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For bivariate continuous data, measures of monotonic dependence are based on the rank
transformations of the two variables. For bivariate extreme value copulas, there is a family

of estimators ϑ̂α, for α > 0, of the extremal coefficient, based on a transform of the absolute
difference of the α power of the ranks. In the case of general bivariate copulas, we obtain

the probability limit ζα of ζ̂α = 2 − ϑ̂α as the sample size goes to infinity, and show that
(i) ζα for α = 1 is a measure of central dependence with properties similar to Kendall’s tau
and Spearman’s rank correlation, (ii) ζα is a tail-weighted dependence measure for large α,
and (iii) the limit as α→∞ is the upper tail dependence coefficient. We obtain asymptotic

properties for the rank-based measure ζ̂α, and estimate tail dependence coefficients through

extrapolation on ζ̂α. A data example illustrates the use of the new dependence measures for
tail inference.
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1. Introduction

Multivariate data sets of continuous variables often have dependence structures different
from multivariate Gaussian. Lower and upper tail-weighted dependence measures have
been used to quantify departures from multivariate Gaussian in bivariate margins; some
aspects of departures relevant for applications include tail asymmetry and tail depen-
dence relative to the Gaussian distribution. For data sets with more than two variables,
these measures can be computed for each pair for such an assessment.

Empirical versions of bivariate lower (upper) tail-weighted dependence measures put
more weight on data in the joint lower (upper) tail. Examples of such measures include
semi-correlations (Gabbi (2005); see Section 2.17 of Joe (2014)), conditional Spearman’s
ρ (Schmid and Schmidt (2007)) and power-weighted measures (Krupskii and Joe (2015))
in the joint lower/upper quadrant. These are invariant to monotone increasing transforms
of the variables and have probability-based counterparts defined via copulas. A copula
is a multivariate cumulative distribution function with Uniform(0,1) univariate margins.
Any probability-based dependence measure invariant to monotone increasing transforms
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can be expressed in terms of the copula, and so copulas have been useful for the analysis
of dependence properties (see Nelsen (2006) and Joe (2014)). One advantage of tail-
weighted dependence measures over the lower and upper tail dependence coefficients is
that the latter are defined via limits and have no obvious simple empirical counterparts.

In this paper, we study a family of dependence measures that arise from the extreme
value literature for estimating the extremal coefficient. When these measures are consid-
ered for general bivariate distributions rather than just bivariate extreme value distribu-
tions, they can be considered as a family of dependence measures ζα indexed by α > 0,
some of which measure central dependence (similar to Kendall’s tau and Spearman’s
rank correlation) and others measure the strength of dependence in the joint upper tail.
Furthermore, when α → ∞, ζα converges to the upper tail dependence coefficient. The
quantity ζα for any α has an empirical counterpart ζ̂α for data that can be defined based
on the rank transforms of the two variables. We can then consider extrapolating ζ̂α over
a sequence of α values to estimate the tail dependence coefficient of a given bivariate
data set.

The rest of this paper is organized as follows. Section 2 introduces ζα and its connection
with the extreme value theory, as well as its empirical counterpart. Section 3 gives the
properties of ζα and the asymptotic distribution of its rank-based estimator. We suggest
a method to estimate the upper tail dependence coefficient from a sample in Section
4. A data example is presented in Section 5 and concluding remarks are in Section
6. Appendix A contains supplementary information on the asymptotic variance of the
empirical tail-weighted dependence measures.

2. The proposed tail-weighted dependence measures and their relationship
with the extremal coefficient

We first provide an overview of the extremal coefficient and the F-madogram estimator of
the extremal coefficient in Sections 2.1 and 2.2, respectively. The proposed tail-weighted
dependence measures and their relationship with the extremal coefficient are given in
Section 2.3.

2.1. Overview of the extremal coefficient

In data analysis, one common approach is to obtain bivariate dependence measures for
every pair of variables in a multivariate data set. In this subsection, we define the extremal
coefficient for the bivariate case and show how a family of estimators for the extremal
coefficient leads to a family of dependence measures that apply more generally.

Let F12(y1, y2) be a bivariate continuous distribution with identical univariate margins
F1, F2. Let (Y1, Y2) ∼ F12 and, for large t, let θ(t) be defined via

F12(t, t) = P(max{Y1, Y2} ≤ t) = [F1(t)]θ(t).

If θ(t) → ϑ as t → ∞, then ϑ is the (limiting) extremal coefficient. For independent
(Y1, Y2), ϑ = 2; for perfectly dependent (Y1, Y2), ϑ = 1; and for positively dependent
(Y1, Y2) with F12(y1, y2) ≥ F1(y1)F2(y2) for all y1, y2, 1 < ϑ < 2 if it exists. The quantity
ϑ can be interpreted as the effective number of independent variables (see, e.g., Smith
(1990)). If F12(t, t) = C(F1(t), F2(t)) for a copula C, then F12(t, t) = C(u, u) = uθ(t) with
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u = F1(t), and

ϑ = lim
u→1−

logC(u, u)

log u
.

Let Y 1, . . . ,Y n be independently and identically distributed (i.i.d.) bivariate random
vectors from F , Y i = (Yi1, Yi2)ᵀ. An extreme value copula CEV describes the dependence
structure of the location-scale limit of the componentwise maxima Mn = (M1n,M2n)ᵀ =
(
∨n
i=1 Yi1,

∨n
i=1 Yi2)ᵀ as n→∞, assuming (M1n−a1n)/b1n and (M2n−a2n)/b2n converge

in distribution for some real sequences a1n, a2n and positive sequences b1n, b2n. Extreme
value copulas satisfy the max-stability property; in the bivariate case, the condition
is CEV (ut1, u

t
2) = CtEV (u1, u2) for all t > 0, in which case the stable tail dependence

function A(− log u1,− log u2) = − logCEV (u1, u2) is convex and homogeneous of order
1, with A(w, 0) = A(0, w) = w for w > 0. For CEV ,

logCEV (u, u)

log u
=
−A(− log u,− log u)

log u
= A(1, 1)

is constant over u and hence ϑ = A(1, 1).
Meanwhile, for a bivariate copula C with well behaved tails, the lower and upper tail

dependence coefficients are defined respectively as

λL = λL(C) = lim
u→0+

C(u, u)

u
,

λU = λU (C) = lim
u→0+

C(1− u, 1− u)

u
= lim

u→0+

Ĉ(u, u)

u
= λL(Ĉ), (1)

where C(u1, u2) = 1− u1 − u2 +C(u1, u2) is the survival function of C, and Ĉ(u1, u2) =
C(1−u1, 1−u2) is the reflected or survival copula of C. The tail dependence coefficients
satisfy 0 ≤ λL, λU ≤ 1, with larger values indicating stronger tail dependence. For a
bivariate extreme value copula, λU = 2−A(1, 1), and ϑ = A(1, 1) = 2− λU .

2.2. The F-madogram estimator of the extremal coefficient

For extreme value copulas, there exist many empirical estimators of ϑ in the literature,
see, e.g., Pickands (1981); Deheuvels (1991); Capéraà, Fougères, and Genest (1997); Hall
and Tajvidi (2000); Cooley, Naveau, and Poncet (2006); Bücher, Dette, and Volgushev
(2011)1. In the following, we focus on the class of F-madogram estimators (Cooley et al.
(2006)) as it motivates our tail-weighted dependence measures. The name of F-madogram
comes from (stationary) spatial extreme applications where the dependence depends on
the distance between sites and the F-madogram quantifies the decrease in dependence
as the distance increases.

Let (Y1, Y2) have bivariate extreme value distribution CEV (F1(y1), F2(y2)) where F1, F2

are univariate extreme value distributions. Then (U1, U2) = (F1(Y1), F2(Y2)) ∼ CEV . Let
Mα = max{Uα1 , Uα2 }, so that

P(Mα ≤ x) = CEV (x1/α, x1/α) = exp{−A(−α−1 log x,−α−1 log x)} = exp{−α−1(− log x)ϑ}

1We remark that many of these methods were initially designed to estimate the Pickands dependence function

B(w) = A(w, 1− w), w ∈ [0, 1]. Because of the homogeneity property of A, we have ϑ = 2A(1/2, 1/2).
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and

E(Mα) =

ˆ 1

0
P(Mα > x)dx =

ˆ ∞
0

[1− exp{−α−1ϑz}]e−zdz = 1− [1 + α−1ϑ]−1. (2)

Since |a − b| = 2 max{a, b} − a − b for real numbers a, b, we can write max{Uα1 , Uα2 } =
1
2 |U

α
1 − Uα2 |+ 1

2(Uα1 + Uα2 ), giving

E(Mα) =
1

2
E[|Uα1 − Uα2 |] + (α+ 1)−1. (3)

Combining (2) and (3), we obtain the relationship

ϑ =
α+ α(1 + α)να
α− (1 + α)να

, να :=
1

2
E[|Uα1 − Uα2 |], α > 0. (4)

Hence with data, we can define an estimator ϑ̂α of ϑ, based on an estimator of να, for
all α > 0. Suppose the bivariate extreme value data are (Yi1, Yi2), i = 1, . . . , n. Let

Rik = n−1
n∑
j=1

[1(Yjk ≤ Yik)− 1/2] , i = 1, . . . , n (5)

be scaled ranks in the interval [0, 1] for the kth variable, k = 1, 2. The rank-based
estimator of ϑ, depending on α, is

ϑ̂α =
α+ α(1 + α)ν̂α
α− (1 + α)ν̂α

, ν̂α =
1

2n

n∑
i=1

|Rαi1 −Rαi2|, (6)

Note that ϑ̂α ∈ [1, 2] and 2− ϑ̂α ∈ [0, 1].
The power of exponentiation is α = 1 in the original formulation by Cooley et al.

