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Abstract
Arterial remodelling is a major risk factor for a variety of age-related diseases and represents a potential target for therapeutic 

development. Blood vessel wall is continually remodelled at the tissue level as reflected by the changes in structure and functions. 
During ageing, the structural, mechanical and functional changes of arteries predispose individuals to the development of diseases 
related to vascular abnormalities in vital organs such as the brain, heart, eye and kidney. For example, aortic stiffness increases 
nonlinearly with advancing age - a few percent prior to 50 years of age but over 70% after 70 years of age. The elevated stiffness in 
large elastic arteries affects the blood pressure control and leads to increased transmission of high pressure to downstream smaller 
blood vessels, in turn affecting the microcirculation and end-organ functions. Meanwhile, the augmented remodelling of small arter-
ies accelerates central arterial stiffening. This chapter is to provide an overview of age-associated changes in the arterial wall and 
their contributions to both central and peripheral vascular abnormalities associated with ageing. Therapeutics that specially target 
the different aspects of arterial remodelling are expected to be more effective than the traditional medications, particularly for the 
treatment and management of vascular ageing-related diseases. 
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Introduction
Based on their structure, location and function, arteries are distinguished by three classes - large elastic or conduit arteries, medium 

sized muscular or distributing arteries, and arterioles or small arteries [1]. The arterial system includes aortic root, coronary arteries, 
common carotid arteries, brachiocephalic arteries, subclavian arteries, axillary arteries, brachial arteries, thoracic aorta, abdominal aorta, 
common iliac arteries, femoral arterials, popliteal arteries and tibial arteries. Elastic arteries are characterized by a large lumen and 
relatively thin wall containing more collagen and elastin fibers in the wall structure of the blood vessels, which expand as blood pumping 
from the heart and recoil when the heart relaxes to force blood onward between beats. The muscular arteries are the numerous branches 
originated from the elastic trunks. The walls of these arteries are thick with multiple layers of smooth muscle cells, making up over one-
fourth of the cross-sectional diameter. The arterioles are small arteries with a diameter around 100 to 400 μm, primarily controlling the 
peripheral resistance and the blood flow to the capillary bed [2]. 

The vascular wall of all arteries consists of three tissue layers, referred to as tunics (from the Latin term tunica) (Figure 1). The tunica 
intima is lined with a single layer of flattened, polygonal endothelial cells that are resting on basal lamina and loose connective tissues, re-
ferred to as the sub-endothelial layer. The tunica media is the thickest layer consisting of elastic laminae, each ~2 - 3 μm thick and spaced 
5 - 20 μm apart. Thin layers of connective tissue and smooth muscle cells are arranged circumferentially within the space. The internal 
elastic lamina is a fenestrated sheet of elastin forming a boundary between the tunica media and the tunica intima. A second fenestrated 
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membrane formed at the junction of the tunica media and the tunica adventitia is called the external elastic lamina. The number and 
distribution of elastic fibers correlate with the calibre of the artery [3]. The medial layer of muscular arteries occupies a larger portion of 
the cross sectional area than that of elastic arteries. Conversely, the elastic medial layer tends to exhibit a lower circumferential modulus 
than muscular medial layer. The tunica externa or adventitia contains bundles of collagen and a few elastic fibers longitudinally arranged 
around the vessel wall. Fibroblasts, mast cells and some smooth muscle cells are also present in the tunica adventitia. Arterioles differ 
from large arteries in the thickness of the vascular wall, which consists of endothelium, a fenestrated internal elastic lamina, and one or 
two layers of smooth muscle cells, lacking the sub-endothelial layer. The internal elastic membrane disappears in terminal arterioles [4,5]. 

Figure 1: Structure of arteries. From the most interior to the outer layer, the arterial wall is composed of tunica intima, tunica 
media and tunica externa layers. The vessel wall of elastic artery is characterised by layers of elastic fibers in the tunica media 
and tunica externa, whereas that of muscular artery contains mainly smooth muscle cells with less elastic fibers. The tunica 

media of small artery consists only one layer of elastic lamina and smooth muscle cells.

Arterioles contain oxygenated blood and control the flow into the capillary beds via vasodilation and constriction, which are regulated 
by neuronal and hormonal signals as well as the surrounding tissue environment [6]. The smooth muscle cell contraction significantly 
reduces the vessel lumen of arterioles. Changes in the internal diameter of arterioles regulate vascular resistance, arterial blood pres-
sure and heart rate [7]. Due to the peripheral resistance, up to 50% of the left ventricular stroke volume is stored during systole in aorta 
and proximal large arteries and discharges during diastole [8]. The elastic properties of the large arteries help to reduce the fluctuation 
in pulse pressure over the cardiac cycle and assist in the maintenance of organ perfusion when cardiac ejection ceases, known as the 
“Windkessel effect” [8]. The elastic arteries become less compliant with age, resulting in a diminished Windkessel effect, an increased 
pulse pressure and elevated systolic blood pressure, which predicts the development of cardiovascular diseases, including myocardial 
infarction, stroke and heart failure. The present chapter discusses the macroscopic and microscopic changes in the structure and function 
of arterial wall [i.e. remodelling] during vascular ageing. In addition, potential therapeutic strategies targeting arterial wall remodelling 
will be highlighted for important clinical applications.

