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Abstract

This work is concerned with the problem of output consensus for two classes of heterogeneous

nonlinear multi-agent systems which are interconnected via diffusive couplings over directed graphs.

Specifically, for agents that are input feedforward passive (IFP), a condition in terms of passivity indices

is proposed for asymptotic output consensus. Moreover, it is shown that the proposed condition can

be exploited to design the coupling gain that ensures asymptotic consensus via a semidefinite program

(SDP), and the existence of such a coupling gain can be guaranteed provided all the agents are IFP. For

agents that are input feedforward output feedback passive (IF-OFP), a condition in terms of passivity

indices for practical output consensus is provided, in which the relationship between the coupling gain

and the consensus error bound is revealed.

Index Terms

Agents-based systems, Cooperative control, LMIs

I. INTRODUCTION

Consensus, a fundamental issue in cooperative control of multi-agent systems, has received

increasing research attention for decades due to its wide applications, e.g., frequency synchro-

nization in power systems [1], formations of unmanned aerial vehicles [2] and coordination

and control of distributed sensor networks [3]. Most of the pioneer works have discussed the
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consensus problems for systems with homogeneous agents, see, for instance, [2]–[4]. Recently,

researchers have started to deal with the consensus of heterogeneous multi-agent systems. In

fact, heterogeneity exists in most of the networked systems, e.g., a power system composed

of individual generators with different dynamics due to different physical parameters. Among

the remarkable works on output consensus of heterogeneous multi-agent systems, one should

mention [5] and [6] where an internal model principle is proposed as a necessary and sufficient

condition for output consensus of linear systems, and [7] where a general framework for robust

output consensus is established.

In this work, we concentrate on heterogeneous nonlinear agents that can be characterized by

passivity indices. It is well known that dissipativity (and its special case, passivity) is a useful tool

for consensus analysis and control design. The output consensus for passive multi-agent systems

over weight-balanced digraphs is studied in [8], which is further extended to general digraphs

in [9], [10]. A passivity-based switching strategy is developed in [11] for general digraphs.

The more general case wherein the agents can be described as input feedforward passive (IFP)

systems, which encompasses the case of passive systems as a special case (see [12] for details),

is considered in [13]–[15]. Particularly, it is shown in [13] that asymptotic consensus for IFP

systems can be achieved via a simple diffusive coupling protocol provided that the couplings

are sufficiently weak. In [14], [15], the non-trivial consensus and its synthesis for passivity-short

IFP systems are addressed over general digraphs.

More recently, an emerging research aspect on heterogeneous multi-agent systems that has

gained growing interests is the practical consensus. Generally, it is difficult to achieve complete

asymptotic consensus in heterogeneous systems. Alternatively, the notion of the “practical con-

sensus” is proposed in [16] to study the relationship between the coupling gain and the consensus

error bound. Some related works of practical consensus are [17] where practical consensus of

single integrator heterogeneous nonlinear time-varying systems over undirected graphs is studied,

and [18] where asymptotic and practical consensus of QUAD nonlinear systems over weight-

balanced digraphs are studied. To the best of our knowledge, the problem of practical consensus

for heterogeneous multi-agent systems over general digraphs has not been addressed from the

perspective of passivity indices yet.

Our contributions are as follows. First, a condition for asymptotic output consensus of non-

linear IFP systems is proposed. It is shown that asymptotic consensus can be achieved over

general digraphs if agents can be characterized as IFP systems, which is an extension of [8]–



[10] where all agents are required to be passive. Moreover, the proposed condition is exploited

to design a suitable coupling gain via a semidefinite program (SDP). Second, for agents that can

be characterized as input feedforward output feedback passive (IF-OFP) systems, a condition for

practical output consensus is derived, which reveals the relationship between the coupling gain

and the consensus error bound.

II. PRELIMINARIES

A. Notation

Let R and Z be the set of real and integer numbers, respectively. The transpose of a matrix

A ∈ Rm×n is denoted by AT . The notations img(A) and ker(A) denote the image and kernel of

A, respectively. The Kronecker product is denoted as ⊗. ‖A‖ denotes the 2-norm of A. Given

a symmetric matrix M ∈ Rm×m, the notation M > 0 (M ≥ 0) denotes that M is positive

definite (positive semi-definite). Denote the eigenvalues of M in ascending order as λ1(M) ≤

λ2(M) ≤ . . . ≤ λm(M). Denote Im as the m×m identity matrix. 1m := (1, . . . , 1)T ∈ Rm and

0m := (0, . . . , 0)T ∈ Rm. col(v1, . . . , vm) = (vT1 , . . . , v
T
m)T denotes the column vector stacked

with vectors v1, . . . , vm. diag{αi} is a diagonal matrix with its ith diagonal entry being αi. The

notation Ck is used to denote a k ∈ Z≥1 times continuously differentiable function.

