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Abstract. A power network is a large-scale and highly nonlinear dynamical complex system
with generators and loads interconnected in a network structure. The transient stability of the power
system that we study here refers to its ability for bus angles to remain in synchronism. The usual
view of a stable power system is in terms of being able to return from the postfault state to a system
equilibrium after severe failures or faults occur. In fact, power systems experience instantaneous load
and generation fluctuations even in the absence of system faults. This paper reframes the stability
definition in terms of continuous synchronous behavior and looks at the stability of power systems as
the capability of withstanding these various fluctuations as external disturbances. The new stability
definition is characterized by the property that angles stay cohesive with each other and frequencies
of generators stay bounded. The main objective is to establish a stability analysis method based on
a class of new energy functions. An important stability lemma is proposed for nonlinear systems
which later is used to derive the phase cohesiveness and frequency boundedness conditions. Motivated
by the recent study of complex networks, coupled phase oscillators, and synchronization of power
systems, the paper also derives a purely algebraic condition showing explicitly how the stability of
the power network is related to the underlying network topology, system parameters and affected by
the disturbances.
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1. Introduction. A power system is an engineered complex network with het-
erogeneous nodes representing load and generator buses coupled via electric connec-
tions which constitute a network topology. The transient stability of power systems
has been long recognized as an important issue for stable and secure system opera-
tion in order to deliver electric power reliably from generators to loads. It refers to
the system’s ability to withstand the occurrence of faults such as short circuits in
transmission lines and fluctuations in load demands and characterizes the capability
of a postfault trajectory to return to a system equilibrium. Traditional stability as-
sessment approaches are categorized into direct time-domain simulation and energy
function methods. Time-domain simulation is straightforward and assesses the sta-
bility with respect to a given disturbance by means of numerical integration [21, 29].
Although the accuracy can be guaranteed provided there are correct modeling and pre-
cise knowledge of system parameters, time-domain simulation provides less intuitive
results and requires intensive computation especially for large-scale power systems.
On the contrary, the energy function method determines the system stability using a
class of energy functions whose value locally decreases along the system trajectory to-
wards the system equilibrium. The basic method compares the postfault energy with
energy at the critical unstable equilibrium point (UEP) [16] such as closest UEP or
controlling UEP [7, 8] to conclude the stability result. Since energy function methods
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adopt Lyapunov stability theory, they provide more insights into the stability prob-
lem and are less computing intensive, although the estimated region of attraction is
conservative.

A disadvantage of traditional stability assessment approaches, particularly the
energy function method, is that real-time disturbances are not accounted for. Over
the last decade, the modern power system has seen increasingly large amounts of re-
newable energy being integrated into grids. The renewable energy has an intermittent
and stochastic nature, since the power generated by renewable energy is subjected to
weather conditions. Being fed into power grids, it may cause fluctuations in power
generation. On the other hand, the power demand within a certain time scale is
predicted over time, but the real-time demand is in fact instantaneously fluctuat-
ing around the predicted values, especially when new and complicated demand-side
activities are stressing the grid. In fact, the ability and tolerance to withstand dis-
turbances and fluctuations generally reflect the robustness of power systems. These
issues generate new challenges to the stability of power systems and have yet to be
investigated.

The dynamic model of power systems composed of generations and loads is central
to the stability analysis. The second-order swing equation is the standard model for
the rotor dynamics of conventional generators, while the load model and power net-
work structure are somewhat varied in the literature. The early studies consider the
loads in conventional power systems as pure impedances. To facilitate transient stabil-
ity analysis, a circuit-theoretic method called Kron reduction was adopted to simplify
the model [3, 27]. It reduces the original power network into a network merely con-
sisting of generators and, hence, the original network structure is lost. The loads are
absorbed as the transfer conductances effectively connecting generators. Even though
the original power network is reasonably assumed as lossless, the reduced network
cannot be, in general, due to induced transfer conductance. The inclusion of nonzero
transfer conductance caused by load absorption has made attempts to develop general
Lyapunov functions unsuccessful. Later, Bergen and Hill [4] proposed a frequency-
dependent load model and presented the network-preserving model of power systems
where Kron reduction was avoided. The advantage of the network-preserving model
is to allow the construction of topology-dependent Lyapunov functions as well as
Lyapunov functions in Lur’e–Postnikov form [4, 18, 19] for stability analysis. More
importantly, the model explicitly preserves the original network topology, making it
possible to study the influence of the network topology on the stability. More recently,
the trend of the integration of distributed energy sources into the grids, such as wind
power, geothermal system, and distributed battery systems, motivates the modeling
for these devices. In [1], the model for inverter-based distributed energy sources was
first proposed in a network-preserving model of microgrids following the work [4]. A
microgrid is a type of low-voltage electrical distribution network consisting of dis-
tributed energy sources and loads (see, e.g., [25, 30, 39]). Renewable energies, as the
prevailing energy sources in microgrids, are fed via inverters with droop controllers
implementing frequency and voltage regulation.

It is recognized that the dynamics of coupled phase oscillators resembles the bus
dynamics of power systems [14, 20]. The synchronization phenomena observed in
physics and biology [6] led to the celebrated mathematical model for coupled phase
oscillators called the Kuramoto model [24, 36]. Potential functions and the LaSalle
invariance principle ([22, 28]) were utilized to study the Kuramoto model with uni-
form natural frequency. For the nonuniform natural frequency case, various necessary
[11, 22, 34] and sufficient [11, 12, 13, 17] frequency synchronization conditions were
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1642 LIJUN ZHU AND DAVID J. HILL

proposed. These results showed that the synchronization condition relies on the cou-
pling strength K satisfying K > Kc, where Kc is the critical coupling strength that
depends on the local natural frequencies and the number of oscillators. Recently, the
second-order Kuramoto model augmented with inertia has been proposed and nu-
merically [32, 33] and theoretically [9, 10] studied for which similar synchronization
conditions were discovered. In contrast to power systems, Kuramoto oscillators are
assumed to be connected in an all-to-all fashion.

Another inspiring line of work relevant to the stability of power systems is the
synchronization of complex networks [5, 26, 31, 35, 37, 38]. Compared with power
systems and coupled oscillators, this type of work employs rather simplistic dynamics,
linear coupling, and places much more emphasis on the network structure including
small-world and scale-free models. Typically, each node in the network has nonlinear
dynamics and would locally exhibit rich behaviors such as periodic, quasi-periodic,
or chaotic behaviors. When linearly coupled, trajectories of nodes synchronize with
each other. The critical coupling strength for the local exponential synchronization is
determined by the interplay of local dynamics and the algebraic connectivity of the
network [35].

In light of the synchronization of complex networks, it is recognized in [20] that
the topological property of the underlining network would have an impact on the
transient stability of the power system. In [14], Dörfler and Bullo linked the stability
analysis of power system with the synchronization of Kuramoto models. Under the
assumption of overdamped generators, the network-reduced model of conventional
power grids is approximated into nonuniform Kuramoto oscillators using a singular
perturbation argument. An algebraic synchronization condition was derived which
related the synchronization to the network topology.

This paper follows the research line of [13, 14, 20] to investigate the transient
stability of power systems directly in terms of synchronization. In particular, we will
study this problem under persistent external perturbations caused by the fluctuation
in power generation and load consumption. To the authors’ knowledge, this problem
emerges from the recent trends in the high penetration of renewables in grids and it
is still an open question. The main contributions of this paper are fourfold. First,
we propose a new definition for transient stability analysis in section 3. The phase
cohesiveness and frequency boundedness in Definition 2.2 is inspired by [14], but it
relaxes exact frequency synchronization in [14] and allows frequencies to be ultimately
bounded. This definition enables us to study stability under time-varying perturbation
caused by power fluctuation.

Second, we introduce a new coordinate transformation for the analysis instead of
using the traditional grounded coordinate as in [4, 19]. Traditional treatment appoints
one of the buses as the reference and refers the remaining angles to the reference
bus. This results in the so-called grounded model for which one bus is removed
from the original network topology. The new coordinate transformation converts the
original system into a deviation system that describes how the disturbance drive the
angle and frequency to deviate from the equilibrium subspace (which corresponds to
the equilibrium point in the grounded model), while the network topology remains
explicitly expressed.

Third, we propose a general class of parameterized energy functions for power
systems described by the deviation dynamics. By tuning parameters, the parameter-
ized energy function can be used for the stability analysis of different power system
models. It is also worth mentioning that the energy function can be reduced to that
proposed in [14] and [39] by tuning parameters.
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Last but not least, we establish a novel and general stability lemma for nonlinear
systems. The energy function and the lemma are both utilized in the stability analysis
to derive the synchronization condition for power systems and enable us to explore the
stability of the power system without assuming generators are overdamped compared
to [14]. As done in [14], we also establish an algebraic condition to connect the
synchronization of power systems with the network topology and system parameters.

The rest of the paper is structured as follows. Section 2 introduces the general
model for various types of power systems and presents the new stability definition.
Section 3 discusses equilibrium points of power systems and introduces a novel coordi-
nate transformation with respect to an equilibrium point and the stability definition is
translated into the new coordinates. Section 4 proposes an important stability lemma
for nonlinear systems, which is used to derive synchronization conditions under a new
stability definition in section 5, where a class of parameterized energy functions is
obtained. Followed by section 6, the so-called synchronizability condition is obtained
that relates the synchronization with the network topology, system parameters, and
also shows how it is affected by the disturbances. Section 7 conducts the small distur-
bance analysis and section 8 verifies theoretical results on the IEEE 9-bus test system
using numerical simulation. The paper is concluded in section 9.