(2006). Naveau, Guillou, Cooley, and Diebolt (2009) use the idea of the F-madogram to
estimate the Pickands dependence function in the form B(w) = A(w, 1−w) for w ∈ [0, 1];
their estimate of ϑ corresponds to using α = 1/2. Fonseca, Pereira, Ferreira, and Martins
(2015) consider the case where the powers of Ri1 and Ri2 in (6) can be any numbers
α1, α2 > 0. These are all in the context of extreme value distributions.

2.3. The proposed tail-weighted dependence measures

Our proposed family of tail-weighted dependence measures is given in Definition 1.

Definition 1 For a general bivariate copula C, the probability version of the tail-weighted
dependence measures is defined as ζα = ζα(C) := 2 − ϑα, where ϑα with α > 0 is as in
(4). For a sample of bivariate observations (Yi1, Yi2), i = 1 . . . n, with scaled ranks given

in (5), the sample version is defined as ζ̂α := 2− ϑ̂α with ϑ̂α given in (6).

Let γα = γα(C) :=
´ 1

0 C(u1/α, u1/α) du = α
´ 1

0 v
α−1C(v, v) dv. Then we have the

following relationships:
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να = E(Mα)− (1 + α)−1 =

ˆ 1

0
[1− C(u1/α, u1/α)] du− (1 + α)−1 =

α

(1 + α)
− γα, (7)

ϑα =
α+ α(1 + α)να
α− (1 + α)να

= α(γ−1
α − 1),

ζα = 2− α(γ−1
α − 1). (8)

For the comonotonicity copula with C+(u, v) = min{u, v}, we have ϑα = 1, να = 0
and γα = α/(α + 1); for the independence copula with C⊥(u, v) = uv, we have ϑα = 2,
να = α/[(α+1)(α+2)] and γα = α/(α+2). For copulas with positive quadrant dependence
satisfying C(u, v) ≥ uv for 0 ≤ u, v ≤ 1, ϑα ∈ [1, 2]. Therefore, the definition of ζα is
such that ζα ∈ [0, 1] for copulas with positive quadrant dependence, with the lower and
upper limits reached at the independence and comonotonicity copulas, respectively. We
will show in Section 3 that ζα can be negative for C with negative dependence, with a
minimum bound of (1− log 4)/(1− log 2).

It is easy to see that ζα = λU for all α > 0 when C is a bivariate extreme value copula.
When C is the comonotonicity copula so that Ri1 = Ri2 for all i, we have ν̂α = 0, ϑ̂α = 1
and ζ̂α = 1 for all α > 0.

3. Properties of the tail-weighted dependence measure

In this section, we investigate the properties of ζα in (8). In particular, its interpretation as
a tail-weighted dependence measure by varying α and the desirable properties it satisfies
are outlined in Section 3.1. The behaviour of ζα as α approaches the two boundaries, 0
and∞, is derived in Section 3.2, while Section 3.3 gives the asymptotic properties of the
estimator ζ̂α in Definition 1. We illustrate the role of ζα as a tail-weighted dependence
measure and its use in distinguishing between copula families with various strengths of
tail dependence in Section 3.4.

3.1. Dependence properties

When α = 1, γα is an integral along the diagonal of the copula at equal increment du.
When α > 1, u1/α > u and more emphasis is on the distribution function at the joint
upper tail, whereas the opposite is true when 0 < α < 1. The measure ζα can thus be
interpreted as a tail-weighted summary that puts different weights on the strength of
dependence of a copula (in terms of the magnitude of C(u1, u2) along the diagonal) at
different locations.

Scarsini (1984) proposed a list of desirable criteria that a measure of concordance
should satisfy; these are summarized in Definition 2.8 of Joe (2014). Most of these prop-
erties are satisfied by ζα, as illustrated below:

(1) Domain (measure defined for all random variables):
• Satisfied (for all continuous random pairs) as ζα is defined for all bivariate pairs

with copula C.
(2) Symmetry (permutation) (measure invariant to a swap of the order of random

variables):

• Satisfied as γα =
´ 1

0 C(u1/α, u1/α) du is symmetric in the arguments. See Remark
1 for comments on reflection symmetry.
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(3) Coherence (measure increasing in the concordance ordering of the copula):
• Satisfied as C1(u1, u2) ≺c C2(u1, u2) (i.e., C2 is larger than C1 in the concordance

ordering or equivalently C2 ≥ C1 pointwise) implies γα is larger for C2 than C1,
and so is ζα.

(4) Range (measure within the interval [−1, 1] with −1 at the countermonotonicity limit
and 1 at the comonotonicity limit):
• The measure is constructed such that ζα = 1 at comonotonicity. We show in

Remark 2 that ζα is not necessarily −1 at countermonotonicity, and hence this
property is not completely satisfied in general.

(5) Independence (measure equals 0 for the independence copula):
• Satisfied as ζα = 0 for the independence copula C⊥(u, v) = uv.

(6) Sign reversal (negating one variable results in a sign reversal of the measure):
• As the range condition is not generally satisfied, it is impossible for ζα for all

(U1, U2) to be the negation of that for (−U1, U2).
(7) Continuity (if a sequence of bivariate random pairs converges in distribution to C,

then the sequence of the measures for these random pairs converges to the measure
of C):
• Satisfied as ζα is defined based on the copula.

(8) Invariance (measure invariant to strictly increasing functions on each margin):
• Satisfied as monotonic marginal transformations do not affect the copula.

Remark 1 Since the reflected copula Ĉ of a bivariate copula C satisfies Ĉ(u, v) =
u+ v − 1 + C(1− u, 1− v), we have

γα(Ĉ) =

ˆ 1

0
[2u1/α−1+C(1−u1/α, 1−u1/α)] du =

α− 1

α+ 1
+

ˆ 1

0
C(v1/α, v1/α)(v−1/α−1)α−1 dv.

Observe that γα(Ĉ) is equal to γα(C) for any α > 0 if C = Ĉ (i.e., if C is reflection

symmetric), or when α = 1 for any C. Otherwise, it is not generally true that γα(Ĉ) =
γα(C).

Remark 2 For property 4 (range), because ζα is a coherent dependence measure, the
lower bound of its range can be obtained by considering the countermonotonicity copula,
i.e., the Fréchet-Hoeffding lower bound of a bivariate copula. The countermonotonicity
copula is given by C−(u1, u2) = max{0, u1 + u2 − 1} and γ−α =

´ 1
0 max{0, 2u1/α − 1} du

= (2−α + α − 1)/(1 + α), where the minus sign at the superscript denotes the value
for countermonotonicity copula. This implies ζ−α = [2−α(α+ 2)− 2] / (2−α + α− 1), an
increasing function of α. When α → 0+, applying the L’Hôpital’s rule yields ζ−α →
(1− log 4)/(1− log 2) ≈ −1.259. When α→∞, ζ−α → 0, and ζ−α = −1 when α = 1, i.e.,
the range requirement at countermonotonicity is only satisfied when α = 1.

When α = 1, ζα is related to Spearman’s footrule (Spearman (1904, 1906)). Its sample
version is ϕ̃ = 1 −

∑n
i=1 3|R̃i1 − R̃i2|/(n − 1) = 1 − 6ν̃1/(n − 1), a function of ν̃1 =

1
2n

∑n
i=1 |R̃i1 − R̃i2|, where R̃ik = (n + 1)−1

∑n
j=1 1(Yjk ≤ Yik) is a slightly different

scaling of the marginal ranks to [0, 1] that does not affect asymptotic properties. The
probability version of ϕ̃ is ϕ = 1−3E|U1−U2| = 1−6ν1. The distributional properties of
ϕ̃ have been previously studied in Genest, Nešlehová, and Ben Ghorbal (2010). Equations
(7) and (8) imply ζ1 = (1 − 6ν1)/(1 − 2ν1) = ϕ/(1 − 2ν1), i.e., both ζ1 and ϕ are 0 at
independence and 1 at comonotonicity, but ζ1 ≥ ϕ for all copulas with positive quadrant
dependence as 1− 2ν1 ≤ 1. For the countermonotonicity copula C−, ν1 = 1/4, ζ1 = −1

6
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and ϕ = −1
2 .

3.2. Boundary cases

We investigate the properties of ζα as α approaches the lower or upper limit, i.e., as
α→ 0+ or α→∞. We show that ζα converges to the upper tail dependence coefficient
λU as α→∞; this property is used in Section 4 for the estimation of λU .

Proposition 3.1 As α→ 0+, we have

lim
α→0+

ζα = 2−
[ˆ 1

0
v−1C(v, v) dv

]−1

. (9)

Proof. When α → 0+, the integrand of γα, C(u1/α, u1/α), tends to zero everywhere for
u ∈ [0, 1) and is only 1 at u = 1. The integrand is also bounded in [0, 1], and thus the
exchange of limit and integral is valid. This yields lim

α→0+
γα = 0 and, using (8),

lim
α→0+

ζα = 2− lim
α→0+

α

γα
= 2− lim

α→0+

[ˆ 1

0
vα−1C(v, v) dv

]−1

= 2−
[ˆ 1

0
v−1C(v, v) dv

]−1

.

