.

shows that other parameters q1, q2, p2 do not affect the
stability of the OE, and the similar graphs for the AOE
are not presented for saving space. These phenomena
on the estimator stability agree with the statements of
Theorems 4 and 5.

Performance: Figure 4 shows that the expected esti-
mation performance of the OE EYk

[Pk] and the AOE
EYk

[P ε
k ] lie between the upper bound EYk

[Sk] and the
lower one EYk

[PACK

k ], as stated in Theorems 3. In Fig. 5,
EIk

[P ε
k ] lies between supEIk

[Sk] and inf EIk
[PACK

k ].
EIk

[Pk] is not presented due to time-consuming com-
putation, but according to Theorem 3, it must also lie
between supEIk

[Sk] and inf EIk
[PACK

k ].
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Fig. 4. Lower and upper bounds of tr(EYk
[Pk]) and
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8 Conclusion

In this paper, we have investigated state estimation
for systems with both control and observation packet
dropouts. We have obtained the OE for NACK sys-
tems with Markovian packet dropouts, and developed
an computationally efficient AOE, with the estimation
performance close to the OE. We have shown that the
stability of the OE and the AOE for strongly observable
NACK systems only depends on the observation packet
recovery rate p1. There are two future research topics:
(i) To improve the estimation performance for NACK
systems, we may consider using smart devices such as
smart sensors [16] and network relays [11], or employ-
ing advanced estimation techniques such as event-based
estimation methods [17] and redundant communication
channels design schemes [27, 38]. (ii) Besides NACK
and ACK systems, it is also meaningful to investigate a
system with partial acknowledgments [14]. An interest-
ing topic is how to recursively encode all (or most of)
the historical acknowledgments into a packet at the ac-
tuator side. If it can be achieved, then the estimator will
acquire more information on acknowledgments by de-
coding the packet after receiving it, and the estimation
performance may be improved.
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Appendix

Proof of Lemma 2: Part (i) can be readily proved ei-
ther by following the same derivation process as Lem-
ma 1 of [26], or by letting A = I and λ = 1 in [26, E-
q. (28)] and using the result [26, Lemma 1 (a)].

Part (ii) is a commonly used equality in Kalman filer,
which can be easily proved by some algebraic manipula-
tions, or by the results on the Pk in [28, p. 144].

Proof of (iii): It is easy to check that h(X,K) ≤ h(Y,K)
and φ(X, 0) ≤ φ(Y, 0) hold for X ≤ Y . When γ =
1, φ(X, 1) = h(X,KX) ≤ h(X,KY ) ≤ h(Y,KY ) =
φ(Y, 1). g(X, γ) ≤ g(Y, γ) holds by noting that g(Y, γ)−
g(X, γ) = A(φ(Y, γ)− φ(X, γ))A′ ≥ 0.

The result of part (iv) is trivial.

Proof of Lemma 3: Proof of (i): (6) is obtained
by the property of Markov processes that whenever

νn = j1 is known, p(νn+1 = j2|νn = j1,Υ
[i]
n−1) is deter-

mined by p(νn+1 = j2|νn = j1) and is independent of
{νn−1, . . . , ν1}. Similarly, by the property ofMarkovpro-

cesses, whenever νn in Υ
[i]
n is known, p(νn+1 = j2|Υ

[i]
n )

is independent of Yn, which proves (7).

Proof of (ii): For i ∈ i
2n−1

1 , by using (5) and Lemma 3 (i),

p(νn+1 = 0|Υ
[i]
n ) = p(νn+1 = 0|νn = 0,Υ

[i]
n−1) =

p(νn+1 = 0|νn = 0) = 1− q1. Other cases can be proved
similarly.

Proof of Lemma 4: We prove this lemma by mathe-
matical induction. Consider the case k = 0. Note that
Y0 = ∅ and Υ

[i]
0 = ∅. p(x0) = N (x0, P0) = N (m̂

[1]
0 , M̂0).

(10) holds for k = 0.

