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Abstract 

This paper presents a boundary element analysis of linear elastic fields in a layered halfspace 

whose material interface planes are not parallel to its horizontal boundary surface. This 

boundary element analysis uses the generalized Kelvin solution in a multilayered elastic solid 

(or the so-called Yue’s solution) for taking into account the non-horizontally layered 

structures. It also adopts the infinite boundary elements for evaluating the influence of a 

far-field region. It further adopts both the discontinuous finite and infinite boundary elements 

to discretize the boundary surface around the strike lines of the inclined material interfaces. It 

uses the Kutt’s numerical quadrature to evaluate the strongly singular integral in the 

discretized boundary integral equation. Numerical examples are presented to illustrate the 

effects of the non-horizontally layered materials to the displacements and stresses induced by 

the tractions on the horizontal boundary surface. Two non-horizontally layered halfspace 

models are used for numerical analysis and illustrations. Numerical results show that across 

the material interface, the elastic displacements are non-smoothly continuous to different 

degrees and some stress components can have very high values at and adjacent the interface 

planes, which can be important to tensile or shear failure in non-homogeneous materials. 
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1. Introduction 

1.1. Horizontally layered halfspace model 

  Layered solid materials widely exist in nature or man-made structures. Their responses to 

external loadings before failure can be modelled with the responses of elastic halfspace model 

subject to the same external loading. The elastic halfspace model can compose of the layered 

elastic materials with the same mechanical properties and geometries of the actual layered 

solid materials. The interfaces of the layered solid materials may or may not be parallel to 

their boundary surfaces. Many investigations have been done for the elastic responses of the 

horizontally layered halfspaces subject to tractions or other types of loading conditions by 

many researchers since 1940s (e.g., Holl [1], Burminster [2,3,4], King [5], Singh [6] and Pan 

[7]). A relatively complete list of relevant publications can be found in the recent publications 

by Yue [8,9]. 

1.2. Non-horizontally layered halfspace model 

  As shown in Fig. 1, this paper examines the elastic responses of an elastic halfspace with 

non-horizontally layered solid materials due to the action of tractions at the horizontal 

boundary surface. There is a very limited investigation on the elastic responses of such 

non-horizontally layered halfspaces subject to tractions. Two examples of relevant studies are 

given by Pereira and Parreira [10] and Moser et al. [11] respectively. Due to its importance in 

science and engineering and its difficulties in analytical or numerical formulations, this paper 

aims to develop a novel boundary element method to calculate the elastic responses of the 

displacement and stress fields with high efficiency and accuracy. 

1.3. Classical boundary element method and issues 

  The classical boundary element method (BEM) is ideally suited for the analysis of elastic 

solid materials occupying either full-space or halfspace because BEM only needs to discretize 

the external boundary surface and automatically satisfies the conditions at the infinity. The 

classical Kelvin’s solution is commonly used as the fundamental singular solution in classical 

BEM. When it is applied to a layered solid as shown in Fig. 1, it needs to divide the layered 
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solid into many homogeneous domains. Furthermore, it needs to discretize the internal 

interfaces of the layered materials so that the continuity conditions at the internal interfaces 

can be formulated numerically together with those at the external boundary surfaces. For 

example, Pereira and Parreira [10] and Moser et al. [11] adopted this multi-region method of 

BEMs and analyzed the elastic responses of a halfspace with two non-horizontal layers 

subject to tractions. As the number of layers increases, however, the efficiency and accuracy 

of the classical BEM decrease significantly. This multi-region method also has the 

disadvantage in effective and accurate calculations of the elastic fields across internal material 

interfaces. Thirdly, the fundamental singular solutions, used as the kernel functions, in the 

classical BEMs vary rapidly if an internal point is very close to the elements located at 

material interfaces. 

1.4. Aim and approach of this study 

  In this paper, a single-region BEM is developed and presented for the analysis of the elastic 

responses of a non-horizontally layered halfspace subject to tractions (Fig. 1). The generalized 

Kelvin solution in a multilayered elastic solid given by Yue [12] is used to eliminate the 

discretization task at the internal interfaces of layered materials. Furthermore, the infinite 

boundary element technique proposed by Moser et al. [11] is used to take into account the 

influence of a far-field region because of its straightforward implementation. Other infinite 

boundary element techniques can be found in the publications by Waston [13], Beer et al. [14], 

Beer and Waston [15], Zhang et al. [16], Liu and Farris [17], Pereira and Parreira [10], Davies 

et al. [18], Bu [19], Gao and Davies [20], Moser et al. [11], Salvadori [21], Liang and Liew 

[22] and Ribeiro et al. [23]. Thirdly, the discontinuous boundary element technique is adopted 

to deal with the step-discontinuity of material properties at the interface strike line on the 

horizontal boundary surface of the non-horizontally layered halfspace. Fourthly, special 

attentions are given to various singular integrals involved in the discretized boundary integral 

equations. The proposed BEM is applied to specifically solving the elastic response of a 

halfspace with two or three non-horizontal layers under a square footing loading on the 

horizontal boundary surface. Numerical results show the influence of non-horizontally 
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layered materials to the elastic displacement and stress fields induced by the normal footing 

tractions on the horizontal boundary surface. 

2. The governing equations for BEM in non-horizontally layered halfspace 

  Fig. 2 shows the horizontally oriented boundary surface of the non-horizontally layered 

halfspace model. The interface strike line represents an intersection line of an internal 

interface plane of any two fully contacted dissimilar material layers with the horizontal 

boundary surface. The boundary surface is divided into two parts FS  and IS . They 

represent a core region around the traction area and a far-field region beyond the traction area, 

respectively. Accordingly, using the generalized Kelvin solution of a multilayered solid 

occupying the full-space [12], the boundary integral equations for the non-horizontally 

layered halfspace without body forces can be expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
 

 , , 
F I F I

Y Y
ij j ij j ij jS S S S

c P u P t P Q u Q dS Q u P Q t Q dS Q
+ +

+ =∫ ∫             (1) 

where P and Q are, respectively, the field and source points; jt  and ju  are, respectively,  

tractions and displacement; Y
ijt  and Y

iju  are, respectively, the kernel functions of the tractions 

and displacements of the generalized Kelvin solution.  

  The free term ( )ijc P  in Eq. (1) depends only upon the asymmetric behavior of the 

singular terms of the generalized Kelvin solution and the local geometry of the boundary at 

the point P. In using the fundamental solution of a layered space, ( ) 0.5ij ijc P δ=  for the 

point P located on a smooth boundary and not at the material interface [24]. When the point P 

is located at the strike line of the material interface on the horizontal boundary surface, there 

is no closed-form expression for ( )ijc P  available in the open literature. So, instead, the 

discontinuous boundary element technique is adopted for resolving this task. Its details are 

given in Section 4.1. 

  After obtaining the displacements and tractions on the boundary, the displacements at any 

internal point p can be determined by using the displacement integral equations as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( )
  

 , , 
F I F I

Y Y
i ij j ij jS S S S

u p t p Q u Q dS Q u p Q t Q dS Q
+ +

+ =∫ ∫                  (2) 
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  By using Eq. (2), the strain-displacement equations and the constitutive equations, the 

stresses at any internal point p can be expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
  

  , , 
F I F I

Y Y
ij ijk k ijk kS S S S

σ p U p Q t Q dS Q T p Q u Q dS Q
+ +

= −∫ ∫                 (3) 

where Y
ijkU  and Y

ijkT  are the new kernel functions obtained from the displacements and 

stresses of the generalized Kelvin solution in a layered solid of full-space extent and the 

relative functions are presented in Appendix A. 

3. The generalized Kelvin solution in non-horizontally layered fullspace 

3.1. Two Cartesian coordinate systems and relationship 

  As shown in Figs. 1 and 2, the boundary integral equations are established in the Cartesian 

coordinate system Oxyz, where the non-horizontally layered material interface planes have a 

dip angle θ to the horizontal xy plane. On the other hand, another Cartesian coordinate system

O x y z′ ′ ′ ′ , shown in Fig. 3, is used for calculating the displacements and stresses of the 

generalized Kelvin solution, where the O x y′ ′ ′  plane is parallel and the z axis is perpendicular 

to the non-horizontally layered material interface planes. The y and 'y  axes of the two 

Cartesian coordinate systems are parallel to each other.  