The limit exists as C(v, v) ≤ v for any copula and v−1C(v, v) ≤ 1. �

Note that the integral in (9) can be interpreted as the average ratio between C(u, v)
and C+(u, v) (the comonotonicity copula) along the diagonal u = v. As the strength of
dependence of C increases, this ratio gets closer to 1 and the integral also gets closer to
1. As C approaches the independence copula, this ratio approaches v and the integral
tends towards 1/2.

Proposition 3.2 Assume that the tail of the bivariate copula C is well-behaved in the
sense that λU (C) in (1) exists. Then, as α→∞, we have lim

α→∞
ζα = λU .

Proof. When α→∞, C(u1/α, u1/α) tends to 1 everywhere for u ∈ (0, 1] and is undefined
at u = 0; lim

α→∞
γα = 1 and thus lim

α→∞
ζα = 2 + lim

α→∞
α(γα − 1). We have

α(γα−1) =

ˆ 1

0
α
[
2u1/α − 2 + C(u1/α, u1/α)

]
du =

ˆ 1

0
αC(u1/α, u1/α) du− 2α

α+ 1
. (10)

To find the limit of the integral in (10), first note that the integral is bounded
as C(u1/α, u1/α) = 1 − 2u1/α + C(u1/α, u1/α) ≤ 1 − u1/α, meaning that´ 1

0 αC(u1/α, u1/α) du ≤
´ 1

0 α(1 − u1/α) du = α/(α + 1) ≤ 1 for any positive α, and
tends to 1 as α → ∞. Then, consider the tail expansion of the survival function of C
using the definition of the upper tail dependence coefficient λU , i.e., C(1−v, 1−v) ∼ vλU
as v → 0+, where a(v) ∼ b(v) as v → m means limv→m a(v)/b(v) = 1. Initially, suppose
0 < λU < 1. Then for every small ε > 0, there exists δ > 0 such that for every 0 ≤ v < δ
we have

v(λU − ε) ≤ C(1− v, 1− v) ≤ v(λU + ε). (11)

7
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Also, there exists some α∗ such that for every α > α∗, 1 − u1/α < δ for every u > ε.
Write

ˆ 1

0
αC(u1/α, u1/α) du =

ˆ ε

0
αC(u1/α, u1/α) du+

ˆ 1

ε
αC(u1/α, u1/α) du =: h1(ε, α)+h2(ε, α).

For h1(ε, α), 0 ≤ h1(ε, α) ≤
´ ε

0 α(1 − u1/α) du = αε
[
1− αε1/α/(α+ 1)

]
. Because this

upper bound tends to ε (1− log ε) as α→∞, there exists some α∗∗ and constant M > 1
such that 0 ≤ h1(ε, α) ≤Mε (1− log ε) for all α > α∗∗.

For h2(ε, α), since 1− u1/α < δ for all u > ε and α > α∗, we use (11) to establish the
bounds

(λU − ε)
ˆ 1

ε
α(1− u1/α) du ≤ h2(ε, α) ≤ (λU + ε)

ˆ 1

ε
α(1− u1/α) du

=⇒ (λU − ε)
[

α

α+ 1
− αε

(
1− α

α+ 1
ε1/α

)]
≤ h2(ε, α) ≤ (λU + ε),

where the upper limit uses the relationship
´ 1
ε α(1 − u1/α) du ≤

´ 1
0 α(1 − u1/α) du ≤ 1.

Thus (λU − ε)[α/(α+1)−Mε (1− log ε)] ≤ h2(ε, α) ≤ (λU + ε) for all α > max{α∗, α∗∗},
and, as α→∞,

(λU − ε) [1−Mε (1− log ε)] ≤ h1(ε,∞) + h2(ε,∞) ≤Mε (1− log ε) + (λU + ε),

where hj(ε,∞) = lim
α→∞

hj(ε, α), j = 1, 2. Since ε > 0 can be arbitrarily small,

lim
α→∞

ˆ 1

0
αC(u1/α, u1/α) du = λU .

The proof applies to λU = 1 or 0 by taking (11) as v(λU − ε) ≤ C(1 − v, 1 − v) ≤ v or
0 ≤ C(1−v, 1−v) ≤ v(λU +ε), respectively. Putting this result back into (10), we obtain
lim
α→∞

ζα = λU . �

Proposition 3.2 reinforces the interpretation of ζα that more weight is put on the upper
tail as α increases, eventually coinciding with the upper tail dependence coefficient when
α→∞.

3.3. Asymptotic distribution of the sample tail-weighted dependence
measure

For given α, the estimator ζ̂α defined in Definition 1 is asymptotically normally dis-
tributed. This property makes use of the theory for the empirical copula (Fermanian,
Radulović, and Wegkamp (2004); Tsukahara (2005); Segers (2012)), defined as

Cn(u1, u2) =
1

n

n∑
i=1

1(Ri1 ≤ u1, Ri2 ≤ u2), (12)

8



November 16, 2017 Journal of Nonparametric Statistics twdm-zeta

where the R’s are ranks scaled to the interval [0, 1] as in (5). Following Segers (2012),
define the first order partial derivatives of C as

Ċ1(u1, u2) = lim
h→0

C(u1 + h, u2)− C(u1, u2)

h
, (u1, u2) ∈ V1;

Ċ2(u1, u2) = lim
h→0

C(u1, u2 + h)− C(u1, u2)

h
, (u1, u2) ∈ V2,

where V1 = (0, 1)× [0, 1] and V2 = [0, 1]× (0, 1). At the boundary points, Ċ1(u1, u2) and
Ċ2(u1, u2) are defined as the one-sided limits by convention. For the result to hold, we
need the following assumption.

Assumption 1 For j = 1, 2, the partial derivative Ċj exists on [0, 1]2 and is continuous
on the set Vj.

Assumption 1 is used rather than the more restrictive condition of continuous partial
derivatives on [0, 1]2 in Fermanian et al. (2004), as the former is satisfied by a much
wider class of parametric copula families. In particular, Segers (2012) demonstrates that
the Ċ1 and Ċ2 of a bivariate copula with lower (resp. upper) tail dependence cannot be
continuous at the point (0, 0) (resp. (1, 1)).

Proposition 3.3 If the bivariate copula C satisfies Assumption 1, then we have that

√
n
(
ζ̂α − ζα

)
d→ N

(
0,

(α+ 2− ζα)4

α2
Var(X)

)
, (13)

where

X =
1

2

ˆ 1

0
GC

(
u1/α, 1

)
du+

1

2

ˆ 1

0
GC

(
1, u1/α

)
du−

ˆ 1

0
GC

(
u1/α, u1/α

)
du, (14)

in which

GC(u1, u2) = BC(u1, u2)− BC(u1, 1)Ċ1(u1, u2)− BC(1, u2)Ċ2(u1, u2) (15)

is a Gaussian process that involves a Brownian bridge BC with covariance function

E [BC(u1, u2)BC(u3, u4)] = C(u1 ∧ u3, u2 ∧ u4)− C(u1, u2)C(u3, u4). (16)

Proof. Note that ν̂α = (2n)−1
∑n

i=1 |Rαi1 − Rαi2| can be written in terms of Cn, the em-
pirical copula defined in (12), as follows:

ν̂α =
1

n

n∑
i=1

[
max{Rαi1, Rαi2} −

1

2
Rαi1 −

1

2
Rαi2

]

=
1

n

n∑
i=1

ˆ 1

0

(
1− 1{Ri1 ≤ u1/α, Ri2 ≤ u1/α}

)
du

− 1

2n

1∑
j=0

n∑
i=1

ˆ 1

0

(
1− 1{Ri1 ≤ uj/α, Ri2 ≤ u(1−j)/α}

)
du

9
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=
1

2

ˆ 1

0

[
Cn(u1/α, 1) + Cn(1, u1/α)− 2Cn(u1/α, u1/α)

]
du.

Under the regularity conditions in Assumption 1 (Segers (2012)), we have
√
n[Cn(u1, u2)−C(u1, u2)]

d→ GC(u1, u2), where GC is a Gaussian process satisfying (15)

and (16). This establishes the asymptotic distribution of ν̂α, so that
√
n(ν̂α − να)

d→ X,
where X is given in (14). The random variable X is normally distributed, as a conse-
quence of Lemma 3.9.8 of van der Vaart and Wellner (1996) which states that a continu-

ous, linear map of a tight Gaussian process (in this case GC) is Gaussian. As for ζ̂α, the
rank-based estimator of the tail-weighted dependence measure, observe via (7) and (8)
that

√
n
(
ζ̂α − ζα

)
= −α

( √
n (ν̂α − να)

[α/(α+ 1)− ν̂α][α/(α+ 1)− να]

)
= rα

[√
n (ν̂α − να)

]
+ op(1),

where rα = −α[α/(α+ 1)− να]−2 = −αγ−2
α . As a result,

√
n
(
ζ̂α − ζα

)
d→ N

(
0,

(α+ 2− ζα)4

α2
Var(X)

)
.