By the definition of Υ
[i]
k , Υ

[1]
1 = (ν1 = 0) and

Υ
[2]
1 = (ν1 = 1). Consider the case ν1 = 0. Using Lem-

ma 1 and letting {X = x1, Z = x0, u = ν1u1 = 0,

W = ω1}, and using (2a), we can obtain p(x1|Υ
[1]
1 ) =

N (Ax0, AP0A
′ +Q) = N (m

[1]
1 ,M1). Similarly, we have

p(x1|Υ
[2]
1 ) = N (Ax0+Bu1, AP0A

′+Q) = N (m
[2]
1 ,M1).

Thus, (11) holds for k = 0.

Suppose that Lemma 4 holds for k = 0, . . . , n− 1. Con-
sider the case k = n as follows. When γn = 0, no

yn is available, and thus Yn = Yn−1. p(xn|Yn,Υ
[i]
n ) =

p(xn|Yn−1,Υ
[i]
n ) = N (m

[i]
n ,Mn) = N (m̂

[i]
n , M̂n) with

γn = 0, which proves (10) with γn = 0.

When γn = 1, p(xn|Yn,Υ
[i]
n ) = p(xn|yn, Yn−1,Υ

[i]
n ). By

viewing {Y,X, V } in Lemma 1 as {yn, xn, υn} respec-

tively, letting p(X) in (2a) be p(X) = p(xn|Yn−1,Υ
[i]
n ) =

N (m
[i]
n ,Mn), and then using (2b), p(xn|yn, Yn−1,Υ

[i]
n ) =

N (m
[i]
n +Kn(yn−Cm

[i]
n ), (I−KnC)Mn) = N (m̂

[i]
n , M̂n),

which proves (10) with γn = 1.

By (5), Υ
[i]
n+1 = {νn+1 = 0,Υ

[i]
n } with 1 ≤ i ≤ 2n.

By viewing xn+1 = Axn + ωn+1 as X = AZ + Bu +
W in Lemma 1 with u = 0, and letting p(Z) =

p(xn|Υ
[i]
n , Yn) = N (m̂

[i]
n , M̂n), and then using (2a), we

have p(xn+1|νn+1 = 0,Υ
[i]
n , Yn) = N (Am̂

[i]
n , AM̂nA

′ +

Q) = N (m
[i]
n+1,Mn+1) = p(xn+1|Υ

[i]
n+1, Yn) for

1 ≤ i ≤ 2n. Similarly, for 2n + 1 ≤ i ≤ 2n+1, we have

p(xn+1|Υ
[i]
n+1, Yn) = N (m

[i]
n+1,Mn+1). Therefore, (11)

holds for k = n. The proof is completed.

Proof of Lemma 5: When γn = 0, Yn = Yn−1. α̂
[i]
n =

p(Υ
[i]
n |Yn) = p(Υ

[i]
n |Yn−1) = α

[i]
n . When γn = 1, by using

Bayesian formula, it is easy to obtain that p(Υ
[i]
n |Yn) =

p(yn|Υ
[i]
n , Yn−1)

p(Υ[i]
n |Yn−1)∑

2n

i=1
p(yn|Υ

[i]
n ,Yn−1)p(Υ

[i]
n |Yn−1)

= α̂
[i]
n ,

which proves (14). For 1 ≤ i ≤ 2n, by (5), Υ
[i]
n+1 =

{νn+1 = 0,Υ
[i]
n }.

p(Υ
[i]
n+1|Yn) = p(νn+1 = 0,Υ[i]

n |Yn)

= p(νn+1 = 0|Υ[i]
n , Yn)p(Υ

[i]
n |Yn)

=

{
α̂
[i]
n (1− q1), i ∈ i

2n−1

1

α̂
[i]
n q2, i ∈ i

2·2n−1

2n−1+1

where the last equality are obtained by Lemma 3 (ii).
The remaining two cases in (15) can be proved similarly
by (5) and Lemma 3. The proof is completed.

Proof of Lemma 6: According to the definition of rela-
tive entropy,D

(
p,N (m,P )

)
=
∫
p log(p/N (m,P ))dx =∫

p(x) log p(x)dx+n log 2π+log det(P )+Ψ, where it is

easy to obtain that Ψ =
∑N

i=1 αitr(P
−1(Pi+(mi−m)2I).