3.2. The generalized Kelvin solution in O x y z′ ′ ′ ′  and Oxyz coordinates 

  As shown in Fig. 3, the generalized Kelvin solution (i.e., the kernel functions in Eqs. 

(1)-(3)) is presented in the Cartesian coordinate system O x y z′ ′ ′ ′ . The solution was given by 

Yue [12] for the elastic response of a n-layered solid of full-space extent subject to a point 

body force vector ( ), , x y zf f f′ ′ ′  at any point in the interior of the layered solid. More details 

of the solution and its mathematical formulation and verification can be found in Yue [8,9]. 

The solution given by Yue [8,9,25] is re-named as Yue’s solution by Merkel et al. [26] and 

Maloney et al. [27] in their analysis of the stresses and deformation induced in cells.  

  Since 2000, Yue and his co-workers [28] have incorporated this generalized Kelvin solution 

into the classical BEMs for the analysis of the fracture mechanics in layered solids and found 
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the solutions for many specific problems of interests in science and technology, where the 

layered material interface planes are horizontally placed and parallel to the horizontal 

boundary surface. In this paper, we attempt to extend the BEMs for the elastic analysis of 

displacement and stress fields in the non-horizontally layered halfspace due to tractions on the 

horizontal boundary surface.  

  For an ease of reference, some basic formulations of the fundamental solution are provided 

in Appendix B. It is the analytical solution of closed-form singularity terms for the elastostatic 

field in a layered solid of full-space extent due to the action of a point force vector (Fig. 3). 

The total number of the dissimilar layers is an arbitrary nonnegative integer n. The dissimilar 

homogeneous layers adhere an elastic solid of upper halfspace extent and another elastic solid 

of lower halfspace extent. The interface between any two connected dissimilar layers is fully 

bonded. 

  As shown in Fig. 4, the generalized Kelvin solution (i.e., the displacements iu ′  and 

stresses i jσ ′ ′ ) due to the point force vector ( ), , x y zf f f  in the Cartesian coordinate system 

Oxyz can be obtained from those due to the point force vector ( ), , x y zf f f′ ′ ′  in the Cartesian 

coordinate system O x y z′ ′ ′ ′ . Detailed descriptions are presented in Appendix C. 

4. Five boundary element techniques for BEM in non-horizontally layered 

halfspace 

4.1. General 

  As shown in Fig. 2, the horizontal boundary surface ( , ,  0)x y z−∞ < < +∞ = can be divided 

into two regions SF and SI. Each region can be further divided into two sub-areas. The first 

sub-area has homogeneous material properties and is away from the material interface strike 

line. The second sub-area has step-discontinuous in material properties along the x-axis across 

the strike line and covers or adjacent to the strike line. So, the entire horizontal boundary 

surface has to be divided into four types of boundary areas: finite homogeneous area, finite 

area with strike line, infinite homogeneous area, and infinite area with strike line.  
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  The free term ( )ijc P  depends on the shape of the boundary and/or elastic parameters. The 

closed-form expression of ( )ijc P  is not available for the point P located on an interface 

strike line where the two elastic parameters are step-discontinuous along the x-axis direction 

on the boundary surface. Secondly, if the nodes of a continuous boundary element are not 

located on the interface strike line, the line can be covered by the element. For this situation, 

the Kutt’s numerical quadrature presented in Section 5 below cannot be used to calculate the 

strongly singular integral of the BEM. Thirdly, when the tractions of a node on the interface 

strike line are unknown, a step-discontinuity in the traction can occur at that node, which 

implies that the number of equations at that node is smaller than the number of unknowns at 

that node. Hence, the following discontinuous boundary element technique is adopted to 

numerically resolve this task for BEM in non-horizontally layered halfspace. Accordingly, the 

following five boundary element techniques are used. 

4.2. Continuous finite element for homogenous boundary area (type I)  

  The conventional eight-node isoparametric and continuous elements which are introduced 

by Xiao and Yue [28] are shown in Fig. 5a. They are employed to discretize the finite core 

region SF that is homogeneous in material properties and away from the material interface 

strike lines. The coordinates at any point in a finite boundary element can be related to its 

element nodal values as follows: 

e=x Nx  (11a) 

where x (= [ ]Tx y z ) are Cartesian coordinates of the point with intrinsic coordinates 

( ),ξ η , ex (=
TT T T

1 2 8  x x x ) is a vector containing coordinates of nodal points at 

element e and N (= [ ]1 3 2 3 8 3N N NI I I ) is a matrix of the shape functions of a 

continuous finite element listed in Appendix D.1 ( 3I is a unit matrix (3×3)). 

  In a finite boundary element, the displacements and tractions are approximated using the 

following representation: 

eu = Nu  (11b) 
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et = Nt  (11c) 

where u (=
T

x y zu u u    ) and t (=
T

x y zt t t   ) are, respectively, the displacements and 

tractions of the point with intrinsic coordinates ( ), ξ η  and ue (=
TT T T

1 2 8  u u u ) and 

te (=
TT T T

1 2 8  t t t ) are, respectively, vectors containing displacements and tractions of 

nodal points at element e . 

4.3. Discontinuous finite element for boundary area with interface strike line (type II) 

  The eight-node isoparametric and discontinuous elements (type II), shown in Fig. 5b, are 

employed to discretize the finite area with strike line on the region SF. The element type II is 

positioned on two sides of the material interface strike line. Comparing to the element type I, 

the nodes 1, 2 and 5 of the discontinuous element are moved inside to avoid the 

discontinuities of unknown tractions and the traction kernel. The shape functions of the 

element type II are listed in Appendix D.2 where the discontinuous nodes are at a distance of 

1/3 from the element edge 1η = − . The coordinates, displacements and stresses at any point in 

a finite boundary element can be related to its element nodal values by using Eqs. (11a)-(11c). 

4.4. Continuous infinite element for homogenous boundary area (type III) 

  In order to consider the influence of a far field, the continuous infinite element developed 

by Moser et al. [11], as shown in Fig. 6a, is employed to the infinite region SI that is 

homogeneous in material properties and away from the material interface strike line. The 

coordinates at any point in an infinite element is then related to its element nodal coordinates 

as follows: 

e∞=x Nx  (12a) 

where ∞N (= 1 3 2 3 6 3I I IN N N∞ ∞ ∞   ) is a matrix of the shape functions of an infinite 

element listed in Appendix D.3 ( 3I is a unit matrix (3×3)). 

  In an infinite boundary element, the displacements and tractions are approximated using the 

following representation: 
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u e∞u = N u  (12b) 

t e∞t = N t                        (12c) 

where u∞N (= 1 3 2 3 6 3I I Iu u uN N N∞ ∞ ∞   ) and t∞N (= 1 3 2 3 6 3I I It t tN N N∞ ∞ ∞   ) are, 

respectively, matrices of the interpolation functions of displacements and tractions listed in 

Appendix D.3 ( 3I is a unit matrix (3×3)).  

4.5. Discontinuous infinite element for boundary area with interface strike line (type IV) 

  The discontinuous infinite elements (type IV), shown in Fig. 6b, are employed to discretize 

the infinite area with strike line on the region SI. Comparing to the element type III, the nodes   

1 and 4 of the discontinuous element are moved inside to avoid the discontinuity of the 

traction kernel. The shape functions and interpolation functions of the element type IV are 

listed in Appendix D.4 where the discontinuous nodes are at a distance of 1/3 from the 

element edge 1ξ = − . The coordinates, displacements and stresses at any point in an infinite 

boundary element can be related to its element nodal values by using Eqs. (12a)-(12c). 