B. Passivity

Let us first give the definition of passivity for a nonlinear system described by

Σ :

ẋ = f (x, u)

y = h (x, u)
(1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and y ∈ Y ⊂ Rm are the state, input and output, respectively,

and X , U and Y are the state, input and output spaces, respectively.

Definition 1 (Dissipative/Passive System [19]). System Σ with supply rate ω(t) is said to be

dissipative if there exists a C1 nonnegative real function V (x), called the storage function, such

that for all t ≥ 0,

V (x (t))− V (x (0)) ≤
∫ t

0

ω (τ) dτ. (2)

System Σ is called a passive system if the supply rate is ω(t) = u(t)Ty(t).



Throughout this work, we assume that any storage function V is radially unbounded, positive

definite and V (0n) = 0.

Definition 2 (Excess/Shortage of Passivity [20]). System Σ is said to be: Input Feedforward

Passive (IFP) if it is dissipative with respect to the supply rate ω(u, y) = uTy− νuTu for some

ν ∈ R, denoted as IFP(ν); Output Feedback Passive (OFP) if it is dissipative with respect to

the supply rate ω(u, y) = uTy− ρyTy for some ρ ∈ R, denoted as OFP (ρ); Input Feedforward

Output Feedback Passive (IF-OFP) if it is dissipative with respect to the supply rate ω(u, y) =

uTy − νuTu− ρyTy for some ν ∈ R and ρ ∈ R, denoted as IF-OFP (ν, ρ).

The signs of passivity indices ν and ρ denote an excess or shortage of passivity. Particularly,

when ν > 0 (respectively, ρ > 0), the system is said to be input strictly passive (ISP) (respectively,

output strictly passive (OSP)).

C. Graph Theory

The information exchanging network is represented by a graph G = (N , E) where N =

{1, . . . , N} is the node set of all agents and E ⊂ N × N is the edge set. The edge (i, j) ∈ E

denotes that agent i can obtain information from agent j. The graph G is said to be undirected

if (i, j) ∈ E ⇔ (j, i) ∈ E and directed otherwise. G is said to be strongly connected if

there exists a sequence of edges between any two agents. A sequence of time-varying graphs

{G(t)} is said to be jointly strongly connected if there exists a T > 0 such that for any tk, the

union ∪t∈[tk,tk+T ]G(t) is strongly connected. The adjacency matrix is defined as A = [aij], where

aii = 0, aij = 1 if (i, j) ∈ E , and aij = 0, otherwise. The in-degree and out-degree of the ith

node are diin =
∑N

j=1 aij and diout =
∑N

j=1 aji, respectively. The graph G is said to be weight-

balanced if diin = diout, ∀i ∈ N . The in-degree matrix of G is defined as Win = diag{diin}. The

Laplacian matrix of G is defined as L = Win − A.

D. Preliminary Lemmas

Before stating our main results, we introduce some preliminary lemmas as follows.

Lemma 1 ( [21]). Let Ξ = diag{ξi} where ξ is the left eigenvector of the Laplacian matrix L

corresponding to the zero eigenvalue and satisfies that ξi > 0. Suppose the graph G is strongly

connected, then ΞL+ LTΞ ≥ 0.



Lemma 2 ( [22]). Given a singular symmetric matrix A ∈ RN×N with eigenvalues 0 < λ2 ≤

λ3 ≤ . . . ≤ λN , and suppose 1N is the eigenvector corresponding to the zero eigenvalue, then

min
x 6=0N , 1T

Nx=0
xTAx = λ2 ‖x‖2 , max

x 6=0N

xTAx = λN ‖x‖2 .

Lemma 3 ( [12]). Let V : Rm → R be a continuous positive definite function that contains the

origin. Then, there exist class K functions α1 and α2, such that

α1 (‖x‖) ≤ V (x) ≤ α2 (‖x‖) .