By solving ∂Ψ
∂m = 0, we obtain m∗ =

∑N
i=1 αimi, which

is a minimum point, as ∂2Ψ
∂m2 = 2trP−1 > 0.

By letting m = m∗, Ψ =
∑N

i=1 αitr(P
−1(Pi + (mi −

m∗)2I) = tr(P−1P ∗), where P ∗ is given in (18). Let
f(P ) = log det(P )+Ψ = log det(P )+tr(P−1P ∗). Then,
∂D

(
p,N (m,P )

)
∂P = ∂f(P )

∂P = P−1−P−2P ∗. Solving ∂D

∂P = 0
with P > 0 yields P = P ∗, which is a minimum point,

since ∂2
D

∂P 2

∣∣
P=P∗

= ∂2f(P )
∂P 2

∣∣
P=P∗

= (P ∗)−2 > 0. The
proof is completed.
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Proof of Lemma 7: By definition, ν
[0]
k = p(νk =

0|Yk−1) =
∑1

i=0 p(νk = 0|νk−1 = i, Yk−1)p(νk−1 =

i|Yk−1) = (1 − q1)ν̂
[0]
k−1 + q2ν̂

[1]
k−1, which proves (19a).

ν
[1]
k = p(νk = 1|Yk−1) = 1 − p(νk = 0|Yk−1) =

q1ν̂
[0]
k−1 + (1 − q2)ν̂

[1]
k−1, which proves (19b).

When γk = 0, no observation yk is available and thus

Yk = Yk−1. ν̂
[i]
k = p(νk = i|Yk) = p(νk = i|Yk−1) = ν

[i]
k .

When γk = 1, by Bayesian formula, ν̂
[i]
k = p(νk =

i|Yk) = p(νk = i|yk, Yk−1) = p(yk|νk = i, Yk−1)p(νk =

i|Yk−1)/p(yk|Yk−1) = ̟
[i]
k ν

[i]
k /
∑1

i=0̟
[i]
k ν

[i]
k , which

proves (19c).

Proof of Lemma 8: From p(xk−1|Yk−1) and by using

(2a), we have p(xk|νk = i, Yk−1) = N (z
[i]
k , Zk).

When γk = 0, Yk = Yk−1. Then, we have ẑ
[i]
k = z

[i]
k

and Ẑk = Zk, which is conformed with (20c) and (20d),
where Kε

k = 0 when γk = 0.

When γk = 1, from the pdf p(xk|νk = i, Yk−1) obtained
above, by using (2b), we obtain themeasurement-update

pdf p(xk|νk = i, yk, Yk−1) = N (ẑ
[i]
k , Ẑk), where ẑ

[i]
k and

Ẑk are computed in the same way as (20c) and (20d).

Proof of Lemma 9: Proof of (i): From ν̂
[i]
k ,

p(νk = i|Yk) and p(xk|νk = i, Yk) computed above,

p(xk|Yk) =
∑1

i=0 p(νk = i|Yk)p(xk|νk = i, Yk) =∑1
i=0 ν̂

[i]
k N (ẑ

[i]
k , Ẑk), which proves (i).

Proof of (ii): It is a well-known result in [1, p. 213], that

for a Gaussian mixture p(xk|Yk) =
∑1

i=0 ν̂
[i]
k N (ẑ

[i]
k , Ẑk),

the mean x̂εk and the covariance P ε
k can be computed as

(21) and (22).