4.6. Discontinuous infinite element for boundary area with interface strike line (type V) 

  The discontinuous infinite elements (type V), shown in Fig. 6c, are also employed to 

discretize the infinite area with strike line on the region SI. Comparing to the element type III, 

the nodes 2 and 3 of the discontinuous element are moved inside to avoid the discontinuity of 

the traction kernel. The shape functions and interpolation functions of the element type V are 

listed in Appendix D.5 where the discontinuous nodes are at a distance of 1/3 from the 

element edge 1ξ = . The shape functions and interpolation functions are different from those 

of elements (type IV) and substituting these functions of the element type V into Eqs. 

(12a)-(12c), the coordinates, displacements and tractions at any point in the element type V 

can be related to its element nodal values. 

5. Numerical integrations for BEM in non-horizontally layered halfspace 

5.1. Discretized governing boundary integral equations 
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  The above five boundary elements are used for discretization of the horizontal boundary 

surface SF and SI. The governing boundary integral equation (1) can be re-written as the 

following discretized expressions 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1

, , 

                    = , , 

e e
F I

e e
F I

FBE IBE
Y Y

ij j ij j ij jS S
e e

FBE IBE
Y Y
ij j ij jS S

e e

c P u P t P Q u Q dS Q t P Q u Q dS Q

u P Q t Q dS Q u P Q t Q dS Q

= =

= =

+ +

+

∑ ∑∫ ∫

∑ ∑∫ ∫
       (13) 

where FBE and IBE are the numbers of finite and infinite boundary elements, respectively. 

  Using Eqs. (11) and (12), Eq. (13) can be further re-written as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

8 6

1 1 1 1
8 6

1 1 1 1

, , 

                    = , , 

e e
F I

e e
F I

FBE IBE
α α Y α α Y u

ij j j ij α j ij αS S
e α e α

FBE IBE
α α Y α α Y t
j ij α j ij αS S

e α e α

c P u P u Q t P Q N dS Q u Q t P Q N dS Q

t Q u P Q N dS Q t Q u P Q N dS Q

∞

= = = =

∞

= = = =

+ +

+

∑∑ ∑∑∫ ∫

∑∑ ∑∑∫ ∫

(14) 

  The coefficients of the displacements and tractions at all the nodes in Eq. (14) are first 

calculated with numerical integration techniques. A set of linear algebraic equations is then 

formed for the determination of all boundary unknowns of displacements and tractions at the 

nodes. The generalized minimum residual algorithm is adopted in solving the set of linear 

algebraic equations, which can reduce the calculation time. 

5.2. Numerical techniques for regular and weakly singular integrals 

  In Eq. (14), when the source point P is not collocated on an integration element within 

either e
FS  or e

IS , all the integrals are regular. These regular integrals can be evaluated using 

the Gaussian quadrature rule. When the source point P is located in the same boundary 

element as the field point Q and αP Q= , both weakly and strongly singular integrals exist. 

An element subdivision technique developed by Lachat and Watson [29] is used to calculate 

the weakly singular integrals. The strongly singular integrals are evaluated using the 

numerical method described in Section 5.3. 

  After the unknown displacements and tractions at the nodes are determined from Eq. (14), 

the discretized equations (2) and (3) do not contain unknown variables. Because the internal 

point p under consideration is located within the domain, the singular integrals in Eqs. (2) and 
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(3) do not exist. Thus, the traditional Gaussian quadrature can be directly used for calculating 

the displacements and stresses at any internal point. When the internal point p is very close to 

the integration region on the boundary surface, the kernels in Eqs. (2) and (3) can vary rapidly. 

To obtain the desired accuracy of such integrals, an effective method is to implement a 

scheme of subdividing the element into sub-regions of integration. The subdivision scheme in 

Beer et al. [30] and Gao and Davies [31] are adopted in the present BEM. 

5.3. Numerical techniques for strongly singular integrals 

5.3.1 General 

  Since infinite boundary elements are used in this BEM, the strongly singular integrals 

cannot be evaluated indirectly using the rigid displacement method. Beer and Watson [14] 

evaluated the strongly singular integrals indirectly through the computation of an azimuthal 

integral, which is not an easy task. Pereira and Parreira [10] and Moser et al. [11] used the 

method proposed by Guiggiani and Gigante [32] to directly evaluate the strongly singular 

integrals. More recently, Gao [33] and Gao et al. [34] analytically evaluated all kinds of 

singular boundary integrals in 2D/3D BEM analysis. However, this direct method may not be 

applicable to the BEM of fundamental solutions with complex functions. If a numerical 

quadrature can be used directly for the evaluation of strongly singular integrals, the 

implementation of infinite boundary elements becomes a straightforward task. 

5.3.2 Kutt’s numerical quadrature 

  A Kutt’s numerical quadrature is adopted to calculate the strongly singular integrals for the 

infinite and finite elements, shown in Figs. 5 and 6. Here, the proposed numerical quadrature 

is presented only for the continuous infinite element (type III), shown in Fig. 6a and, of 

course, is easily used to other types of boundary elements, as shown in Figs. 5 and 6. On an 

infinite boundary element, the strongly singular integral can be expressed as 

( ) ( ) ( ) ( )
1 1

1 1
, , , , , Y c c u

ij αt P ξ η Q ξ η N ξ η J ξ η dξdη∞

− −
  ∫ ∫              (15) 

where J is the Jacobian transformation. The collocation point ( ), c cP ξ η  in Eq. (15) 

coincides with one of the nodal points on the element. 
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  Following Pan and Yuan [35], the strongly singular integral (15) can also be calculated by 

using the numerical quadrature proposed by Kutt [36,37]. Introducing the following polar 

point at the source point P on the element 

coscξ ξ r θ= +  and sincη η r θ= +                       (16) 

Eq. (15) can then be written as 

( ) ( ) ( ) ( )( )2

1 0
, , , , , 

θ R θ Y c c u
ij αθ

m
t P ξ η Q r θ N r θ J r θ rdrdθ∞  ∑∫ ∫        (17) 

where the summation on m is for all the triangles on the element. 

  These triangles are formed by connecting the source point and two corners. In the ensuing, 

we present this subdivision technique for a continuous infinite boundary element, as shown in 

Fig. 7. The details are further given below on the basis of three locations of the collocation 

point. 

 

Location a) (Fig. 7a) 

  If the collocation point is located at the corner node 1 of the element, the element is then 

divided into two triangles and the summation on m in Eq. (17) is from 1 to 2. As shown in Fig. 

7a, ( ) ( ),  1,  1c cξ η = − − . Eq. (16) can be re-written as 1 cosrξ θ= − +  and 1 sinrη θ= − + . 

For the triangle 1, [ ]0, 4/θ π∈  and ( ) 2 cosR /θ θ= ; for the triangle 2, [ ]4, 2/ /θ π π∈  

and ( ) ( )2 cos 2R / /θ θ π= − . 

 

Location b) (Fig. 7b) 

  If the collocation point is located at the corner node 2, the element needs to be divided into 

two triangles, and the summation on m in Eq. (17) is from 1 to 2. As shown in Fig. 7b, 

( ) ( ), 1, 1c cξ η = − . Eq. (16) can be re-written as 1 cosξ r θ= +  and 1 sinrη θ= − + . For the 

triangle 1, [ ]2, 3 4/ /θ π π∈  and ( ) ( )2 cos 2R / /θ θ π= − ; for the triangle 2, 

[ ]3 4, /θ π π∈  and ( ) ( )2 cosR /θ π θ= − . 
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Location c) (Fig. 7c) 

  If the collocation point is located at the middle node 5 of the square side, the element needs 

to be divided into three triangles, and the summation on m in Eq. (17) is from 1 to 3. As 

shown in in Fig. 7c, ( ) ( ), 0, 1c cξ η = − . Eq. (16) can be re-written as cosrξ θ=  and 

1 sinrη θ= − + . For different triangles, there are the following integral parameters: 

 For the triangle 1, ( )0, atan 2θ ∈    and ( ) 1 cosR /θ θ= ; 

 For the triangle 2, ( ) ( )atan 2 , atan 2θ π∈ −    and ( ) ( )2 cos 2R / /θ θ π= − ; 

 For the triangle 3, ( )2 atan 2 , θ π / π∈ −    and ( ) ( )1 cosR /θ π θ= − . 