Notations. For a vector x ∈ Rn, ‖x‖ and ‖x‖∞ are the 2-norm and ∞-norm
of vector x and sin(x) := [sin(x1), . . . , sin(xn)]T. For a scalar x, the function sinc(x)
is defined as sinc(x) = sinx/x. Vectors en and 0n are column vectors of dimension
n with all elements being 1 and 0, respectively. For instance, eq = [1, . . . , 1]T ∈ Rq.
Let On×m be the zero matrix of dimension n × m and In be the unity matrix of
dimension n × n, whose subscript will be neglected if the dimension can be inferred
from the context. Also, diag(x) ∈ Rn×n is a diagonal matrix with the ith diagonal
element being xi, while diag{fi(xi)}xi∈X is a diagonal matrix whose diagonal element
is fi(xi), where xi belongs to the set X. For a symmetric matrix P , P ≥ 0 and P > 0
mean P is a semipositive and positive definite matrix, respectively.

2. System model, synchronization definition, and problem formulation.
Consider a power system consisting of q conventional generators, nr distributed energy
sources, and nl load buses. The augmented network thus has n = nr + nl + q buses.
Without loss of generality, number buses 1, . . . , n− q as buses for distributed energy
sources and loads, buses n − q + 1, . . . , n for generator buses. Associated with each
bus is a voltage phasor Vi∠θi, where Vi > 0 is the voltage magnitude and θi is the
voltage angle of the bus. A common assumption adopted here is the voltage at each
bus has been regulated to be a constant. The electric power delivered by bus i is

pe,i =

n∑
j=1

|Vi||Vj |Ḡij cos(θi − θj) + |Vi||Vj |B̄ij sin(θi − θj),

where B̄ij and Ḡij are the corresponding susceptance and conductance components
of the admittance matrix, respectively. Note that Ḡii > 0, B̄ii < 0 and Ḡij < 0,
B̄ij > 0 if bus i and j are connected, otherwise Ḡij = B̄ij = 0. The rotor dynamics
of generators are modeled by the swing equation

(1) miθ̈i + diθ̇i = pi − pe,i, i = n− q + 1, . . . , n,

where θi is the generator rotor angle, pi > 0 is the mechanical power input, mi > 0
and di > 0 are inertia and damping coefficients, respectively.
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1644 LIJUN ZHU AND DAVID J. HILL

The model for loads and energy sources can be uniformly modeled as the first
dynamics

(2) diθ̇i = pi − pe,i, i = 1, . . . , n− q,

where pi and di > 0 are constants representing different physical quantities for dif-
ferent types of buses. First, we adopt the frequency-dependent load model [4] for
which (2) represents the power balance between load demand −pi + diθ̇i and injected
power pe,i. Note that −pi > 0 is the power consumption independent of frequency

but might be time varying, while diθ̇i is the frequency-dependent term. Since energy
sources are usually interfaced to grids via power electronic devices such as inverters,
their dynamics are mainly determined by the control logic implemented in these de-
vices. Either implementing droop control [1] or performing maximum power point
tracking (MPPT) [15], the characteristics of energy sources equipped with inverters
can be captured by (2) that depicts the power balance between energy consumption
induced by internal load, power supplied by energy sources, and power delivered to
grids. In particular, for energy sources implementing droop control, di and pi re-
flect the parameter and the setpoint for the droop control, respectively [1], while
for energy sources implementing MPPT control, pi is the maximum power output
that could vary with weather condition for renewable energy and di is related to the
internal frequency-dependent load. Let (1, . . . , ql) be the index set for load buses,
(ql + 1, . . . , qd) and (qd + 1, . . . , n − q) for energy source buses implementing droop
control and MPPT, respectively.

Remark 2.1. For the normal operation of power systems, the load demand and
power generated by renewable energy are predicted ahead so that the other dispatch-
able power generation can be scheduled to match the demand and meet economic
requirements. In this case, the mechanical power input at conventional power gener-
ators pi, i = n − q + 1, . . . , n, and setpoints for energy sources pi, i = ql + 1, . . . , qd,
implementing droop control are scheduled ahead and hence are constant. However,
the power output pi, i = qd + 1, . . . , n − q, by renewable energy sources performing
MPPT is usually fluctuating around the predicted value, and may exhibit sudden
change when unpredictable weather condition occurs. Also, the real-time load con-
sumption pi, i = 1, . . . , ql, does not necessarily match the predication either, especially
when modern demand-side activities become more complicated. The aforementioned
mismatch between real-time power generation, consumption, and their predicted val-
ues are called (real-time) disturbances in this paper, which will be explicitly expressed
in the next section.

In this paper, we use a weighted undirected graph G = (V, E) to facilitate the
representation of power networks. The set of nodes is V = {1, . . . , n} representing
buses and undirected edges E ⊆ V ×V representing transmission lines. An undirected
edge of E from node i to node j is denote by (i, j), meaning that buses Vi and
Vj are connected by a transmission line. Denote by Ek the kth edge in E where
k ∈ {1, . . . , |E|}. When the orientation of each edge is arbitrarily assigned, the oriented
incidence matrix B ∈ Rn×|E| is defined as Bik = 1 if node i is the sink node of edge
Ek and Bik = −1 if it is the source node. Assign each edge (i, j) the weight aij > 0
and the weighted Laplacian is denoted by L = [lij ] ∈ Rn×n, where lii =

∑n
j=1 aij and

lij = −aij if i 6= j. As a result, L = BAvB
T, where Av = diag{aij}(i,j)∈E is a diagonal

matrix with diagonal elements being edge weights aij . Let λi ∈ R, i = 1, . . . , n, be
ordered eigenvalues of L such that 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. We call Gc the complete
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graph induced by G if Gc = (V, Ec) is an undirected complete graph with the same set
of nodes as G, for which Bc is the incidence matrix.

In this paper, we will mainly focus on power systems with zero transfer con-
ductance Ḡij = 0 and develop the analysis framework with more concise notation.
The framework can also be extended to handle the nonzero transfer conductance case
(as was done in [14]) but will not be discussed here due to page limitation. Let
aij = |Vi||Vj |B̄ij be the maximal power transferred across transmission line (i, j).
Let ξ1 = col(θ1, . . . , θn−q) ∈ Rn−q be angle vectors for buses of distributed en-
ergy sources and loads, ξ2 = col(θn−q+1, . . . , θn) ∈ Rq for conventional generator
buses and ξ = col(ξ1, ξ2) for the whole system. Denote the power profile vector
pf = col(p1, . . . , pn) ∈ Rn, as it represents load demand and power generation in the
system. Define inertia matrices M2 = diag(col(mn−q+1, . . . ,mn)), damping matrices
D2 = diag(col(dn−q+1, . . . , dn)) and coefficient matrix D1 = diag(col(d1, . . . , dn−q)).
Then, following steps made in [4], the dynamics of power systems (1) and (2) can be
put in vector form

ξ̇1 = −D−1
1 TT

1 (BAv sin(BTξ)− pf ) ,(3)

ξ̈2 = −M−1
2 D2ξ̇2 −M−1

2 TT

2 (BAv sin(BTξ)− pf ) ,(4)

where T1 and T2 are matrices defined as

TT

1 =
[
In−q O(n−q)×q

]
∈ R(n−q)×n, TT

2 =
[

Oq×(n−q) Iq
]
∈ Rq×n.

Motivated by the synchronization of coupled phase oscillators, the concept of
phase cohesiveness was introduced in [13, 14]. To be self-contained here, we revisit
some notations in [13, 14]. The torus is the set T1 = [0, 2π], where 0 and 2π are associ-
ated with each other. An angle is a point θ ∈ T1 and an arc is a connected subset of T1.
The n-torus is the Cartesian product Tn = S1×· · ·×S1. Let Υc(ξ, γ) ∈ Tn be the closed
set of angle vector ξ = col(θ1, . . . , θn) with the property that maxi,j∈{1,...,n} |θi−θj | ≤
γ. In fact, Υc(ξ, γ) is the set of angles (θ1, . . . , θn) with the property that there exists
an arc of length γ containing all (θ1, . . . , θn) in its interior. We adapt the definition in
[13, 14] to the definition of phase cohesiveness and frequency boundedness as follows.

Definition 2.2 (synchronization: phase cohesiveness and frequency bounded-
ness). A solution ξ(t) : R+ → Tn is then said to be phase cohesive if there exists a
γ ∈ [0, π) such that ξ(t) ∈ Υc(ξ, γ). A solution ξ̇2(t) : R+ → Rq is then said to be
frequency bounded if there exists an $o such that ‖ξ̇2(t)‖∞ ≤ $o.

The phase cohesiveness in Definition 2.2 is the same as that introduced in [13, 14]
where if pi is constant, frequency synchronization limt→∞ θ̇i− θ̇j = 0 can be achieved.
As will be shown later, the frequency boundedness in Definition 2.2, however, relaxes
frequency synchronization and enables us to study stability under time-varying dis-
turbances caused by fluctuations in power generation and load consumption. The
objective of this paper is to investigate the synchronization condition in the sense
of Definition 2.2 under external disturbances (see Remark 2.1 and section 3 for the
discussion of external disturbances).