Vascular Remodelling

Here, vascular remodelling refers to any structural and functional changes in the blood vessel wall. In response to local mechanical, 
hemodynamic and neurohumoral stimulations, the arterial wall is continually remodelled, as reflected at the tissue level by modifications 
in luminal diameter, wall thickness, medial and/or adventitial cross-sectional areas [9]. The pattern of vascular remodelling reflects the 
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summation of many short term vasomotor events. For example, in conduit arteries, chronic changes in blood flow cause alterations in the 
architecture of the blood vessel wall in order to normalize the shear stress [10]. Increases in blood flow are associated with an increase in 
lumen diameter (outward remodelling), whereas decreases in flow are associated with a decrease in lumen diameter (inward remodel-
ling) [11]. Apart from the shear stress created by blood flow, the hoop stress induced by transmural pressure promotes the thickening of 
the arterial wall in the circumferential direction [12-15]. By considering changes in wall cross-sectional area, the type of remodelling can 
be defined as hypertrophic, eutrophic or hypotrophic, when the cross-sectional area is increased, unchanged, or decreased, respectively 
[16] (Figure 2). In resistance arteries, a chronic increase in blood flow induces hypertrophic outward remodelling, characterized by in-
creases in luminal diameter and cross-sectional area, in association with improved capacity of the endothelium to induce vasodilatation 
[17]. Reduced blood flow results in inward hypotrophic remodelling, accompanied by hyporeactivity of the arterial smooth muscle cells 
[16-18]. 

Figure 2: Classification of arterial remodelling. Different types of arterial remodelling can be separated 
in to different group according to the structural changes of the arteries. In terms of the lumen size, inward 
remodelling refers to decrease in lumen diameter associated with decrease in blood flow, whereas outward 
remodelling refers to the increase in lumen diameter in response to increased blood flow. In terms of the 
vessel wall structure, hypotrophic, eutrophic and hypertrophic remodelling are referred to when the cross-

sectional area is decreased, unchanged, or increased, respectively.
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Endothelial cells plays an important role in arterial remodelling by sensing the shear or frictional force between the blood flow and 
the vascular endothelium, in turn releasing vasoactive autacoids such as nitric oxide (NO), endothelium-derived hyperpolarizing signals, 
prostaglandins and growth factors, to regulate the ability of arteries to alter their architectures [19,20]. Mechanical forces elicited by the 
flow of blood (shear stress) and pressure (cyclic strain) change gene expression in endothelial cells and activate endothelial nitric oxide 
synthase (eNOS), which produces NO to regulate arterial remodelling. Removal of the endothelium limits the ability of blood vessel to 
remodel [21]. The tunica media of the arterial vasculature is characterized by the prominent presence of smooth muscle cells, which 
execute the vasodilatory and vasoconstrictive functions [22,23]. Upon stimulation by mitogens [e.g. platelet-derived growth factor, trans-
forming growth factor beta (TGFβ) and vascular endothelial growth factor], the normally quiescent smooth muscle cells are activated to 
become hyperplasia, which contributes to the development of arterial stiffness [24-28]. Endothelium-derived NO inhibits growth factor-
stimulated proliferation and migration of vascular smooth muscle cells [29]. Endothelial dysfunction is a hallmark of vascular ageing [30]. 
In old arteries, the ability of endothelium to promote vasodilatation is significantly reduced [30,31]. This reduction could be due to the 
reduced eNOS expression, NO bioavailability in the vessel and also the reduce amount of soluble guanylyl cyclase presence in aging vas-
cular smooth muscle cells [32,33]. Apart from ageing, classic cardiovascular factors such as arterial hypertension, hypercholesterolemia, 
diabetes and smoking are all associated with endothelial dysfunction [34]. 

The structural components of the arterial wall consist primarily of elastin, collagen (type I and III), proteoglycans and glycoproteins of 
the extracellular matrix, which determine the mechanical properties such as the elasticity, tensile stiffness and compressibility [3,35-37]. 
Elastin confers compliance to the wall, allowing the artery to recoil and dampen pulsatile pressure waves, whereas collagen serves to re-
sist the distension of arterial wall at increased blood pressures [38]. The wall stress is born by elastin at low pressure and collagen fibers 
at high pressure, whereas the latter provides tensile strength and prevents over-distension [39,40]. Collagens are 100-1000 times stiffer 
than elastin [41]. Accordingly, arteries become stiffer as they distend, by a factor of 100 between mean pressures of 60 and 180 mmHg 
[42]. Elastin matures in early life and is the dominant extracellular matrix protein deposited in the arterial wall, contributing up to 50% of 
its dry weight [43]. It confers resilience and extensibility of the arteries. Elastic fibers stretch as vessel grow and create both longitudinal 
and circumferential tensions to smoothen stress distribution across the arterial wall [44,45]. Arteries proximal to the heart contain higher 
proportions of elastin and lower number of smooth muscle cells per unit volume than those of the peripheral conduit and distal muscular 
arteries [46]. Thus, the carotid, iliac and femoral arteries are stiffer than aorta [47-49]. Both circumferentially and longitudinally oriented 
elastin fibers are distributed throughout the medial layer in proximal elastic arteries (such as the thoracic aorta), whereas muscular arter-
ies contain mainly longitudinal elastin located within the external elastic lamina [50,51].