�

The asymptotic variance in (13) is usually a 2-dimensional integral that can be eval-
uated numerically (see Appendix A). Some examples of square roots of the asymptotic
variances are included in Table 1 in the next subsection. For the independence copula, a
simple closed-form asymptotic variance can be obtained, as follows.

Proposition 3.4 If C is the independence copula with C(u1, u2) = C⊥(u1, u2) = u1u2,
then we have that

√
n
(
ζ̂α − ζα

)
d→ N

(
0,

(2 + α)2

(1 + α)(3 + 2α)

)
. (17)

Proof. For the independence copula, we have

E [BC(u1, u2)BC(u3, u4)] = (u1 ∧ u3) (u2 ∧ u4)− u1u2u3u4

from (16) and

E [GC(u1, u2)GC(u3, u4)] = (u1 ∧ u3 − u1u3)(u2 ∧ u4 − u2u4)

from (A2). It can be easily checked that all but the third term of (A1) are zero, and thus

Var(X) =

ˆ 1

0

ˆ 1

0
E
[
GC

(
u1/α, u1/α

)
GC

(
v1/α, v1/α

)]
dudv =

α2

(2 + α)2(3 + 5α+ 2α2)
,

10
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so that
√
n
(
ζ̂α − ζα

)
d→ N

(
0, σ2

)
, where

σ2 =
(2 + α)4

α2
· α2

(2 + α)2(3 + 5α+ 2α2)
=

(2 + α)2

(1 + α)(3 + 2α)
.

�

Note that the asymptotic variance in (17) is a decreasing function in α, from 4/3 when
α→ 0+ to 1/2 as α→∞.

3.4. Uses of the tail-weighted dependence measures

In this subsection, we demonstrate the idea of using the proposed tail-weighted depen-
dence measures ζα to quantify overall and tail dependence of a copula, as well as their
use in distinguishing between copulas with various strengths of dependence in the joint
tail.

3.4.1. As measures of overall and tail dependence of copulas

When α = 1, ζα can be interpreted as a central dependence measure much like Kendall’s
τ and Spearman’s ρ. When α > 1, ζα puts more weight on the upper tail of the copula.
We mainly focus on α ≥ 1 due to the desirable property that ζα → λU as α → ∞;
emphasis can be put on the lower tail by using α > 1 with the reflected copula.

We mentioned in Section 2 that the strength of tail dependence can be measured by
the tail dependence coefficients λL and λU . When there is no tail dependence, it is still
possible to quantify the degree of tail heaviness using the notion of tail order (Hua and
Joe (2011)) based on an expansion of the corner tail probabilities. The upper and lower
tail orders, κL and κU , are quantities such that

C(u, u) = uκL`(u) + o(uκL`(u)), C(1− u, 1− u) = uκU `∗(u) + o(uκU `∗(u)) (18)

as u → 0+, for some slowly varying functions ` and `∗ at 0+. The tail order is the
reciprocal of the coefficient of tail dependence in Ledford and Tawn (1996) and Heffernan
(2000), and cannot be smaller than 1; λL (λU ) can only be non-zero if κL (κU ) is 1.
Copulas with κ = κL or κU between 1 and 2 are said to have intermediate tail dependence
for the respective tail, and those with κ = 2 are said to have tail quadrant independence.
It is possible for κ > 2 for some copulas with negative quadrant dependence. Similar
to the tail dependence coefficient, the tail order is defined as a limit and has no direct
empirical counterpart.

In Table 1, we compute the values of ζα for selected values of α and those of other mea-
sures of tail dependence, for several bivariate parametric copulas families with parameters
such that Kendall’s τ = 0.3 or τ = 0.7. These families cover a range of possibilities in the
two-term expansion of C(1 − u, 1 − u) as u → 0+, i.e., these families cover various tail
symmetry/asymmetry and dependence characteristics for copulas with positive quadrant
dependence. The families are:

• Gaussian: Reflection symmetric with intermediate tail dependence when 0 < ρ < 1;
λU = 0 and 1 < κU < 2.

• Frank: Reflection symmetric with tail quadrant independence; λU = 0 and κU = 2.

11
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• Gumbel: Reflection asymmetric with upper tail dependence and intermediate lower
tail dependence; 0 < λU < 1 and κU = 1; λL = 0 and 1 < κL < 2. It is an extreme
value copula.

• Student’s t: Reflection symmetric with tail dependence; 0 < λU < 1 and κU = 1.
We consider the t copula with 1 and 5 degrees of freedom; for a given correlation
parameter, the tail dependence is stronger with smaller degrees of freedom.

• BB1: Reflection asymmetric with potentially different strengths of dependence in the
two tails; 0 < λU , λL < 1; κU = κL = 1.

Table 1 also has the asymptotic standard error of the rank-based estimator ζ̂α for
the sample size 500, computed using the results in Section 3.3 and Appendix A. For
comparison, we include the corresponding upper semicorrelations of the normal scores
for each copula (see Section 2.17 of Joe (2014)), defined as

ρ+
N = Cor

[
Φ−1(U1),Φ−1(U2)|U1 > 0.5, U2 > 0.5

]
(19)

where Φ is the standard normal cdf and (U1, U2) is a random vector from copula C. The
normal scores for the ith margin are defined as Φ−1(Ui), i = 1, 2. The upper tail-weighted
dependence measure of Krupskii and Joe (2015) is also computed; a description of this
measure is in Section 3.4.2. These two measures have been developed to quantify the
strength of dependence in the joint tails.

In addition to copulas with positive quadrant dependence, we also consider the be-
haviour of ζα for copula families that admit negative quadrant dependence. Among those
listed in Table 1, the Gaussian, Frank and Student’s t families allow copula parameters
that correspond to a Kendall’s τ of −0.3 and −0.7. Table 2 lists the analogous results
to Table 1 for copulas with negative quadrant dependence. We again observe the con-
vergence of ζα to λU as α increases, and the purpose of ζ1 as a measure of central
dependence. Student’s t copulas have λU values that are above zero even though there
is overall negative dependence; in this case ζα is negative when α is small, and turns
positive when α is sufficiently large. This is apparent for the t1 copula but not the t5

copula as the latter has a λU value that is very close to (but not exactly) zero.
From these results, we observe that ζ1 is not very different among copulas with the

same Kendall τ value, and can be regarded as a measure of overall dependence strength.
As α increases, ζα tends towards the upper tail dependence coefficient λU , although ζα
need not be monotone in α as is evident for the t1 copula. By construction, ζα = λU
for all α for an extreme value copula, such as Gumbel. Unlike for the independence
copula, the asymptotic standard error generally increases with α for the copula models
with positive quadrant dependence; further inspection (not shown) seems to suggest the
minimum occurs near α = 1. Different copulas exhibit various rates of convergence to
λU as α increases, with slower rates for the Gaussian, reflected Gumbel and tν (large ν)
copulas. A more formal investigation of convergence rates will be given in Section 4.

3.4.2. As a tool for distinguishing between copulas with various strengths of
dependence in the joint tail

Because the proposed measures ζα quantify the degree of tail dependence, they can be
used to distinguish between copulas with various tail dependence characteristics and
assist in the choice of copula families in data modelling.

The semicorrelation (19) and conditional Spearman’s ρ (Schmid and Schmidt (2007))
are special cases of a more general class of tail-weighted dependence measures studied
in Krupskii and Joe (2015) that are based on conditional correlations; for (U1, U2) ∼ C,

12
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Kendall’s τ = 0.3

Measure
Copula

Gaussian Frank Gumbel rGumbel t1 t5 BB1 rBB1
ζ1 .37 (.03) .37 (.03) .38 (.03) .38 (.03) .44 (.03) .38 (.03) .37 (.03) .37 (.03)
ζ5 .29 (.04) .28 (.04) .38 (.04) .24 (.04) .41 (.04) .32 (.04) .33 (.04) .29 (.04)
ζ20 .20 (.05) .14 (.04) .38 (.06) .14 (.05) .45 (.06) .27 (.06) .31 (.06) .23 (.06)
ζ100 .12 (.09) .04 (.05) .38 (.12) .06 (.07) .47 (.12) .24 (.12) .30 (.12) .17 (.10)
λU .00 .00 .38 .00 .48 .18 .30 .06
κU 1.38 2.00 1.00 1.62 1.00 1.00 1.00 1.00
ρ+N .23 .15 .46 .16 .70 .37 .39 .28
%U .22 .11 .48 .14 .75 .37 .40 .28

Kendall’s τ = 0.7

Measure
Copula

Gaussian Frank Gumbel rGumbel t1 t5 BB1 rBB1
ζ1 .76 (.01) .77 (.01) .77 (.01) .77 (.01) .79 (.02) .77 (.01) .77 (.01) .77 (.01)
ζ5 .70 (.02) .67 (.02) .77 (.02) .65 (.02) .75 (.02) .72 (.02) .73 (.02) .71 (.02)
ζ20 .63 (.04) .43 (.05) .77 (.03) .52 (.05) .76 (.04) .67 (.04) .71 (.04) .66 (.04)
ζ100 .54 (.10) .16 (.08) .77 (.06) .38 (.11) .76 (.08) .63 (.09) .70 (.08) .63 (.09)
λU .00 .00 .77 .00 .77 .58 .70 .61
κU 1.06 2.00 1.00 1.23 1.00 1.00 1.00 1.00
ρ+N .75 .60 .85 .64 .88 .78 .80 .77
%U .76 .51 .89 .62 .90 .79 .83 .79