  From Eq. (17), it is observed that the integrand is O(1/r), where r is the distance between 

the source and field points. Therefore, the Kutt’s numerical quadrature can be utilized to 

evaluate the inner finite-part integral-part integral with respect to r. The outer integral with 

respect to θ is regular and can be calculated with the regular Gauss quadrature. For a given 

Gauss point jθ , the inner integral in Eq. (17) can be approximated with Kutt’s N-point 

equispace quadrature as follows 

( ) ( )
0

1

1NR

l l
l

f r ldr w c ln R f R
r N=

− ≈ +  
 

∑∫                    (18) 

where lw  are the weights and lc  is the coefficients given by Kutt, and the integrand is given 

by 

( ) ( ) ( ) ( ) ( ) 2, , , , , Y c c u
ij j α j jf r t P ξ η Q r θ N r θ J r θ r∞ =                   (19) 

  In applying Kutt’s N-point equispace quadrature (18), it is assumed that the integrand 

( ) [ ]0 0, f r C R∈  and ( ) 1f r C∈  in the neighborhood of 0r = . In discretizing the boundary 

surface, discontinuous finite and infinite elements are positioned on the two sides of the 

material interface strike line. In this case, the integrand ( )f r  in Eq. (19) is smoothly 

continuous for the domain [0, R] and the quadrature (18) is used for evaluating the integral 

(17). In the following numerical examples, the Kutt’s 20-point equispace quadrature is used in 
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the finite-part integral with respect to r, and 20 Gaussian points for the regular outer integral 

with respect to jθ . 

6. Numerical verifications 

  Based on the above analytical and numerical equations, the BEM program in Fortran is 

made to calculate the elastostatic fields of displacements and stresses in a non-horizontally 

layered halfspace. This BEM program can calculate all the field variables at any point in a 

non-homogeneous layered halfspace induced by different tractions on the horizontal boundary 

surface. This section presents the numerical results of two elastic halfspace models to verify 

the present BEM program. 

6.1. Square footing on a homogeneous halfspace (example 1) 

  This example in Moser et al. [11] is used to verify the present BEM program. The elastic 

halfspace has the modulus of 10000 kN/m2 and a zero Possion’s ratio. A pressure of 100 

kN/m2 uniformly acts on a square area with the side length of 2 m on the horizontal boundary 

surface of the elastic halfspace. The boundary element mesh given in Fig. 4 of Moser et al. 

[11] is used. The present BEM program gives the vertical displacements of 0.022785 and 

0.011379 m at the center and the corner of the loaded square area, respectively. The exact 

vertical displacements at these two points are 0.022444 and 0.011222 m, respectively. The 

maximum relative difference between the present numerical results and the exact results is 

1.52%. 

6.2. Square footing on a bi-material halfspace with non-horizontal interface (example 2) 

  The example in Pereira and Parreira [10] is also used to verify the present BEM program. 

As shown in Fig. 8, an elastic halfspace has two different materials that are fully bonded at 

their non-horizontal interface. The dip angle of the non-horizontal interface plane is 45° (π/4). 

The strike line of the inclined material interface plane with the horizontal boundary surface is 

located at the line of 1 5 mx .= , y−∞ < < +∞  and z=0. A square area (1 m × 1 m) of its 

horizontal boundary surface is subject to a uniformly distributed footing pressure of 100 

kN/m2. The elastic moduli of the two materials are, respectively, 10000 and 2000 kN/m2. The 
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values of both materials’ Poisson’s ratios are zero. 

  As shown in Fig. 9, the core region SF is represented by a square area (5 m × 5 m) covering 

the loaded square area (1 m × 1 m). The center of the square core region SF is identical to the 

center of the loaded square area. The square core region is further divided into the first and 

second sub-areas. The first sub-area is not adjacent to the interface strike line and is 

discretized with a total of 284 finite continuous elements (type I). The second sub-area is on 

both sides of the interface strike line and is discretized with a total of 36 (2×18) finite 

discontinuous elements (type II). The far-field region SI outside the square core region is also 

further divided into the third and fourth sub-areas. The third sub-area is not adjacent to the 

interface strike line and is discretized with a total of 60 infinite continuous elements (type III). 

The fourth sub-area is on both sides of the interface strike line. Both side areas are discretized 

with one infinite discontinuous element (type IV) and one infinite discontinuous element 

(type V). The discontinuous elements are positioned on the narrow left and right side areas 

adjacent the interface strike line.  

  The present BEM program gives the vertical displacement values of 0.022900, 0.011405 

and 0.011233 m at the center, the two corners nearer to the interface and the other two corners 

of loaded square area, respectively. Because of symmetry, the vertical displacements at the 

two corners ( 1 m,  1 m,  0x y z= = ± = ) are the same. The corresponding values presented by 

Pereira and Parreira [10] are 0.022428, 0.011216 and 0.011195 m, respectively. The 

maximum relative difference between these two BEM programs is 2.1%. Pereira and Parreira 

[10] used the classical Kelvin’s solution based BEM program where the inclined interface 

plane is discretized with elements. The present BEM does not need to discretize the inclined 

interface plane.  

7. Numerical examples 

7.1. Square footing on bi-material halfspace with one non-horizontal interface 

7.1.1 General 

  This elastostatic problem is shown in Fig. 10. It is similar to the elastostatic problem 

examined in Section 6.2 and by Pereira and Parreira [10] (Fig. 8). The non-horizontal 
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bi-material interface dips at the arbitrary angle θ with the horizontal boundary surface. Its 

strike line is exactly along the y-axis. The bi-materials have their elastic properties as follows: 

E1=20 GPa, 1 0 3ν .= , E2=40 GPa, and 2 0 25ν .= . The square loading area has a side length of 

2 m and is acted by a uniformly distributed pressure of 100 MPa. The adopted boundary 

element meshes are much similar to the meshes shown in Fig. 9. The discontinuous elements 

are positioned on the two narrow zones on both sides of the material interface strike line (i.e., 

the y-axis). The two locations (noted as a and b in Fig. 10) correspond to 1 m, 0x z= − =（ ）and

1 m, 0x z= =（ ）, respectively. The symbol c′  is the horizontal distance from the point c on 

the material interface to the vertical coordinate plane ( 0,  , )x y z= −∞ < < +∞ . The c′  

values are equal to 1.7321, 0.5774, 0, -0.5774 and -1.7321 m, respectively for θ= 30°, 60°, 

90°, 120° and 150°. For benchmarking of the numerical results, the elastostatic problems of 

the homogeneous halfspace with either the material 1 (E1=20 GPa and 1 0 3ν .= ) or the 

material 2 (E2=40 GPa and 2 0 25ν .= ) under the same pressure loading are also calculated 

and presented below.  

7.1.2 Variations of elastic fields with x-axis for different θ values 

  Fig. 11 shows the variations of the three displacements ( , , )x y zu u u  along m 5m 5 ≤≤− x  

at (y = 0.5 m and z = 1 m) for the dip angle θ value of 30°, 60°, 90°, 120°, or 150°. It is 

evident that (1) the xu  in a homogeneous elastic halfspace shows an anti-symmetrical 

distribution about the vertical coordinate plane ( 0,  ,  )x y z= −∞ < < +∞ and (2) the yu  and 

zu  in a homogeneous elastic halfspace shows a symmetrical distribution about the vertical 

coordinate plane. However, the ( , , )x y zu u u  in the bi-material elastic halfspace do not have 

such anti-symmetrical or symmetrical distributions. The zu  (or yu ) value in the bi-material 

halfspace for each θ value is almost bonded by the two corresponding zu  (or yu ) values in 

the two homogeneous elastic halfspaces. But, the xu  value in the bi-material halfspace can 
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be either larger or less than the two corresponding xu  values in the two homogeneous elastic 

halfspaces. The xu  in the bi-material halfspace increases as θ increases from 30o to 90o and 

decreases as θ increases from 90° to 150°. The yu  and zu  in the bi-material halfspace 

increase as θ increases from 30° to 150°. Such results are due to the fact that as θ increases, 

the softer material 1 (E1=20 GPa and 1 0 3ν .= ) is enlarged whilst the harder material 2 (E2=40 

GPa and 2 0 25ν .= ) is reduced. Furthermore, except the yu  at θ = 60° in Fig. 11b, all the 

( , , )x y zu u u  in Fig. 11 show a very-slightly non-smooth continuation across the interface 

plane. 