Collagen and elastin deposition are regulated by matrix metalloproteinases (MMPs) [52]. NO regulates the latency of MMPs to control 
the matrix composition of the blood vessel wall, in particular collagen and elastin [53-55]. With age or under pathological conditions, 
the balance between proteases and their inhibitors is lost, as a result of increased MMP gene expression, the activation of zymogens or 
the secretion of enzymes by infiltrated inflammatory cells [56,57]. In aorta, collagen type I represents ~80-85% of the total collagen 
content and is organized in thick bundles to confer the rigidity and tensile strength of the vessel wall, whereas ~5 - 10% collagen type III 
forms small fibers to promote vascular elasticity. Thus, the ratio of collagen type I and III determines the tensile resistance of the artery 
[35,58,59]. 

Smooth muscle cells synthesize and maintain a balanced distribution of elastic and collagen fibers in the arterial wall [35,58]. Increase 
in pressure stretches the arterial wall, leading to changes in the contractile state and/or the synthetic activity of smooth muscle cells [10]. 
In conduit arteries, the relatively small portions of smooth muscle cells cause only a modest reduction in lumen diameter, even when 
maximally contracted [60]. They anchor to the surrounding extracellular proteins via extensions of the cytoskeleton and transmit the 
contracting muscle tension to the arterial wall [61]. Smooth muscle contraction redistributes tensile force between elastin and collagen, 
in turn modulating the arterial stiffness [61]. However, the nature of connections between smooth muscle cells and the matrix molecules 
is not fully understood. Elastin synthesis and smooth muscle cell proliferation are tightly correlated during the development of intimal 
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thickening [62,63]. In summary, arterial remodelling is complex and dynamic process involving not only the changes of wall material and 
structure, but also the interactions between endothelium and vascular smooth muscle in response to flow-mediated shear stress and 
blood pressure-induced hoop stress (Figure 3). 

Figure 3: Overview of remodelling events in arterial wall. Arterial remodeling involves the the interaction 
between endothelial cells and vascular smooth muscle cells. Endothelial cells sense the shear or frictional force 

generated by the blood flow, and release vasoactive autacoids such as nitric oxide (NO), endothelium-derived 
hyperpolarizing factors (EDHF), prostaglandins (PG) and growth factors to activate vascular smooth muscle cells. 
Collagen and elastin deposition in the vessel wall are then regulated by the released matrix metalloproteinases 

(MMPs).

Age-Associated Arterial Remodelling 

Ageing is associated with significant alterations in structure and function of the arterial wall, such as the decreased production of 
vasodilators and increased synthesis of vasoconstrictors [20], augmented collagen deposition and fragmentation of elastin fibrils [3], 
hypertrophy and hyperplasia of vascular smooth muscle cells [64,65], which collectively contribute to the alterations in blood pressure. 
With age, systolic blood pressure rises continuously, whereas the diastolic blood pressure increases until the age of 50 and declines after 
the age of 55 [66,67]. Accordingly, the difference between systolic and diastolic pressure (pulse pressure) progressively enlarges and 
accelerates in later years due mainly to stiffening of the large arteries [67-69]. The elevation of mean arterial blood pressure reflects an 
increased vascular resistance combined with a well-preserved cardiac output [70]. Hemodynamically, increased pulse pressure results 
from a loss of compliance in large conduit arteries and augmented wave reflections from the periphery. The following sections describe 
the age-induced structural, mechanical and functional changes in the three types of arteries that influence the global hemodynamic regu-
lation in a coordinative manner.
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Elastic Arteries

Age-induced structural, mechanical and geometrical changes, such as thickening, stiffening, dilation and elongation, limit the buffering 
capacities of large elastic arteries [71-74]. Between the age of 20 and 90 years in healthy individuals, the intima-medial layer of carotid 
arteries thickens nearly three-fold [75,76]. In the absence of observable vascular diseases, proliferation and migration of smooth muscle 
cells cause the intima of the conduit arteries to thicken [77]. The remodelling process restores the homeostatic responses to changes in 
the blood flow and circumferential stretch, thus maintaining a normal shear stress and wall tension [78]. Theoretically, wall thickening 
compensates for the rise in blood pressure. However, during aging or hypertension, the mechanism become ‘maladaptive’ and the wall 
stress significantly increases to stimulate adverse vascular remodelling in the large elastic arteries [79]. Impaired endothelial function 
leads to increased resting vascular smooth muscle tone, i.e. the wall tension, and further deteriorates the process of arterial remodelling 
[60].