Table 1. Values of the dependence measure ζα for α = 1, 5, 20, 100, upper tail dependence coefficient and tail
order λU and κU , upper semicorrelation of the normal scores ρ+N , and upper tail-weighted dependence measure

%U with weighting function a(u) = u6 (Krupskii and Joe (2015)) for various bivariate parametric copula families

with Kendall’s τ equal to 0.3 (above) and 0.7 (below). An “r” in front of the name of the copula family indicates
reflection of the copula. For the BB1 copula and its reflection, the parameters are chosen so that the copula has

the same upper tail dependence coefficient as Kendall’s τ . The numbers in brackets are the asymptotic standard

errors of the associated rank-based estimator ζ̂α for a sample of size 500.

the lower and upper measures %L and %U are defined as

%L = %L(C) = Cor [a(1− U1/p), a(1− U2/p)|U1 < p,U2 < p] ; (20)

%U = %U (C) = Cor [a(1− (1− U1)/p), a(1− (1− U2)/p)|U1 > 1− p, U2 > 1− p] , (21)

respectively, where a : [0, 1] → [0,∞) is a continuous increasing weight function with
a(0) = 0, and 0 < p ≤ 0.5 is the truncation level. The authors considered the class of
weight functions a(u) = uk with k ≥ 1, for its ease in numerical computation relative to
the Gaussian inverse cdf and its property of being a tail-weighted measure.

For the objective of distinguishing between copulas with various strengths of depen-
dence in the joint tail, the authors compared the magnitude of %L(C1; k)− %L(C2; k) for
various copulas C1 with tail dependence and C2 without, against the standard error of
the empirical counterpart of this difference (obtained by replacing the U ’s in (20) and
(21) by the scaled ranks R’s, and the correlation by sample correlation), for several val-
ues of k. Based on empirical studies, they found that a value of k = 6 generally yields
the largest values of %L(C1; k) − %L(C2; k) relative to the standard errors. We carried
out the same sets of simulations for ζα, and observe that comparable performance can
be obtained when α is between 15 and 20. When α < 15, ζα is rather insensitive to the
tail behaviour of different copulas relative to the standard error of the difference; when
α > 20, the standard error increases at a faster rate than the difference ζα(Ĉ1)− ζα(Ĉ2).
We also note that both the magnitude of the difference and the standard errors are
smaller than those using the tail-weighted dependence measure %L.
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Kendall’s τ = −0.3

Measure
Copula

Gaussian Frank t1 t5
ζ1 −.40 (.04) −.42 (.04) −.26 (.05) −.37 (.05)
ζ5 −.23 (.02) −.24 (.03) −.10 (.04) −.21 (.03)
ζ20 −.09 (.01) −.08 (.02) .07 (.06) −.06 (.02)
ζ100 −.02 (< .01) −.02 (.01) .13 (.11) −.004 (.04)
λU .00 .00 .15 .007
κU 3.66 2.00 1.00 1.00
ρ+N −.13 −.07 .57 .06
%U −.09 −.04 .63 .10

Kendall’s τ = −0.7

Measure
Copula

Gaussian Frank t1 t5
ζ1 −.87 (.02) −.90 (.01) −.77 (.04) −.85 (.02)
ζ5 −.41 (.01) −.42 (.01) −.36 (.02) −.40 (.01)
ζ20 −.11 (< .01) −.11 (< .01) −.07 (.03) −.10 (< .01)
ζ100 −.02 (< .01) −.02 (< .01) .01 (.05) −.02 (< .01)
λU .00 .00 .03 O(10−5)
κU 18.35 2.00 1.00 1.00
ρ+N −.20 −.08 .59 O(10−4)
%U −.04 −.01 .63 .08

Table 2. Values of the dependence measure ζα for α = 1, 5, 20, 100, upper tail dependence coefficient and tail
order λU and κU , upper semicorrelation of the normal scores ρ+N , and upper tail-weighted dependence measure %U
with weighting function a(u) = u6 (Krupskii and Joe (2015)) for various bivariate parametric copula families with

Kendall’s τ equal to −0.3 and −0.7. The numbers in brackets are the asymptotic standard errors of the associated
rank-based estimator ζ̂α for a sample of size 500.

4. Tail expansion of ζα and estimation of the tail dependence coefficient

The property that ζα → λU as α → ∞ makes it relevant to consider the estimation of
λU based on values of ζ̂α for several different α. Based on the tail expansion of ζα for
large α, we propose a method to estimate λU in this section. Unless specified, we focus
on the upper tail behaviour in the following because λL is the same as the upper tail
dependence coefficient of the reflected copula.

4.1. Tail expansion of C(1 − u, 1 − u) and ζα

In this subsection, we derive an asymptotic expansion of ζα−λU . This expression will be
helpful in devising a method to estimate λU using our proposed tail-weighted dependence
measures.

Proposition 4.1 Suppose the bivariate copula C is twice continuously differentiable
and the upper tail is well-behaved in that C(1 − u, 1 − u) has a tail expansion to the
second order that is valid upon differentiation. Then it holds that

ζα − λU =
(α+ 1)−1(c11 − c2

11) + α−(η−1)ξΓ(η)`∗(α−1) + o(α−[(η−1)∧1])

1 + o(1)
(22)

as α→∞, where c11 = C1|2(1|1) + C2|1(1|1) = 2− λU with Ci|j = ∂C(ui, uj)/∂uj being
the conditional cdf of C, (i, j) = (1, 2) or (2, 1); η and ξ are constants with η being the
upper tail order when C has no upper tail dependence; and `∗ is a slowly varying function

14
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at 0+.

Proof. For C with well-behaved upper tail, the survival function admits the following
expansion to the second order:

C(1− u, 1− u) = 2u− 1 + C(1− u, 1− u) = λUu+ ξ∗uη`(u) + o(uη`(u)), u→ 0+,

where η > 1, ξ∗ is a constant and `(u) is slowly varying at 0. When λU = 0, this expansion
matches that used for the upper tail order in (18).

With well-behaved upper tails, by differentiating the above with respect to u, one gets

2−C1|2(1−u|1−u)−C2|1(1−u|1−u) = λU +ξuη−1`(u)+o(uη−1`(u)), u→ 0+, (23)

where ξ = ηξ∗. On the other hand, using integration by parts, we have γα = 1 −´ 1
0 u

α
[
C1|2(u|u) + C2|1(u|u)

]
du =: 1− Iα. Note that

Iα =

ˆ 1−ε

0
uα
[
C1|2(u|u) + C2|1(u|u)

]
du+

ˆ 1

1−ε
uα
[
C1|2(u|u) + C2|1(u|u)

]
du (24)

for any ε > 0. The first integral in (24) is bounded by M(1 − ε)α for some positive
constant M , and can be ignored as α→∞. For the second integral, applying (23) gives

ˆ 1

1−ε
uα
[
C1|2(u|u) + C2|1(u|u)

]
du

=

ˆ 1

1−ε
uα
[
(2− λU )− ξ(1− u)η−1`(1− u) + o((1− u)η−1`(1− u))

]
du

=
2− λU
α+ 1

− ξ
ˆ 1

1−ε
uα(1− u)η−1`(1− u) du+O

[
(1− ε)α+1

α+ 1

]
. (25)

For any δ ∈ (0, η), the integral in (25) can be expressed as

ˆ 1

1−ε
uα(1− u)η−1`(1− u) du =

ˆ − log(1−ε)

0
e−(α+1)x(1− e−x)η−1`(1− e−x) dx

=

ˆ ∞
0

fΓ(x; η − δ, α+ 1)

(
1− e−x

x

)η−1

Γ(η − δ)

·(α+ 1)−(η−δ)xδ`(1− e−x) · 1{x ≤ − log(1− ε)}dx

:= E [g(Xα)] ,

where g(x) =
(

1−e−x
x

)η−1
Γ(η−δ)(α+1)−(η−δ)xδ`(1−e−x)·1{x ≤ − log(1−ε)}, fΓ(x; γ, β)

is the density function of a gamma random variable with shape parameter γ and rate
parameter β, and Xα ∼ Gamma(η − δ, α+ 1) (in the shape-rate parametrization). Note

that Xα − (η − δ)(α+ 1)−1 p→ 0 as α→∞, and thus g(Xα)− g
(
(η − δ)(α+ 1)−1

) p→ 0

by the continuous mapping theorem. Since
(

1−e−x
x

)η−1
≤ 1 and xδ`(1 − e−x) → 0 as

x → 0+, g(Xα) is integrable with respect to the Gamma(η − δ, α + 1) density and thus
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we have the convergence in mean

E [g(Xα)]− g((η − δ)(α+ 1)−1)→ 0.

Observe that, for all α > α∗ with (η − δ)(α∗ + 1)−1 = − log(1− ε),

g((η − δ)(α+ 1)−1) = Γ(η − δ)(α+ 1)−(η−δ) [1 +O
(
(α+ 1)−1

)]
`
(

1− e−(η−δ)/(α+1)
)

= Γ(η − δ)(α+ 1)−(η−δ)`
(

1− e−(η−δ)/(α+1)
)

+ o
(

(α+ 1)−(η−δ)
)
.