  Fig. 12 shows the variations of the six stresses ( , , , , , )xx xy xz yy yz zzσ σ σ σ σ σ along

m 5m 5 ≤≤− x at (y = 0.5 m and z = 1 m) for the dip angle θ value of 30°, 60°, 90°, 120°, or 

150°. Table 1 presents the stress jumps across the material interface plane. The effects of the 

bi-materials to the six stress values are evident comparing to these of the two homogeneous 

elastic halfspaces. In particular, ,   and xx xy xzσ σ σ  are discontinuous across the material 

interface plane for θ=30°, 60°, 120° or 150°. ,   and yy yz zzσ σ σ  are always discontinuous 

across the material interface plane for θ=30°, 60°, 90°, 120° or 150°. The corresponding stress 

jumps are between 0.1489 MPa and 41.1799 MPa. At some interface points, some stresses 

(such as , , , , xx xy xz yz zzσ σ σ σ σ ) can have some very high values comparing to the values at 

other locations and the results of the homogeneous halfspace models. 

  Furthermore, the BEM results for the jumps ( ( ) ( )Δ ij ij ijσ σ x c σ x c+ −′ ′= = − = ) of 

,   and xx xy xzσ σ σ  values at the interface plane for θ=90° are between 0.0001 MPa and 

0.0009 MPa (Table 1) and very close to the theoretical zero (0) value since the three stresses 

are non-smoothly continuous at the interface plane [8, 9, 25]. Such near zero stresses jumps 

for θ=90° can indicate that the proposed BEM method is of high accuracy. 

7.1.3 Elastic fields on the horizontal plane z = 1 m for θ = 60° 
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  Fig. 13 shows the variations of ( , , )x y zu u u  on the horizontal plane area     

( 5 m 5 m,  0 5 m)x y− ≤ ≤ ≤ ≤  at z =1 m for θ=60o, respectively. As shown in Fig. 11a, xu  

has a slightly non-smooth continuation at the point ( ' 0.5774 m,  0.5 m,  1 m)x c y z= = = =

on the material interface. Fig. 13a further shows that xu  has a slightly non-smooth 

continuation across the material interface line of ( ' 0.5774 m,  0 5 m,  1 m)x c y z= = ≤ ≤ = . 

Fig. 13a and 13c show the both xu  and zu  decrease as y increases from 0 to 5 m. yu  is 

zero along the symmetrical line y = 0 and m 5m 5 ≤≤− x . yu  has two peak values and 

increases at the beginning and then decrease as y increases. The displacement yu  is 

non-smoothly continuous at the point ( ' 0.5774 m,  0 0.5 m,  1 m)x c y z= = ≤ ≤ =  on the 

material interface. 

  Fig. 14 shows the variations of the six stresses ( , , , , , )xx xy xz yy yz zzσ σ σ σ σ σ  over the 

above horizontal area ( 5 m 5 m,  0 5 m)x y− ≤ ≤ ≤ ≤  covering the square footing area at z=1 

m for θ = 60°. xyσ  and yzσ  are zero along the anti-symmetrical line y = 0. In this way, other 

stress components except xyσ  and yzσ  are discontinuous across the material interface line of 

( ' 0.5774 m,  0 5 m,  1 m)x c y z= = ≤ ≤ = . As y increases, the absolute values of xxσ , xzσ  

and zzσ  decrease in general and the absolute values of xyσ , yyσ  and yzσ  first increase 

and then decreases. 

7.1.4 Elastic fields at different z for y = 0.5 m and θ = 60° 

  Fig. 15 shows the variations of ( , , )x y zu u u  with x m) 5m 5( ≤≤− x  with different z 

values at y = 0.5 m and θ = 60°. As z increases, ( , , )x y zu u u  decrease in general. The effect 

of the inclined bi-material properties is clearly shown in Fig. 15. At the bi-material interface 

points, xu  and yu  have clear non-smooth continuation properties whilst zu  has less 

evident non-smooth continuation feature. 
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  Considering the importance of the Mises stress in analyzing the yielding state, Fig. 16 

presents the variations of the Mises stress with x m) 5m 5( ≤≤− x  with different z values at 

y = 0.5 m and θ = 60°. The Mises stress is defined as 

( ) ( ) ( ) ( )
1 22 2 2 2 2 21 6

2

/

e xx yy yy zz zz xx xy yz zxσ σ σ σ σ σ σ σ σ σ = − + − + − + + +  
               (20) 

  It can be found that the Mises stress has step discontinuation at the material interface points. 

As z increases, the absolute values and the discontinuous values of the Mises stress decrease 

in general. The effect of the bi-materials with inclined interface can be clearly observed in the 

non-regular variations of the Mises stress with x and z. 

7.2. Square footing on three material halfspace with two non-horizontal interfaces 

7.2.1 General 

  The present BEM program is further used to examine the elastic field in a three-material 

halfspace with two non-horizontal and parallel interfaces subject to the square footing 

pressure of 100 MPa (Fig. 17). The three materials have the elastic parameters as follows: 

1 1( 20 GPa, 0.3)E ν= = , 2 2( 40 GPa, 0.25)E ν= = and )3.0 GPa, 20( 33 == νE , respectively. 

In other words, the materials 1 and 3 have the same elastic properties and the material 2 is 

their sandwich. 

  In Fig. 17a, the points a and b are at x = −1 m and 1 m on the boundary urface (z=0), 

respectively. In Fig. 17b, 1c′  and 2c′  are the horizontal distances from the points 1c  and 

2c  on the material interfaces to the vertical coordinate plane Oyz along the x-axis direction, 

respectively. For θ= 30°, 60°, 90°, 120° and 150°, the 1c′  values are equal to 0.7321, 0.4226, 

-1, -1.5774 and -2.7321 m, respectively and the 2c′  values are equal to 2.7321, 1.5774, 1, 

0.4226 and 0.7321 m, respectively. The adopted boundary meshes are similar to those shown 

in Fig. 9. The discontinuous elements are positioned on the two sides of each of the two 

material interface strike lines (x = 1 m and z = 0) and (x = −1 m and z=0). The adopted 

boundary meshes have a total of 320 finite elements (248 type I elements and 72 type II 
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elements) and a total of 64 infinite elements (56 type III elements, 4 type IV elements and 4 

type V elements). 

7.2.2 Numerical results 

  Fig. 18 shows the variations of three displacements ( , , )x y zu u u  with x m) 5m 5( ≤≤− x  

at y = 0.5 m and z = 1 m for θ = 30°, 60°, 90°, 120°, or 150°. The results of two homogeneous 

elastic halfspaces (i.e., θ = 0° or 180°) are also presented in Fig. 18. The two curves of each 

component of ( , , )x y zu u u  for θ = 30° and θ = 150° (similarly or θ = 60° and θ = 120°) have 

the symmetrical or anti-symmetrical variations with respect to the x axis, which is consistent 

to the fact that the materials 1 and 3 have the same elastic properties and each pair of the 

elastostatic problems are symmetrically identical. The effects of the three materials with 

inclined two interface planes to the elastic displacements are evidently shown with respect to 

the results of the two homogeneous halfspaces. The results of the two homogeneous 

halfspaces can offer the upper or lower bounds for the results of the three-material halfspace 

models.  

