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Abstract

To elucidate the transcriptional regulation of Bmp4 expression during organogenesis, we used phylogenetic footprinting
and transgenic reporter analyses to identify Bmp4 cis-regulatory modules (CRMs). These analyses identified a regulatory
region located ,46 kb upstream of the mouse Bmp4 transcription start site that had previously been shown to direct
expression in lateral plate mesoderm. We refined this regulatory region to a 396-bp minimal enhancer, and show that it
recapitulates features of endogenous Bmp4 expression in developing mandibular arch ectoderm and incisor epithelium
during the initiation-stage of tooth development. In addition, this enhancer directs expression in the apical ectodermal
ridge (AER) of the developing limb and in anterior and posterior limb mesenchyme. Transcript profiling of E11.5 mouse
incisor dental lamina, together with protein binding microarray (PBM) analyses, allowed identification of a conserved DNA
binding motif in the Bmp4 enhancer for Pitx homeoproteins, which are also expressed in the developing mandibular and
incisor epithelium. In vitro electrophoretic mobility shift assays (EMSA) and in vivo transgenic reporter mutational analyses
revealed that this site supports Pitx binding and that the site is necessary to recapitulate aspects of endogenous Bmp4
expression in developing craniofacial and limb tissues. Finally, Pitx2 chromatin immunoprecipitation (ChIP) demonstrated
direct binding of Pitx2 to this Bmp4 enhancer site in a dental epithelial cell line. These results establish a direct molecular
regulatory link between Pitx family members and Bmp4 gene expression in developing incisor epithelium.
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Introduction

Bmp4, a member of the TGF-b superfamily, is a secreted

signaling molecule essential for embryogenesis [1–3]. It is

expressed in a variety of tissues and organs throughout embryonic

and postnatal life [4]. Evidence from mutations in mice and

humans indicates that Bmp4 regulates several developmental

processes including patterning, proliferation, differentiation and

apoptosis ([5]; http://omim.org/entry/112262).

The study of conditional Bmp4 or Bmp receptor knockout alleles

has shed light on the spatiotemporal functions of Bmp4 in

epithelial-mesenchymal interactions during early craniofacial and

limb morphogenesis [6–9]. For example, inactivation of Bmp4 or

Bmp4r1a in the facial primordia leads to isolated cleft lip or

bilateral cleft lip and palate and deficient tooth development [10].

Furthermore, conditional deletion of Bmp4 in distal mandibular

arch ectoderm results in mandibular truncation and lack of

incisors, indicating essential functions of epithelial Bmp4 in these

ectodermal organs [7]. Bmp4 has also been implicated as one of

the earliest signaling molecules secreted from the oral ectoderm

that is capable of inducing dental mesenchymal genes that are

necessary for tooth formation [7,11–13].

Bmp4 also plays an important role in regulating limb develop-

ment, as suggested by its strong expression in the apical

ectodermal ridge (AER), an important epithelial signaling center

at the distal end of the limb bud, and in the anterior and posterior

limb mesenchyme. Moreover, conditional inactivation of Bmp4,

alone or in combination with other Bmps, or inactivation of its

receptors, in limb bud AER or mesenchymal domains, has

revealed roles in AER induction and maintenance respectively, as

well as anteroposterior and dorsoventral limb patterning, and digit

specification [9,14–16], and chondrogenesis and osteogenesis [17].
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In the developing limb, Bmp signaling has been shown to function

in the context of an interconnected Bmp/Grem1 signaling module

and a Shh/Grem1/Fgf feedback loop [18], while in the

developing molar tooth, Bmp4 interacts with canonical Wnts as

part of a feedback circuit that couples the development of the

dental epithelium and mesenchyme [19].

As a step towards defining the gene regulatory networks (GRNs)

that control Bmp4 expression in vivo, we searched for Bmp4 CRMs

(cis-regulatory modules) using a transgenic reporter assay. Previ-

ously, Chandler et al. (2009) used a BAC reporter-based transgenic

approach and identified a Bmp4 lateral plate mesoderm (LPM)

enhancer ,46 kb upstream of the Bmp4 transcription start site.

We independently identified the same highly conserved, develop-

mentally active Bmp4 regulatory region, but have extended the

prior characterization by Chandler et al. (2009) of a 4.3 kb CRM

and of a smaller 467 bp subregion to reveal several important new

attributes [1].

We refined this CRM to an essential 396-bp minimal

enhancer that confers reporter gene expression in developing

distal mandibular and incisor epithelium and the limb bud,

tissues that require Bmp4 for proper morphogenesis. We also

used TF (transcription factor) DNA binding specificity motif

data from the UniPROBE database [20,21] to analyze the

Bmp4 enhancer and identified a high-affinity binding sequence

for Pitx homeobox TFs, which are strongly expressed in the

developing mandible, tooth and limb, and which have been

implicated in human and mouse odontogenic defects and lower

limb malformations [22–24]. Pitx1 may activate gene expression

in dental epithelium [25], while Pitx2 null mutants exhibit an

early stage arrest in tooth development [26,27]. In hindlimb

development, Pitx12/2 and Pitx22/2 double mutants exhibit

altered signaling molecule expression in the AER, which is

proposed to account for the proximal limb reduction defect in

these mutants [28]. However, the molecular regulatory rela-

tionship between Pitx1, Pitx2 and Bmp4 remains unclear. We

show here that Pitx homeoprotein family members bind a

specific site in the Bmp4 incisor epithelium limb bud (‘‘IE/LB’’)

enhancer that is necessary for its activity in vivo. These results

define a minimal, highly conserved Bmp4 enhancer and identify

Pitx homeoproteins as key TFs that regulate its embryonic

expression.

Results

Identification of Putative Bmp4 CRMs by Phylogenetic
Footprinting

To identify candidate Bmp4 enhancers, we conducted a

phylogenetic footprinting analysis [29–31] on the genomic

region surrounding the mouse Bmp4 gene. The mouse Bmp4

transcription unit is located on chromosome 14qC1, and spans

,7 kb with five exons and two alternative TATA-less promoters

[32,33]. We focused our search on a 159 kb region consisting of

two 76 kb non-genic regions upstream and downstream of

Bmp4, and the 7 kb Bmp4 transcription unit itself. We compared

this 159 kb mouse genomic sequence, obtained from the UCSC

genome database and devoid of other known genes and ESTs,

with homologous genomic sequences of human and pufferfish

(Takifugu rubripes, or Fugu) using the local alignment program

BLASTZ which displays homology as blocks of sequence

conservation [34,35]. The Fugu sequence, although distantly

related, was used in the analysis based on the assumption that

non-coding sequences that have tolerated selective pressure for

hundreds of million years of evolution are likely to be

functionally significant and to play important roles in gene

regulation [36–38]. While not all morphogenetic programs in

which Bmp4 plays a critical role (e.g., limb and tooth

development) are likely to be fully conserved in fish, we

reasoned that certain core regulatory sequences might be.

Moreover, we hypothesized that the compactness of the Fugu

genome could further filter the relatively high degree of

conservation between human and mouse, thereby prioritizing

putative regulatory regions for further analysis.