3. Problem conversion. The common practice in traditional transient stability
analysis is to use one of the generator buses, say bus n, as the reference bus and define
the grounded coordinate θ̄i = θi − θn. In this section, we will not use the grounded
coordinate to avoid eliminating one bus and losing the original network topology.
Instead, we define a coordinate transformation with respect to the solution of the
power flow equation.
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1646 LIJUN ZHU AND DAVID J. HILL

For normal operation of power systems, the load demand is predicted ahead and
the power generation is scheduled to match the demand. The match between the load
demand and generation is described by the power flow equation

(5) BAv sin(BTξ) = pf .

Equation (5) typically has numerous solutions due to its nonlinearity and the period-
icity of the sine function. Solutions satisfying (5) can be represented as

(6) ξ = ξe := ξo + cen,

where c ∈ R is an arbitrary constant and ξo = col(θo1, . . . , θ
o
n) ∈ Rn is some constant

vector satisfying BTξo 6= 0 if pf 6= 0. With this notation, ξo captures the relative
angle differences among buses, while c characterizes a uniform offset on every bus.
Since c does not affect the power flow equation (5), the uniqueness of the solution
is fully captured by ξo. In what follows, we simply call ξo the equilibrium point of
the power system when no confusion is caused. For the operation of power systems,
equilibrium point ξo is rescheduled by the dispatch process, when required, to match
the power generation and the power demand that is predicted over time to time.
Transient stability considers the time duration between two dispatch processes, and
hence the equilibrium point ξo is assumed to be constant. Let po = col(po1, . . . , p

o
n) be

the dispatched power profile that describes predicted demand and scheduled power
generation satisfying

(7) BAv sin(BTξo) = po.

In fact, the real-time power profile pf does not necessarily coincide with po. The
difference p = pf − po can be regarded as the disturbance to power systems under the
nominal operation.

Let θ̄i = θi − θoi , i = 1, . . . , n, be the angle deviation from the equilibrium
point θoi . Define ϑ1 = col(θ̄1, . . . , θ̄n−q) ∈ Rn−q, ϑ2 = col(θ̄n−q+1, . . . , θ̄n) ∈ Rq, and
ϑ = col(ϑ1, ϑ2). Then, the power system composed of (3) and (4) can be rewritten as

ϑ̇1 = −D−1
1 TT

1 (BAv (sin(BT(ϑ+ ξo))− sin(BTξo))− p) ,(8)

ϑ̈2 = −M−1
2 D2ϑ̇2 −M−1

2 TT

2 (BAv (sin(BT(ϑ+ ξo))− sin(BTξo))− p) ,(9)

by noting BTen = 0, where col(ϑ, ϑ̇2) is the state of the system.
It is observed that the equilibrium subspace for the system (8) and (9) is

(10) E := {col(ϑ, ϑ̇2) ∈ Rn × Rq | ϑ̇2 = 0q, ϑ = cen,∀c ∈ R}

on which angle deviations are synchronized, i.e., θ̄i − θ̄j = 0 ∀i, j = {1, . . . , n}, and
the frequency settles at zero. As a result, the stability with respect to an equilibrium
point ξo is converted into the stability with respect to this equilibrium subspace E.
In essence, the dynamical systems (8) and (9) describe how power disturbances drive
angles to deviate from the equilibrium subspace.

Define

(11) ϑc = BT

c ϑ,

where Bc is the incidence matrix of induced complete graph Gc. As a result, elements
in ϑc are θ̄i − θ̄j for i 6= j ∀i, j ∈ {1, . . . , n}, which are angle differences between any
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STABILITY ANALYSIS OF POWER SYSTEMS 1647

arbitrary two buses. Since |θoi − θoj | ≤ c1 and |θ̄i − θ̄j | ≤ c2 imply |θi − θj | ≤ c1 + c2
for c1 + c2 ≤ π, the phase cohesiveness and frequency boundedness can also be given
in terms of ϑc an ϑ̇2 as follows with one notation defined as

(12) θ̄c = max
i,j∈{1,...,n}

{|θoi − θoj |}.

Definition 3.1. A solution ϑ(t) : R+ → Rn is then said to be phase cohesive if
there exists a γ ∈ [0, π − θ̄c) such that ‖ϑc(t)‖∞ ≤ γ. A solution ϑ̇2(t) : R+ → Rq is
then said to be frequency bounded if there exists a $o such that ‖ϑ̇2(t)‖∞ < $o.

It is worth noting that considering the cohesiveness behavior in Euclidean space
Rn and in torus Tn is equivalent as far as the initial condition also satisfies cohe-
siveness condition. Therefore, we use the Euclidean space in Definition 3.1. Since
phase cohesiveness and frequency boundedness defined in Definition 3.1 imply those
in Definition 2.2, it is a weakened version of Definition 2.2. In the following, we will
investigate the synchronization condition in the sense of Definition 3.1 for the system
described by (8) and (9). How to extend the technique developed for the system (8)
and (9) to studying the stability of the original system (3) and (4) is noted as follows.

Remark 3.2. In fact, a trivial pair (θo, po) satisfying power flow equation (7) is
(θo, po) = (0n, 0n). Due to (θo, po) = (0n, 0n), one has col(ϑ, ϑ̇2) = col(ξ, ξ̇2), p = pf
and θ̄c = 0 which in turn recovers (ξ, ξ̇2)-dynamics (3) and (4) from (ϑ, ϑ̇2)-dynamics
(8) and (9). As a result, the analysis techniques to be developed for (ϑ, ϑ̇2)-dynamics
can be extended for (ξ, ξ̇2)-dynamics in the sense of Definition 2.2 by taking (θo, po) =
(0n, 0n) without difficulty.

4. A stability lemma. In order to investigate the synchronization condition
in the sense of Definition 3.1, we will introduce a stability lemma in this section.
Consider a nonlinear system

(13) ẋ = f(t, x),

where x ∈ Rn is the state. The state can be decomposed as x = col(x1, x2), where
x1 ∈ Rn1 and x2 ∈ Rn2 . Define two compact sets B(µ) := {x ∈ Rn | ‖x‖ ≤ µ} and
W (r) := {x ∈ Rn | V (x) ≤ r}, where V (x) is a continuously differentiable function to
be given. Define T (γ) := {x ∈ Rn | ‖x1‖ ≤ γ} for some γ ∈ R+. Let us assume the
origin is the equilibrium point of the system (13). The first lemma is given as follows.

Lemma 4.1. Suppose V (x) : T (γ)→ R+ is a continuously differentiable function
satisfying

(14) α1(‖x‖) ≤ V (x) ≤ α2(‖x‖),

where α1 and α2 are class K functions. Suppose the time derivative of V (x) along the
trajectory of the system (13) satisfies

(15)
∂V

∂x
f(t, x) < 0 ∀x /∈ B(µ)

for some µ, γ ∈ R+.
(a) If there exists a class K function α3 such that α3(γ) ≥ α2(µ) and α3(‖x1‖) ≤

V (x) hold for x ∈ T (γ), then there exists a χ ∈ R satisfying α2(µ) ≤ χ ≤
α3(γ) such that W (χ) is an invariant set. Moreover, any trajectories starting
with x(to) ∈ W (χ) are ultimately contained in W (α2(µ)), i.e., there exists
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1648 LIJUN ZHU AND DAVID J. HILL

Fig. 1. Geometric representation for sets B(µ), W (α2(µ)), W (χ), and lines x1 = ±γ.

a T (to) such that x(t) ∈ W (α2(µ)) for t > T (to) and along the trajectory
‖x1(to)‖ ≤ γ for t > to.

(b) If there exists a class K function α4 such that α4(‖x2‖) ≤ V (x) holds for
x ∈ T (γ), then ‖x2(t)‖ ≤ $o for t > to and some constant $o.

Remark 4.2. The condition of this lemma is similar to that of Theorem 4.18 in
[23] which concludes bounded-input–bounded-state stability for nonlinear systems.
The difference is that it is additionally required in this paper that the norm of the
partial state x1 be bounded by some constant γ for the Lyapunov function to be well
defined, which makes the analysis more involved.

Proof. First, let us assume ‖x1‖ < γ such that the function V (x) is well defined
and defer its proof. Due to (15), the function V (x) decreases outside the ball B(µ).
First, we can see that x ∈ B(µ) implies x ∈ W (α2(µ)), since ‖x‖ ≤ µ ⇒ V ≤ α2(µ).
Also, B(µ) is contained in W (χ), which follows from x ∈ B(µ) ⇒ x ∈ W (α2(µ)) ⇒
x ∈W (χ) due to χ ≥ α2(µ). Therefore, one has V̇ < 0 at the boundary of W (χ) and
hence W (χ) is an invariant set for any χ ≥ α2(µ). Moreover, any trajectories starting
with x ∈ W (χ) will converge to and stay in W (α2(µ)), because V̇ < 0 outside of the
boundary of B(µ) and W (α2(µ)). The relations between B(µ), W (α2(µ)), and W (χ)
are illustrated in Figure 1. The above argument is based on the assumption ‖x1‖ ≤ γ.
What remains is to show the condition ‖x1(t)‖ ≤ γ holds for t ≥ to. As illustrated
in Figure 1, this is to find the largest χ such that ‖x1‖ ≤ γ is satisfied within the set
W (χ). If χ ≤ α3(γ), then ‖x1(t)‖ ≤ γ for t > to due to

α3(‖x1(t)‖) ≤ V (x(t)) ≤ χ.(16)

Hence, α2(µ) ≤ χ ≤ α3(γ) guarantees the invariant set W (χ) within which ‖x1(t)‖ ≤
γ can be found. Moreover, for any trajectory starting with x(to) ∈ W (χ), it will be
eventually contained in W (α2(µ)) and along the trajectory ‖x1(t)‖ ≤ γ holds due to
(16).