  Fig. 19 shows the variations of ( , , , , , )xx xy xz yy yz zzσ σ σ σ σ σ  with x m) 5m 5( ≤≤− x with 

different θ values at y = 0.5 m and z = 1 m. Table 1 also presents the stress jumps 

( ( ) ( )1 2 1 2Δ  or  or ij ij ijσ σ x c c σ x c c+ + − −′ ′ ′ ′= = − = ) in three-material halfspace for different z 

across the material interface plane. Similarly the symmetrical and/or anti-symmetrical results 

are obtained for the six stresses for each pair of the three-material halfspace problem. The 

effects of the three materials with two inclined interface planes to the elastic stresses are 

evidently shown with respect to the results of the two homogeneous halfspaces. At each 

interface point, some stresses (such as , , xx yy yzσ σ σ ) can have some very high values 

comparing to the values at other locations and the results of the homogeneous halfspace 

models. 

7.3 Further analysis of displacements and stresses across material interfaces 

  The elastic fields in a bi-material or three-material halfspace with non-horizontally oriented 

interface planes due to tractions are presented and examined in detail. The effects of the 
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inclined material interface to the elastic displacements and stresses are analyzed with respect 

to the results of homogeneous elastic halfspace. Across the material interface, the elastic 

displacements are non-smoothly continuous to different degrees, which is affected by the 

interface declination angle θ. Across the material interfaces, all the six stress components can 

have step-discontinuation for o90θ ≠  whereas only the three stresses yyσ , yzσ  and zzσ  

are step-discontinuous for θ=90o. Distribution of the stresses in a non-horizontally layered 

halfspace is different to those in a homogeneous halfspace due to the same loading. In 

particular, some stress components can have very high values at and adjacent the interface 

planes, which can be important to tensile or shear failures in non-homogeneous materials. 

8. Summary and conclusions 

  This paper adopts the generalized Kelvin solution of a multilayered solid and develops a 

new BEM program for the effect and efficient analysis and calculation of the elastic field in 

non-horizontally layered halfspace subject to tractions. The BEM program uses five boundary 

element techniques to handle the mixtures of the boundary surface conditions. They include 

the material interface strike line and the infinite extension of both boundary surface areas and 

the strike lines. 

  The use of the generalized Kelvin solution can eliminate the requirement of mesh 

discretization for the internal material interface planes. The only surface that needs to be 

discretized is the horizontal boundary surface of infinite extent. The infinite boundary 

elements are used to effectively and efficiently take into account the influence of a far region 

to the numerical approach. The finite and infinite discontinuous boundary elements are 

introduced to overcome the numerical problems due to the step-discontinuous material 

property across the interface strikes on the boundary surface. Consequently, the singular 

integrals in the governing boundary integral equations are calculated using the existing 

numerical integration techniques. Numerical results for some typical elastostatic problems 

presented in the paper indicate that the BEM program can be used for the elastic fields in the 

non-horizontal layered halfspace. 

  More detailed investigations need to be carried for accurately enhance our knowledge and 
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capability for the related problems in science and engineering in the future. The numerical 

results presented in this paper are due to the completely flexible footing loading. The BEM 

program can be applied to examine the contact problems where the rigid or elastic footing can 

be used because of the adoption of the discontinuous elements. 

Acknowledgements 

  The authors would like to thank the financial supports from the Research Grants Council of 

Hong Kong SAR Government (GRF No. 27204415) and the National Natural Science 

Foundation of China (Grant No. 41672291).  

Appendix A. The kernel functions Y
ijkU  and Y

ijkT  

  The kernel functions Y
ijkU  and Y

ijkT  in Eq. (3) can be described by using the constitutive 

equations as follows 

εε µλδ ijkmmkij
Y
ijk UUU 2+=                                  (A.1) 

εε µλδ ijkmmkij
Y

ijk TTT 2+=                                    (A.2) 

where λ  and µ  are Lamé constants, and ε
ijkU  and  ε

ijkT  can be written as 

( ) 2/,,
Y

ijk
Y

jikijk uuU +=ε                                     (A.3) 

( ) 2/ ,,
Y

ijk
Y

jikijk ttT +=ε                                      (A.4) 

  The derivatives of the displacements in Eq. (A.3) are approximated as 

( ) ( )1 , , , , 
2

Y
Y Yik
ik ik

u u x D y z u x D y z
x D

∂  ≈ + − − ∂
                   (A.5) 

( ) ( )1 , , , , 
2

Y
Y Yik
ik ik

u u x y D z u x y D z
y D

∂  ≈ + − − ∂
                   (A.6) 

( ) ( )1 , , , , 
2

Y
Y Yik
ik ik

u u x y z D u x y z D
z D

∂  ≈ + − − ∂
                   (A.7) 
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where zyx ,,  are the coordinates of the source point p in the global coordinate system Oxyz 

and D is the distance between the two source points. The derivatives of the tractions in Eq. 

(A.4) can also be calculated using the above methods. 

  In order to calculate the derivatives Y
jiku ,  and Y

jikt , , it is necessary to compute the 

displacements and stresses of the fundamental solution at six points in the neighborhood of 

the source point p. The choice of the interval D is a crucial decision and an extensive 

numerical investigation is executed in Pan and Yuan [35] and Tonon et al. [38]. The best D 

value is 610 r−  where r is the distance between the source and field points. 

Appendix B. The fundamental solution in O x y z′ ′ ′ ′  coordinates 

  For a layered medium, shown in Fig. 3, the vector fields of displacements, vertical stresses 

and plane strains are defined as 
T

x y zu u u′ ′ ′ =  u , 
T

z x z y z z zσ σ σ′ ′ ′ ′ ′ ′ ′ =  T , 
T

p x x x y y yε ε ε′ ′ ′ ′ ′ ′ =  Γ  (B.1) 

where the superscript T stands for the transpose of a matrix. 

  For concentrated point loads, i.e., 
T

c x y zf f f′ ′ ′ =  F , the solution expressions of the 

layer medium are presented as follows  

u c=u G F ,  z z c=T G F ,   z p c=Γ G F . (B.2) 

where the matrices uG , zG  and pG  can be expressed as 

( )

2 2

1 0 2 2 2 2 13 12 2

2 2 

2 2 1 0 2 2 13 12 2 0

31 1 31 1 33 0

2

22 , , u

x y x y xΦ J Φ J Φ J Φ J
r r r

x y x y yπ x y z Φ J Φ J Φ J Φ J dρ
r r r

x yΦ J Φ J Φ J
r r

∞

′ ′ ′ ′ ′ −
− − − 

 
′ ′ ′ ′ ′ −′ ′ ′ = − + − 

 
′ ′ 

 
 

∫G  (B.3) 

( )

2 2

1 0 2 2 2 2 13 12 2

2 2 

2 2 1 0 2 2 13 12 2 0

31 1 31 1 33 0

2

22 , , z

x y x y xΨ J Ψ J Ψ J Ψ J
r r r

x y x y yπ x y z Ψ J Ψ J Ψ J Ψ J ρdρ
r r r

x yΨ J Ψ J Ψ J
r r

∞

′ ′ ′ ′ ′ −
− − − 

 
′ ′ ′ ′ ′ −′ ′ ′ = − + − 

 
′ ′ 

 
 

∫G  (B.4) 
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( )

( )
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 (B.5) 

where 2 2r x y′ ′= + , [ ]1
1 11 222Φ Φ Φ= + , [ ]1

2 11 222Φ Φ Φ= − , [ ]1
1 11 222Ψ Ψ Ψ= +  and 

[ ]1
2 11 222Ψ Ψ Ψ= − . The following identity of Bessel functions ( mJ ) of order m is used in the 

further reduction 

( ) ( )  ,2 ,1 ,0     ,
2
1 2 

0 

sin ±±===∫ −± mJrJde mm
mri ρψ

π
π ψψρ . (B.6) 

  The expressions of the matrices uG , zG  and pG  include the inverse Hankel transform 

integrals with a semi-infinite interval. The expressions also include the Bessel functions of 

order of zero, unit and second and ten fundamental functions of 11Φ , 13Φ , 22Φ , 31Φ , 33Φ , 

11Ψ , 13Ψ , 22Ψ , 31Ψ , and 33Ψ . A proceeding limit technique, based on an adaptively iterative 

Simpson’s quadrature, is adopted in the evaluation of the inverse Hankel transform integrals 

in Eqs. (B.3) to (B.5). Using the procedure, the semi-infinite interval of the inverse Hankel 

transform integrals can be accommodated and the improper integrals can be efficiently 

evaluated with high and controlled accuracy. 