The BLASTZ alignment identified several discrete blocks of

sequence conservation between mouse and human, using param-

eters of .75% identity over .50 bp, which have similar

stringency to parameters previously used for identification of

functional mammalian regulatory elements [39,40]. In addition to

highly conserved sequences representing Bmp4 exons IA, IB, II, III

and IV, 87 blocks of sequence conservation (31 blocks located 59

and 56 blocks located 39 to the Bmp4 transcription start site)

between mouse and human were identified and considered as

candidate Bmp4 regulatory sequences (Figure 1). While several of

these blocks cover long genomic regions, others are smaller and

reside in clusters. Previous studies indicate that conserved non-

coding regions of developmental genes frequently cluster together

[38,41]. Therefore, we grouped closely residing conservation

blocks of 200 bp or longer into larger conserved or ‘‘CONS’’

regions. Based on human-mouse sequence conservation analyses,

we selected four highly conserved regions and their immediate

flanking sequences upstream and within the Bmp4 gene as high

priority candidate regulatory sequences. These sequences were

designated as CONS1, CONS2, CONS3 and CONS4, with their

respective 59 boundaries located 11 kb, 30 kb, and 47 kb

upstream, and 4.6 kb downstream of the Bmp4 transcription start

site; the latter region resides within an intron in the Bmp4 gene

(Figure 1).

When the orthologous Fugu genomic sequence was included in

the analysis, only two blocks of conservation, located ,46 kb 59

upstream and ,80 kb 39 downstream of the mouse Bmp4

transcription start site, were conserved in all three genomes. Both

blocks are embedded within larger regions of human-mouse

conservation, and the ,46 kb upstream block is located within the

CONS3 sequence, but only the ,46 kb upstream block contained

conserved regions exceeding our 200 bp cut-off (Figure 1). To

verify that these conserved regions represented non-coding

sequences, we performed a BLAST search and re-confirmed that

they did not match any known coding regions, mRNAs or ESTs.

We refer to the previously described 2.4 kb promoter region

located upstream of the Bmp4 transcription start site as the

proximal promoter, to distinguish it from a second distal promoter

located within intron 1 [42], and from other regulatory elements

described in the present work (Figure 1). The 2.4 kb proximal

Bmp4 promoter also shows high human-mouse conservation

(Figure 1) and that in transgenic mice, this region in isolation

has been shown to drive Bmp4 expression in epithelial-derived

ameloblasts and hair shaft keratinocytes and matrix [43,44]. In

addition, the mammalian proximal promoter region does not show

conservation with Fugu under the stringency used in this analysis

(Figure 1). Collectively, these results suggest that other more

distant elements regulate the full repertoire of Bmp4 developmental

expression.

CONS3 Recapitulates Bmp4 Expression in Multiple Tissues
during Development

To determine if these candidate regulatory regions harbored

transcriptional regulatory activity, we tested the ability of each

individual CONS region to drive expression of a lacZ reporter

gene in transgenic mouse embryos at embryonic day (E) 11.5

Regulation of Bmp4 Expression during Organogenesis
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and compared them to E11.5 embryos heterozygous for a

Bmp4lacZneo reporter allele [45] (Figure 2A, B). Transient

transgenic analysis of CONS1 (n = 10), which spans 4.7 kb

and includes 4 highly conserved blocks, and CONS4 (n = 13),

which extends approximately 1.7 kb over the intronic region

between exons III and IV, showed no reporter activity in any of

the known Bmp4 expression domains at E11.5 (Figure 1 and

Figure 2C). Transgenic embryos carrying the 4.3 kb CONS2

transgene, which consists of six conserved blocks, showed

consistent expression in the developing forebrain (n = 17).

Although not a domain where endogenous Bmp4 is normally

expressed, this validates the functional competence of the

CONS2 construct. It is also possible that CONS1, 2 ands 4

are expressed in the adult animal, or at developmental times

different from the E11.5 time point assayed here.

In contrast, transient transgenic analysis of the 4.3 kb

CONS3 region, which includes one of the two human-mouse-

Fugu conserved blocks and has 94% overall human-mouse

homology, revealed that a subset (n = 11/20) of embryos

exhibited transgene expression in the oral epithelium overlying

the maxillary process and mandibular arch, a pattern similar to

that of endogenous Bmp4 (Figure 2C; Figure 3). The epithelial

incisor dental lamina placodes also exhibited transgene expres-

sion in a pattern similar to that of endogenous Bmp4 (Figure

S1). We also detected transgene expression specific to the limb

bud apical ectodermal ridge (AER), and in forelimb and

hindlimb posterior mesenchyme (n = 16/20), with weaker

expression in anterior limb mesenchyme, similar to that of

endogenous Bmp4 (Figure 3). Transgene expression was also

observed in the proximal limb where endogenous Bmp4 is

normally expressed (Figure 2C, Figure 3). Thus, CONS3

contains cis-regulatory sequences that are capable of acting on

a heterologous beta-globin promoter to direct gene expression to

the orofacial region, the AER, and limb bud mesenchyme in a

pattern similar to that of endogenous Bmp4.

Bmp4 expression in the developing teeth and craniofacial region

is dynamic [46], particularly at E11.5 when expression begins to

shift from the epithelium to the underlying mesenchyme.

Therefore, we generated permanent 4.3 kb CONS3 transgenic

lines that allowed us to analyze the spatiotemporal activity of the

CONS3 enhancer in multiple embryos at different developmental

stages. Three transgenic male founders, TL3459, BB3482 and

Figure 1. Human, mouse and fugu sequence conservation surrounding the Bmp4 gene. Homologous genomic pair-wise alignments
between human and mouse (Human-Mouse) and Fugu and mouse (Fugu-Mouse) were generated using BLASTZ. Genomic sequence of 159 kb
surrounding the mouse Bmp4 gene (76 kb 59 of the Bmp4 transcriptional start site and 83 kb 39 of it) was used as reference. The Bmp4 gene (green)
consists of 4 exons as (triangles denote IA, IB, II, III and IV) with the 2.4 kb proximal Bmp4IA promoter region (brown) upstream of exon IA.
Transcriptional direction is designated by the exon triangles and genomic positions upstream and downstream of the transcriptional start site
(position 0) are denoted in (2) and (+) numbers, respectively. Human-Mouse and Fugu-Mouse homologies of .75% identity over 50 bp regions are
shown as blocks of sequence conservation. CONS1, CONS2, CONS3 and CONS4 (pink) encompass clusters of conservation blocks. Note: Two blocks of
Fugu-Mouse sequence conservation are located 46 kb upstream and 80 kb downstream of the Bmp4 transcription start site, respectively. The 46 kb
upstream Fugu-Mouse conservation block is embedded within the CONS3 region.
doi:10.1371/journal.pone.0038568.g001

Regulation of Bmp4 Expression during Organogenesis

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e38568



KR3495, were established and crossed with wild type females to

produce several litters of F1 embryos, which were analyzed for lacZ

activity from E9.5 to E13.5. The expression of the CONS3

transgene during limb bud development in all three permanent

lines exhibited reporter activity in endogenous Bmp4 expression

domains at these stages (Figure 3A).