The most commonly used approach for determining central arterial stiffness in humans is aortic or carotid-femoral pulse wave veloc-
ity (PWV), which measures the time delay and the distance travelled by a pulse [80]. Increased aortic stiffness, indexed as an increased 
PWV, is an independent risk factor for cardiovascular events [66,69]. During aging, the elastin content in large arteries remains stable, but 
the relative ratio of elastin to collagen decreases [81,82]. Fatigue fracture of the elastin fibers occurs in the proximal aorta where these 
fibers are most prominent. In the abdominal aorta, which is made up of a much larger proportion of collagen and smooth muscle fibers, 
stiffening is caused by localized calcium deposition [83-88]. In addition, the accumulation of less distensible collagen fibers contributes 
to the progressive arterial stiffness with age [60,89,90]. Increased cross-linking of collagen and localised collagen fibrosis contribute to 
the higher wall stiffness and elastic modulus in old arteries [3,91-93]. The expressions of both collagen type I and III are downregulated 
in large arteries with age, whereas that of collagen type VIII increases to promote smooth muscle cell migration and proliferation [41]. 
Changes in smooth muscle cell stiffness also contribute to the global increase in aortic stiffening with ageing [94]. However, Angiotensin 
II, the principal effector of renin-angiotensin-aldosterone system (RAAS) increases smooth muscle cell stiffness [95]. The material 
stiffness of the aged artery (also known as arteriosclerosis) causes significant mechanical alterations, such as reduced compliance and in-
creased impedance [96]. With age, the greatest decrease in distensibility and increase in PWV occur in proximal regions, when compared 
to those of the remote segments of aorta [68,97]. An increase in age of 10 years decreases distensibility by 30% in carotid arteries [98]. 
Due to variations in structure and quantity of the extracellular matrix components, femoral arteries exhibit differences in compliance 
when compared to carotid arteries [99]. With age, a pressure-dependent response contributes to the stiffening of carotid artery, whereas 
a pressure-independent, intrinsic compositional change stiffens the wall of femoral artery [100]. The elevated stiffness in large elastic 
arteries leads to increased transmission of high pressures to downstream smaller blood vessels, in turn affecting the microcirculation and 
end-organ functions [101-104]. 

Large elastic arteries not only change the mechanical properties, but also increase the diameter, length and tortuosity with age [105]. 
The balance between the mechanical and geometrical properties of the arteries progressively breaks down during ageing [73]. Advanced 
age is associated with a significant dilation or enlargement of central elastic arteries [74]. The aortic root dilates by over six percent 
between the fourth and eighth decades [74,87,104,106]. The diameter of the thoracic aorta increases by decade until age 50, flattens 
at 50 - 80 years of age and increases again after age 80 [107]. Proximal arteries, typically those containing more elastin, increase the 
diameter faster than distal arteries with less elastin [44]. The dilation may help to offset the wall stiffening by maintaining the capacity 
to store volume during systole. The length of the ascending aorta increases significantly with age (12% per decade) and correlates with 
the augmentation of central arterial stiffness, even in adults without apparent cardiovascular diseases [74]. The enlargement and elonga-
tion of large elastic arteries is more likely due to the degradation and fragmentation of elastin fibers and elastic laminae, which releases 
the arterial wall stress [108]. The failure of elastic fibers to sustain physiological hemodynamic stress is an indication of material fatigue 
and mechanical ageing in the arterial wall. As a result, the arterial tortuosity of both proximal and distal segments of the aorta increases 
continuously over one’s lifespan, leading to asymmetric blood flow [44]. Elastic arteries that contain more smooth muscle cells and less 
elastin show minimal age-induced mechanical and geometrical changes [44]. Nevertheless, compared to the central conduit vessels near 
the heart, the peripheral elastic arteries have little impact on the elastic reservoir function, pulse pressure and cardiac preload.
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Muscular Arteries

Muscular arteries, such as the common femoral artery, coronary arteries and the internal carotid artery, contain primarily longitudinal 
elastic lamina located near the media/adventitia boundary, whereas smooth muscle cells dominate in the media [46,109]. They are more 
compliant longitudinally than circumferentially. Different from the central elastic arteries, normal aging does not cause enlargement in 
distal muscular arteries [87,110]. Age-induced remodelling is predominantly longitudinal and the arteries become more tortuous rather 
than increasing in diameter [111,112]. The stiffness and wall thickness of muscular arteries remain unchanged during aging [87,98,113]. 
With age, the axial force and stress decreases whereas the circumferential stress remains constant [111]. Degradation and fragmentation 
of elastin and proliferation of smooth muscle cells result in decreased axial pre-stretch of ageing human femoropopliteal arteries [111]. 
In contrast to the modest change in mechanical properties, endothelial function of muscular arteries, assessed as flow-mediated dilation 
(FMD) in the brachial artery, deteriorates substantially with age [114-116].

In human pulmonary arteries, the extensibility and compliance decrease with increasing age. However, the medial collagen contents of 
the vessels exhibit a steady fall at about one percent per decade [117]. Ageing is accompanied by an increase in thickness and a decrease 
in the cellularity of the tunica media [27]. The content of elastin (relative to the dry weight of the vessel) appears to increase with age, 
due probably to the decrease in cellularity [118,119]. Nevertheless, the reduction of the arterial wall compliance is more likely due to the 
age-related molecular changes in the medial elastic fibers. Fracture of elastins is associated with smooth muscle cell trans-differentiation 
leading to osteogenesis and deposition of calcium in the arterial wall [120-123]. Calcification is frequently encountered in aged muscular 
arteries and significantly affect the wall properties [124]. Calcium deposition is found in both intima and media of the vessel wall [124-
127]. Calcification of the tunica media in coronary arteries independently predicts cardiovascular morbidity and mortality [128]. 