  The solutions of the plane stresses ( ), , x x x y y yσ σ σ′ ′ ′ ′ ′ ′  and the vertical strains 

( ), , x z y z z zε ε ε′ ′ ′ ′ ′ ′  due to the point loads ( ), , x y zf f f′ ′ ′  can be easily obtained from the solutions 

of the vertical stresses ( ), , x z y z z zσ σ σ′ ′ ′ ′ ′ ′  and the plane strains ( ), , x x x y y yε ε ε′ ′ ′ ′ ′ ′  by using the 

constitutive equations. 
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  More details of the expressions and mathematical properties of the fundamental solution 

can be found in Yue [12]. 

Appendix C. The fundamental solution in Oxyz coordinates 

C.1.The solution in O x y z′ ′ ′ ′  coordinates due to xf  

  The point force xf  in Oxyz can be re-expressed as follows in the coordinate system 

O x y z′ ′ ′ ′ , 

cosx xf f θ′ = , 0yf ′ = , sinz xf f θ′ = −     (C.1) 

  The displacements and stresses in the system O x y z′ ′ ′ ′  induced by 1xf =  can be 

calculated using the equations 

1 1
cos sin

x z
i i if f

u u uθ θ
′ ′

′ ′ ′= =
= −                              (C.2) 

1 1
cos sin

x z
i j i j i jf f

σ σ θ σ θ
′ ′

′ ′ ′ ′ ′ ′= =
= −                            (C.3) 

where 1x
i f

u
′

′ =
 and 

1x
i j f ′
′ ′ =

σ  are the displacements and stresses induced by 1xf ′ = , and 

1z
i f

u
′

′ =
 and 

1z
i j f ′
′ ′ =

σ  are the displacements and stresses induced by 1zf ′ = , respectively. 

C.2. The solution in O x y z′ ′ ′ ′  coordinates due to yf  

  The point force yf  in Oxyz can be re-expressed as follows in the coordinate system 

O x y z′ ′ ′ ′ , 

0x'f = , y' yf f= , 0zf ′ =  (C.4) 

  The displacements and stresses in the O x y z′ ′ ′ ′  system induced by 1yf =  can be 

calculated using the equations 

1y
i i f

u u
′

′ ′ =
=                                                               (C.5) 

1y
i j i j f

σ σ
′

′ ′ ′ ′ =
=                              (C.6) 

where 1y
i f

u
′

′ =  and 
1y

i j f ′
′ ′ =

σ  are the displacements and stresses induced by 1yf ′ = . 
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C.3. The solution in O x y z′ ′ ′ ′  coordinates due to zf  

  The point force zf  in Oxyz can be re-expressed as follows in the coordinate system 

O x y z′ ′ ′ ′ , 

sinx zf f θ′ = , 0y'f = , cosz zf f θ′ =          (C.7)  

  The displacements and stresses in the system O x y z′ ′ ′ ′  induced by 1zf =  can be 

calculated using the equations 

1 1
sin cos

x z
i i if f

u u uθ θ
′ ′

′ ′ ′= =
= +                               (C.8) 

1 1
sin cos

x z
i j i j i jf f

σ σ θ σ θ
′ ′

′ ′ ′ ′ ′ ′= =
= +                            (C.9) 

where 1x
i f

u
′

′ =
, 

1x
i j f ′
′ ′ =

σ , 1z
i f

u
′

′ =
 and 

1z
i j f ′
′ ′ =

σ  have the same meanings as defined in Eqs. 

(C.2) and (C.3). 

C.4. The solutions in Oxyz coordinates 

  The generalized Kelvin solution ( iu  and ijσ ) in Oxyz coordinates induced by the point 

body force vector ( ), , x y zf f f  have the following matrix transformation relationship with the 

generalized Kelvin in O x y z′ ′ ′ ′ coordinates induced by the point body force vector 

( ), , x y zf f f′ ′ ′  

i ii iu uβ ′ ′=  ( , , i x y z= , , , i x y z′ ′ ′ ′= )           (C.10) 

ij ii jj i jσ β β σ′ ′ ′ ′=  ( , , ,i j x y z= , , , , i j x y z′ ′ ′ ′ ′= )         (C.11) 

where iiβ ′  are the coefficients of the coordinate transform matrix. 

  The coordinates at any point in the coordinate system O x y z′ ′ ′ ′  can be obtained from the 

ones in the coordinate system Oxyz by 

( )1x x x y x zx x d y zβ β β′ ′ ′′ = − + +                           (C.12) 

( )1y x y y z zy x d y zβ β β′ ′ ′′ = − + +                           (C.13) 
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( )1z x z y z zz x d y zβ β β′ ′ ′′ = − + +                           (C.14) 

where 1d  is the distance between the two origins O and O′ , and i iβ ′  are  the coefficients 

of the coordinate transform.  

Appendix D. The interpolation functions for five element types 

D.1. Shape functions for continuous finite boundary element (type I) 

( )( )( )1 0 25 1 1 1N . ξ η ξ η= − − − + +  

( )( )( )2 0 25 1 1 1N . ξ η ξ η= − + − − +  

( )( )( )3 0 25 1 1 1N . ξ η ξ η= − + + − −  

( )( )( )4 0 25 1 1 1N . ξ η ξ η= − − + + −  

( )( )2
5 0 5 1 1N . ξ η= − −  

( )( )2
6 0 5 1 1N . η ξ= − +  

( )( )2
7 0 5 1 1N . ξ η= − +  

( )( )2
8 0 5 1 1N . η ξ= − −                                                     (D.1) 

D.2. Shape functions for discontinuous finite boundary element (type II) 

( )( )( )1 0 3 1 1 1 1 5N . .= − − − + +ξ η ξ η  

( )( )( )2 0 3 1 1 1 1 5N . .= − + − − +ξ η ξ η  

( )( )( )3 0 3 1 2 3 1N . /= − + + − −ξ η ξ η  

( )( )( )4 0 3 1 2 3 1N . /= − − + + −ξ η ξ η  

( )( )2
5 0 6 1 1N . ξ η= − −  

( )( )( )6 0 75 1 1 2 3N . /= + − +ξ η η  

( )( )2
7 0 6 1 2 3N . /ξ η= − +  

( )( )( )8 0 75 1 1 2 3N . /= − − +ξ η η                             (D.2) 
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D.3. Interpolation functions for continuous infinite elements (type III) 

D.3.1. Shape functions
 

( ) ( )1 1 1N ξη ξ / η∞ = − −  

( ) ( )2 1 1N ξη ξ / η∞ = − + −  

( )( ) ( )3 0 5 1 1 1N . ξ ξ η / η∞ = + + −  

( )( ) ( )4 0 5 1 1 1N . ξ ξ η / η∞ = − + −  

( ) ( )2
5 2 1 1N η ξ / η∞ = − − −  

( )( ) ( )2
6 1 1 1N ξ η / η∞ = − + −                                                (D.3) 

D.3.2. Interpolation functions of displacements 

( )( )1 0 25 1 1uN . ξ ξ η∞ = − −  

( )( )2 0 25 1 1uN . ξ ξ η∞ = + −  

( )( )2
5 0 5 1 1uN . ξ η∞ = − −                                                  (D.4) 

D.3.3. Interpolation functions of tractions 

( )( )2
1 0 125 1 1tN . ξ ξ η∞ = − −   

( )( )2
2 0 125 1 1tN . ξ ξ η∞ = + −  

( )( )22
5 0 25 1 1tN . ξ η∞ = − −                                         (D.5) 