While CONS3 appears to control most of the major

spatiotemporal aspects of Bmp4 expression in the developing

limb, its expression in the mid-facial region is more complex. At

E9.5, the CONS3 transgene is expressed in the ectoderm

overlying the distal region of the developing mandible of the first

branchial arch, a pattern similar to that in Bmp4lacZneo embryos

(Figure 3B). From E9.5 to E11.0, transgene expression recapit-

ulates the endogenous pattern and is maintained in the distal

mandibular arch epithelium and in the dental lamina of the

developing incisors, with weaker expression in the medial and

lateral nasal processes (Figure 3B). Notably, however, at E11.5

when endogenous Bmp4 expression begins to shift to the

underlying mesenchyme of the maxillary and mandibular arches,

CONS3 enhancer activity persists in the epithelium overlying the

pre-maxilla, nasal pits, distal mandible, and in the incisor

epithelial bud, until at least E13.5 (Figure 3B). This indicates that

while CONS3 contains cis-regulatory elements that drive reporter

gene expression in mandibular and incisor dental epithelium, it

lacks the elements necessary for Bmp4 expression in the dental

mesenchyme. In addition, the CONS3 reporter seems to escape

the normal downregulation of epithelial expression that accom-

panies endogenous Bmp4 expression (Figure S2).

Refinement of the Bmp4 Enhancer to a Minimal 396-bp
Conserved Region

To define the minimal CONS3 sequence sufficient for limb and

mandibular enhancer activity, we performed a series of deletion

experiments. The deletion constructs, designated CONS3.1 to

CONS3.9, were screened for lacZ activity in E11.5 transient

transgenic embryos to determine whether the remaining sequence

conferred reporter expression in the same tissue domains as intact

CONS3 and endogenous Bmp4 (Figure 2B and Figure 4A, B).

CONS3.1, which covers 500-bp of the 59 end of CONS3, did not

confer any activity of the reporter gene; however, CONS3.2,

which spans 3.8 kb of the 39 portion of CONS3 reproduced

expression of the entire 4.3 kb CONS3 construct (Figure 4A, B).

The 1.5 kb CONS3.3 fragment, a subset of CONS3, also retained

CONS3 activity (Figure 4A, B). We then generated and tested

CONS3.5, which covers 757 bp with the highest sequence

conservation within CONS3.3, and found that it also retained

enhancer activity similar to that of CONS3 (Figure 4A, B). We also

noted consistent ectopic expression in the midbrain of CONS3.5

transgenic embryos (data not shown), which suggests that

sequences outside CONS3.5 and within CONS3.3 may possess

repressive activity for Bmp4 reporter transgene expression in

midbrain. Lastly, the CONS3.5 fragment was tested in an

orientation opposite to that of the endogenous locus, which

establishes its orientation independence.

We further investigated CONS3.5 activity during incisor

morphogenesis. At E14.0, CONS3.5 expression was maintained

in cap-stage dental epithelium, but absent from the dental

mesenchyme and enamel knot; the latter is an epithelial

signaling center that expresses endogenous Bmp4 and controls

tooth cusp patterning [47]. Endogenous Bmp4 is normally

expressed in the enamel knot, and downregulated in the

surrounding dental epithelium. Thus, in contrast to its activity

in mandibular ectoderm and lamina stage incisor epithelium,

which is faithful to endogenous Bmp4 expression, at the cap-

stage CONS3.5 directs epithelial expression in the developing

incisor in a complementary pattern to that of endogenous Bmp4

(Figure S2). While beta-galactosidase perdurance cannot be

entirely excluded, it seems much more likely that genomic

regions outside of CONS3.5 are required for the repression of

Bmp4 in the dental epithelium after the lamina stage. Moreover,

the results indicate that sequences outside CONS3.5 are

required for the activation of Bmp4 expression in the dental

mesenchyme and enamel knot.

To further define the minimal genomic region required for

Bmp4 enhancer activity, we subcloned overlapping 39 and 59

halves of CONS3.5, designated CONS3.6 (392-bp) and CONS3.7

(424-bp) respectively, into reporter vectors and tested their ability

to confer expression. Although a few CONS3.7 embryos exhibited

reporter gene activity in the proximal limb, neither construct gave

detectable reporter activity in the AER, mandibular arch or

incisor dental lamina (CONS3.6, CONS3.7); hence these were

scored as negative (Figure 4A, B). In contrast, CONS3.8, a 396-bp

sequence from the approximate mid-region of CONS3.5 that

overlaps CONS3.6 and CONS3.7, exhibited reporter activity in

the same domains as CONS3 (Figure 4A, B), albeit at lower levels.

Further deletion of the 59 and 39 ends of CONS3.8 to generate a

300-bp CONS3.9 construct yielded no enhancer activity in any of

the CONS3 expression domains (Figure 4A, B).

Thus, the 396-bp CONS3.8 sequence represents the minimal

enhancer element necessary for Bmp4 expression in the AER and

limb bud mesenchymal domains, and in mandibular arch and

incisor dental lamina epithelia. Although its full expression

properties remain to be explored, we have provisionally denoted

this cis-regulatory module the Bmp4 incisor epithelium/limb bud,

or ‘‘IE/LB’’ enhancer. In addition, since the entire 396 bp IE/LB

enhancer is contained within the 467 bp LPM (lateral plate

mesoderm) enhancer previously characterized by Chandler and

coworkers [1], the 467-bp sequence likely functions as a composite

IE/LB and LPM, or ‘‘IE/LB/LPM’’ enhancer, although this was

not tested directly by comparing the behavior of both the 396 and

Figure 2. Conserved region driven b-galactosidase activity in
the orofacial region and limb. (A) Schematic of the transgenic
reporter construct used in transient transgenic analyses. The black
rectangle denotes the location of CONS region insertions upstream of
the human beta globin promoter in pGLKS (see Materials and Methods).
(B) Schematic of the Bmp4lacZneo allele [45] (white boxes, exons; gray
boxes, coding regions). (C) Number of transient transgenic embryos
with various CONS derivative constructs that supported b-galactosidase
expression in limb or orofacial tissue.
doi:10.1371/journal.pone.0038568.g002
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467 bp sequences at the time point at which LPM activity was

detected [1].

The Minimal Bmp4 CONS3.8 Enhancer Contains a
Conserved Pitx and Msx Binding Motif

To identify potential direct regulators of the Bmp4 enhancer, we

searched the UniPROBE database (http://thebrain.bwh.harvard.

edu/uniprobe/) for putative transcription factor (TF) binding sites

within the minimal 396-bp Bmp4 enhancer (CONS3.8) sequence.