In muscular arteries, smooth muscle cells dominate the tunica media [85]. With age, the intima is thickened and contains layers of 
smooth muscle cells [129,130]. The increased intima-to-media ratio is a strong predictor of future cardiovascular events [96,131-133]. 
Intimal hyperplasia is primarily due to the proliferation and migration of smooth muscle cells from the media/adventitia to the sub-
endothelial layer with additional deposition of significant quantities of extracellular matrix proteins [134]. During this process, vascular 
smooth muscle cells undergo phenotypic changes from “contractile” to “synthetic” in turn altering the vessel wall structure and mechan-
ics [132,135]. Cyclic strain acts as a signal to stimulate the growth and activation of smooth muscle cells [136-138]. With age, endothelial 
dysfunction occurs when the balances between pro- and anti-oxidants, vasodilators and vasoconstrictors, pro- and anti-inflammatory 
molecules, and pro- and anti-thrombotic signals are perturbed [139,140]. Thus, although the structure of the peripheral muscular arter-
ies is only minimally affected by aging, impaired vasomotor function associated with endothelial dysfunction contribute to peripheral 
resistance [138,141].

Small Arteries

Small arteries account for more than 40% of total peripheral resistance [142,143]. They have relatively high amount of smooth muscle 
cells that produce myogenic tone [144]. Myogenic contraction occurs spontaneously in response to enhanced stretch without the stimula-
tion by specific vasoactive mediators. It is mediated in part by tensile strain of integrins attached to the extracellular matrix, which are 
highly sensitive to ambient calcium levels [145-147]. The proximal resistance arteries are the main site for vasoconstriction, which par-
tially protects the distal resistance arteries from pressure overload [143]. However, prolonged elevation of the myogenic tone stimulates 
vessel wall remodelling, which restores the wall stress and tone while increasing vascular resistance [148,149]. Proximal small arteries 
that exhibit less myogenic tone undergo outward hypertrophic remodelling [150-153]. The smaller arterioles, which mount a more rigor-
ous myogenic response, exhibit inward eutrophic remodelling (a narrower lumen with no change in smooth muscle mass) [154]. Both 
hypertrophic and eutrophic remodelling increases the ratio of the media cross-sectional area to lumen area [155]. Because of incompress-
ibility of the wall mass, a given change in tone and circumferential shortening elicits an enhanced effect on lumen diameter of the small 
arteries [156]. According to Poiseuille’s law (flow is related to the fourth power of the vessel radius), slight alteration in lumen of arteries 
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results in significant changes in arterial resistance [87,157]. The increased wall-to-lumen ratio of small resistance arteries, especially the 
inward eutrophic remodelling, has the greatest value for predicting life-threatening cardiovascular events [158-161]. Assessment of wall-
to-lumen ratio of retinal arterioles represents an attractive tool to identify patients with increased cerebrovascular risk [161]. 

With age, the stiffness of the wall components is progressively increasing [162], whereas the distensibility of small resistance arter-
ies increases or remains the same [151]. The distensibility is preserved in ageing arteries by geometric adaptation of the arterial wall 
[162]. The altered structure and function of small arteries exacerbate central arterial stiffness [163-166]. Mechanical strain and pulsatile 
stretching promote vascular smooth muscle cell migration, hypertrophy or hyperplasia, and matrix synthesis, resulting in a remodeled 
vascular wall [167-170]. Integrins, the cell-surface adhesion receptors, mediate the crosstalk between vascular smooth muscle cells and 
the extracellular matrix environment [171]. Specific integrin receptor subtypes form complexes with fibronectin, and to a lesser extent 
collagen, to regulate cytoskeletal dynamics and maintain vascular myogenic force at a given pressure [172,173]. Changes in integrin 
expression profile are associated with the remodelling of both the arterial wall and extracellular matrix [18,174,175]. In particular, the 
transformation of cytoskeletal protein actin, from globular to filamentous, results in smooth muscle cell stiffening [176,177].

Myogenic constriction plays a key role in the steady-state control of regional blood flow [159,178]. With advancing age, the marked 
increase of PWV in central large arteries together with a lack of stiffening in peripheral muscular arteries promote the transmission of 
potentially deleterious pulsatile energy into the peripheral microcirculation [156]. Long-term elevation of pulse pressure promotes the 
remodelling of small resistance arteries. Inward remodelling s limits hyperemic flow reserve of the microcirculation and causes focal tis-
sue ischemia [70,166,179-181]. Age-associated cardiovascular diseases in brain and kidney are characterized by impaired regulation of 
local blood flow and microscopic tissue damages [156]. In kidney, the glomerular capillaries are particularly vulnerable to pulsatile dam-
ages [182]. Myogenic response of the afferent arteriole protects the glomerulus against elevated systolic pressures [183]. Impaired renal 
autoregulation results in an elevated glomerular capillary pressure and accelerated decline in kidney function [184]. Brain atrophy is 
correlated with cardiovascular risk factors and microvascular abnormalities [185]. Cerebral micro-bleeds are highly related to the altera-
tions in pulse pressure [186]. High local flow facilitates penetration of excessive pulsatile energy into the microvascular bed, contributing 
to repeated episodes of microvascular ischemia and tissue damage [187]. In brain, small vessels within the regions with white matter 
lesions exhibit thickened media and reduced internal diameter, thus a markedly increased media-to-lumen ratio [159]. Silent cortical and 
subcortical infarcts contribute to the development of age-related cognitive decline and dementia [188-193]. Importantly, chronic kidney 
disease, microvascular brain damage and cognitive impairment are frequently clustered together, supporting a shared mechanism of 
pathogenesis [194-196]. The overviews of the aged arteries are summarized in figure 4.