Additionally, if there exists a class K function α4 such that α4(‖x2‖) ≤ V (x), one
has

(17) α4(‖x2(t)‖) ≤ V (x(t)) ≤ χ

for t > to. Let $o ≥ α−1
4 (χ), one has ‖x2(t)‖ ≤ $o.
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STABILITY ANALYSIS OF POWER SYSTEMS 1649

When class K functions α1, α3, α3, and α4 in Lemma 4.1 are replaced by some
quadratic functions, the following corollary is obtained.

Corollary 4.3. Suppose V (x) : T (γ) → R+ is a continuously differentiable
function satisfying

α1‖x‖2 ≤ V (x) ≤ α2‖x‖2,

where α1 and α2 are some positive constants. Also suppose the derivative of V (x)
along the trajectory of the system (13) satisfies ∂V

∂x f(t, x) < 0 ∀x /∈ B(µ).

(a) If there exists a positive constant α3 such that γ ≥ µ
√
α2/α3 and α3‖x1‖2 ≤

V (x) hold for x ∈ T (γ), then there exists a χ ∈ R satisfying α2µ
2 ≤ χ ≤ α3γ

2

such that W (χ) is an invariant set. Moreover, any trajectories starting with
x(to) ∈ W (χ) are ultimately contained in W (α2µ

2) and along the trajectory
‖x1(t)‖ ≤ γ holds.

(b) If there exists a positive constant α4 such that α4‖x2‖2 ≤ V (x) holds for
x ∈ T (γ), then ‖x2(t)‖ ≤ $o for t > to and some $o > 0.

Remark 4.4. When we set x1 = ϑc and x2 = ϑ̇2, the properties (a) and (b) in
Corollary 4.3 correspond to the phase cohesiveness and frequency boundedness in
Definition 3.1, by noting ‖x1‖∞ ≤ ‖x1‖. Thus, Lemma 4.1 and Corollary 4.3 will be
employed to derive the synchronization condition in the next section.

5. Synchronization analysis. Now, we are ready to investigate the synchro-
nization property in the sense of Definition 3.1. First, we need to construct a class of
parameterized energy functions.

5.1. Energy functions. In [4, 18, 19], the energy function method relies on a
class of energy functions derived for power systems in grounded coordinates using
the multivariable Popov criterion. In this section, we will obtain a class of energy
functions in the coordinate defined in section 3. The power system composed of (8)
and (9) with zero disturbance p = 0n can be rewritten as

(18) ẋ = Fx−Gψ(HTx)

with x = col(ϑ, ϑ̇2), where

(19) ψ(HTx) = BAv (sin(BT(ϑ+ ξo))− sin(BTξo))

and

(20) F =

[
On×n T2

Oq×n −M−1
2 D2

]
, G =

[
T1D

−1
1 TT

1

M−1
2 TT

2

]
, H =

[
In×n
Oq×n

]
.

Note that (18) is similar to the Lur’e form, but the linear part (F,G,H) of the
system is not a minimal realization due to the underactuation property of the system,
namely, eTnψ(HTx) = 0. However, we will show it is still possible to find a typical
energy function in the form

(21) V (ϑ, ϑ̇2) = V1(ϑ, ϑ̇2) + V2(ϑ),

where

V1(ϑ, ϑ̇2) =
1

2

[
ϑ

ϑ̇2

]T

P

[
ϑ

ϑ̇2

]
,(22)

V2(ϑ) =
1

2
β

n∑
i=1

n∑
j=1

aij

∫ θ̄i−θ̄j

0

[
sin(u+ θoi − θoj )− sin(θoi − θoj )

]
du(23)
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1650 LIJUN ZHU AND DAVID J. HILL

with P ∈ R(n+p)×(n+p) and β ∈ R to be determined. For physical systems, V2(ϑ) can
be explained as the sum of potential energy induced by conservative coupling forces
across transmission lines, while depending on the choice of P , V1(ϑ, ϑ̇2) can be the
sum of the kinetic energy and cross terms to the related energy.

The following proposition is inspired by the work [2, 19] and will be used to choose
P and β later.

Proposition 5.1. Consider the dynamic system (18) or, equivalently, the system
composed of (8) and (9) with p = 0n. If there exist a symmetric matrix P and matrices
L, W , and X of proper dimensions such that the following equalities are satisfied

PF + F TP = −LLT,

PG = αH + βF TH − LW +XeTn,

W TW = β(HTG+GTH),(24)

then the energy function V in (21) satisfies V̇ ≤ 0 for |θ̄i − θ̄j | < π − 2θ̄c ∀(i, j) ∈ E,
where θ̄c is defined in (12).

Proof. It is straightforward to calculate V̇ as follows:

V̇ =
1

2
xT(PF + FTP )x− xTPGψ(HTx) + βψT(HTx)HT [Fx−Gψ(HTx)]

= −1

2
xTLLTx− xT(αH − LW )ψ(HTx)− βψT(HTx)HTGψ(HTx)

= −1

2
xTLLTx+ xTLWψ(HTx)− 1

2
ψT(HTx)WTWψ(HTx)− αxTHψ(HTx)

= −1

2
[LTx+Wψ(HTx)]

T
[LTx+Wψ(HTx)]− αxTHψ(HTx)

≤ −αxTHψ(HTx),(25)

where we use (24) and the fact eTnψ(HTx) = 0. Note that

xTHψ(HTx) =
1

2

n∑
i=1

n∑
j=1

aij
(
sin(θ̄i − θ̄j + θoi − θoj )− sin(θoi − θoj )

) (
θ̄i − θ̄j

)
.

If |θ̄i − θ̄j | < π − 2θ̄c ∀(i, j) ∈ E , the following holds:[
sin(θ̄i − θ̄j + θoi − θoj )− sin(θoi − θoj )

] (
θ̄i − θ̄j

)
≥ 0 ∀(i, j) ∈ E .

Thus, xTHψ(HTx) ≥ 0 and V̇ ≤ 0.

For a system of Lur’e type (18), if (F,G,H) is a minimal realization of the linear
part GL(s) of the system and Z(s) = (α + βs)GL(s) is positive real, it is guaran-
teed that there always exist matrices P , L, and W satisfying (24) [2] with X = 0.
The power system in the grounded coordinates is a minimal realization of the linear
part of the Lur’e system and ensures the existence of Lur’e–Postnikov-type Lyapunov
function. Although the angle deviation dynamics composed of (8) and (9) is not a
minimal realization, it will be shown that matrices P , L, W , and X satisfying (24)
can be found.

Proposition 5.2. Let

P = α

[
(D −DeneTnD/d) (D −DeneTnD/d)T2D

−1
2 M2

M2D
−1
2 T T

2 (D −DeneTnD/d) β/αM2 −M2eqe
T
qM2/d

]
,

X = −α/d
[
Den
M2eq

]
,(26)
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STABILITY ANALYSIS OF POWER SYSTEMS 1651

where α, β ∈ R and d = eTnDen. Then, the equality (24) is satisfied with some L and
W of proper dimensions and the energy function (21) obtains V = 0 at equilibrium
subspace E.

Proof. Following a similar derivation in [19], in order to make P , L, W , and X
satisfy (24), they should be in the form of

P =

[
P1 PT

2

P2 P3

]
, L =

[
O O
L1 L2

]
, W =

[
W1

W2

]
, X =

[
X1

X2

]
and satisfy the following equalities

PT

2 M
−1
2 D2 − P1T2 = O,

PT

2 M
−1
2 TT

2 + P1T1D
−1
1 TT

1 = αI +X1e
T

n,

P3M
−1
2 D2 +D2M

−1
2 P3 − P2T2 − TT

2 P
T

2 = L1L
T

1 + L2L
T

2 ,

P2T1D
−1
1 TT

1 + P3M
−1
2 TT

2 = βTT

2 − (L1W1 + L2W2) +X2e
T

n,

WT

1 W1 +WT

2 W2 = 2βT1D
−1
1 TT

1 .(27)

For simplicity, we only consider the case LW = O.
The first and second lines of (27) lead to

P1 = αD +X1e
T

nD,

where D = diag{D1, D2}. One should have X1 = γDen with γ ∈ R to make P1 a
symmetric matrix and hence P1 = αD + γDene

T
nD. Then, P2 can be calculated as

P2 = M2D
−1
2 TT

2 (αD + γDene
T
nD). The fourth line of (27) becomes

(28)
[
M2D

−1
2 TT

2 (αD + γDene
T
nD)T1D

−1
1 P3M

−1
2

]
=
[
O βI

]
+
[
X2e

T
n−q X2e

T
q

]
.

Note that

αD + γDene
T

nD =

[
αD1 + γD1en−qe

T
n−qD1 γD1en−qe

T
qD2

γD2eqe
T
n−qD1 αD2 + γD2eqe

T
qD2

]
.