Moreover, if V (x) is radially unbounded, then α1 and α2 can be chosen to belong to class K∞.

III. PROBLEM FORMULATION

We consider a group of N heterogeneous agents of the general formẋi = fi(xi, ui)

yi = hi(xi)
i = 1, . . . , N (3)

where xi ∈ Rn, ui, yi ∈ Rm are the state, input and output, respectively; fi and hi are general

nonlinear functions. The dimension of the input and output of all agents are the same.

Definition 3. The group of agents (3) is said to achieve asymptotic output consensus if limt→+∞ ‖yi(t)− yj(t)‖ =

0, ∀i, j ∈ N .

Define the average output as ȳ := 1
N

∑N
i=1 yi.

Definition 4. The group of agents (3) is said to achieve practical output consensus if given

ε > 0, there exists a real number T ≥ 0 (dependent on ε and yi(t0) for all i ∈ N ) such that

‖yi(t)− ȳ(t)‖ ≤ ε, ∀t ≥ t0 + T,∀i ∈ N .

In this work we consider the scenario where the agents are diffusively coupled over a directed

and strongly connected communication graph G. To be specific, a consensus protocol based on

relative output feedback is exploited, and the input ui, i ∈ N are determined as

ui = σ

N∑
j=1

aij(yj − yi), i = 1, . . . , N (4)

where the coupling gain σ is a positive constant. It follows that a compact form of (4) is given

by

u = −σ (L⊗ Im) y (5)



where L is the Laplacian matrix of G, u = col(u1, . . . , uN) and y = col(y1, . . . , yN).

For a group of heterogeneous dissipative agents (3) that can be characterized by passivity

indices, our goal is to investigate their consensus behaviours when they are interacting with

each other by the diffusive coupling (4) over digraphs. Specifically, we aim to derive a condition

for asymptotic output consensus and design a suitable coupling gain based on this condition.

Moreover, for more general classes of systems that may not have the behaviour of asymptotic

consensus, we aim to extend our condition to address practical output consensus and reveal the

relationship between the coupling gain and the consensus error bound.

IV. MAIN RESULTS

A. Asymptotic Consensus and the Coupling Gain

In this subsection, we first investigate asymptotic output consensus and then propose an

optimization method to design a suitable coupling gain.

Assume that all agents in (3) can be represented as IFP systems. In particular, the ith agent

can be characterized as a IFP(νi) system with the passivity index νi. Define the symmetric matrix

M = −σ
2

(ΞL+ LTΞ)− σ2LTΞνL (6)

where ν = diag{νi} and Ξ is defined in Lemma 1.

Theorem 1. Consider the group of heterogeneous IFP agents (3) with diffusive couplings (4).

The interconnected system can achieve asymptotic output consensus if M ≤ 0 and zero is a

simple eigenvalue of M .

Proof. Suppose M ≤ 0 and zero is a simple eigenvalue of M . First, since each agent is IFP,

there exists a storage function Vi for each agent i such that

V̇i ≤ yTi ui − νiuTi ui, ∀i ∈ N . (7)

Select the candidate Lyapunov function as V =
∑N

i=1 ξiVi, where ξi is the ith element of the left

eigenvector of the Laplacian matrix L corresponding to the zero eigenvalue and satisfies ξi > 0.



Hence, V is positive definite. The derivative of V gives

V̇ ≤
N∑
i=1

ξiy
T
i ui − ξiνiuTi ui

=
N∑
i=1

yTi (ξi ⊗ Im)ui − uTi (ξiνi ⊗ Im)ui

=− σyT (Ξ⊗ Im)(L⊗ Im)y

− σ2yT (LT ⊗ Im)(Ξν ⊗ Im)(L⊗ Im)y

=yT
{[
−σ

2
(ΞL+ LTΞ)− σ2LTΞνL

]
⊗ Im

}
y

=yT (M ⊗ Im)y.

By properties of Kronecker product, one has M ≤ 0⇒M ⊗ Im ≤ 0. Therefore, V̇ ≤ 0.