Figure 4: Summary of changes in aged arteries. With age, large elastic arteries increase in diameter, length and 
tortuosity. The stiffness of the large elastic arteries also increases with the collagen cross-linking in the vessel wall. Aged 

muscular arteries become more tortuous rather than increasing in diameter. The stiffness and wall thickness of 
muscular arteries remain unchanged during aging. Intima thickening occurs as a result of smooth muscle cells 

migration. Elastin fracture in the vessel wall increases with age and calcification in both intima and media is frequently 
encountered in aged muscular arteries of the vessel wall. In aged small arteries, hypertrophic or eutrophic remodelling 

may occurs and increases the ratio of the wall-to-lumen.
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Therapeutics Targeting Arterial Remodelling 

Cardiovascular diseases account for ~50% and ~25% of deaths in the developed and developing countries, respectively, making it 
the number one cause of total mortality worldwide [197]. In 2010, the leading risk factors and diseases accounting for global deaths and 
disability-adjusted life years are hypertension (~18 and 7%), ischemic heart disease (~14 and 5%), tobacco smoking (~12 and 6%) and 
cerebrovascular disease (~11 and 4%), all of which are related to vascular abnormalities [34]. Therapies targeting common risk factors 
for cardiovascular diseases, such as hypertension and dyslipidemia, are effective in reducing the total mortality. For example, aggressively 
lowering blood pressure to below 120 mmHg significantly decreases all-cause mortality in patients with increased cardiovascular risks 
[198]. However, relatively few therapeutics are available for specifically modulating the arterial wall, changes in which play a key role in 
the progression of many cardiovascular metabolic and renal complications. 

Arterial Stiffness

Arterial stiffening has been regarded as an “inevitable” consequence of ageing [131,199]. In humans, femoral PWV increases by ~5.4% 
for each decade of life, whereas aortic PWV changes two-fold faster with age [200,201]. A ~3% increase in PWV is expected to alter pulse 
pressure by ~5 mmHg and substantially alters cardiovascular risk [202,203]. Arterial stiffness falls into two categories: passive and ac-
tive [80]. For the former, disruption and fatigue fracture of the elastic fibers result in the transfer of pressure stress to collagens, leading 
to age-related arterial stiffening. The elastic modulus is commonly used to describe the properties of the wall materials such as collagen 
and elastin. On the other hand, arterial stiffness is determined not only by the elastic modulus but also by the dimensions of the blood 
vessel, such as wall thickness [204]. Apart from the structural components, vascular endothelium plays an important role in the functional 
regulation of arterial stiffness [205]. Changes in endothelial function and smooth muscle tone influence the stiffness of the elastic and 
muscular arteries [36]. Vasoconstrictors such as noradrenaline, endothelin-1 or angiotensin II increase large artery stiffness [201,206], 
whereas vasodilators such as glyceryl trinitrate elicits opposite effects [201,207-209]. 

Central arterial stiffness is a powerful and an independent predictor of total mortality among older individuals [210-212], in pa-
tients with end-stage renal failure [213,214], among hypertensive individuals and in subjects with type 2 diabetes [215-218]. Aortic 
stiffness causes hypertension, whereas the latter aggravates this degenerative process [219-222]. Traditional antihypertensive agents, 
such as thiazide diuretics, β-blockers and calcium channel blockers indirectly reduce arterial stiffness by lowering mean arterial pres-
sure, rather than having a direct effect on the large arteries [223]. However, a concomitant reduction in diastolic pressure have adverse 
clinical consequences because of the reduced perfusion in coronary arteries [224]. Nitrates primarily relax smooth muscle cells in large 
conduit muscular arteries thus attenuating arterial stiffness and remodelling [225]. Infusion of BQ-123, an endothelin antagonist, via a 
catheter results in a significant decrease in PWV and increase in arterial distensibility. Prostacyclin, apart from acting as a vasodilator, 
elicits anti-remodelling actions and attenuates smooth muscle cell proliferation. In ONgoing Telmisartan Alone and in combination with 
Ramipril Global Endpoint Trial (ONTARGET), the largest angiotensin receptor blocker cardiovascular outcome study, both telmisartan 
(an angiotensin II receptor blocker) and ramipril (an angiotensin-converting enzyme inhibitor) prevent cardiovascular events largely 
by restoring the endothelial functions and decreasing arterial stiffness in normotensive patients [226-230]. The β-blocker nebivolol im-
proves endothelial function by acting as a NO donor [231]. Arterial stiffness may be modified by therapies that reduce inflammation, such 
as hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) [232,233]. Combined treatment with vitamins C and E improves 
endothelium-dependent vasodilation and arterial stiffness in untreated, essential hypertensive patients [234]. The advanced glycation 
end-products (AGE) accumulate in the arterial wall slowly with age and at an advanced rate in diabetic patients [235,236]. AGE increase 
the stiffness of collagen fibers by forming protein-protein crosslinks and preventing enzymatic digestion [237]. Non-enzymatic breaking 
of AGE crosslinks improves arterial compliance and reduce pulse pressure in the elderly [236,238]. Despite these progresses, currently 
there lacks effective therapies that specifically target the structural and/or mechanical components in large arteries.
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Smooth Muscle Cell Proliferation