For (28) to hold, one should have X2 = γM2eq and P3 = βM2 + γM2eqe
T
qM2. The

third line together with the fifth line of (27) becomes

L1L
T

1 + L2L
T

2 = 2(βD2 − αM2),

WT

1 W1 +WT

2 W2 = 2βT1D
−1
1 TT

1 .(29)

Substituting ξ̇2 = 0q and ξ = c1en into (21) leads to V (cen, 0q) = 0 at equilibrium
subspace E from which we obtain γ = −α/d with d = eTnDen. So, P and X in (26)
are obtained. Because extra freedom exists to choose L1, L2, W1, and W2 to have
(29) and LW = O satisfied, L and W can always be found. However, they will not be
used anywhere in this paper and hence their explicit expressions are omitted here.

As a result, V (ϑ, ϑ̇2) with P given in (26) is an energy function parameterized
by α and β. It is worth mentioning that the derived energy function is different from
that in [18] since the additional term XeTn appears in (24). But it coincides with the
one used in [4], when α = 0 and β = 1. It will be shown this energy function enables
us to conduct the synchronization analysis in the sense of Definition 3.1 with specific
α and β.
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1652 LIJUN ZHU AND DAVID J. HILL

5.2. Synchronization condition. In order to explore the synchronization con-
dition in the sense of Definition 3.1, we use energy function (21) with P specified in
(26) and set α = 1 without loss of generality. Let ϑc = BT

c ϑ ∈ Rn×(n−1)/2 as defined
in (11).

One has

(30) (D −DeneTnD/d) = Bcdiag{didj}BT

c /d,

where diag{didj} is short for diag{didj}i,j∈{1,...,n},i6=j for the purpose of neat notation.
As a result,

(31) ϑT(D −DeneTnD/d)ϑ = ϑT

c diag{didj}ϑc/d

and

ϑT(D −DeneTnD/d)T2D
−1
2 M2ϑ̇2 = ϑT

c diag{didj}BT

c T2D
−1
2 M2ϑ̇2/d.(32)

Hence, V1(ϑ, ϑ̇2) in (22) becomes

V1(ϑ, ϑ̇2) =
1

2
col(ϑc, ϑ̇2)TP̄ (β)col(ϑc, ϑ̇2)

with

(33) P̄ (β) =

[
diag{didj}/d diag{didj}BT

c T2D
−1
2 M2/d

M2D
−1
2 TT

2 Bcdiag{didj}/d βM2 −M2eqe
T
qM2/d

]
.

Therefore, V1(ϑ, ϑ̇2) can be alternatively represented in terms of ϑc and ϑ̇2 as does
V2(ϑ) in (23). In this subsection, we will use V (ϑc, ϑ̇2), V1(ϑc, ϑ̇2), and V2(ϑc) instead
of V (ϑ, ϑ̇2), V1(ϑ, ϑ̇2), and V2(ϑ). A useful lemma is cited as follows.

Lemma 5.3 (see [14]). Let λ2 and λn be the smallest and largest nonzero eigen-
values of the Laplacian matrix L of an undirected graph G. For a ϑ ∈ Rn,

λn
n
‖BT

cϑ‖2 ≥ ϑTLϑ ≥ λ2

n
‖BT

cϑ‖2

holds, where Bc is the incidence matrix of the complete graph Gc induced by G.

Now, we show that V2(ϑc) in (23) is upper and lower bounded by nonnegative
functions of ϑc.

Lemma 5.4. Let θ̄c be defined in (12) and θ̄c < π/2. For a given γ ∈ [0, π− 2θ̄c),
if |θ̄i − θ̄j | ≤ γ ∀i, j = 1, . . . , n, then V2(ϑc) satisfies

(34)
1

2n
βκ(γ)λ2‖ϑc‖22 ≤ V2(ϑc) ≤

1

2n
βλn‖ϑc‖22,

where

(35) κ(γ) = sinc(γ/2) cos(γ/2 + θ̄c).

Proof. For any |u| ≤ γ < π, one has

sin(u/2)

u/2
≥ sinc(γ/2)
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and cos(u/2 + x) ≥ cos(γ/2 + θ̄c) for any |x| ≤ θ̄c due to |u/2 + x| < γ/2 + θ̄c < π/2.
This leads to

sin(u+ x)− sinx

u
=

cos(u/2 + x) sin(u/2)

u/2
≥ κ(γ)(36)

and

(37)
sin(u+ x)− sinx

u
≤ 1.

Applying (36), (37), and Lemma 5.3 yields

V2(ϑ) =
1

2
β

n∑
i=1

n∑
j=1

aij

∫ θ̄i−θ̄j

0

sin(u+ θoij)− sin θoij
u

udu

≥ β

2

n∑
i=1

n∑
j=1

aij

∫ θ̄i−θ̄j

0

κ(γ)udu =
1

2
βκ(γ)ϑTLϑ ≥ 1

2n
βλ2κ(γ)‖ϑc‖2

and V2(ϑc) ≤ 1
2βϑ

TLϑ ≤ 1
2nβλn‖ϑc‖

2. Thus, the proof is complete.

The nonnegativeness of the energy function V (ϑc, ϑ̇2) is guaranteed by proper
selection of scalar β and demonstrated as follows.

Lemma 5.5. Let θ̄c be defined in (12) and θ̄c < π/2. Denote the maximum
inertia-damping ratio among conventional generators by η = maxi=n−q+1,...,n(mi/di).

If β > η, then V (ϑc, ϑ̇2) ≥ 0 and only obtains V (ϑc, ϑ̇2) = 0 at equilibrium subspace
E in (10). Moreover, given a γ ∈ [0, π − 2θ̄c), if |θ̄i − θ̄j | ≤ γ ∀i, j = 1, . . . , n, there
exist functions α1(β, γ) depending on β and γ and α2(β) depending on β such that

(38) α1(β, γ)‖col(ϑc, ϑ̇2)‖2 ≤ V (ϑc, ϑ̇2) ≤ α2(β)‖col(ϑc, ϑ̇2)‖2.

Proof. To prove the nonnegativeness of V (ϑc, ϑ̇2), it suffices to prove V1 ≥ 0,
since Lemma 5.4 showed V2(ϑc) ≥ 0. At equilibrium subspace E, it is straightforward
to see that V2(ϑc) = 0 and V1(ϑc, ϑ̇2) = 0 due to ϑc = 0n×(n−1)/2 and ϑ̇2 = 0. We

will show P̄ (β) in (33) satisfies P̄ (β) > 0 which in turn implies V1(ϑc, ϑ̇2) > 0 outside
E. According to the Schur complement, P̄ (β) > 0 is equivalent to

(39) βM2 −M2eqe
T

qM2/d−M2D
−1
2 TT

2 Bcdiag{didj}BcT2D
−1
2 M2/d > 0.

Note that

M2D
−1
2 TT

2 Bcdiag{didj}BcT2D
−1
2 M2/d

= M2D
−1
2 TT

2 (D −DeneTnD/d)T2D
−1
2 M2 =

[
O M2D

−1
2

]
×
[

(D1 −D1en−qe
T
n−qD1/d) −D1en−qe

T
qD2/d

−D2en−qe
T
qD1/d (D2 −D2eqe

T
qD2/d)

]
×
[

O
D−1

2 M2

]
= M2D

−1
2 M2 −M2eqe

T

qM2/d,(40)

where (30) is used for the first equality. As a result, (39) is implied by βM2 −
M2D

−1
2 M2 > 0 which holds for β > η. The nonnegativeness of V (ϑc, ϑ̇2) is proved.

Note that V1(ϑ, ϑ̇2) can be rewritten as

V1(ϑ, ϑ̇2) =
1

2
col(ϑc, ϑ̇2)TP̄ (η)col(ϑc, ϑ̇2) +

1

2
(β − η)ϑ̇T

2M2ϑ̇2,
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1654 LIJUN ZHU AND DAVID J. HILL

where P̄ (η) is P̄ (β) with β specified by η. Due to the aforementioned analysis, P̄ (η) ≥
0. Applying Lemma 5.4 gives

2V ≥ λP ‖col(ϑc, ϑ̇2)‖2 + (β − η)ϑ̇T

2M2ϑ̇2 + βκ(γ)λ2‖ϑc‖2/n,
2V ≤ λ̄P ‖col(ϑc, ϑ̇2)‖2 + (β − η)ϑ̇T

2M2ϑ̇2 + βλn‖ϑc‖2/n,(41)

where λP and λ̄P is the smallest and largest eigenvalue of P̄ (η), respectively. Letting

α1(β, γ) =
1

2
λP +

1

2
min {βκ(γ)λ2/n, (β − η)m} ,

α2(β) =
1

2
λ̄P +

1

2
max {βλn/n, (β − η)m̄} ,(42)

where m = mini=n−q+1,...,n{mi} and m̄ = maxi=n−q+1,...,n{mi}, inequality (38) is
satisfied.

Remark 5.6. Inequality (41) implies that V (ϑc, ϑ̇2) ≥ α3(β, γ)‖ϑc‖2, where the
function α3(β, γ) can be chosen as α3(β, γ) = βκ(γ)λ2/(2n). It also implies that
V (ϑc, ϑ̇2) ≥ α4(β)‖ϑ̇2‖22, where α4(β) can be chosen as α4 = 1/2(β − η)m.