Proof of (iii): Construct an estimate x̂ξk as follows:

xξk = Ax̂intk−1 + ν
[1]
k Buk

x̂ξk = xξk + γkK
ξ
k(yk − Cxξk),

whereKξ
k = P

ξ

kC
′(CP

ξ

kC
′+R)−1. The estimation error

xk−x
ξ
k = A(xk−1− x̂intk−1)+(νk−ν

[1]
k )Buk+ωk. We first

compute ∆i , E[(xk −xξk)
2
I |νk = i, Yk−1] as follows: For

i = 0, ∆0 = ∆A+∆B+∆′
B+(ν

[1]
k )2Buku

′
kB

′+Q, where

∆A , AE[(xk−1 − x̂intk−1)
2
I |Yk−1]A

′ and ∆B , E[(xk−1 −

x̂intk−1)(ν
[1]
k Buk)

′|Yk−1]. Since ν
[1]
k is a function of Yk−1

and does not contain xk−1, we have ∆B = E[(xk−1 −

x̂intk−1)|Yk−1](ν
[1]
k Buk)

′ = 0. Consequently, ∆0 = ∆A +

(ν
[1]
k )2Uk+Q. Similarly, ∆1 = ∆A+(ν

[0]
k )2Uk+Q. P

ξ

k ,

Eνk [E[(xk − xξk)
2
I |νk, Yk−1]] = ∆A + ν

[0]
k ν

[1]
k Uk +Q.

When γk = 0, ẑ
[i]
k = z

[i]
k , ν̂

[i]
k = ν

[i]
k , Ẑk = Zk, and K

ε
k =

0. By (20b), (21), and (22), we have P ε
k = AP int

k−1A
′ +

ν
[0]
k ν

[1]
k Uk+Q = P

ξ

k = φ(P
ξ

k, 0), which implies Eyk
[P ε

k ] ≤

Eyk
[φ(P

ξ

k, 0)] = φ(P
ξ

k, 0), where the last equality is ob-

tained by noting that there is no yk in φ(P
ξ

k, 0).

When γk = 1, xk − x̂ξk = (I −Kξ
kC)(xk − xξk) +Kξ

kυk.

P ξ
k , E[(xk − x̂ξk)

2
I |Yk−1] = (I −Kξ

kC)P
ξ

k(I −Kξ
kC)

′ +

Kξ
kRK

ξ
k

′
= h(P

ξ

k,K
ξ
k) = φ(P

ξ

k, 1). For γk = 1,

Eyk
[P ε

k ]
(a)
= Eyk

[E[(xk − x̂εk)
2
I |Yk]]

(b)

≤ Eyk
[E[(xk −

x̂ξk)
2
I |Yk]]

(c)
= E[(xk − x̂ξk)

2
I |Yk−1] = P ξ

k = φ(P
ξ

k, 1), where

we obtain
(a)
= by the definition of P ε

k in Lemma 9 (ii),
(b)

≤

by noting that E[(xk−x̂εk)
2
I |Yk] ≤ E[(xk−x̂

ξ
k)

2
I |Yk],

(c)
= by

using the property that Eyk
[E[·|Yk−1, yk]] = E[·|Yk−1].

It can be concluded from the above that Eyk
[P ε

k ] ≤

φ(P
ξ

k, γk) for γk = 0 and 1, which proves (iii).

Proof of Lemma 10: Construct an estimate x̂ℓk:

xℓk = Ax̂k−1 + (1/2)Buk

x̂ℓk = xℓk + γkK
s
k(yk − Cxℓk).

The estimation error xk − xℓk = A(xk−1 − x̂k−1)+ (νk −
1
2 )Buk + ωk. We first compute ∆ℓ

i , E[(xk − xℓk)
2
I |νk =

i, Yk−1] as follows: For i = 0, ∆ℓ
0 = ∆ℓ

A +∆ℓ
B + (∆ℓ

B)
′ +

(12 )
2Uk + Q, where ∆ℓ

A , AE[(xk−1 − x̂k−1)
2
I |Yk−1]A

′

and ∆ℓ
B , E[(xk−1−x̂k−1)(1/2Buk)

′|Yk−1] = 0. Similar
to the proof of Lemma 9 (iii), we have ∆ℓ

1 = ∆ℓ
A +

(12 )
2Uk + Q = ∆ℓ

0 and then obtain P
ℓ

k , Eνk [E[(xk −

xℓk)
2
I |νk, Yk−1]] = ∆ℓ

A + (1/2)2Uk +Q.

When γk = 0, x̂ℓk = xℓk. Thus, P
ℓ
k , E[(xk−x̂

ℓ
k)

2
I |Yk−1] =

P
ℓ

k. Then, we have EYk−1
[P ℓ

k ] = EYk−1
[P

ℓ

k].