Denote the set S = {y | yi = yj,∀ i, j}. Clearly, y ∈ S is equivalent to y = 1N⊗ ȳ. Zero is the

simple eigenvalue of M and it can be observed that M1N = 0N . Then, yT (M⊗Im)y = 0, if and

only if y ∈ S, and yT (M ⊗ Im)y < 0 ∀y /∈ S. Since V ≥ 0 and V̇ ≤ 0, there exists a constant

c ≥ 0 such that limt→+∞ V = c. When V = c, V̇ = 0, and V̇ = 0 only if y ∈ S . Therefore,

limt→+∞ ‖yi(t)− yj(t)‖ = 0, ∀i ∈ N , and asymptotic output consensus can be achieved.

The next step is to design the coupling gain σ. In the following result, it is shown that the

condition in Theorem 1 can be satisfied if σ takes any value within an interval (0, σe) where

σe depends on the graph topology and the IFP indices νi, i ∈ N . With a linear transformation

technique introduced in [23], the condition of Theorem 1 can be transformed into a linear matrix

inequality (LMI) condition.

Let M̄ := 1
σ
M = −1

2
(ΞL + LTΞ) − σLTΞνL. Since σ > 0, the condition of Theorem 1 is

equivalent to M̄ ≤ 0 and zero is a simple eigenvalue of M̄ . Let us define a matrix R ∈ RN×(N−1)

such that img(R) = ker(1TN) and it follows that M̃ = RTM̄R has the same eigenvalues with

M̄ except for zero. The design of σ is converted to solving a SDP problem.

Corollary 1. The group of IFP agents (3) with the diffusive coupling (4) can achieve consensus

if the coupling gain σ ∈ (0, σe), where

σe = sup
σ∈R+

σ

subject to M̃ < 0.

(8)



Remark 1. It should be noted that since the matrix ΞL+LTΞ ≥ 0 according to Lemma 1, the

LMI constraint in (8) is always strictly feasible. In other words, there must exist σ > 0 such

that M̃ < 0 regardless of the sign or value of νi, i ∈ N . Moreover, the condition in Theorem 1

does not impose any constraint on the sign of passivity indices νi, i ∈ N , which implies that the

agents can be non-passive, and all IFP systems are output-consensusable. However, in order to

compensate for the shortage of passivity of agents, the coupling gain should be chosen within

the interval (0, σe) instead of any positive value. Therefore, Theorem 1 is more general than

results obtained in [8]–[10] where all agents are required to be passive. Moreover, when all

agents are passive, i.e., νi ≤ 0, ∀i ∈ N , it follows that the LMI condition M̃ < 0 in (8) is

satisfied automatically and σe →∞, which recovers the results in [8]–[10].

Remark 2. The conservatism of the condition in Theorem 1 stems from the choice of Lyapunov

function. Moreover, it can be observed that if the condition in Theorem 1 is satisfied with some

σ and νi, i ∈ N , it is also satisfied with the same σ and with ν̂i, i ∈ N where ν̂i ≥ νi, i ∈ N .

For a nonlinear system, it is generally difficult to derive the exact IFP index, and only its lower

bound can be obtained by specifying the storage function, which narrows the feasible range of

σ. The conservatism is illustrated in Example 1 by checking the tightness of the bound σe.

B. Extensions of Asymptotic Consensus among IFP agents

An extension of Theorem 1 is to consider the case where agents interact with each other using

different coupling gains, i.e.,

ui = σi

N∑
j=1

aij(yj − yi), i = 1, . . . , N (9)

where σi, ∀i ∈ N denote different coupling gains for different agents.

Corollary 2. The group of IFP agents (3) with the diffusive coupling (9) can achieve asymptotic

output consensus if the symmetric matrix Q = −1
2
(ΞL+LTΞ)−LTdiag{σi}ΞνL ≤ 0 and zero

is its simple eigenvalue.

Its proof follows from a similar argument of the proof of Theorem 1 by selecting V =∑N
i=1 ξiσ

−1
i Vi.

Remark 3. If ∃νi < 0, the approximation of the condition in this corollary in terms of eigenvalues

gives σi <
λ2(ΞL+LT Ξ)

−2 mini{νi}λN (LT ΞL)
, showing that local gains can be designed independent of other



agents’ indices provided the minimum index is known [14]. It also reveals what kinds of graph

can tolerate more non-passive systems and ensure larger coupling gains. However, it adopts

approximation in terms of eigenvalues and thus certainly reduces the feasible range.