To further restrict the list of candidate TF regulators, we

generated and analyzed microarray gene expression datasets from

tissues with CONS3.8 enhancer activity. Epithelial gene expres-

sion analysis, using laser capture microdissection (LCM) of E11.5

mouse incisor tooth germs (Figure S3), and previously published

E12.5 fore- and hindlimb microarray datasets, were used in

combination to identify genes whose transcripts were consistently

expressed (i.e., $ 2 of 3 replicates). This list of expressed genes was

then intersected with the list of TF families having conserved

putative binding sites in the minimal CONS3.8 Bmp4 enhancer

(see Materials and Methods). In summary, fourteen TF families,

which included the Pitx and Msx TF families, exhibited conserved

Figure 3. Bmp4lacZneo and TgCONS3 b-galactosidase activity in the limb and orofacial region. (A) Lateral views of developing fore- or
hindlimbs of Bmp4lacZneo control mouse embryos (upper row). TgCONS3 transgenic embryos from permanent transgenic line TL3459 (lower row). The
CONS3 transgene expression largely recapitulates endogenous Bmp4 expression in the AER from E9.5–13.5. (B) Frontal views of the developing head
of Bmp4lacZneo and TgCONS3 transgenic embryos from permanent line TL3459. From E9.5 to E11.0, Bmp4 is expressed in the epithelium overlying the
distal first branchial arch, maxillary and mandibular processes and medial and lateral nasal processes. At these stages, the CONS3 enhancer
recapitulates endogenous expression in the ectoderm overlying the distal part of the first branchial arch at E9.5 and the mandibular process at E10.5.
At E12.5, endogenous Bmp4 expression shifts to the mesenchyme, while CONS3 expression persists in the epithelium overlying the mandibular arch
and premaxilla, including incisor tooth germs. At E12.5 and 13.5, endogenous Bmp4 is concentrated in the mesenchyme of the midface including the
whisker follicles. CONS3 transgene expression persists in the epithelium that overlies the mandible, pre-maxilla and nasal pits, and fails to shift to the
underlying mesenchyme. Abbreviations: MxP, maxillary process; MdP, mandibular process; MNP, medial nasal process; LNP, lateral nasal process; NP,
nasal pit; Mx, maxilla; Md, mandible.
doi:10.1371/journal.pone.0038568.g003
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potential binding sites in the minimal CONS3.8 Bmp4 enhancer

(Table S1).

The CONS3.8 Enhancer Supports Pitx and Msx Protein
Binding in vitro

Among these candidates, we chose to focus only on those TFs

previously implicated in limb, tooth or mandible development

[18,19,24,48]. The above analyses yielded strong candidate

binding sites for the Pitx (59-TAATCC-39) and Msx (59-

GTAATTG-39) TF families within the minimal 396-bp enhancer

(Figure S4). We next performed Electrophoretic Mobility Shift

Assays (EMSA) to determine whether Pitx or Msx proteins can

specifically bind to their respective predicted binding sites in the

CONS3.8 enhancer. We generated full-length Pitx1 and Msx2

GST-fusion proteins and incubated them with 25-mer sequences

taken from within CONS3.8 that encompassed either the Pitx or

Msx binding sites, and compared DNA-protein complex forma-

tion to that with probes consisting of canonical DNA recognition

sequences for each protein [49,50]. Both Pitx1 and Msx2 proteins

specifically bound the wild type Bmp4 enhancer (WTPitxBS-

CONS3 or WTMsxBSCONS3) and their canonical sequences

(Bicoid or MBS, respectively) (Figure 5A and Figure S5; lanes 3, 6–

8). In addition, these complexes were specifically competed by

excess (50-fold or 100-fold) unlabeled wild type Bmp4 enhancer

oligonucleotide competitor (WTPitxBSCONS3 or

WTMsxBSCONS3) (Figure 5A and Figure S5; lanes 12–15),

confirming the binding specificity of each TF with its respective

binding site.

To ascertain the necessity of these intact DNA sites for protein

binding, we introduced mutations into each site that were

predicted to abolish binding (see Materials and Methods). As

expected, EMSA demonstrated that the proteins could not bind

the respective mutant oligomers (Figure 5A and Figure S5). In

addition, unlike their wild type counterparts, unlabeled mutant

oligomers at 50- to 100-fold excess did not compete with wild type

Figure 4. Deletion analysis of the Bmp4 enhancer CONS3. (A) Schematic of the four regions (CONS1-4; black boxes), each containing multiple
human-mouse sequence conservation blocks, tested in a transient transgenic mouse reporter assay in the same reporter shown in Figure 2. The
CONS3 enhancer was systemically narrowed down to 758 bp region, CONS3.5, which contains the Fugu-Mouse upstream conservation block, and
then to a minimal 396 bp minimal enhancer. (B) The number of E11.5 transgenic mouse embryos showing endogenous Bmp4 orofacial and limb
expression (in the AER and mesenchyme region of fore- and hindlimbs) is reported over the total number of transgenic embryos analyzed (No.
Stained/No. Tg).
doi:10.1371/journal.pone.0038568.g004

Regulation of Bmp4 Expression during Organogenesis
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oligomer binding. Thus, the CONS3.8 396-bp Bmp4 minimal

enhancer sequence contains specific, high affinity Pitx and Msx

binding sites that support binding of these proteins in vitro. This is

also in agreement with the prediction from PBM analysis, in which

both Pitx and Msx displayed strong sequence preference for their

respective putative binding sites (PBM enrichment (E) score

.0.45).

CONS3 Enhancer Activity in vivo Requires an Intact Pitx
Motif

To test the functionality of the Pitx and Msx binding sites in

CONS3 in vivo, we assayed the activity of CONS3 enhancer

sequences that contained clustered point mutations in the

respective binding sites in transient transgenic mice. The

introduced mutations fulfilled the criteria of completely abolishing

TF binding in EMSAs, and insofar as could be determined, did

not generate an adventitious site that could bind other TFs.

Transient transgenic mice carrying MutPitxCONS3 and MutMsx-

CONS3 reporter transgenes with mutations in Pitx and Msx

binding sites respectively, displayed significantly reduced reporter

activity compared to wild type (Figure 5B and Figure S6). When

each of the CONS3 limb and orofacial expression domains was

examined for b-galactosidase activity individually, only a minority

of mutant embryos exhibited expression when compared to wild

Figure 5. Pitx binds to the minimal Bmp4 enhancer CRM in vitro and the Pitx binding site is necessary for enhancer activity. (A)
Electrophoretic Mobility Shift Assay (EMSA) exhibits robust binding of Pitx1 protein to both a positive control bicoid DNA sequence and to the
consensus Pitx1/2 binding site in with a 25 bp probe sequence in the CONS3.8 sequence. Competition with specific or non-specific unlabelled probes
indicates sequence-specific binding of GST:Pitx1 fusion protein to the consensus Pitx1/2 DNA binding motif. (B) Number of transient transgenic
embryos that supported b-galactosidase expression in forelimbs, hindlimbs, or orofacial tissue. Asterisk indicates statistically significant differences
(p,0.05) compared to wild-type CONS3 by Fisher’s exact test.
doi:10.1371/journal.pone.0038568.g005
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type CONS3 embryos (Figure 5B and Figure S6). Moreover, when

transgenic embryos were stringently scored for expression in all

CONS3 expression domains, only one embryo for each mutant

construct exhibited lacZ expression in all domains. This reduction

in mutant CONS3 enhancer activity is statistically significant

(p,0.05, Fisher’s exact test) when compared to the 55% of wild

type CONS3 transgenics that were lacZ-positive in all domains

(Figure 5B and Figure S6).

To test whether the Pitx and Msx binding sites might cooperate

to activate the CONS3 enhancer, we engineered a construct,

MutPitxMsxCONS3, which carried mutation in both Pitx and Msx

binding sites and assayed it in transient transgenic mouse embryos

at E11.5. This analysis revealed that a few of MutPitxMsxCONS3

transgenic embryos (n = 3/18) exhibited very weak and spotty

expression in the AER and limb mesenchyme and only 1 of these

embryos showed faint transgene expression in the oral epithelium

(n = 1/18) (Figure 5B and Figure S6). Thus, since the MutPitxMsx-

CONS3 transgene retains low but detectable enhancer activity

similar to that of the MutPitxCONS3 and MutMsxCONS3 trans-

genes, the Pitx and Msx binding sites do not appear to cooperate

synergistically. Instead, each motif appears to function largely

independently to activate the CONS3 enhancer in vivo.