Since ε and δ are arbitrarily small positive numbers, we have that Iα = (α+ 1)−1(2−
λU ) − α−ηξΓ(η)`∗(α−1) + o

(
α−(η∧1)

)
for α large, where `∗ is another slowly varying

function at 0. With c11 = 2− λU , we have

ζα − λU = 2 + α(1− γ−1
α )− λU =

c11 − (c11 + α)Iα
1− Iα

=
[c11 − (c11 + α)Iα](1 + Iα)

1 + o(1)
,

simplifying to (22) after plugging in the asymptotic expansion of Iα. �

The asymptotic expansion (22) provides guidance on how quickly ζα converges to λU
as α→∞. There are three possibilities:

(1) When 1 < η < 2, the middle term in the numerator of (22) dominates and the rate
is α−(η−1); this is the case for all bivariate copulas with intermediate tail dependence
and some with tail dependence. Whether ζα is increasing or decreasing to the limit
as α increases, for α large, depends on the sign of that term.

(2) When η > 2, the first term dominates and the rate is α−1; this is the case for some
copulas with tail dependence. This also implies ζα is increasing to the limit as α
increases, for large α, as c11 ≥ 1 and c11 − c2

11 ≤ 0. It should also be noted that, for
copulas with negative quadrant dependence and zero tail dependence (such as the
Gaussian copula with negative parameter), typically η > 2 and ζα increases to the
limit of zero as α increases.

(3) When η = 2, the first two terms have the same order α−1; this is the case for copulas
with tail quadrant independence and some with tail dependence. The trend of ζα for
α large depends on the magnitudes and signs of the two terms.

We illustrate with several examples below for the parametric copula families in Section
3.4.

(1) Gaussian copula (intermediate tail dependent). The (lower) tail is C(u, u; ρ) ∼
u2/(1+ρ)(− log u)−ρ/(1+ρ) (Hua and Joe (2011)), with η = 2/(1 + ρ), `(u) =
(− log u)−ρ/(1+ρ) and λL = λU = 0. Hence, ζα is decreasing for large α if ρ > 0,
and increasing if ρ < 0.

(2) Frank copula (tail quadrant independent). The (lower) tail expansion is C(u, u; θ) ∼
θ(1 − e−θ)−1u2, with η = 2, λL = λU = 0, ξ = 2θ(1 − e−θ)−1 and ` ≡ 1. Note
that c11 − c2

11 + ξ = 2
[
θ(1− e−θ)−1 − 1

]
; this is greater than zero if θ > 0 (positive

quadrant dependence) and less than zero if θ < 0 (negative quadrant dependence).
Hence, ζα is decreasing for large α if θ > 0, and increasing if θ < 0.

(3) Upper tail of Gumbel copula (tail dependent) with parameter θ > 1. The tail ex-
pansion is C(1 − u, 1 − u; θ) = (2 − 21/θ)u + 21/θ−1(21/θ − 1)u2 + O(u3), so that
λU = 2 − 21/θ, η = 2, ξ = 21/θ(21/θ − 1) and ` ≡ 1. Note that c11 − c2

11 + ξ = 0
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indicating quick convergence — ζα is in fact a constant as this is an extreme value
copula.

(4) Lower tail of Gumbel copula (intermediate tail dependent). The copula can be sim-

plified to C(u, u; θ) = u21/θ

, so that λU = 0, η = ξ = 21/θ and ` ≡ 1. Since ξ > 0, ζα
is decreasing for large α (which agrees with intuition since ζα ≥ 0 for copulas with
non-negative dependence).

(5) Student’s t copula (tail dependent). It is easier to work with the conditional cdf of
the t distribution. Let F12 be the bivariate t cdf with correlation parameter ρ and ν
degrees of freedom, and let Tν and tν be the univariate t cdf and pdf with ν degrees
of freedom. Let γ =

√
(1− ρ)(ν + 1)/(1 + ρ). The tail expansion of the conditional

distribution F2|1 as x→ −∞ is

F2|1(x|x; ρ, ν) = Tν+1

[
x

√
(1− ρ)(ν + 1)

(1 + ρ)(ν + x2)

]
= Tν+1

[
−

√
(1− ρ)(ν + 1)

1 + ρ

(
1 +

ν

x2

)−1/2
]

= Tν+1(−γ) +
νγ

2x2
tν+1(−γ) +O(x−4). (26)

Note that λU = λL = 2 lim
x→−∞

F2|1(x|x) = 2Tν+1(−γ), so that 2F2|1(x|x; ρ, ν) ∼

λL + νγx−2tν+1(−γ) as x → −∞. To convert (26) to copula scale, let x = T−1
ν (u)

with u→ 0+ so that

x = ν(ν−1)/2 Γ [(ν + 1)/2]

Γ(ν/2)
√
πν

u−1/ν (27)

(see Nikoloulopoulos, Joe, and Li (2009)). Therefore η = 1 + 2/ν and ζα − λ =
O(α−1) + O(α−2/ν) as α → ∞. The convergence rate is α−1 when 0 < ν ≤ 2, and
α−2/ν for ν > 2. For fixed ρ, the tail dependence is stronger with smaller ν, and a
smaller ν leads to quicker convergence of ζα to λL (or λU ).

(6) Upper tail of BB1 copula (tail dependent) with C(u1, u2; θ, δ) =(
1 +

[
(u−θ1 − 1)δ + (u−θ2 − 1)δ

]1/δ
)−1/θ

, for θ > 0 and δ > 1. It has λU = 2 − 21/δ,

c11 = 21/δ and the tail expansion is

C(1− u, 1− u; θ, δ) = (2− 21/δ)u+
1

2
(θ + 1)(22/δ − 21/δ)u2 +O(u3),

so that η = 2, ξ = (θ+1)(22/δ−21/δ) > 0 and ` ≡ 1. Both the first and second terms
in (22) have order α−1; the combined coefficient is θ(22/δ − 21/δ) > 0 and thus ζα is
decreasing to the limit as α (large) increases.

(7) Lower tail of BB1 copula (tail dependent). The tail expansion at u → 0+ is
C(u, u; θ, δ) = 2−1/(θδ)u + 2−1/(θδ)θ−1(1 − 2−1/δ)uθ+1 + O(u2θ+1), so that λL =
2−1/(θδ), η = θ + 1, ξ = 2−1/(θδ)(θ + 1)θ−1(1 − 2−1/δ) and ` ≡ 1. There are three
situations:

(a) If 0 < θ < 1 (weaker dependence), the dominating term of ζα − λU has order
α−θ and the coefficient 2−1/(θδ)(θ + 1)θ−1(1− 2−1/δ)Γ(θ + 1) > 0, and hence ζα
is decreasing for large α.

(b) If θ = 1, the dominating term has order α−1, with coefficient c11 − c2
11 + ξ =(

2− 2−1/δ
)
−
(
2− 2−1/δ

)2
+ 21−1/δ(1− 2−1/δ) = (2− 3 · 2−1/δ)(2−1/δ − 1) whose
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sign depends on δ.
(c) If θ > 1 (stronger dependence), the dominating term also has order α−1 but the

coefficient c11− c2
11 is always negative, meaning that ζα is increasing for large α.

The tail properties of the above copula families are summarized in Table 3.

Copula (tail) Parameter λ η `(u) as u→ 0+ Order

Gaussian (either) −1 < ρ < 1 0 2
1+ρ (− log u)−

ρ

1+ρ α
−
(

1−ρ
1+ρ
∧1

)
Frank (either) all θ 0 2 1 α−1

Gumbel (upper) all θ 2− 21/θ 2 1 †
Gumbel (lower) all θ 0 21/θ 1 α−(21/θ−1)

t (either)
0 < ν < 2

2Tν+1 (−γ)∗ 1 + 2
ν **

α−1

ν ≥ 2 α−2/ν

BB1 (upper) all (θ, δ) 2− 21/δ 2 1 α−1

BB1 (lower)
0 < θ < 1

2−1/(θδ) 1 + θ 1
α−θ

θ = 1 α−1

θ > 1 α−1

* Here γ =
√

(1− ρ)(ν + 1)/(1 + ρ).
** The slowly varying function of the t copula is a function of ν and ρ but not u; this can be
seen from (26) and (27).
† The value of ζα is a constant for the upper tail of the Gumbel copula since it is an extreme
value copula.

Table 3. Summary of the tail properties of several commonly used bivariate parametric copula families. The
column “Order” gives the asymptotic order of convergence of ζα to the tail dependence coefficient λ as α→∞.

4.2. Estimation of the tail dependence coefficient

From the results on the rate of convergence of ζα to λU , we propose a method to estimate
the tail dependence coefficient based on a regression using the sequence of ζ̂α for various
large values of α.

There is no direct way of estimating the tail dependence coefficient of a general bivari-
ate copula as it is defined as a limit. Dobrić and Schmid (2005) attempt an empirical
counterpart of (1) with small values of u, a weighted least squares estimate and another
one based on a mixture of the independence and comonotonicity copulas. Frahm, Junker,
and Schmidt (2005) discuss the challenges of estimating the tail dependence coefficient
and have estimates based on various assumptions on the copula models.

We consider the following regression equations in our proposed approach, with ε1, ε2
and ε3 being the error terms:

(M1) ζ̂α = b1 + b2/α+ ε1, valid for (22) with η = 2. The estimated λU is given by b̂1.