Let us introduce some notations that will be used in the next theorem. Define
the compact set W (r) := {col(ϑc, ϑ̇2) ∈ Rn×(n−1)/2+q | V (ϑc, ϑ̇2) ≤ r} and denote
the matrix

Π =

[
diag{didj}BT

cD
−1/d

ηTT
2 −M2eqe

T
n/d

]
.(43)

Denote γ, β-dependent quantity

ι1(β, γ) = min {κ(γ)λ2/n, (β − η)d} > 0,(44)

where d = mini=n−q+1,...,n{di}, κ(γ) is given (35), and λ2 is the smallest non-
zero eigenvalue of Laplacian matrix L. For convenience, we denote ‖s(t)‖[t1,t2] =
supt1≤t≤t2 ‖s(t)‖ for a bounded vector signal s(t). Define disturbance-related quanti-
ties

ι2(β) = ‖Πp(t)‖[to,∞] + (β − η)‖TT

2 p(t)‖[to,∞], ι3(β) =
β

4
‖pT(t)TDp(t)‖[to,∞],

µ(β, γ) =
ι2(β) +

√
ι22(β) + 4ι1(β, γ)ι3(β)

2ι1(β, γ)
,(45)

where TD = T1D
−1
1 TT

1 . Using V (ϑc, ϑ̇2) as the Lyapunov function candidate, syn-
chronization in the sense of Definition 3.1 is presented in the next theorem.

Theorem 5.7. Consider the system (8) and (9) with energy function V (ϑc, ϑ̇2)
in (21). Suppose θ̄c < π/2. Let γ ∈ [0, π− 2θ̄c), β > η, α2(β) be given in Lemma 5.5,
α3(β, γ) be given in Remark 5.6, and µ(β, γ) be given in (45). If there exist scalars β
and γ such that

(46) γ ≥ µ(β, γ)
√
α2(β)/α3(β, γ)

holds, then a scalar χ > 0 satisfying α2(β)µ2(β, γ) ≤ χ ≤ α3(β, γ)γ2 exists such
that W (χ) is an invariant set and synchronization in the sense of Definition 3.1 is
achieved. In particular,
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(a) any trajectories starting with col(ϑc(to), ϑ̇2(to)) ∈ W (χ) is ultimately con-
tained in col(ϑc(t), ϑ̇2(t)) ∈ W (α2(β)µ2(β, γ)) and along the trajectory
‖ϑc(t)‖∞ ≤ γ holds for t > to;

(b) ‖ϑ̇2(t)‖∞ ≤ $o for some $o and t > to.
If disturbance p = 0n, the trajectory will exponentially converge to the equilibrium

subspace E, i.e.,

lim
t→∞

col(ϑc(t), ϑ̇2(t)) = col(0n×(n−1)/2, 0q).

Proof. It has been shown that for β > η, V (ϑc, ϑ̇2) is a valid energy function.
The dynamical system (8) and (9) can be written as

(47) ẋ = Fx−Gψ(HTx) +Gp

with F , G, H, and ψ(·) defined in (20) and (19), respectively. From (29), one obtains

(48) LLT =

[
O O
O L1L

T
1 + L2L

T
2

]
=

[
O O
O 2(βD2 − αM2)

]
, WTW = 2βTD.

Using (24) and (26), the time derivative of V (ϑc, ϑ̇2) along the trajectory of the system
(47) is calculated:

V̇ =
1

2
xT(PF + FTP )x− xTPGψ(HTx) + xTPGp

+ βψT(HTx)HT [Fx−Gψ(HTx) +Gp]

= −1

2
xTLLTx− 1

2
[Wψ(HTx)]

T
[Wψ(HTx)]

− xTHψ(HTx)− xT(H + βFTH +Xen)p+ βψT(HTx)HTGp

= −ϑ̇T

2 (βD2 −M2)ϑ̇2 − ϑTs(ϑ)− βs(ϑ)TTDs(ϑ)

+ βpTTDs(ϑ) + ϑT(I −DeneTn/d)p− ϑ̇T

2M2eqe
T

np/d+ βϑ̇T

2T
T

2 p,

where we used (48) and s(ϑ) is defined as

s(ϑ) = BAv (sin(BT(ϑ+ ξo))− sin(BTξo)) .

A few facts are listed as follows:

pTTDs(ϑ)− s(ϑ)TTDs(ϑ) ≤ 1

4
pTTDp,

(I −DeneTn/d) = Bcdiag{didj}BT

cD
−1/d,

ϑT(I −DeneTn/d)p+ ηϑ̇T

2T
T

2 p− ϑ̇T

2M2eqe
T

np/d = [ϑT

c , ϑ̇
T

2 ]Πp,

where Π is defined in (43). If |θ̄i − θ̄j | ≤ γ ∀i, j = 1, . . . , n, one can obtain

ϑTs(ϑ) =
1

2

n∑
i=1

n∑
j=1

aij(θ̄i − θ̄j)
(
sin(θ̄i − θ̄j + θoi − θoj )− sin(θoi − θoj )

)
=

1

2

n∑
i=1

n∑
j=1

aij(θ̄i − θ̄j)2
sin(θ̄i − θ̄j + θoi − θoj )− sin(θoi − θoj )

θ̄i − θ̄j

≥ κ(γ)(BTϑ)TAv(B
Tϑ) ≥ κ(γ)ϑTLϑ ≥ λ2

n
κ(γ)‖ϑc‖2,(49)

D
ow

nl
oa

de
d 

06
/0

3/
19

 to
 1

47
.8

.3
1.

43
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1656 LIJUN ZHU AND DAVID J. HILL

where the first inequality uses (36) and for the last one we apply Lemma 5.3. Then,
V̇ is bounded as follows:

V̇ ≤ −λ2

n
κ(γ)‖ϑc‖2 − ϑ̇T

2 (βD2 −M2)ϑ̇2 + ‖col(ϑc, ϑ̇2)‖‖Πp‖[to,∞]

+ (β − η)‖col(ϑc, ϑ̇2)‖‖TT

2 p‖[to,∞] +
1

4
βpTT1D

−1
1 TT

1 p.

As a result,

V̇ ≤ −ι1‖col(ϑc, ϑ̇2)‖2 + ι2‖col(ϑc, ϑ̇2)‖+ ι3,(50)

where ι1, ι2, and ι3 are defined in (44) and (45). Thus, V̇ < 0 if

‖col(ϑc, ϑ̇2)‖ > µ and ‖ϑc‖ ≤ γ

for µ defined in (45), since ‖ϑc‖∞ ≤ ‖ϑc‖ ≤ γ. It can be easily checked that condition
(1) of Corollary 4.3 is satisfied. Statements (a) and (b) follow from Corollary 4.3
and Remark 5.6 and, hence, phase cohesiveness and frequency boundedness in the
sense of Definition 3.1 can be concluded. Due to (46), χ satisfying α2(β)µ2(β, γ) ≤
χ ≤ α3(β, γ)γ2 can always be found. If disturbance p = 0n, V̇ ≤ −ι1‖col(ϑc, ϑ̇2)‖2
which together with Lemma 5.5 implies the exponential convergence to the equilibrium
subspace E locally.

Remark 5.8. The difference between the classical direct method, using concepts
such as closest UEP and controlling UEP (see, e.g., [8]), and the analysis in Theorem
5.7 is explained as follows. The basic principle of the direct method is to compare the
energy of the postfault state and the critical energy such as defined in terms of some
UEP (closest UEP or controlling UEP). If the energy at the postfault state is less than
the critical energy, the energy decreases as the system trajectory evolves within the
attraction basin of the stable equilibrium point (SEP). If the energy at the postfault
state is greater, that means the postfault state may not lie within the attraction basin
of the SEP and hence it does not necessarily converge to the corresponding SEP.
These methods do not consider that the dynamical system is disturbed occasionally
or persistently by disturbances even following the occurrence of the fault. However,
the proof of Theorem 5.7 takes the disturbance into explicit account and studies the
energy evolvement under the disturbance. If the disturbance is not too significant to
invalidate the inequality (46), it is assured that there exists an invariant set W (χ)
such that any trajectory starting within it will eventually be contained in the W (α2µ

2)
and hence the angles stay cohesive. Instead of a pure energy comparison, this method
examines stability analysis under persistent perturbation and so the analysis is more
involved. More comparisons between the classic direct method and the proposed
method will be provided in Remark 6.6.

6. Algebraic synchronizability conditions. In the previous section, Theo-
rem 5.7 shows that the sufficient synchronization condition depends on the existence
of the solution to the inequality (46). If so, the theorem indicates the power system
is synchronizable in the sense of Definition 3.1 by choosing proper β and γ. In this
section, we will discuss the existence condition of solutions to the inequality. In this
sense, we call the existence condition the synchronizability condition. Also, we will
fix the disturbance p, system parameters D and M2, network topology L of the power
system, and only focus on the variation of β and γ.
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6.1. Some useful lemmas. Before we proceed, let us introduce some proposi-
tions and lemmas. Let p, q > 0 and κ(γ) be defined in (35) and repeated as follows:

(51) κ(γ) = sinc(γ/2) cos(γ/2 + θ̄c),

where θ̄c satisfies θ̄c < π/2. Define

(52) fl(γ) = γυκι(γ)

as a function of γ in the domain γ ∈ [0, π − 2θ̄c].