Pitx2 Directly Binds the Bmp4 Enhancer in vivo
To determine whether Pitx2 physically binds the CONS3.8

Bmp4 enhancer in living cells, we performed Chromatin

Immunoprecipitation (ChIP) assays in LS8 mouse dental

epithelial cells. LS8 cells were previously derived from the

developing mouse enamel organ [51], and endogenously express

Pitx2 [50]. Using primers that target the Pitx1/2 binding motif in

the 396 bp Bmp4 enhancer sequence (CONS3.8), DNA purified

from crosslinked LS8 chromatin after immunoprecipitation with

an anti-Pitx2 antibody yielded a 4.7-fold increase in amplicon

abundance, relative to an IgG control, by PCR and qPCR

(Figure 6A, B). In contrast, the Pitx2-IP template did not support

amplification for either of two control regions located 742 bp

and 1807 bp upstream of CONS3.8, denoted C1 and C2

(Figure 6A). Furthermore, the specific amplicon was confirmed to

contain the Pitx1/2 binding site by sequencing (Figure 6C).

Thus, Pitx2 binds the conserved Pitx binding site in the Bmp4

minimal enhancer in vivo.

Discussion

Pitx Homeoproteins as Potential Regulators of the Bmp4
IE/LB Enhancer

We identified a 396 bp minimal ‘incisor epithelium/limb bud’

(IE/LB) Bmp4 enhancer that contains putative binding sites for

members of the Pitx and Msx homeoprotein families, which are

expressed with Bmp4 in these developing tissues. The Pitx and Msx

binding sites reside 152 bp apart, and may represent part of a

combinatorial code essential for Bmp4 expression in early

craniofacial and limb development. Both the Pitx and Msx

binding motifs were present in all Bmp4 IE/LB enhancer deletion

constructs that exhibited reporter expression in transgenic assays,

and mutation of either motif dramatically reduced expression.

Interestingly, the entirety of the 396 bp Bmp4 IE/LB enhancer,

including the Pitx and Msx binding motifs, is also contained within

the 467 bp lateral plate mesoderm (LPM) element described by

Chandler and coworkers [1].

These data suggest specific possibilities about the regulatory

circuitry that governs Bmp4 expression in tooth and limb

development. First, the presence of a required Pitx1/2 binding

site in the Bmp4 IE/LB enhancer supports a direct, positive

regulatory relationship between Pitx1/2 and Bmp4 gene expres-

sion. Interestingly, however, Bmp4 expression is expanded in Pitx2-

deficient mandibular ectoderm at E10.5, suggesting a repressive

regulatory relationship [26,52]. A similar expansion of Bmp4

craniofacial expression is not observed in Pitx1 null mutants [53],

which exhibit defective mandibular development [48]. These data

could be reconciled if, for example, Pitx1 and Pitx2, which are

both expressed in initiation stage mandibular and incisor

epithelium, functioned at slightly different times with a combina-

tion of activating and repressive capacities. Notably, Pitx1

expression at the bud and cap stages of tooth development,

including its exclusion from the enamel knot at the cap stage,

mimics the persistent ectopic expression of the Bmp4 IE/LB

enhancer at these stages of tooth development (see Figure 1 and

Figure S2, [19]). Conversely, at the cap stage, Pitx2 expression is

enriched in the enamel knot, from which Bmp4 enhancer activity is

absent. These data are consistent with a model whereby Pitx1

activates and Pitx2 represses the Bmp4 enhancer in non-enamel

knot dental epithelium and in enamel knot respectively, potentially

through the same Pitx binding site in the Bmp4 enhancer.

Although Pitx2 has been shown to function as a transcriptional

activator, at least four known isoforms of Pitx2 exist via alternative

splicing; these may have different regulatory properties. In

addition, existing data indicates that Pitx2 can interact with any

of several co-factors to regulate gene transcription [54–58]. It is

therefore possible that co-factor choice may dictate whether the

Pitx site in the Bmp4 enhancer functions as a positive or negative

regulatory input. For example, Pitx2 activation of the Dlx2

promoter is attenuated by the direct interaction of Dlx2 with Pitx2

[58]. In another scenario involving the Dlx2 promoter, Msx2 binds

to the same Bicoid element as Pitx2, and antagonizes the

activation of Dlx2 transcription by Pitx2 [50]. These examples

highlight the spectrum of possibilities that could account for the

unique expression properties of the Bmp4 IE/LB enhancer in

developing incisor epithelium.

Thus, in early dental epithelium (mouse stage E9.5 - E11.5),

Pitx1 or Pitx2 may activate the Bmp4 enhancer directly by binding

to the Pitx site. At later stages from E13.5, Bmp4 protein may

establish a self-regulatory circuit, by negatively regulating Pitx1

expression, as suggested by the observation of Bmp4-mediated

Pitx1 repression in dental epithelium [25], and by the transient

repression of Pitx2 by Bmp4 in mandibular epithelium [53]. Such

a feedback loop could potentially explain the downregulation of

Bmp4 expression in the dental epithelium that normally occurs

after the initiation stage. However, the Pitx site in the Bmp4

enhancer itself is not a candidate to mediate this feedback since the

Bmp4 IE/LB enhancer fails to exhibit the normal downregulation

observed for Bmp4 expression in the incisor epithelium (Figure S2).

Nonetheless, such a negative feedback loop might help ensure the

correct regulation of Pitx1/2 mediated Bmp4 expression. Indeed,

Pitx2 gene dosage is critical, because Axenfeld-Rieger patients

carry PITX2 haploinsufficiency, and Pitx2+/2 mouse embryos

exhibit oligodontia, along with other phenotypes [59].

Less is known about the relationship between Bmp4 expression

and Pitx1/2 in developing limb bud and lateral plate mesoderm,

although similarly complex regulatory relationships may exist.

Pitx1 and 2 are differentially expressed in posterior and left sided

lateral plate mesoderm, respectively, where Pitx1 specifies hind-

limb identity in LPM and Pitx2 helps determine laterality [28].

Both Pitx1 and Pitx2 expression overlap in early LPM and they

cooperate in hindlimb specification [28]. Bmp4 expression is

unaffected in the phenotypically affected hindlimbs of Pitx1 null

embryos [60], suggesting that other TFs, possibly Msx1/2

homeoproteins, regulate Bmp4 expression in this tissue.
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Finally, since mouse CONS3 has strong sequence homology

with human, we performed bioinformatic analyses on the human

sequence orthologous to mouse CONS3 to determine if it exhibits

features of a regulatory enhancer. After aligning the mouse

CONS3 to human sequence, we identified a 243-bp region of

sequence homology located ,45 kb upstream of the human

BMP4 gene. This region was compared against various epige-

nomic profiles in ENCODE human cell lines [61,62]. Indeed,

profiles of DNase I hypersensitivity, histone modification, and

transcription factor binding all suggest that this region can

function as an enhancer in human (Figure S7). Thus, public

epigenomic data from ENCODE or other consortia can help

corroborate potentially homologous enhancers in human.