(M2) ζ̂α = b1 + b2/α
b3 + ε2, an extension of M1 for other values of η. The estimated λU

is also given by b̂1.
(M3) ζ̂α = (2− b) + (b− b2)/(α+ 1− b) + ε3, which is obtained from (22) for η > 2, using

the asymptotic relationship Iα ∼ c11(α + 1)−1 with b = c11, where Iα is given in

(24). The estimated λU is given by 2− b̂ in this case.

For a fixed α, ζ̂α is consistent for ζα as the sample size increases to infinity. If the copula
is such that (22) holds with η > 2, then regression M3 leads to a consistent estimator of
λU when the grid of α values increases appropriately as the sample size increases. When

18



November 16, 2017 Journal of Nonparametric Statistics twdm-zeta

η ≤ 2, a similar conclusion holds for regressions M1 and M2. However, the asymptotic
consistency of the estimator may not be relevant in practice, when the extent of tail
dependence must be estimated from finite (and usually small) samples. This is because

the variability of ζ̂α (and therefore, the variability of the estimated λU ) increases as α
increases for a given sample size. Therefore, we are more interested in the finite-sample
behavior of the estimator.

The grid of α values for which the corresponding ζ̂α’s are computed can depend on
the sample size, with larger values of α when the sample size is larger. A preliminary
investigation based on the bivariate parametric copula families in Table 3 suggests that
a range of α values between 10 and 20 yields better performance in terms of the root
mean square error (RMSE) of the estimate for small to moderate sample sizes (in the
hundreds to thousands); larger values of α result in a larger variance while smaller values
of α result in a larger bias. With 10 ≤ α ≤ 20, the rate of α in (22) might not be accurate
but the sign of ξ is generally correct.

Empirically, regression M3 works best when the copula has η > 2; for copulas with
positive dependence, this only happens when the copula has tail dependence. M1 works
better for tail dependent copulas (λU > 0) when η = 2, and also in some cases with η < 2.
Meanwhile, M2 works better for copulas with intermediate tail dependence (which has
1 < η < 2 and λU = 0) or tail quadrant independence (which has η = 2 and λU = 0);
in the latter case, M2 generally yields estimates that are closer to zero than for M1 and
the reduction in RMSE is substantial.

A further check on the theoretical asymptotic variance using expressions in Section
3.3 suggests that the rate of increase in the asymptotic variance of ζ̂α as a function
of α depends on the strength of tail dependence of the copula; Figure 1 shows several
examples, each with Kendall’s τ of the copula equal to 0.5. When the copula is tail
dependent, as is the case for t3, the asymptotic variance grows at a rate of around α;
this can be seen by the fitted line that has an intercept of around zero. For copulas with
intermediate tail dependence or tail quadrant independence, the asymptotic variance
grows at a rate of less than α. This observation prompts us to impose a further refinement
to the regression procedure for the estimation of λU ; we suggest using weighted least
squares (WLS) with weight α when there is evidence of tail dependence, and weight α1/2

when the dependence in the joint upper tail is weak2. With regression M2 on copulas
with intermediate tail dependence or tail quadrant independence, we observe a reduction
of the RMSE using WLS with weight α1/2 rather than α. To check if there may be tail
dependence, one empirical approach is to compare the sample semicorrelation to the one
corresponding to a Gaussian copula with the same overall dependence (correlation of the
normal scores). If the sample semicorrelation is much higher, a linear weighting should
be used.

To summarize, we estimate the upper tail dependence coefficient using the following
diagnostic procedure:

(1) Compute ζ̂α for a grid of α values in [10, 20].

(2) If ζ̂α is increasing in α, in the sense that an ordinary least squares (OLS) regression

of ζ̂α against 1/α has negative slope, use regression M3 (which is suitable when ζα
is increasing to the limit) with WLS and weight α.

(3) If ζ̂α is decreasing in α, there are two possibilities. First obtain the results based on
regression M2 with WLS and weight α1/2. Also obtain the sample upper semicor-

2We observe that the rate of growth of the asymptotic variance is typically between α0 and α1 in the range of
10 < α < 20 for copulas without tail dependence.
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Figure 1. Plots of asymptotic variance of ζ̂α against α for the upper tails of three parametric copula families with

Kendall’s τ equal to 0.5: Frank, reflected Gumbel and t3. The dashed lines are linear extrapolations based on the
computed asymptotic variances (in circles).

relation ρ̂+
N of the normal scores, and the semicorrelation ρ+

N of a Gaussian copula
(equation (2.59) of Joe (2014)) with dependence parameter being the sample corre-
lation of the normal scores.
(a) If the estimated curvature parameter b3 in regression M2 is larger than 1− ε for

some small threshold ε, or ρ̂+
N − ρ

+
N > γ for some cutoff γ, then use regression

M1 with WLS and weight α.
(b) Otherwise, use the result already obtained based on regression M2.

For easier understanding, the diagnostic procedure is also given in the form of a flowchart
in Figure 2.

The threshold parameter ε is usually small; we note little difference in the results with
various choices of ε and will adopt ε = 0.2 in the following. The cutoff γ reflects the
variability of ρ̂+

N in the Gaussian case and hence depends on both the sample size and
the strength of overall dependence. We note that the standard error of ρ̂+

N for a Gaussian
copula with correlation parameter 0.6 is around 0.07 for a sample size of 600 (Joe (2014)).
We experiment with various values of γ based on copulas with Kendall’s τ = 0.5, and
choose γ = 0.04 for a sample size of n = 500; those for other sample sizes can be obtained
using the square root rule, e.g., quadrupling the sample size reduces γ by one half.

A simulation study is conducted to investigate the finite-sample performance of the
estimator. For each copula family, we use one with Kendall’s τ equal to 0.5 and sample
sizes 500 and 2000. Two BB1 copulas with respective dependence parameter θ = 1.5
and 0.5 are considered, as they have different rates of convergence. The RMSE of the
estimator based on the above procedure is computed using 1000 replications for each
scenario; we also record the proportion of instances each regression equation is used. The
simulation results are shown in Table 4.

For comparison, we consider an estimator based on the following regressions using the
empirical survival copula Cn(1− u, 1− u) = n−1

∑n
i=1 1(Ri1 > 1− u,Ri2 > 1− u):

(DS1) Cn(1− u, 1− u)/u = b1 + b2u, with estimator for λU being b1.
(DS2) Cn(1− u, 1− u)/u = b1 + b2u

b3 , with estimator for λU being b1.

These relationships are modified from the third estimator of Dobrić and Schmid (2005)
that assumes a mixture of the independence and comonotonicity copulas:

C(1− u, 1− u) = λUu+ (1− λU )u2,
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Calculate ζ̂α for
α ∈ [10, 20]

Is ζ̂α ↑ in α?
Use M3 with
WLS weight α

Obtain results by M2
with WLS weight α1/2,
ρ̂+
N , and ρ+

N of Gaussian

Is curvature
parameter of M2 > 1− ε

or ρ̂+
N − ρ

+
N > γ?

Use M1 with
WLS weight α

Use M2 with
WLS weight α1/2

Yes

No

Yes

No

Figure 2. A flowchart of the proposed diagnostic procedure for the estimation of λU based on a sequence of values
of ζα.

where we relax the restriction on the coefficients. Empirical studies (not shown) suggest
that this modified empirical copula approach has better finite-sample performance than
the estimator by Dobrić and Schmid (2005), and therefore we report the results for the

former instead. Similar to the estimator based on ζ̂α, for a diagnostic procedure, we select
the regression DS1 if the estimated curvature parameter b3 in DS2 is larger than 1− ε, or
if the observed upper semicorrelation is larger than the Gaussian semicorrelation with the
same overall dependence (as the correlation of normal scores) by at least γ. Otherwise,
the estimator from regression DS2 is chosen. We conduct OLS with u = 0.1, 0.15, . . . , 0.5
and the same values of ε and γ as those for ζ̂α; a value of u as high as 0.5 is used because
it is hard to observe the trend for small values of u, due to the large variability of Cn near
the corner (Figure 3). We emphasize that this modified method only acts as a benchmark
for us to observe the typical values of the RMSEs, for currently available nonparametric
estimation methods for the tail dependence coefficient.

From Table 4, the RMSE’s for the ζ̂α approach are comparable to those based on
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the empirical copula (i.e., using regressions DS1 and DS2); the former generally does
better when there is tail dependence (with Gumbel the only exception), while the latter
may have better performance when the dependence in the joint upper tail is weak. The
approach based on ζ̂α appears to be a better diagnostic when ζ̂α is increasing in α for
α > 10 (that is, when regression M3 is chosen), and its RMSE is not much worse when the
approach based on the empirical copula has smaller RMSE. Figure 3 has a comparison
of plots of ζ̂α against 1/α, versus those of Cn(1 − u, 1 − u)/u against u. We observe
that the former plots are generally smoother than the latter ones; this contributes to
a smaller variance of the estimator in some cases. Regardless of the approach used, we
note a higher RMSE for the Gaussian, reflected Gumbel and the t5 copulas; these are
the more difficult cases as ζα converges very slowly to λU . For the Gaussian copula, even
though the regression M2 with WLS weighting α1/2 may be the best choice based on
RMSE, most instances based on the diagnostic approach fall into regression M1 as the
plot of ζ̂α against 1/α is not showing sufficient curvature.
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Figure 3. Plots of ζ̂α against 1/α (top row) and Cn(1 − u, 1 − u)/u against u (bottom row) for simulated data

sets of size 500 from the Frank, reflected Gumbel and t1 copulas.