Lemma 6.1. fl(γ) is a nonnegative function having quasi-sinusoidal shape, ob-
tains zeros at γ = 0, π−2θ̄c, and reaches its maximum at γ = γo, where γo ≤ π/2− θ̄c
satisfying

(53) ι cos(γo + θ̄c) = (ι− υ)κ(γo).

Proof. First, it is observed that fl(γ) has its zeros at γ = 0, π − 2θ̄c due to
κ(π − 2θ̄c) = 0. For γ ∈ [0, π − 2θ̄c], sinc(γ/2) and cos(γ/2 + θ̄c) are monotonically
decreasing functions of γ, so is κ(γ) in (51) and κ(γ) ≥ 0. Note that

dκ(γ)

dγ
=

cos(γ + θ̄c)− κ(γ)

γ
,

dγικυ(γ)

dγ
= γυ−1κι−1(γ)

[
ι cos(γ + θ̄c)− (ι− υ)κ(γ)

]
.

At γ = 0,

ι cos(γ + θ̄c) = ι cos θ̄c > (ι− υ)κ(γ) = (ι− υ) cos θ̄c,

while at γ = π − 2θ̄c,

ι cos(γ + θ̄c) = ι cos(π − θ̄c) < (ι− υ)κ(γ) = 0.

Also, the curves (γ, ι cos(γ+ θ̄c)) and (γ, (ι−υ)κ(γ)) only intersect once at γo and,
moreover, γo ≤ π/2 − θ̄c. We can conclude that dfl(γ)/dγ is positive for γ ∈ [0, γo),
zero at γo and then negative for γ ∈ (γo, π−2θ̄c). Therefore, fl(γ) increases with γ at
γ ∈ [0, γo), maximizes at γo, and decreases with γ at γ ∈ (γo, π − 2θ̄c]. In summary,
fl(γ) is a nonnegative function having quasi-sinusoidal shape.

Proposition 6.2. Let fr(γ) be a nonincreasing C1 function of γ defined in the
domain γ ∈ [0, π − 2θ̄c] satisfying fr(0) > 0 and fr(π − 2θ̄c) > 0. Let fl(γ) be defined
in (52). If fl(γo) > fr(γo) for γo given in (53), then there exists 0 < γmin < γo
and γo < γmax < π − 2θ̄c such that fl(γmin) = fr(γmin), fl(γmax) = fr(γmax), and
fl(γ) > fr(γ) for γ ∈ (γmin, γmax).

Proof. By Lemma 6.1, fl(γ) is a quasi-sinusoidal function of γ maximized at
γ = γo. If fl(γ) > fr(γ) at γ = γo, (γ, fl(γ)) must intersect with (γ, fr(γ)) at least at
two points, say γ = γmin and γ = γmax as illustrated in Figure 2, as fr(γ) is a non-
increasing C1 function. In particular, there exists a domain γ ∈ (γmin, γmax) within
which line segments (γ, fr(γ)) is above (γ, fl(γ)). Then, the proof is complete.
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1658 LIJUN ZHU AND DAVID J. HILL

Fig. 2. The schematic diagram for functions fl(γ) and fr(β).

6.2. Synchronizability condition. We are ready to investigate the synchro-
nizability condition. Inequality (46) in Theorem 5.7 is equivalent to

(54) fl(γ) ≥ fr(γ, β),

where

fl(γ) := α3γ
2/ρ = γ2κ3(γ),

fr(γ, β) := α2µ
2/ρ =

(
ι2 +

√
ι22 + 4ι1ι3

2ι1/κ(γ)

)2
α2

α3/κ(γ)
(55)

with ρ = α3/κ
3(γ). Note that α2, ι2, and ι3 are functions of β, α3, ι1, and µ are

functions of β and γ. For the purpose of neat notation, we make the dependence
implicit when no confusion is caused.

By Lemma 6.1, we can check κ(γ) is a monotonically decreasing function and
fl(γ) is a quasi-sinusoidal function of γ. According to Remark 5.6, α3 = 1

2nβκ(γ)λ2

and α3/κ(γ) = 1
2nβλ2 is a constant. Observing the definition of ι1, ι2, and ι3 in (44)

and (45), for a fixed β, fr(γ, β) is a nonincreasing function of γ and satisfies

lim
γ→0

fr(γ, β) > 0, lim
γ→π−2θ̄c

fr(γ, β) > 0.

Then, the next lemma directly follows from Proposition 6.2.

Lemma 6.3. Let fl(r) and fr(γ, β) be defined in (55). If fl(γo) > fr(β, γo) holds
for some β = βo, where γo satisfies

(56) 3 cos(γo + θ̄c) = κ(γo),

then fl(γ) ≥ fr(βo, γ) holds for βo and γ ∈ [γmin, γmax], where γ = γmin, γmax are two
solutions to fl(γ) = fr(βo, γ).

Lemma 6.3 leaves a question of how to select a proper βo. One option is βmin =
arg minβ∈[η,∞) fr(γo, β) which makes the inequality fl(γo) > fr(β, γo) more likely to
hold. However, it is not possible to explicitly calculate βmin due to the complexity of
function fr(γo, β). In what follows, we will explicitly select a βo as

(57) β = βo = η +
κ(γo)λ2

nd
,

where γo is given in (56). As a result, ι1 = λ2 min{κ(γ), κ(γo)}/n is a nonincreasing
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STABILITY ANALYSIS OF POWER SYSTEMS 1659

function of γ (see definition of ι1 in (44)). With β = βo, one has

α2

α3/κ(γ)
=

1
2 λ̄P + 1

2 max {βoλn/n, (βo − η)m̄}
1

2nβoλ2

≤ nλ̄P
βoλ2

+
max {λn, nm̄}

λ2
.

Then, σ(γ) ≥ fr(γ, βo) with σ(γ) defined as

(58) σ(γ) =

(
ι2(βo) +

√
ι22(βo) + 4ι3(βo)ι1(γ)

2ι1(βo, γ)/κ(γ)

)2(
nλ̄P
βoλ2

+
max {λn, nm̄}

λ2

)
.

It is worth noting that ι2 and ι3 in (58) become constants by choosing βo in (57).
Since ι1(βo, γ)/κ(γ) is a nondecreasing function of γ, it is observed that σ(γ) is a
nonincreasing function of γ. We are ready to present the next theorem.

Theorem 6.4. Consider the system of (8) and (9). Let γo be given in (56). If

(59) γ2
oκ

3(γo) > σ(γo)

with σ(γ) defined in (58), there exist γmin, γmax as solutions to fl(γ) = fr(βo, γ)
satisfying γmin < γmax such that for any γ ∈ [γmin, γmax] the inequality (46) is satisfied
and the synchronization in the sense of Definition 3.1 can be achieved. Moreover, for
χ ∈ [α, ᾱ], where α = α2(βo)µ(βo, γmin)2 and ᾱ = maxr∈[γmin,γmax]{α3(βo, γ)γ2}, any

trajectories starting within col(ϑc, ϑ̇2) ∈ W (χ) eventually converge to col(ϑc, ϑ̇2) ∈
W (α).

Proof. Since σ(γo) ≥ fr(γo, βo), γ
2
oκ

3(γo) > σ(γo) implies γ2
oκ

3(γo) > fr(γo, βo).
Applying Lemma 6.3 shows fl(γ) ≥ fr(βo, γ) holds for βo and γ ∈ [γmin, γmax], where
γ = γmin, γmax are two solutions to fl(γ) = fr(βo, γ). fl(γ) ≥ fr(βo, γ) implies that
the condition (46) of Theorem 5.7 is satisfied for β = βo and γ ∈ [γmin, γmax] due to
(55). It, in turn, shows that the synchronization in the sense of Definition 3.1 can be
achieved.

Now, we focus on the “moreover” part. Let us examine the upper and lower
bound for χ, that is, α3γ

2 and α2µ
2 with β = βo and γ ∈ [γmin, γmax]. We calculate

α3(βo, γ)γ2 =
1

2n
βoλ2κ(γ)γ2,

α2(βo)µ
2(βo, γ) =

(
ι2(βo) +

√
ι22(βo) + 4ι1(γ)ι3(βo)

2ι1(βo, γ)

)2

×
(

1

2
λ̄P +

1

2
max {βoλn/n, (βo − η)m̄}

)
.

Since ι1(βo, γ) is a nonincreasing function of γ, α2(βo)µ
2(βo, γ) is a nondecreasing

function of γ. By Lemma 6.1, α3(βo, γ)γ2 is a function of γ having quasi-sinusoidal
shape. One has

α = α2(βo)µ(βo, γmin)2 ≤ α2(βo)µ(βo, γ)2,

α3(βo, γ)γ2 ≤ ᾱ = max
γ∈[γmin,γmax]

{α3(βo, γ)γ2}.

Then, the maximum range for χ ∈ [α2(βo)µ(βo, γ)2, α3(βo, γ)γ2] is [α, ᾱ].

D
ow

nl
oa

de
d 

06
/0

3/
19

 to
 1

47
.8

.3
1.