In sum, one of the most interesting aspects of the present work is

that a single enhancer can regulate the expression of a key

developmental signaling gene such as Bmp4 in craniofacial, limb

and potentially lateral plate mesoderm tissues. This result furthers

the view that while the fine details of gene regulatory networks

may differ from case to case, the central features of these

regulatory circuits are conserved, not only in evolution, but also in

multiple developmental contexts within an organism.

Materials and Methods

Phylogenetic Footprinting (Comparative Genomic
Analysis of Conserved Sequences)

To generate human, mouse and pufferfish alignments, mouse

genomic sequence surrounding the Bmp4 gene (76 kb upstream

and 76 kb downstream of the Bmp4 gene) from public database

(GenBank accession X56848.1) was compared against orthologous

human and pufferfish sequences using BLASTZ (http://bio.cse.

psu.edu/pipmaker/), a local alignment program that generates

graphical outputs by PipMaker as blocks of sequence conservation

[34,35]. Repetitive DNA of the reference mouse sequence was

masked using RepeatMasker (http://www.repeatmasker.org/cgi-

bin/WEBRepeatMasker).

Generation of DNA Constructs for Microinjection
The blocks of conserved non-coding sequences (CONS regions)

were amplified by polymerase chain reaction (PCR) using either

MasterAmp PCR amplification or Extralong PCR amplification

kit with proofreading DNA polymerase (Epicentre Biotechnolo-

gies, Madison, WI). The PCR primers were designed to contain a

restriction site and an additional 3–6 nucleotides at their 59 ends

for subsequent restriction enzyme digestion and directional

cloning of the PCR product. All constructs CONS3.1, 3.2, 3.3,

3.4, 3.5 were subcloned directly from CONS3 construct using

restriction enzyme digestion.

The PCR products were purified using QIAquick PCR

Purification Kit (QIAGEN, Valencia, CA), restriction enzyme-

digested and subcloned into a multiple cloning site of GLKS

plasmid which contains an E. coli lacZSV40pA reporter cassette

under the control of a minimal human b-globin promoter [63].

Correct clones were confirmed by either restriction enzyme

digestion or direct sequencing methods. Constructs were released

Figure 6. Pitx binds the minimal Bmp4 enhancer in vivo. (A) Schematic representation of the ChIP assay design. The 396-bp Bmp4 CRM
containing the Pitx1/2 binding site is shown along with two control regions, C1 and C2. C1 and C2 are located upstream of the Bmp4 transcription
start site and do not contain Pitx1/2 binding sites (see Materials and Methods). The transcriptional start site (TSS) is marked as +1 and Pr is the Bmp4
proximal promoter. Chromatin Immunoprecipitation (ChIP) assays were performed in LS-8 cells. Lane 1 is a no template control using the test primers,
lane 2 is the Pitx2 antibody immunoprecipitated (IP-Pitx2) chromatin, lane 3 is the normal rabbit immunoglobulin G (IgG) immunoprecipitated
chromatin, and lane 4 is the input chromatin amplified using the test primers. The top gel (Bmp4 enhancer) represents the test primers encompassing
Pitx1/2 motif in the 396-bp Bmp4 CRM. Lane 2 exhibits a 338 amplicon of the expected size. The lower two gels reveal the absence of amplicon
products from the two control regions C1 and C2. An amplicon from these regions are only detected in the input control groups. (B) Quantitative
real-time PCR was performed using the same conditions for the ChIP assays as described in (A). The 4.7-fold enrichment of the region containing the
396-bp Bmp4 CRM in the Pitx2 antibody immunoprecipitated (Pitx2-IP) chromatin is shown in the bar graph. Significance is denoted by p = 0.0018 for
the enrichment of amplified product in Pitx2-IP versus an IgG control set at 1.0. (C) Sequencing analysis demonstrates the presence of a Pitx1/2
binding site in the product amplified using the Bmp4 minimal CRM region-specific primers and Pitx2-IP chromatin as template.
doi:10.1371/journal.pone.0038568.g006
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from GLKS vector backbone using appropriate restriction

enzymes, purified using QIAGEN Gel Extraction kit (QIAGEN,

Valencia, CA) and eluted with microinjection buffer (10 mM Tris

pH 8.0, 0.25 mM EDTA).

Generation and Genotyping of Transgenic Mice
The constructs were diluted in microinjection buffer to a

concentration of 1–2 ng/ml and injected into fertilized mouse

oocytes derived from FVB/N matings using standard procedures

[64]. The injected oocytes were then transferred into oviducts of

pseudopregnant Swiss female mice. Transgenic embryos were

collected, fixed and stained for b-galactosidase activity. Yolk sacs

were carefully dissected away from maternal tissues and avoided

cross contaminations between littermates. Crude yolk sac genomic

DNA was extracted by overnight digestion in 200 ml of yolk sac

lysis buffer (50mM potassium chloride, 1.5mM magnesium

chloride, 10mM Tris pH8.3, 0.01% gelatin, 0.45% Nonidet P-

40, 0.45% Tween-20) supplemented with 0.1mg/ml proteinase K

at 55uC. For tail biopsies, genomic DNA was extracted by boiling

the tissue for 20 minutes in 200 ml of 25mM Sodium hydroxide,

followed by neutralization with 50 ml of Tris-HCl pH 8.0.

Transgenic embryos and transgenic founder mice were identified

by the presence of the lacZ transgene using PCR with primers

wlacZ-F 59-TTCACTGGCCGTCGTTTTACAACGTCG-39

and wlacZ-R 59-ATGTGAGCGAGTAACAACCCGTCGGA-

39. Permanent transgenic lines were established by crossing the

founder animal with FVB/N wild type mice. Age-matched

Bmp4lacZneo knockin heterozygous embryos were used as controls.

The control embryos were derived from crossing Bmp4lacZneo

heterozygous male mice with wild type CD-1 or ICR female mice.

The animal use protocol was reviewed and approved by the

Institutional Animal Care and Use Committee (IACUC) of

Harvard Medical School.

Cryosections and Whole Mount b-galactosidase Staining
Staining for b-galactosidase activity in whole embryos and on

cryosections was performed according to standard protocols [64].

Heads of selected transgenic embryos were removed and the lower

jaws were separated to allow direct visualization of the intraoral

cavity and to facilitate penetration of X-gal staining solution. For

cryosections, embryonic heads were processed as described and

sectioned at 10 mm thickness. After staining for b-galactosidase

activity, the sections were counterstained with 0.5% Eosin Y

solution, dehydrated through an ascending series of ethyl alcohol,

cleared in xylene and mounted with Permount (Sigma, St. Louis,

MO).

