Effects of pneumoperitoneum and steep Trendelenburg position on cerebral hemodynamics during robotic-assisted laparoscopic radical prostatectomy

A randomized controlled study

Ke Chen, MD, PhD*, Lizhen Wang, MDb, Qing Wang, MD, Xuesheng Liu, MD, PhDb, Yao Lu, MD, PhDb, Yuanhai Li, MD, PhDb,*, Gordon Tin Chun Wong, MDc

Abstract

Background: We evaluated the relationship between ultrasonographical acquired parameters and short-term postoperative cognitive function in patients undergoing robotic-assisted radical prostatectomy (RALP).

Methods: Ninety elderly patients scheduled for RALP had their optic nerve sheath diameter (ONSD), the cross-sectional area (CSA) of the internal jugular vein (IJV) and the IJV valve (IJVV) competency assessed by ultrasound. The patients were analyzed in 2 groups based on whether displayed IJVV incompetency (IJVVI). The 3 parameters were measured before anesthesia (T0), immediately after induction of general anesthesia (T1), 5 minutes after establishing pneumoperitoneum (T2), 5 minutes after placing the patient in the Trendelenburg position (T3), and 5 minutes after the release of the pneumoperitoneum in the supine position (T4). Regional cerebral tissue oxygen saturation (rSO2) was also measured by near-infrared spectroscopy intraoperatively. The Mini-Mental State Examination (MMSE) and Confusion Assessment Method (CAM) were performed the day before surgery and on postoperative days 1, 3, and 7.

Results: We found that 52% of patients had evidence of IJVVI after being placed in the Trendelenburg position after pneumoperitoneum was established (T4). Patient with IJVVI showed a significant increase of ONSD and CSA at T1, T2, T3, T4 but there was no associated decrease in rSO2. MMSE scores were reduced at postoperative day 1 and the 7 patients that developed postoperative delirium came from Group IJVVI.

Conclusions: Our observations suggest that elderly patients that show IJVVI after adequate positioning for RALP may develop elevated intracranial pressure as well as mildly compromised postoperative cognitive function in the short term.

Abbreviations: CAM = Confusion Assessment Method, CSA = cross-sectional area, FiO2 = inspiration oxygen, ICP = intracranial pressure, UV = internal jugular vein, IJV = internal jugular vein valve, IJVVI = internal jugular vein valve incompetency, MMSE = Mini-Mental State Examination, ONSD = optic nerve sheath diameter, POD = postoperative delirium, Pplat = respiratory plateau pressure, RALP = robotic-assisted radical prostatectomy, rSO2 = regional cerebral tissue oxygen saturation.

Keywords: intracranial pressure, postoperative delirium, trenelemburg position

Editor: Marco Onofri.

This work is supported by National Natural Science Foundation of China (No.81770295) and Key Project of Excellent Youth in Higher Education Institution of Anhui Province (gxyzzd2018028).

All authors have no conflicts of interest or financial ties to disclose.

* Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, a Department of Anesthesiology, First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui, b Department of Anesthesiology, The University of Hong Kong, Hong Kong S.A.R., China.

* Correspondence: Yuanhai Li, Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China (e-mail: liyuanhai-1@163.com).

Copyright © 2019 the Author(s). Published by Wolters Kluwer Health, Inc.

This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Medicine (2019) 98:21(e15794)

Received: 14 February 2019 / Received in final form: 30 April 2019 / Accepted: 3 May 2019

http://dx.doi.org/10.1097/MD.0000000000015794

1. Introduction

Robotic assisted laparoscopic surgery is increasingly being performed for range of surgical procedures that were previously amenable only to the open approach. This technique has the benefits of minimizing surgical trauma and postoperative pain, reducing bleeding, and reducing hospital stay.[1–3] Typically, CO2 pneumoperitoneum and the Trendelenburg position required for such surgery cause significant changes in cerebral hemodynamic physiology and increase intracranial pressure (ICP).[4] The optic nerve sheath diameter (ONSD) as determined by noninvasive oculon sonography has been demonstrated as a surrogate measure of elevated intracranial pressure in elderly patients.[7] An increase in ONSD to 6.8 mm is associated to an ICP above 20 mmHg, requiring a change of positioning or a decrease of abdominal pressure.[4] The internal jugular vein valve is the only valve in the pathway of cerebral venous drainage between the thoracic and intracranial cavity and is located at the lower part of internal jugular vein and near the confluence into the brachiocephalic vein. When competent, the valve prevents retrograde venous blood flow back to the brain.[4,9] The IJVVI, is prevalent in patients that are
old, men and during the Valsalva maneuver[10–12] can interfere with cerebral blood flow autoregulation and elevate ICP. IJVVI, as assessed by ultrasound, was found to be more prevalent in patients with transient global amnesia.[13] Cerebral autoregulation plays a significant role in maintaining constant blood flow and avoiding changes in cerebral perfusion pressure.[14,15] Cerebral autoregulation impairment may relate to unfavorable factors after a neurological event[16–17].