43
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1660 LIJUN ZHU AND DAVID J. HILL

For any χ ∈ [α, ᾱ], one can find γ1 = arg minγ∈[γmin,γmax]{α3(βo, γ)γ2 = χ}.
Since α2(βo)µ

2(βo, γ1) < χ ≤ α3(βo, γ1)γ2
1 , applying Theorem 5.7 shows any trajec-

tories starting within col(ϑc, ϑ̇2) ∈ W (χ) are ultimately contained in the invariant
set W (α2(βo)µ

2(βo, γ1)). Set χ′ = α2(βo)µ
2(βo, γ1) ≥ α2(βo)µ

2(βo, γmin) and repeat
the above argument with χ replaced by χ′ < χ. It is noted χ′ and γ1 decrease until
χ = α. Then, we can prove the trajectory eventually converges to the invariant set
W (α).

First, Theorem 6.4 shows that the synchronization is closely related to the net-
work structure of power systems. Let us examine the synchronizability condition (59).
For fixed system parameters D and M2, the left-hand side (LHS) of (59) is a constant
while the value of the right-hand side (RHS) is affected by the eigenvalue of the net-
work Laplacian L. Specifically, if the eigenvalue λn is small and algebraic connectivity
λ2 is large, the RHS of (59) obtains a small value. By Theorem 6.4, power systems
having such kind of network topology are more likely to be stable. Therefore, the net-
work topology plays a very important role in the stability of power systems. Second,
the synchronizability condition shows that both damping and inertia of conventional
generators will play roles in synchronization compared to [14] where the role of inertia
was hidden due to the singular perturbation technique. Third, the magnitude and
location of the disturbance where it is injected into the systems importantly affect the
synchronization by noting that the p-related term involves the structural information
Bc. Hence, the condition can be potentially used to plan the location of the renewable
energy, whose intermittent and stochastic fluctuation are regarded as the disturbance
to the system, such that power systems could have better stability performance.

We can derive a special version of Theorems 5.7 and 6.4 in the absence of a
disturbance, i.e., p = 0.

Corollary 6.5. Consider the system of (8) and (9) with p = 0. If there exists
a β such that the trajectory starts with V (ϑc, ϑ̇2) ≤ ᾱ(β), where V (ϑc, ϑ̇2) given in
(21) is a function of β and

ᾱ(β) = max
r∈[0,π−2θ̄c]

{α3(β, γ)γ2},

it eventually converges to equilibrium subspace E defined in (10).

Proof. The proof basically follows from that of Theorems 5.7 and 6.4. First, p = 0
implies µ(β, γ) = 0 in (45) which in turn shows (46) is always satisfied for γ ∈ [0, π−
2θ̄c]. Theorem 5.7 shows that any trajectories starting with col(ϑc(to), ϑ̇2(to)) ∈W (χ)
for χ ∈ [0, α3(β, γ)γ2] ultimately converge to equilibrium subspace E again due to
µ(β, γ) = 0. Noting that α3(β, γ)γ2 ≤ ᾱ(β), the proof is thus complete.

Remark 6.6. Theorem 6.4 and Corollary 6.5 can be used to assess the stability
of power systems when a fault occurs. When p 6= 0, if the postfault energy satisfies
V (ϑc, ϑ̇2) ≤ ᾱ in Theorem 6.4 after the fault is cleared, the system trajectory will go
to the invariant set W (α), angles stay cohesive, and frequencies are bounded. When
p = 0, if the postfault energy satisfies V (ϑc, ϑ̇2) ≤ ᾱ(β) for some β after the fault is
cleared, the system trajectory will go to the equilibrium subspace E.

Since the bound of the sine function was used to facilitate the analysis (see (49)),
the stability results thus obtained in Theorem 6.4 and Corollary 6.5 would be more
conservative than the advanced versions of classic direct methods that exploit the
fault-on trajectory behavior with respect to the structural properties of equilibrium
points. However, they have two advantages over the basic direct methods such as
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using the closest UEP. First, they are less computationally expensive, since it is
not necessary to find the closest UEP which requires one to exhaust all solutions of
the power flow equation and so is computationally difficult for a large-scale system.
Second, the closest UEP method requires that all the equilibrium points be hyper-
bolic, while Theorem 6.4 and Corollary 6.5 do not impose any constraints on equilib-
rium points. Hence, the proposed method can be regarded as an alternative direct
method.

7. Small disturbance analysis. Small-disturbance stability analysis is con-
cerned with the ability of the power system to maintain synchronism under small
disturbances. The disturbances are considered to be sufficiently small such that lin-
earization of system equations is allowed to be performed. Consider deviation dy-
namics (8) and (9) of power systems under a small disturbance p ≈ 0. It allows
linearization around an equilibrium solution. Note that sin(θ̄i − θ̄j + θoij) in (8) and

(9) can be approximated around θ̄i − θ̄j = 0 as follows:

sin(θ̄i − θ̄j + θoij) ≈ sin θoij + cos θoij(θ̄i − θ̄j).

Let L̄ = Bdiag(aij cos θoij)B
T. The linearized dynamics of (8) and (9) is

ϑ̇1 = −D−1
1 T1L̄ϑ,(60)

ϑ̈2 = −M−1
2 D2ϑ̇2 −M−1

2 T2L̄ϑ.(61)

We will still use the energy function (21) for the stability analysis. Since the sinusoidal
coupling term is replaced by linear coupling, V2(ϑ) in (23) becomes

V2(ϑ) =
1

2
β

n∑
i=1

n∑
j=1

aij cos θoij

∫ θ̄i−θ̄j

0

udu.

Following the proof of Lemma 5.4, the bound of the energy function V in (21) is
calculated as follows:

α1‖col(ϑc, ϑ̇2)‖2 ≤ V (ϑc, ϑ̇2) ≤ α2‖col(ϑc, ϑ̇2)‖2

with

α1(β) =
1

2
λP +

1

2
min

{
βλ̄2/n, (β − η)m

}
,

α2(β) =
1

2
λ̄P +

1

2
max

{
βλ̄n/n, (β − η)m̄

}
,

where λ̄2 and λ̄n are the smallest and largest nonzero eigenvalues of L̄, respectively.
Moreover, the derivative of the energy function along the trajectory of the system
(60) and (61) is

V̇ = −ϑ̇T

2 (βD2 −M2)ϑ̇2 − ΩTL̄Ω− βϑTL̄T1D
−1
1 TT

1 L̄ϑ ≤ −ι(β)‖col(ϑc, ϑ̇2)‖2,

where ϑc = BT
c ϑ and ι(β) = min

{
λ̄2/n, (β − η)d

}
. Using linear system theory, the

local exponential convergence rate is r = ι(β)/α2(β) with β to be specified. Choosing

β = βo := η + λ̄2

nd yields

r =
2

nλ̄P /λ̄2 + max
{
βoλ̄n/λ̄2, m̄/d

} .
Therefore, for larger λ̄2 and smaller λ̄n/λ̄2 ratio, system trajectories tend to converge
to the equilibrium subspace much faster.
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(a) IEEE 9-bus test system.
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(b) Bus angles change with time.

Fig. 3. Illustration of phase cohesiveness for the power system in difference network configu-
rations.

Table 1
Equilibrium point and nominal power profile of 9 buses.

Bus number 1 2 3 4 5 6 7 8 9

poi (per unit) 1.17 1.63 0.85 -0.2 -0.9 -0.1 -1 -0.2 -1.25

θoi (rad) 0.0888 0.1058 0.0054 0.0464 0 0.027 0.0090 0.0547 0.0073

8. Simulation. Let us consider the IEEE 9-bus test system illustrated in Fig-
ure 3(a). Buses 1, 2, 3 are buses equipped with conventional generators while the other
buses are frequency-dependent load buses. The line parameters aij ∈ [10, 40] are ran-
domly picked. The nominal power profile po is given in Table 1. Then, the SEP ξo
can be calculated using (7) and is given in Table 1. As a result, θ̄c = 0.1058 rad. The
system parameter di is randomly generated within the range di ∈ [0.7, 1] and mi is
within the range mi ∈ [0.5, 1]. For t ∈ [0, 10) s, since the equilibrium point is locally
stable, the angles will settle to that equilibrium point. After t = 10 s, a random
disturbance is injected at bus 6 to emulate the power consumption fluctuation. The
disturbance will change its value randomly every 0.05 s, but its magnitude is bounded,
i.e., supt∈[0,∞) |p(t)| < 0.2 per unit. For the synchronizability condition in Theorem
6.4, it is verified that the LHS of (59) is 0.5215 and the RHS is 0.5173 and thus (59) is
satisfied. It is concluded that the angle and frequency cohesiveness can be achieved in
the sense of Definition 3.1. Figure 3(b) illustrates the simulation result, which shows
that angles stay cohesive even when the disturbance is injected after 10 s.

9. Conclusion. In this paper, we presented the stability analysis of power sys-
tems from the synchronization perspective in terms of phase cohesiveness and fre-
quency boundedness. We proposed a novel definition to characterize the stability
under time-varying disturbances. We first introduce a coordinate transformation that
converts the original system into a deviation system. Then, a parameterized Lyapunov
function was derived for the deviation system, and a specific Lyapunov-based analysis
method (including the stability lemma) was proposed and led to the synchronization
conditions characterized by the inequality. Finally, the algebraic synchronizability
condition was attained by further analyzing the synchronization inequality. The novel
analysis method leads to a purely algebraic condition, showing that the stability of
power systems is related to the network topology, model parameters and affected by
disturbances. Finally, the numerical simulation confirms the theoretical analysis.
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