Laser Capture Microdissection (LCM) and Gene
Expression Analysis

Embryonic tissue was dissected in ice-cold RNase-free phos-

phate buffered saline (PBS) and the E11.0 heads were frozen

immediately in Tissue Tek OCT (Andwin Scientific, Schaumburg,

IL). Fresh-frozen tissue was cryosectioned and collected on PEN

membrane slides (Molecular Devices, Sunnyvale, CA). The slides

were immediately refrozen and maintained on dry ice before

staining and dehydrating with Histogene Staining Kit (Molecular

Devices, Sunnyvale, CA). Discrete incisor epithelial tissues were

isolated using a Leica laser capture microdissection (LCM) LMD

6000 microscope. The tissue was isolated directly into the

extraction buffer provided with Pico Pure Isolation Kit (Molecular

Devices, Sunnyvale, CA). RNA purification was performed

according to the Pico Pure Isolation Kit and included an on

column treatment with RNase-free DNase I (Qiagen, Valencia,

CA). Eluted RNA quality was determined using the Agilent

Bioanalyzer 2100. 10 to 25 ng of total RNA was then amplified to

yield 7–10 mg of single-stranded DNA using a poly-dT based

Ovation RNA Amplification System V2 (NuGEN, San Carlos,

CA). The quality and size distribution of amplified DNA were

confirmed using an Agilent Bioanalyzer 2100. Biotinylation was

achieved through abasic site creation in the single stranded DNA

with Uracil N-Glycosylase (Epicentre Biotechnologies, Madison,

WI), and reaction with Aldehyde-Reactive Probe (ARP) N-

(aminooxyacetyl)-N9-(D-biotinoyl) hydrazine, trifluoroacetic acid

salt (Invitrogen). 1.5 mg of biotinylated DNA was hybridized

according to the NuGEN manufacture note to the Illumina Mouse

Ref-6 whole genome expression array. For expression profiling of

the developing limb, Affymetrix microarray datasets were

obtained from Gene Expression Omnibus (GEO) reference series

GSE2560. Probe datasets were called ‘‘Present’’ if at least two of

the three replicates had a detection p-value less than 0.05. The

E11.0 tooth germ microarray data is deposited in the GEO

database (http://www.ncbi.nih.gov/geo/).

Analysis of the CONS3.8 CRM for Putative TF binding
sites

Custom MATLAB scripts were written to map ungapped 8-

mers from the UniPROBE database for mouse TFs ([20], http://

thebrain.bwh.harvard.edu/uniprobe/) to the CONS3.8 CRM.

The Mouse July 2007 (NCBI37/mm9) assembly was used along

with the 46-way multiz vertebrate alignment from Galaxy (http://

main.g2.bx.psu.edu/). A putative binding site in CONS3.8 was

selected for further analysis when at least two consecutive

overlapping ungapped 8-mers scored above an enrichment score

(ES) of 0.35 (medium affinity binding site) and 0.45 (high affinity

binding site). We focused on TF families whose members had

binding sites that were conserved in at least 90% of the vertebrate

alignment within CONS3.8. TFs were grouped into families based

on their names and their common DNA binding domain (DBD)

annotation from the InterPro database [65]; (e.g., since the TFs

Msx1, Msx2, and Msx3 each have the same name, Msx, and the

same three DBD annotations of IPR000047 (helix-turn-helix),

IPR001356 (homeodomain), and IPR009057 (homeodomain-like),

we grouped these three TFs into the family ‘‘Msx IPR000047;

IPR001356; IPR009057’’). We further restricted our candidate TF

families based on the expression of at least one of their members in

the tissues of interest. Microarray datasets were used from mouse

tissue of E11.5 tooth germ (this study) and E12.5 fore- (GEO

datasets GSM48648, GSM48912, GSM48913) and hindlimb

(GEO datasets GSM48914, GSM48915, GSM48916). Transcrip-

tion factors were retained if they were called present in at least 2

out of the 3 replicates, in all three tissues, and had conserved

binding sites in CONS3.8.

Generation of Pitx1 and Msx2 Plasmid Constructs
Full-length Pitx1 and Msx2 expression plasmids were construct-

ed in pGEX3X by PCR-based cloning of the Pitx1 and Msx2

coding regions. Each reaction contained template, 4 pmoles of

each primer, 2.5 U of PfuTurboH DNA polymerase (Stratagene,

La Jolla, CA), and 26 FailSafe PreMix A (Epicentre Biotechnol-

ogies, Madison, WI) which contains 1.5 mM Mg2+and 16
Betaine. PCR conditions were as follows: 95uC for 2 minutes,

95uC for 30 seconds, 60uC for 30 seconds, and 72uC for 1 minute

with a final extension of 10 minutes after 30 cycles in PCR

thermocyclers (MJ Research, Reno, NV). We purified the PCR

products using Gel Extraction kit (QIAGEN, Valencia, CA).

Approximately 1 mg of the purified PCR products was subjected to

double digestion. The digested products were then ligated into the
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expression vector (pGEX3X). Both Pitx1 and Msx2 constructs

were directly sequenced with forward and reverse primers

designed from plasmid sequences flanking the cloning site

(pGEX3X-F: 59-ATGGCCTTTGCAGGGCTGGCAAGC-39

and pGEX3X-R: 59-TCTCCGGGAGCTGCAT-GTGTCAG-

39) to ensure the absence of mutations.

Pitx1 and Msx2 Glutathione S-Transferase Fusion Protein
Preparation

Cells of Escherichia coli strain BL21 (DE3) was transformed using

the clones selected after confirming the sequences. Bacterial

cultures were induced with 1.0 mM isopropyl-1-thio-ß-D-galacto-

pyranoside (IPTG) for 3 hours. Cells were collected after

centrifugation at 5000xg for 30 minutes at 4uC. The cultures

were resuspended in ice-cold phosphate buffered saline (PBS). Cell

lysis was performed by adding lysozyme to a final concentration of

1 mg/ml and incubation on ice for 30 minutes. Triton X-100,

DNase I and 5 mg/ml RNase A and 1 mM PMSF were added to

the lysates. After incubation at 4uC for 30 minutes, lysates were

spun at 3000xg for 30 minutes. Supernatants were removed and

adjusted to 1 mM DTT and 1 mM PMSF. Fusion proteins were

purified using glutathione agarose beads (Sigma, St. Louise, MO)

according to standard protocols.

Preparation of Double Stranded DNA Targets
Two control target DNA sequences used for Pitx1 and Msx2

EMSA were Bicoid: 59-TCATGCCTGTAATCCCAGCACT-

CAG-39 and MBS: 59-GATCCACTAATTGGAGG-39, respec-

tively [49,50]. Target DNAs for Pitx1-CONS3 EMSA and Msx2-

CONS3 EMSA were WTPitxBSCONS3:59-AGTTCCCTACA-

TAATCCTTACCGTG-39, MutPitxBSCONS3:59-AGTTCCC-

TACAACGCATTTACCGTG-39, WTMsxBSCONS3:59-

GACCCTATGTA-ATTGCATTCCTGAA-39and MutMsxBS-

CONS3:59-GACCCTATCCGGCCTCATTCCTGAA-39. Four

micrograms of each of the above synthetic oligonucleotide pairs

were annealed by boiling for 5 min. in annealing buffer (10 mM

Tris, pH 7.5, 50 mM NaCl, 1mM MgCl2) followed by cooling.

They were then labeled in a 20 ml reaction volume using 20 ng of

annealed oligonucleotide in polynucleotide kinase (PNK) buffer

(New England BioLabs, Inc., Beverly, MA), 10 units of T4

polynucleotide kinase (New England BioLabs, Beverly, MA) and

5 mCi of c-32P-ATP. Reactions were incubated at 37uC for 1 hour.

To remove unincorporated oligonucleotides, the labeled probe

reactions were loaded onto Micro Bio-Spin P-30 Tris Chroma-

tography columns (Bio-RAD, Hercules, CA) and centrifuged

according to the manufacturer’s instructions and diluted with

protein binding buffer to ,26104 cpm/mg.