When γk = 1, xk − x̂ℓk = (I −Ks
kC)(xk − xℓk) +Ks

kυk.

P ℓ
k = (I − Ks

kC)E[(xk − xℓk)
2
I |Yk−1](I − Ks

kC)
′ +

E[(Ks
kυk)

2
I |Yk−1] = (I−Ks

kC)P
ℓ

k(I−K
s
kC)

′+Ks
kRK

s
k
′.

Then, we have EYk−1
[P ℓ

k ] = h(EYk−1
[P

ℓ

k],K
s
k).

EYk
[Pk] = EYk

[E[(xk − x̂k)
2
I |Yk]] ≤ EYk−1,yk

[E[(xk −

x̂ℓk)
2
I |Yk−1, yk]] = EYk−1

[E[(xk−x̂ℓk)
2
I |Yk−1]] = EYk−1

[P ℓ
k ] =

γkh(EYk−1
[P

ℓ

k],K
s
k) + (1 − γk)EYk−1

[P
ℓ

k]. The proof is
completed.
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Proof of Lemma 11: Proof of (29): For {Q,R,Q +
1
4U, S1, P

ACK

1 }, there always exist positive real numbers
ǫ and ǫ, such that 1) ǫIn and ǫIn are lower and upper

bounds of matrices {Q,R,Q + 1
4U, S1, P

ACK

1 }, respec-
tively; and 2) ǫIm < R < ǫIm.

For notional brevity, the subscript Ik of EIk
and the sub-

script of In and Im are omitted, and assume the iden-
tity matrix I has an appropriate dimension for matrix
manipulations. Define three sequences as follows:

Xk+1 = g(Xk, γk, ǫI, ǫI) with X1 = ǫI

Xk+1 = g(Xk, γk, ǫI, ǫI) with X1 = ǫI

Tk+1 = g(Tk, γk, I, I) with T1 = I.

We will prove that the following facts hold.

(i) Xk ≤ P
ACK

k ≤ Xk, and Xk ≤ Sk ≤ Xk;
(ii) Xk = ǫTk and Xk = ǫTk.

Proof of (i): Clearly, X1 ≤ P
ACK

1 ≤ X1 hold-

s. If Xk ≤ P
ACK

k ≤ Xk holds, then, by Lem-

ma 2 (iv), Xk+1 = g(Xk, γk, ǫI, ǫI) ≥ P
ACK

k+1 =

g(P
ACK

k , γk, Q,R) ≥ g(Xk, γk, ǫI, ǫI) = Xk+1. Similar-

ly, it is easy to prove that Xk ≤ Sk ≤ Xk.

Proof of (ii): Note that X1 = ǫI = ǫT1. Suppose that
Xk = ǫTk holds. Then, Xk+1 = g(Xk, γk, ǫI, ǫI) =
g(ǫTk, γk, ǫI, ǫI) = ǫg(Tk, γk, I, I) = ǫTk+1. Similarly,
we can show that Xk = ǫTk holds.

From the facts (i)(ii), we have ǫTk = Xk ≤ P
ACK

k ≤
Xk = ǫTk, and ǫTk ≤ Sk ≤ ǫTk. Thus, it is clear that

supE[P
ACK

k ] < +∞ is equivalent to supE[Sk] < +∞.
(29) is proved.

Proof of (30): From (4b), it is clear that PACK

k =

φ(P
ACK

k , γk) ≤ P
ACK

k , which means that if supE[P
ACK

k ]
is bounded, so is supE[PACK

k ]. From (4a), we have if
supE[PACK

k ] is bounded, so is supE[PACK

k+1 ]. Therefore,

supE[PACK

k ] < +∞ ⇔ supE[P
ACK

k ] < +∞ holds. The

equivalence supE[Sk] < +∞ ⇔ supE[Sk] < +∞ can
be proved similarly. By (29), we have supE[PACK

k ] <
+∞ ⇔ supE[Sk] < +∞. The proof of (30) is completed.
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