With age, vascular smooth muscle cells undergo functional changes to alter the normal structure of the arterial wall, predisposing 
it to the formation of neointima, atheroma and aneurysm [239-241]. From the second decade of life, intimal thickening develops as an 
adaptive response to luminal pressure and shear stress on the arterial wall [4,81-83]. Neointima comprises layers of smooth muscle cells 
separated by thin elastic and collagen fibers. It exhibits concentric development in the aorta and eccentric appearance in the coronary 
arteries [242,243]. Intimal thickening represents a pre-atherosclerotic lesion [85]. Small plasma-like deposits of glycosaminoglycans 
are present within the thickened intima [84]. Sub-endothelial deposition of cholesterol and phospholipids promotes the development of 
advanced atherosclerotic lesions [4]. While intimal hyperplasia during restenosis leads to luminal narrowing, the outward remodelling 
during atherosclerosis compensates for the plaque growth and postpones the progression to flow-limiting stenosis [244,245]. In the af-
fected area of aneurysm, smooth muscle cells are switched from the contractile to a metabolic state, thus affecting the catabolism of elastic 
fibers and collagens [246]. Changes of the internal elastic lamina, including irregular thickness, focal absence, splitting, reduplication and 
calcifications, facilitate smooth muscle cell proliferation and migration [247]. In addition, endothelial dysfunction and lesions, as well as 
inflammatory cell recruitment and infiltration play an important role in smooth muscle call activation [248-250]. 

Angiotensin II is not only a potent vasoconstrictor but also a pro-inflammatory molecule stimulating cell growth and matrix deposition 
during arterial remodelling [251]. It initiates arterial remodelling via inducing smooth muscle hypertrophy, hyperplasia and migration 
[252]. The developing neointima expresses high levels of angiotensin-converting enzyme [253]. Blockers of angiotensin II receptor in-
hibit neointimal formation and reduces restenosis [254-256]. However, large clinical trials do not support similar effects of angiotensin-
converting enzyme inhibitors on neointimal formation and restenosis [257-259]. Smooth muscle cell activation is associated with the loss 
of elastic fibers in the arterial wall. Passive elastin degradation occurs with age, as a result of disorganization and fracture associated with 
the total number of cardiac cycles throughout life [260]. The enzymatic degradation of elastins involves MMPs activation [261]. Elastase 
decreases elastin content whereas collagenases modulate collagen composition. High serum MMP levels are associated with increased 
arterial stiffness [261]. Reversing the alterations to elastic fibers by targeting the proteolytic enzymes has been investigated as a thera-
peutic treatment for arterial ageing [260-264]. Theoretically, a combination of therapies is needed to inhibit the degradation and promote 
the proper assembly of elastic fibers. However, the quantification and calculation of arterial stiffness are often difficult in human, thus 
hindering this approach for therapeutic development.

Arterial Calcification

The incidence of aortic calcification increases steadily with age, affecting ~4% in the third decade of life and almost all subjects by the 
age of 50. Echocardiography is able to detect arterial calcification in approximately 30% of subjects over the age of 60 [131]. The frag-
mented elastin serves as a nidus for calcium deposition. Arterial calcification is not only a degenerative process during ageing, but also 
actively involved in the pathogenesis pathways of atherosclerosis, diabetes and renal failure [126]. Calcification of the ascending aorta 
and its arch reduces their elasticity and affects the hemodynamic parameters, leading to systolic hypertension, left ventricular myocardial 
hypertrophy, diastolic dysfunction and valve incompetence [126]. Abdominal aortic calcium deposits are closely associated with the pres-
ence of calcified plaques in the coronary arteries and independently predict cardiovascular morbidity and mortality [265]. Therefore, 
therapeutic strategies targeting the abdominal region of the aorta may be useful in slowing the process of aortic stiffening and have an 
impact in reducing overall cardiovascular risk.

Risk factors for vascular calcification are similar to those of atherosclerosis [266]. The calcifying vascular cells (a subpopulation of 
smooth muscle cells with osteoblastic characteristics) are pres¬ent in atherosclerotic plaques and produce mineral that clusters locally as 
small lumps, histologically resembling atherosclerotic plaque [267]. Statin-based hypolipidemic therapy reduces the intensity of calcifica-
tion of vessel walls and cardiac valves [268-273]. Apart from the calcification associated with atherosclerosis in the arterial intima, a more 
diffuse deposition of calcium salts termed medial elastocalcinosis is seen in the arterial media of patients with diabetes or renal failure 
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[123,274,275]. Hyperglycemia causes activation of vascular smooth muscle cells to differentiate into osteoblast-like cells [276]. In patient 
with chronic kidney disease, diabetes enhances arterial calcification irrespective of the stage of renal insufficiency [277]. Pharmacological 
control of elastocalcinosis may be a new approach to the treatment of essential systolic hypertension [278]. Suppression of endothelin by 
sinitrodil, a NO donor, induces mineral loss in the aorta. Treatment with eplerenone, an aldosterone receptor inhibi¬tor, inhibits calcific 
aortic stenosis in animal models [279,280]. The increase in arterial calcium deposition is related to the decreased bone mineral density 
in humans [121,122,281]. Optimal control of calcium and phosphate concentrations attenuates the progression of vascular lesions in 
patients with end-stage renal disease, for whom vessel calcification remains a major problem [282,283]. Drugs used for osteoporo¬sis 
treatment (calcitriol, estradiol, bisphosphonates) may interfere with the calcification processes occurring in the vessel wall [284,285]. For 
example, increase in arterial stiffness and calcification is associated with the administration of vitamin D and nicotine [286]. On the other 
hand, drugs used to treat cardiovascular problems (statins, angio¬tensin convertase inhibitors, warfarin, heparins) may have an effect on 
bone tissue metabolism. 