Electrophoretic Mobility Shift Assay (EMSA)
Protein-DNA binding reactions of 20 ml total volume were

performed by adding increasing amounts of purified fusion

proteins in final reaction of 1X phosphate buffer, 10% glycerol,

0.3 mg/ml BSA and 0.1 mg/ml DNaseI digested poly[dG-dC],

incubated on ice for 10 minutes and then further incubated with

addition of 1 ml of [32P]-labeled annealed probe on ice for 20

minutes. One microliter of loading dye was added to a free probe

reaction (no protein) to assist in locating free probe in the gel.

Protein-DNA complexes were separated on a pre-cooled 6% non-

denaturing polyacrylamide gel. Electrophoresis was performed at

4uC with 1x Tris-Borate-EDTA (TBE) buffer at 200 volts for 2

hours. Gels were transferred to Whatman paper and dried at 80uC
for 2 hours before being subjected to autoradiography at –80uC.

In vitro Mutagenesis
We used a QuikChange Lightning Site-Directed Mutagenesis

Kit (Clontech, Mountainview, CA) and the following primer pairs

to perform mutagenesis of Pitx or Msx binding sites in the CONS3

construct - SDMPitxBS-F: 59-GAGGGCTCTTCACGG-

TAAatgcgtTGTAGGGAA CTTAAAAAGAAG-39,

SDMPitxBS-R: 59-CTTCTTTTTAAGTTCCCTACAacgcatT-

TACCG TGAAGAGCCCTC-39 and SDMMsxBS-F: 59-

GGGCCTGTTACTCCTTCAGGAATG aggccggATAGGGT-

CAAATA-AAACATG-39, SDMMsxBS-R: 59-CATGTTT-

TATTTGACCC TATccggcctCATTCCTGAAG-GAGTAA-

CAGGCCC-39. The mutated constructs were sequenced to

confirm the introduced mutation prior to purification for

pronuclear microinjection. E11.5 transgenic embryos were

collected and tested for reporter activity as described above.

Chromatin Immunoprecipitation (ChIP) Assay
The ChIP assays were performed as previously described [56]

using the ChIP Assay Kit (Upstate/Millipore, Billerica, MA) with

the following modifications. LS-8 cells were fed for 24 hours,

harvested and plated in 60 mm dishes, then cross-linked with 1%

formaldehyde for 10 minutes at 37uC the next day. All PCR

reactions were done under an annealing temperature of 61uC. The

primers for amplifying the Pitx2 binding site in the Bmp4 CONS3

are as follows: forward 59-CCACCCACAGATTCAGACCT-39

and reverse 59-CAGGAAGGAAT- TCGAAGCAG-39

(chr14:47,056,511–47,056,848). The two control primers are as

follows: forward 59-AGCAAACAGGCGATCTCATT-39 and

reverse 59- GGAGTGGTGAA- GGTCTTGGA-39

(chr14:47,057,304–47,057,590); forward 59-TGCATGTGGT-

CAGTCAGTCA-39 and reverse 59-TGCTTCACCA-

CAGGTCTCAG-39 (chr14:47,058,298–47,058,655). All the

PCR products were evaluated on a 2% agarose gel in 1X TBE

for appropriate size. Quantitative real-time PCR was performed

using the same annealing temperature but extending the number

of cycles. Identical amounts of the IP DNA and IgG DNA were

loaded as template. All of the regular PCRs and real-time PCR

products were confirmed by sequencing.

Supporting Information

Figure S1 Bmp4lacZneo and TgCONS3 b-gal activity in
initiation stage incisor. Whole mount and sagittal sections of

Bmp4lacZneo and TgCONS3 transgenic upper incisors. Abbr: NP, nasal

pit; MNP, medial nasal process; MxP, maxillary process; MdP,

mandibular process; OC, oral cavity; UI, upper incisor; M,

mesenchyme; DL, dental lamina; D, dorsal; V, ventral; A,

anterior; P, posterior.

(TIF)

Figure S2 Bmp4lacZneo and TgCONS3.5 b-gal activity in
cap-stage incisors. Sagittal sections of cap stage Bmp4lacZneo and

TgCONS3.5 transgenic upper and lower incisors. Note persistent

inappropriate expression of TgCONS3.5 in non-enamel knot dental

epithelium and surrounding ectoderm, and its failure to be

expressed in the dental papilla and adjacent mesenchyme, as is

observed in the control Bmp4lacZneo heterozygote. Abbr: EK,

enamel knot; DP, dental papilla; EO, enamel organ; T, tongue;

UL, upper lip; LL, lower lip; VL, vestibular lamina.

(TIF)

Figure S3 Laser capture microdissection (LCM) of
epithelial incisor region. Sagittal sections of an E11.5

initiation stage incisor pre- and post-LCM. The captured
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epithelium was identified by bright field microscopy. Scale bar:

100 mm.

(TIF)

Figure S4 Pitx and Msx binding sites in the Bmp4 IE/LB
enhancer. Sequence of the 758 bp region (chr14:47,056,171–

47,056,928) containing the 396 bp Bmp4 minimal enhancer

double underlined (chr14:47,056,283–47,056,678). The Pitx1/2

binding site (59-TAATCC-39) and Msx1/2 binding site (59-

GTAATTG-39) are indicated, and the location of the 467 bp

enhancer (chr14:47,056,226–47,056,692) described by Chandler

and coworkers [1] containing the 396 bp minimal enhancer

sequence contained is underlined.

(TIF)

Figure S5 In vitro binding of Msx to the minimal Bmp4
enhancer. Electrophoretic Mobility Shift Assay (EMSA) exhibits

robust binding of Msx2 protein to both a positive control MBS

DNA sequence and to the consensus Msx1/2 binding site in the

CONS3 sequence. Competition with specific or non-specific cold

probes indicates sequence-specific binding of GST-Msx2 fusion

protein to the consensus Msx1/2-binding motif.

(TIF)

Figure S6 Transgenic mutational analysis of Pitx and
Msx binding sites. Graphical representation of the transgenic

mutational results presented in Fig. 5B indicates that Pitx binding

site is necessary for reporter expression in forelimb and hindlimb

AER and mesenchyme and orofacial tissues.

(TIF)

Figure S7 Integrative epigenomic analysis suggests that
the human orthologous sequence of mouse CONS3 likely
functions as an enhancer. Using public epigenomic data from

the University of California at Santa Cruz (UCSC) Genome

Browser, we analyzed the human homolog of CONS3 (labeled

CONS3 at the upper right hand corner of the top genome browser

view; genome assembly hg18). This region is enriched for an

enhancer associated histone mark H3K4me1, is DNaseI hyper-

sensitive, is a binding site for transcription factors Max and c-Fox

in human embryonic stem cells, and is annotated to be in

‘‘enhancer state’’ in multiple human cell lines by ChromHMM

[62]. These multiple lines of evidence suggest CONS3 homolog

may also function as an enhancer in human.

(TIF)

Table S1 Families of Transcription Factors (TFs) with
their InterPro (IPR) DNA binding domain annotation
number that have potential binding sequences in the
minimal Bmp4 enhancer. Transcription factors families with

binding sites (BS) in the minimal Bmp4 enhancer in .75% and

.90% of aligned vertebrates are indicated.

(PDF)
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