Another extension is to consider asymptotic consensus over time-varying graphs, where G(t)

at each time t is weight-balanced. Denote L(t) as the graph Laplacian and assume it is not zero

at any time. The input u can be written as

u = −σ (L(t)⊗ Im) y. (10)

Corollary 3. Suppose {G(t)} is a sequence of jointly strongly connected weight-balanced di-

graphs with L(t) 6= 0, then the group of IFP agents (3) with the diffusive coupling (10) can

achieve asymptotic output consensus if ∃νi < 0 and the coupling gain σ satisfies 0 < σ <
λ+(L(t)+LT (t))

−2 mini{νi}λN (LT (t)L(t))
, ∀t > 0 where λ+(·) denotes the nonzero smallest eigenvalue.

Its proof lies in the fact that ker (L(t)) = ker
(
LT (t)

)
and the existence of a coordinate

transformation for L(t) + LT (t) and LT (t)L(t). The rest of the argument is similar to [8].

C. Practical Consensus and the Coupling Gain

Theorem 1 is developed based on the assumption that all agents are IFP systems. When a

wider class of agents, the IF-OFP agents, is considered, the results proposed in Theorem 1 is

no longer applicable. Alternatively, we will investigate practical output consensus and reveal the

relationship between the consensus error bound and the coupling gain hereafter.

Consider the scenario where all agents in (3) can be represented as IF-OFP systems. In

particular, the ith agent can be characterized as a IF-OFP (νi, ρi) system and there exist some

ρi < 0. In fact, if ρi ≥ 0, ∀i ∈ N , the term uTi yi − νiu
T
i ui − ρiy

T
i yi is upper bounded by

uTi yi − νiuTi ui due to −ρiyTi yi ≤ 0. Then, the inequalities (7) are satisfied and Theorem 1 still

holds, so the asymptotic consensus can still be achieved.

Assumption 1. For each individual agent, there exist constants Ci, Ci > 0, such that Ci ‖xi‖ ≤

‖yi‖ ≤ Ci ‖xi‖.

This assumption requires that each hi(xi) is upper bounded and lower bounded by some linear

functions.



Assumption 2. The average output ȳ of agents (3) with the diffusive couplings (4) is uniformly

bounded, i.e., there exists p > 0, such that ‖ȳ‖ ≤ p.

This assumption is not restrictive. In fact, some of the agents are allowed to be unstable so

long as the instability is compensated by other agents. Similar assumptions can be found in [17],

[18].

Theorem 2. Under Assumption 1 and 2, the group of IF-OFP agents (3) with the diffusive

coupling (4) can achieve practical output consensus if M ≤ 0 where M is defined in (6), and

λN−1(M) < min
i
{ξiρi} (11)

where λN−1(M) denotes the second largest eigenvalue of M . The error bound ε defined in

Definition 4 is given by

ε = α−1
1

(
α2

(
(
√
b2 − ac+ a+ b)p

√
N

a

))
(12)

where a = −λN−1(M) + mini{ξiρi}, b = maxi {|ξiρi|}, c = mini{ξiρi} < 0 and α1, α2 are

some class K functions dependent on storage functions Vi, i ∈ N .

Proof. Suppose that M ≤ 0, and (11) holds. Since each agent is IF-OFP, there exists a storage

function Vi such that

V̇i ≤ yTi ui − νiuTi ui − ρiyTi yi, ∀i ∈ N .

Following similar lines of proof of Theorem 1, we select the candidate Lyapunov function as

V =
∑N

i=1 ξiVi. Since ξi > 0, V is positive definite. The derivative of V gives

V̇ ≤
N∑
i=1

ξiy
T
i ui − ξiνiuTi ui − ξiρiyTi yi

=
N∑
i=1

yTi (ξiIm)ui − uTi (ξiνiIm)ui − yTi (ξiρiIm)yi

=− σyT (Ξ⊗ Im)(L⊗ Im)y − yT (Ξρ⊗ Im)y

− σ2yT (LT ⊗ Im)(Ξν ⊗ Im)(L⊗ Im)y.