The potential role of IJVVI in the development of postoperative delirium (POD) or postoperative cognitive dysfunction has not been extensively investigated. We hypothesize that IJVVI during robotic assisted laparoscopic prostatectomy maybe associated elevated intracranial pressure and this may have a bearing on postoperative cognitive dysfunction. We aim to demonstrate a relationship between intraoperative IJVVI and ICP and a difference in short term neurological outcome between patients with or without IJVVI as assessed by the Mini-Mental State Examination (MMSE) and the Confusion Assessment Method (CAM).

2. Methods

This study was approved by the University’s Institutional Review Board (IRBPJ2016-08-06) and written informed consent was obtained from all subjects participating in the trial. The trial was registered prior to patient enrollment at clinicaltrials.gov (ChiCTR1800015206). We previously performed pilot studies to familiarize ourselves with the techniques of ultrasonographic measurement and neurocognitive evaluation. Ninety adult male patients undergoing RALP that were of American Society of Anesthesiologists physical status class 1 or 2 were initially recruited at the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui. We excluded patients who had previous neurological diseases (history of stroke or transient ischemic attack), mental impairment, visual impairment, drug dependence, and any other comorbidities which preclude neuropsychological testing. After determining the presence or not of IJVVI, the patients were analyzed in 2 groups: those with IJV valve competent (Group IJVVC) and those in whom the IJV valve were incompetent (Group IJVVI). The CONSORT Flow diagram is shown in Fig. 1.

Patients were asked to perform the MMSE on the day before the surgery, postoperative neurocognitive evaluation was performed on postoperative days 1, 3, and 7. All neurocognitive tests were performed by a skilled nurse who has been trained for the task. Postoperative delirium was determined by CAM which included the presence based on 4 features as previously described:

![Figure 1](image_url)

Figure 1. CONSORT flow diagram. All patients were performed MMSE the day before operation. Four of 90 patients were not finished MMSE. The patients were grouped by presence or absence of IJVVI which was considered positive that retrograde flow >0.88 seconds at any side. During the operation, ONSD and CSA were measured by ultrasound. Four patients in groups were lost to follow because of pain and bleeding. MMSE and CAM were diagnosed postoperative cognitive function which was performed by a skilled nurse. CAM = Confusion Assessment Method, CSA = cross-sectional area, MMSE = Mini-Mental State Examination, ONSD = optic nerve sheath diameter.
acute change with a fluctuating course, inattention, disorganized thinking, and altered level of consciousness.\(^{(1,8,19)}\) Data from the MMSE and CAM were reviewed by several other trained individuals not associated with the study to make the final decision.

Standard monitoring including electrocardiography, pulse oximetry, and noninvasive arterial blood pressure was established for the patient upon arrival to the operating room. The values of \(rSO_2\) were monitored with an INVOS 5100B cerebral oximetry, and noninvasive arterial blood pressure was established.

In the patient group, continuous retrograde flow at the head of the valves was evaluated with color and Doppler flow wave. The presence of IVJVVI was defined as continuous retrograde flow >0.88 seconds on any side.\(^{(20)}\) The CSA was imaged 2 cm below the carotid bifurcation with care taken not to compress the vein. The ONSD was measured at a point 3 mm behind the optic disc.\(^{(21)}\) Each optic nerve in the transverse plane and in the sagittal plane was measured 2 times. The final ONSD corresponded to the average of the 8 values measured in both eyes of each patient.

Measurements were made at 5 distinct time points: at baseline before induction of anesthesia in the supine position (T0), 5 minutes after induction of anesthesia in the supine position (T1), 5 minutes after onset of pneumoperitoneum at a target abdominal pressure of 15 mmHg (T2), 5 minutes after placing the patient in the steep Trendelenburg position (T3), and 5 minutes after returning to the supine position at the end of surgery (T4).

Statistical analysis was performed using SPSS version 18.0 (SPSS Inc., Chicago, IL). Based on a pilot study, we calculated that a sample size of 23 subjects would be required with an alpha of 0.05 and a power of 90%. With an anticipated 10% loss to follow-up, we set our sample size at 60 patients for our primary outcome. Data are described as mean±standard deviation. Demographic variables, blood loss, urine output, and intravenous fluid volume between groups were compared using unpaired Student t tests. A 2-way repeated-measures analysis of variance (ANOVA) with post hoc unpaired t test and Bonferroni correction was used to compare \(rSO_2\), MAP, HR, Pplat, ONSD, and CSA between the groups. A one-way repeated-measures ANOVA with Bonferroni post hoc tests were used to analyze these variables across time within the groups. All statistical tests were 2-tailed. A P value <.05 was considered as statistically significant.