Arteriolar Myogenic Tone

In small resistance arteries, the activation of myogenic tone represents a major determinant in the regulation of local hemodynamics 
[287]. The myogenic response is initiated when the mechanical signal induces membrane depolarization of the vascular smooth muscle 
cells, in turn causing Ca2+ mobilization and activation of contractile proteins [288,289]. Thus, in response to changes in intravascular 
pressure, vascular smooth muscle cells, which are arranged circumferentially or near perpendicular to the long axis of the vessel, become 
shortened to constrict the blood vessel [290]. Smooth muscle cell depolarization is mediated by the activation of cation channels, the 
closure of K+ or the opening of Cl- channel, which subsequently activate voltage-gated Ca2+ channels (VGCC) [291-295]. The molecular 
identity of the cation channel(s) leading to stretch-induced depolarization remains to be characterized [296]. Endothelial cells induce hy-
perpolarization of smooth muscle cells in small resistance arteries via the activation of small-conductance Ca2+-activated K+ channel (SKCa, 
blocked by apamin or UCL 1684) and intermediate-conductance Ca2+-activated K+ channel (IKCa, blocked by charybdotoxin or TRAM-34) 
[297-300]. Progressive reduction of endothelium-dependent hyperpolariation is observed during ageing in normotensive animals and 
humans [301-304]. 

Vasodilating drugs, such as hydralazine, dipyridamole and calcium channel blockers, act to decrease resistance of the smaller arteri-
oles [296], whereas adrenergic stimulation enhances myogenic vasoconstriction [305]. Blockage of VGCC by nifedipine or nisoldipine (L-
type Ca2+ channel blockers) eliminates active myogenic constriction but does not affect mechanosensation and membrane depolarization 
of smooth muscle cells [306-309]. Myogenic responses of small arterioles less than 25 µm in diameter (such as those in skeletal muscle) 
are relatively insensitive to Ca2+ channel blockers [310]. Drugs targeting the regulation of myogenic constriction possess therapeutic 
potentials for pathologies including hypertension, cerebral or coronary vasospasm, and vascular complications associated with insulin 
resistance and overt diabetes [296]. Different vascular beds use distinctive intracellular mechanisms for myogenic tone regulation. The 
heterogeneity across tissues provides potential benefit for designing specific therapeutic interventions of the myogenic tone [308,311-
313]. For example, Rho-kinase inhibitors are more effective than nitroglycerin to induce vasodilatation in vasospastic coronaries for pa-
tients with refractrory angina [314]. In kidney, myogenic constriction of afferent arterioles attenuates the transmission of high pressure 
to the glomerular capillaries, thus preventing hyperfiltration and glomerulosclerosis [315,316]. Pharmacological agents modulating the 
specific myogenic mechanisms would confer an advantage over those with general activities on vascular activaions [172].

Concluding Remarks

Vascular ageing is characterized by the structural, mechanical and functional alterations of the arterial wall and represents a funda-
mental process underlying the development of many ageing-related diseases. For example, an increased media-to-lumen ratio of small 
arteries is associated with an increased prevalence of cardiovascular events, whereas the augmented intima-media thickness in large 
arteries predicts the occurrence of both stroke and myocardial infarction. Arterial remodelling involves both cellular (e.g. endothelial and 
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smooth muscle cells) and non-cellular components (e.g. elastins and collagens). With age, endothelial dysfunction, smooth muscle cell 
proliferation and migration, extracellular matrix synthesis or degradation collectively contribute to the stiffness of central elastic arteries, 
which increases the systolic and pulse pressure, leading to microcirculatory complications in end organs such as brain, kidney and heart. 

Aging-associated arterial remodelling is fundamentally intertwined with the arterial alterations associated with other well-known 
risk factors (e.g. excess food intake, altered metabolism, smoking, hypertension and lack of exercise). Understanding how aging, stiff-
ness, and blood pressure interact over time is a complex conundrum. Some lifestyle and pharmacological interventions have proved to 
be effective in preventing or ameliorating hypertension. However, the majority of therapeutics target the consequences rather than the 
pathophysiology of vascular ageing. For example, traditional antihypertensive therapies, including the RAAS, calcium channel and beta-
blockers, indirectly reduce the stiffness of arteries by lowering total peripheral resistance but not the arterial remodelling directly associ-
ated with aging. There lacks effective agents that specifically modulate the mechanical properties of the arterial wall. 

Arteries exhibit differences in their microstructural organization, constituent mass ratios and mechanical responses depending on the 
anatomic locations and physiologic functions, which predispose them to varying mechanical responses and pathologies. Considering the 
versatile and dynamic nature of the vascular beds, the prevention of arterial ageing would require early intervention, lifelong treatment 
and site-specific approaches. The endothelium is a favourite early target of vascular ageing. Nevertheless, in vivo assessment of arterial 
structure and function will provide more accurate insights to define disease-free age-related changes in arteries and then consider the 
most effective therapeutic target for modulating the process of arterial remodelling.
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