Denote K = IN − 1
N
1N1

T
N and ε = y − 1N ⊗ ȳ. Then, (1N ⊗ γ)T ε = (1N ⊗ γ)T (K ⊗ Im)y =

(1TNK ⊗ γT )y = 0 where γ is an arbitrary vector Rn. Since M1N = 0, it can be obtained that

V̇ ≤yT (M ⊗ Im)y − yT (Ξρ⊗ Im)y

=εT (M ⊗ Im)ε− (ε+ 1N ⊗ ȳ)T (Ξρ⊗ Im)(ε+ 1N ⊗ ȳ)

=εT (M ⊗ Im − Ξρ⊗ Im)ε− 2 (1N ⊗ ȳ)T (Ξρ⊗ Im)ε

− (1N ⊗ ȳ)T (Ξρ⊗ Im)(1N ⊗ ȳ)

≤
[
λN−1(M)−min

i
{ξiρi}

]
‖ε‖2

+ 2 ‖1N ⊗ ȳ‖ ‖Ξρ⊗ Im‖ ‖ε‖ −min
i
{ξiρi} ‖1N ⊗ ȳ‖2

≤− a ‖ε‖2 + 2bp ‖ε‖
√
N − cp2N

≤0, ∀ ‖ε‖ ≥
(√

b2 − ac+ b
)
p
√
N

a

where the second inequality follows from Lemma 2; the third inequality follows from ‖Ξρ⊗ Im‖ =

maxi {|ξiρi|} and ‖1N ⊗ ȳ‖ ≤
√
Np based on Assumption 2. Moreover, by the reverse triangle

inequality, one has ‖ε‖ ≥ ‖y‖ − ‖1N ⊗ ȳ‖ ≥ ‖y‖ −
√
Np, which follows that V̇ ≤ 0 whenever

‖y‖ ≥ (
√
b2−ac+b)p

√
N

a
+
√
Np.

Denote x = col(x1, . . . , xN), it follows that ‖x‖2 =
∑N

i=1 ‖xi‖
2. By the inequality of arithmetic

and geometric means, ‖x‖ ≤
∑N

i=1 ‖xi‖ ≤
√
N ‖x‖, and similarly, ‖y‖ ≤

∑N
i=1 ‖yi‖ ≤

√
N ‖y‖.

Combining these inequalities and under Assumption 1, one obtains

1√
N

min
i∈N
{ 1

Ci

} ‖y‖ ≤ ‖x‖ ≤
√
N max

i∈N
{ 1

Ci

} ‖y‖ . (13)

Since ξi > 0, it is obvious that ‖x‖ → ∞ ⇒ V =
∑N

i=1 ξiVi → ∞. Then, by Lemma 3 there

exist class K functions α and α, such that α(‖x‖) ≤ V ≤ α(‖x‖). By properties of class K

functions and (13),

α

(
1√
N

min
i∈N
{ 1

Ci

} ‖y‖
)
≤ V ≤ α

(√
N max

i∈N
{ 1

Ci

} ‖y‖
)
.

Define α1(‖y‖) = α
(

1√
N

mini∈N{ 1
Ci
} ‖y‖

)
, α2(‖y‖) = α

(√
N maxi∈N{ 1

Ci
} ‖y‖

)
. Since

√
N ,

mini∈N{ 1
Ci
} and maxi∈N{ 1

Ci
} are all positive constants, it follows that α1, α2 are also class K

functions and α1 (‖y‖) ≤ V ≤ α2 (‖y‖).

Finally, according to Theorem 4.18 in [12], there exists a T (dependent on y(t0) and (
√
b2−ac+a+b)p

√
N

a
),

such that ‖y − 1N ⊗ ȳ‖ = ‖(K ⊗ Im) y‖ ≤ ‖y‖ ≤ ε, ∀t > T , where ε = α−1
1

(
α2

(
(
√
b2−ac+a+b)p

√
N

a

))
.

Since ‖y − 1N ⊗ ȳ‖2 =
∑N

i=1 ‖yi − ȳ‖
2, it follows that ‖yi − ȳ‖ ≤ ε, ∀i ∈ N , ∀t > T .



Note that the eigenvalues of M are dependent upon the indices νi, i ∈ N . This implies that

the IF-OFP indices ρi, νi are constrained by the inequality (11). Intuitively, with fixed indices

νi, i ∈ N , the indices ρi, i ∈ N should not be too small in order to reach practical consensus.

Moreover, one can observe that the value of a increases as the coupling gain σ increases since

M ≤ 0. Therefore, it can be inferred from (12) that the error bound ε becomes smaller as the

coupling gain σ increases while satisfying the condition in (11).