3. Results

A total of 90 patients were assessed for eligibility. Then, 4 patients did not pass the MMSE test, and 4 patients lost to follow up in this study because of postoperative pain and bleeding. Therefore, 82 patients completed this study. The patient and intraoperative characteristics are shown in Table 1.

Sonography identified IVJVI at T2 or T3 in 40 patients with the other 42 assigned to the IJVVC group. The mean values of ONSD and CSA at T3 significantly increased compared with that at T0 for each group. In the IVJVVI group, the mean value of ONSD and CSA at T3 increased significantly compared with the IJVVC group. Although we changed the position decrease the abdominal pressure, the ONSD of 1 patient increased to 7.4 mm at T3 in the IJVVI group. (Fig. 2A and B).

MMSE was performed the day before surgery, the score was not significant between 2 groups. MMSE score had statistically significant decrease in the group compared with the IJVVC group on postoperative day 1 but did not remain so on days 3 and 7 (post surgery (Fig. 3)). There was evidence for postoperative delirium in 7 patients in the IVJVI group compared with one patient from the IJVVC group on day 1. This number dropped to 1 and 0, respectively, on days 3 and 7. The intraoperative values for \(rSO_2\) in 2 groups did not change significantly between the various timepoints (Table 2).

4. Discussion

While undoubtedly there are major advantages associated with laparoscopic approach for major surgery, it does necessitate the patients being placed in a steep head-down position for several hours and subjected to \(CO_2\) pneumoperitoneum. The combined effect of both these measures can cause significant perturbations in different bodily systems such as increased intracranial and intraocular pressures, reduced venous return from and increased central venous pressure, reduced functional residual capacity and increased intrathoracic pressure, with their function being compromised.

Table 1

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Group IVJVVI</th>
<th>Group IJVVC</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>65.1±4.0</td>
<td>65.2±3.8</td>
<td>.21</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>65.8±6.2</td>
<td>65.9±4.9</td>
<td>.65</td>
</tr>
<tr>
<td>Height, cm</td>
<td>164.4±7.1</td>
<td>166.3±4.1</td>
<td>.22</td>
</tr>
<tr>
<td>Anesthetic time, min</td>
<td>305.7±25.8</td>
<td>336.4±15.1</td>
<td>.69</td>
</tr>
<tr>
<td>Operation time, min</td>
<td>250.2±23.1</td>
<td>249.5±15.2</td>
<td>.73</td>
</tr>
<tr>
<td>Fluid administered, mL</td>
<td>1533.0±126.0</td>
<td>1412.0±86.8</td>
<td>.78</td>
</tr>
<tr>
<td>Blood loss, mL</td>
<td>117.1±9.1</td>
<td>124.6±20.0</td>
<td>.12</td>
</tr>
<tr>
<td>Urine output, mL</td>
<td>160.0±29.5</td>
<td>157.0±24.0</td>
<td>.15</td>
</tr>
</tbody>
</table>

Data are expressed as mean±SD, there were no statistically significant differences between the 2 groups. IVJVC = internal jugular vein valve competent, IJVVC = internal jugular vein valve incompetence.
strable internal jugular vein valve incompetency. Interestingly, we were able to differentiate those who may experience more

diameter and the cross-sectional area of the internal jugular vein, measures of raised intracranial pressure, namely optic nerve

compromised.[22–24] Using ultrasound to assess surrogate measures of raised intracranial pressure, namely optic nerve
diameter and the cross-sectional area of the internal jugular vein, we were able to differentiate those who may experience more
severe pressure increases based on whether they have demonstrable internal jugular vein valve incompetency. Interestingly,
there were no difference in cerebral oxygen saturation between the groups but those with valve incompetence may be more prone
to develop delirium as well as short-term cognitive changes postoperatively.