D.4. Interpolation functions for discontinuous infinite elements (type IV) 

D.4.1. Shape functions
 

( ) ( )1 1 8 1 1N . ξη ξ / η∞ = − − −  

( ) ( )2 1 2 2 3 1N . / /∞ = − + −ξη ξ η  

( )( ) ( )3 0 6 2 3 1 1N . / /∞ = + + −ξ ξ η η  

( )( ) ( )4 0 9 1 1 1N . ξ ξ η / η∞ = − + −  

( )( ) ( )5 3 1 2 3 1N / /∞ = − − + −η ξ ξ η  
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( )( )( ) ( )6 1 5 1 2 3 1 1N . / /∞ = − + + −ξ ξ η η                         (D.6) 

D.4.2. Interpolation functions of displacements 

( ) ( )1 0 45 1 1uN . η ξ ξ∞ = − −  

( ) ( )2 0 3 1 2 3uN . /η ξ ξ∞ = − +  

( )( )( )5 0 75 1 1 2 3uN . /η ξ ξ∞ = − − +                                             (D.7) 

D.4.3. Interpolation functions of tractions 

( ) ( )2
1 0 225 1 1tN .∞ = − −η ξ ξ  

( ) ( )2
2 0 15 1 2 3tN . η ξ / ξ∞ = − +  

( ) ( )( )2
5 0 375 1 1 2 3tN . η ξ / ξ∞ = − − +                           (D.8) 

D.5. Interpolation functions for discontinuous infinite elements (type V)
 
 

D.5.1. Shape functions
 

( ) ( )1 1 2 2 3 1N . / /η ξ η∞ = − − −  

( ) ( )2 1 8 1 1N . /ξη ξ η∞ = − + −  

( )( ) ( )3 0 9 1 1 1N . /ξ ξ η η∞ = + + −  

( )( ) ( )4 0 6 2 3 1 1N . / /ξ ξ η η∞ = − + −  

( )( ) ( )5 3 2 3 1 1N / /η ξ ξ η∞ = − − + −  

( )( )( ) ( )6 1 5 2 3 1 1 1N . / /ξ ξ η η∞ = − + + −  (D.9) 

D.5.2. Interpolation functions of displacements 

( ) ( )1 0 3 1 2 3uN . /∞ = − −η ξ ξ  

( ) ( )2 0 45 1 1uN .∞ = − +η ξ ξ  

( )( )( )5 0 75 1 2 3 1uN . /∞ = − − +η ξ ξ                           (D.10) 

D.5.3. Interpolation functions of tractions 

( ) ( )2
1 0 15 1 2 3tN . /∞ = − −η ξ ξ  
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( ) ( )2
2 0 225 1 1tN .∞ = − +η ξ ξ  

( ) ( )( )2
5 0 375 1 2 3 1tN . /∞ = − − +η ξ ξ                         (D.11) 
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Fig. 1. A layered halfspace subject to distributed loadings on the boundary surface 
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Fig. 2. Definition of SF and SI on the boundary surface of a non-horizontally layered halfspace 
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Fig. 3. A multilayered elastic solid of infinite extent subjected to the body forces ,  and

 concentrated at a point (0, 0, d) 

 

Fig. 4. Relation between two coordinate systems 
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(5a) continuous element (type I) 

 

(5b) discontinuous element (type II) 
Fig. 5. Two types of finite boundary elements 
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(6a) continuous element (type III) 

 

(6b) discontinuous element (type IV) 

 

(6c) discontinuous element (type V) 

Fig. 6. Three types of infinite boundary elements 
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(7a) node 1 

 

(7b) node 2 

 

(7c) node 5 

Fig. 7. The triangle domain divided in a continuous infinite element (type IV) for different 

nodes 
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Fig. 8. Bi-material elastic halfspace with an inclined interface plane and subjected to normal 

pressure over a square area on the horizontal boundary surface ( )  

 

Fig. 9. The boundary mesh on the boundary surface with 1192 nodes for 284 finite continuous 

elements (I), 36 finite discontinuous elements (II), 60 infinite continuous elements (III) and 4 

infinite discontinuous elements (2 for IV and 2 for V)  
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(10a) horizontal boundary surface 

 

(10b) vertical cross-section 

Fig. 10. A square footing acting on the strike line area of a bi-material elastic halfspace with 

an arbitrarily inclined interface plane 
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(11a) displacement ux 

 

 
(11b) displacement uy 
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(11c) displacement uz  

Fig. 11. Variation of three displacement components (y=0.5 m and z=1 m)  

 

(12a) stress σxx  
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(12b) stress σxy 
 

 
(12c) stress σxz  
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(12d) stress σyy  

 

 

(12e) stress σyz  
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(12f) stress σzz  

Fig. 12. Variation of stress components (y=0.5 m and z=1 m) 

 

 

 (13a) displacement ux 
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(13b) displacement uy  
 

 

(13c) displacement uz  
Fig.13. Variation of displacements with the horizontal distance y  
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(14a) stress σxx  

 

 

(14b) stress σxy  
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(14c) stress σxz  

 

 

(14d) stress σyy  
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(14e) stress σyz  

 

 

(14f) stress σzz  

Fig. 14. Variation of stresses with the horizontal distance y (θ=60°, z=1m) 
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(15a) displacement ux  

 

 

(15b) displacement uy  
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(15c) displacement uz  

Fig. 15. Variation of displacements with the depth z (θ=60°, y=0.5m) 
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 Fig. 16. Variation of Mises stress with the depth z (θ=60°, y=0.5m) 
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(17a) horizontal boundary surface 

 

 

(17b) vertical cross-section 

Fig. 17. Square footing on three-material halfspace with two non-horizontally placed and 

parallel interfaces 
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(18a) displacement ux  

 

 

(18b) displacement uy  
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(18c) displacement uz  

Fig. 18. Variation of three displacement components with the angle θ (y=0.5m and z=1m) 

 

(19a) stress σxx  
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(19b) stress σxy  

 

 

(19c) stress σxz  
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(19d) stress σyy 

 

 

(19e) stress σyz  
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(19f) stress σzz  

Fig. 19. Variation of six stress components with the angle θ (y=0.5m and z=1m) 
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Table 1. Stress jumps ijσ∆ (MPa) across the material interface at z=1 m and y=0.5 m for different θ 

in the bi-material and three-material halfspaces 

Stress 

jump  θ (o) 
bi-material halfspace three-material halfspace 

x c′=  1x c′=  2x c′=  

∆σxx 

30 7.1754 8.3462 2.6803 
60 7.3931 4.4729 3.9206 
90 0.0009 0.0007 0.0006 

120 9.0623 3.3704 4.4491 
150 11.2755 2.1995 8.2961 

∆σxy 

30 1.2214 5.8617 0.6966 
60 3.1317 3.6639 1.2041 
90 0.0002 0.0001 0.0009 

120 4.2760 1.2354 3.6809 
150 2.6902 0.8616 5.8195 

∆σxz 

30 4.1517 4.9881 1.7107 
60 12.7937 7.7645 5.9670 
90 0.0005 0.0002 0.0003 

120 15.6937 6.5093 7.7229 
150 6.5013 1.9526 4.9945 

∆σyy 

30 1.3539 8.8661 1.3316 
60 0.1489 6.6653 2.1390 
90 0.1862 0.3373 0.3216 

120 1.8660 2.5628 6.6584 
150 0.4631 0.9038 8.7963 

∆σyz 

30 0.7079 3.4214 0.5584 
60 5.4388 6.3572 2.4775 
90 9.0441 5.4129 5.4097 

120 7.3972 1.9396 6.3861 
150 1.5502 0.9062 3.4983 

∆σzz 

30 2.4086 2.5032 0.8887 
60 22.2426 13.4394 10.9973 
90 41.1799 22.0673 22.0424 

120 27.1359 10.9521 13.3676 
150 3.7430 0.2147 2.3860 
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