V. NUMERICAL EXAMPLES

Example 1 (Asymptotic Consensus):

Consider three agents with the following dynamics
ẋ11 = −2x11 + u1

ẋ12 = u1

y1 = x12 − x11

,


ẋi1 = −i(xi1 + xi2)3 − i(xi1 + xi2) + iui

ẋi2 = −i(xi1 + xi2)3 − i(xi1 + xi2) + (i− 1)ui

yi = −2xi2, i = 2, 3

which are interconnected via a weight-unbalanced digraph shown in Fig. 1. The corresponding

Laplacian matrix is obtained as L =


2 −1 −1

0 1 −1

−1 0 1

 with ξ =
(

0.25 0.25 0.50
)T

.

Fig. 1: Digraph of three interconnected agents.

Let us first verify that these three systems are IFP(νi). It can be obtained by exploiting

Corollary 1 in [24] that ν1 = −0.50. The indices of the nonlinear agents are estimated as



ν2 = −0.75 and ν3 = −0.83 respectively, by using storage function Vi = 1
i(i−1)+4

‖xi1 + xi2‖2 +

1
2
‖xi1 − xi2‖2, i = 2, 3.

Next, we solve the SDP in (8) and obtain that σe = 0.5438. Hence, for any σ ∈ (0, 0.5438),

asymptotic output consensus can be achieved. For example, the outputs when σ = 0.50 is shown

in the middle trajectories of Fig. 2. For asymptotic consensus among passivity-short IFP agents,

the coupling gain cannot be arbitrarily large. As the coupling gain grows larger, asymptotic

consensus is no longer guaranteed. We check the tightness of the bound and find that the outputs

obviously diverge when σ ≥ 1.10, which can be observed in the bottom trajectories of Fig. 2.

When individual agents take different coupling gains, it is possible to choose some σi larger

than the threshold σe obtained in Corollary 1. For instance, given σ1 = 0.10, σ2 = 1.10 and

σ3 = 0.30, the condition in Corollary 2 is satisfied, so asymptotic consensus can be achieved,

which is shown by the upper trajectories in Fig. 2.
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Time(s)
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0

1
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1=0.10, 2 = 1.10, 3 = 0.30

=0.50

=1.10

Fig. 2: Outputs with different choices of coupling gains.

Example 2 (Practical Consensus):

Consider three agents interconnected through Fig. 1 with the following dynamicsẋi = −ixi + (i+ 1) sinxi + ui

yi = xi, i = 1, 2, 3.



It can be shown by Vi = 1
2
x2
i that each agent without input is exponentially bounded in ‖xi‖ ≤

i+1
i−δ , where 0 < δ < 1. Since exponentially bounded systems cannot be destabilized by diffusive

couplings [18], [25], the average output ȳ is bounded. All agents are IF-OFP systems whose

indices are estimated by the storage function Vi = 1
2
x2
i as ρi = −1 and νi = 0, i = 1, 2, 3.

Then, M ≤ 0 for any σ > 0. When σ ∈ (1.33,+∞), the inequality (11) holds and thus practical

consensus is guaranteed. The output trajectories when σ = 3, 10 are shown respectively in Fig. 3.

The relationship between σ and
∑3

i=1 ‖yi(t)− ȳ(t)‖ is shown in Fig. 4. It can be observed that

the consensus error becomes smaller as the coupling gain σ increases.
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(a) Outputs when σ = 3.
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(b) Outputs when σ = 10.

Fig. 3: Outputs with different coupling gains.

VI. CONCLUSIONS

This work has addressed the problem of output consensus for two classes of heterogeneous

nonlinear multi-agent systems interconnected via diffusive couplings over directed graphs. Suf-

ficient conditions in terms of passivity indices have been proposed for asymptotic consensus of

nonlinear IFP agents and practical consensus of nonlinear IFP-OFP agents. It has been shown

that the interconnected system can achieve asymptotic consensus by choosing a proper coupling

gain if all the agents are IFP. For agents that can be characterized as IF-OFP systems, it has
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0.05
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0.15
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Fig. 4: The relationship between σ and
∑3

i=1 ‖yi(t)− ȳ(t)‖.

been shown that if the average output is uniformly bounded, the interconnected system can

achieve practical consensus, i.e., a small enough consensus error bound can be guaranteed given

a sufficiently large coupling gain.
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