In this study, optic nerve diameter ultrasonography as a surrogate measure for intracranial pressure was adopted, because it
is a noninvasive and reproducible technique for the assessment of ICP and can be readily performed in patients undergoing
laparoscopic abdominal and pelvic surgery. Several studies have demonstrated good correlation between optic nerve diameter
ultrasonography and invasive ICP measurements,[21] with favorable specificity and sensitivity.[25] As a result, monitoring the
ONSD could afford useful information for changes in ICP intraoperatively. For those with IJV valve incompetency, we
found the ONSD increased from 4.3 to 6.8 mm when they were placed in steep Trendelenburg position and pneumoperitoneum
but not in those whose valve is competent. The subarachnoid space surrounding the retrobulbar portion of the optic nerve in
cases was distensible and expanded as cerebrospinal pressure increases. Some studies proposed that inverted fluid shift
and venous engorgement due to the Trendelenburg position, as well as the impediment of cerebral venous drainage were the
major factor that leading to such increases in ICP.[15] These propositions are in agreement with our findings, especially under
general anesthesia where the ICP may raise more rapidly.[26]

The Valsalva Maneuver, application of PEEP, and changes in body position has been shown to increase CSA,[31] which
may cause the incidence of IJVVI. In the IJVVI group, there were more significantly increases the CSA of the IJV when
patients were placed in Trendelenburg positioning, compared with the patients in the IJVVC group. It is interesting to note
that the Trendelenburg position does not alter the CSA in a predictable way.

In our study, we found 28 IJVVI patients after TP or PP that
may endure small transvalvular pressure gradient in supine
position, could come out by reduced intrathoracic pressure when the transvalvular pressure gradient increases more than abnormal
valves can bear. The Trendelenburg position may lead to higher
intrathoracic pressure when the same tidal volume used for the
supine position in order to maintain PaCO₂. Therefore, IJVVI
may disturb cerebral venous drainage because of the increased
impedance of the lungs to inflation and the increased intratho-
oracic pressure.[27]

In theory, patients with IJVVI may have a greater risk of
cerebral hypoperfusion from raised intracranial pressure than
patients without IJVVI steep Trendelenburg position for hours,
which might result in ischemia to the brain. Transient cerebral ischemia may not result in permanent deficits. Our cohort of
patients as a whole did not demonstrate any substantial reduction in cerebral oxygenation and but those with IJVVI. However, the
MMSE scores of those with IJVVI was less than those patients
with competent valves on day 1 post op but recovered on days 3
to 7, indicating a short-term effect. A study also found that IJVVI
may result in a lower MMSE score on postoperative day without
any other significant differences in a battery of neurocognitive
assessments.[31]

Postoperative delirium is a common postoperative complica-
tion in elderly patients, with a 15% to 25% incidence after
major surgery, most often diagnosed using CAM, and requires
a careful evaluation for and the treatment of reversible causes.[28] Although the availability of epidemiological data regarding
delirium continues to grow, knowledge regarding its

Figure 2. A, ONSD means and standard deviation, in different time. B, CSA means and standard deviation, in different time. *P* < .05 significantly different from Group IJVVC. T0, before anesthesia; T1, immediately after induction of general anesthesia; T2, in the supine position after pneumoperitoneum insufflation; T3, after Trendelenburg positioning; and T4, again at the end of the procedure. CSA = cross-sectional area, ONSD = optic nerve sheath diameter.

Figure 3. MMSE scores were measured at preoperation and postoperation 1, 3, 7 days; *P* < .05 significantly different from Group IJVVC. MMSE = Mini-Mental State Examination, P1 = postoperation day 1, P3 = postoperation day 3, P7 = postoperation day 7, Pre = preoperation.
The major limitation with the present study is the intermittent nature of our measurements. Although we marked the location for ultrasound probe placement there could still be a degree of operator dependency in the readings. As the primary aim of the study is to evaluate whether we can demonstrate an increase in ICP based on IJVVC, we only used the MMSE to assess for postoperative cognitive dysfunction whereas a more detailed battery of tests may reveal more subtle differences in cognition.

5. Conclusions

Intraoperative ultrasonographic assessment of IJVVC competency may be a useful approach of stratifying those patients who may develop increased intracranial pressure. There may be a potential link between prolonged increase in ICP from steep Trendelenburg positioning and pneumoperitoneum and short term postoperative cognitive impairment but larger studies using more detailed neurocognitive testing is required to confirm this relationship.

Author contributions

Conception and design: Ke Chen, Lizhen Wang, and Yuanhai Li.

Critical revision of the article and obtaining funding: Xuesheng Liu, Yao Lu, Yuanhai Li, and Gordon Tin Chun Wong.

Data collection: Ke Chen and Qing Wang.

Data curation: Qing Wang, Yao Lu.

Writing – original draft: Ke Chen, Lizhen Wang.

Writing – review & editing: Xuesheng Liu, Yuanhai Li, Gordon Tin Chun Wong.

Writing the article: Ke Chen, Lizhen Wang, Yao Lu, and Gordon Tin Chun Wong.

References