Finally, we would like to point out the following remarks:

• The above procedure serves as a guideline only. For practical applications, it may be
relevant to incorporate the nature of the data being studied. For example, if there are
reasons to believe there exists tail dependence, then one may choose to use regressions
M1 or M3 with linear weighting depending on the trend of ζ̂α as a function of α.
Because of sampling variability, the semicorrelation can be smaller than the Gaussian
one even if the data come from a copula with tail dependence.

• Although we focused on copulas with positive quadrant dependence in the above nu-
merical study, we also checked with those with mild negative quadrant dependence and
found that the procedures are still applicable. Because our objective is to estimate the
joint upper or lower tail dependence coefficient, copulas with strong negative quadrant
dependence are less relevant here.
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Copula Gaussian Frank Gumbel rGumbel t1
Param. 0.71 5.74 2 2 0.71

λU 0 0 0.59 0 0.62

η* 1.17 2 2 1.41 3

Rate** 0.17 1 1† 0.41 1

n RMSE based on estimation using ζ̂α

500 .330 .078 .068 .199 .066

2000 .342 .025 .042 .199 .033

n RMSE based on estimation using empirical copula

500 .326 .098 .057 .197 .071

2000 .302 .020 .028 .139 .048

n Proportion of method used (using ζ̂α) (M1/M2/M3 in %)

500 72/26/2 5/95/0 53/0/47 46/54/0 37/0/63

2000 91/9/0 0/100/0 51/0/49 57/43/0 19/0/81

Copula t5 BB1 rBB1 BB1 rBB1

Param. 0.71 (1.5, 1.14) (1.5, 1.14) (0.5, 1.6) (0.5, 1.6)

λU 0.35 0.17 0.67 0.46 0.42

η* 1.4 2 2.5 2 1.5

Rate** 0.4 1 1 1 0.5

n RMSE based on estimation using ζ̂α

500 .133 .107 .054 .108 .111

2000 .093 .059 .025 .045 .064

n RMSE based on estimation using empirical copula

500 .163 .139 .053 .156 .144

2000 .118 .133 .030 .040 .071

n Proportion of method used (using ζ̂α) (M1/M2/M3 in %)

500 84/4/12 64/36/1 34/0/66 71/3/26 75/2/22

2000 99/0/1 79/21/0 16/0/84 88/0/12 93/0/7

* Value of η in (22); equal to κU for copulas with no tail dependence.

** True rate of convergence, i.e., the negative of the dominating power in (22).
† The dominating term for Gumbel copula has power α−1, but ζα ≡ λU for any α as it is an

extreme value copula.

Table 4. Results for the estimation of λU based on regressions using (a) ζ̂α and (b) the empirical survival copula,

on selected bivariate copulas with Kendall’s τ equal to 0.5 and sample sizes n = 500 and 2000. In each case,
1000 replications are conducted. The root mean square errors (RMSE’s) are reported and the smaller value in

each comparison (between the two approaches) is shown in boldface. The proportion of the regression equations
(methods) used (based on ζ̂α) is also displayed for each copula. These proportions may not sum to 100 due to
rounding.

5. Data example

In this section, we use a data example to illustrate the estimation of tail dependence
coefficients using our tail-weighted dependence measure, and the insight on tail inference
using different parametric copula families. The data set consists of 1,500 bivariate obser-
vations of insurance loss and the associated allocated loss adjustment expense (ALAE)
(Frees and Valdez (1998)). There are 34 censored observations whose claims reach the

23



November 16, 2017 Journal of Nonparametric Statistics twdm-zeta

policy limit, and are dropped in our subsequent illustration. In comparison of parameter
estimates with Section 7.4 of Joe (2014), these 34 observations make almost no difference
in the best fitting bivariate copula families and their maximum likelihood estimates.

A scatterplot of the normal scores (with correlation ρN = 0.455) for the remaining
1,466 observations (Figure 4) shows a more peaked joint upper tail, indicating possible
upper tail dependence. This is also supported by an upper semicorrelation of 0.415, much
higher than the semicorrelation of 0.235 for a Gaussian copula with correlation parameter
0.455.

For each tail, we compute ζ̂α for α = 10, 11, . . . , 20 and plot these values against
1/α in Figure 5. Both plots suggest that ζ̂α decreases with α, and hence regression

M3 in Section 4.2 (i.e., the regression ζ̂α = (2 − b) + (b − b2)/(α + 1 − b)) is not to
be used. The estimated curvature parameters for regression M2 are 1.000 (reaching the
upper bound) and 0.977 for the upper and lower tails, respectively. We thus use the
result from regression M1, which assumes a linear rate of convergence. The estimated
tail dependence coefficients are given by λ̂U = 0.331 and λ̂L = 0.081. To get some idea
on the variability of these estimates, we conduct a delete-k jackknife (see, for example,
Shao and Wu (1989) for its use on potentially non-smooth estimators). Here we choose
k = 5, and note that the results are similar for other values of k > 1 attempted. Using
the jackknife variability estimates, we compute the 95% confidence intervals of the tail
dependence coefficient estimates as (0.247, 0.416) and (0.003, 0.159) for the upper and
lower tails, respectively. This seems to support the initial diagnostics that there is upper
tail dependence. For comparison, we also compute the confidence intervals (based on the
same jackknife samples) for Kendall’s τ (length 0.061), ζ1 (length 0.071) and ζ20 (length
0.129), shown in Table 5. It is clear that the estimation of the tail dependence coefficient
is more difficult as it has the longest confidence interval.

For dependence modelling, we consider several parametric copula families with tail
asymmetry skewed to the joint upper tail. The three copulas that yield the smallest
values of the Akaike information criterion (AIC) are 1-parameter Gumbel, 1-parameter
Galambos, and the reflection of the 2-parameter Archimedean copula family based on
an integral of the Mittag-Leffler Laplace transform (see Section 4.31.1 of Joe (2014)).
The latter is C(u, v; θ, δ) = u + v − 1 + ψ(ψ−1(1 − u) + ψ−1(1 − v)), where ψ(s; θ, δ) =
1−FB(s1/δ/(1 + s1/δ); δ, θ−1) and FB(·; a, b) is the cdf of the Beta(a, b) random variable.
The 2-parameter BB1 and BB6 copula families were also fitted but their maximum
likelihood estimates were at the boundary corresponding to a Gumbel copula.

With a 2-parameter Pareto marginal distribution for loss and a 3-parameter Burr
marginal distribution for ALAE, the maximum likelihood estimates of the copula pa-
rameters for the three families are given in Table 5, as well as model-based estimated
values of τ , ζ1, ζ20 and λU .

Parametric copula AIC Cop. param.(s) τ̃ ζ̃1 ζ̃20 λ̃U
Galambos 8541.7 0.701 0.301 0.372 0.372 0.372
Gumbel 8543.0 1.427 0.299 0.375 0.375 0.375
imitlefAr 8541.0 (0.385,1.386) 0.303 0.377 0.351 0.273
Non-parametric 95% CI (lower) — — 0.278 0.336 0.282 0.247
Non-parametric 95% CI (upper) — — 0.339 0.407 0.411 0.416

Table 5. Non-parametric and model-based estimates of dependence measures. The model-based estimates (with

tildes) of dependence measures are calculated for the three best-fitting copula families; imitlefAr refers to the
reflected Archimedean copula with integrated Mittag-Leffler Laplace transform. The corresponding 95% non-
parametric confidence intervals are based on the same delete-5 jackknife samples.
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This analysis agrees with Section 7.1.2 of Joe (2014) that for different fitted parametric
copula families with similar AIC values, model-based estimates of central dependence
measures are very close, model-based estimates of tail-weighted measures of dependence
are not as close, and model-based estimates of tail dependence coefficients can be much
farther apart. This is also shown in the 95% confidence intervals of the non-parametric
estimates of the λU , ζ20 and τ in Table 5. It is not surprising that more observations are
needed to estimate the tail-based quantities well.

Unless the sample size is very large, it seems the tail-weighted dependence measures,
such as the ones in Krupskii and Joe (2015) and in this paper, are more informative. If
there is tail dependence, then parametric copula families with tail dependence may yield
smaller AIC values, but this does not mean that one can get good model-based estimates
of the tail dependence coefficients.
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Figure 4. Pairwise scatterplots of the normal scores of the insurance data set
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Figure 5. Plots of ζ̂α against 1/α for the two tails of the insurance data set
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6. Conclusion

In this paper, we propose tail-weighted dependence measures that are motivated from
the extreme value theory where a direct empirical counterpart of the tail dependence
coefficient exists. The proposed measures are functions of γα, an integral along the di-
agonal of the copula. One can control the weighting at different portions of the copula
by adjusting the value of α, obtaining a central dependence measure when α = 1 and a
tail-weighted dependence measure when α is far away from 1. In particular, the desirable
property that ζα converges to the upper tail dependence coefficient λU as α→∞ allows
us to devise a method to estimate λU based on the observed trajectory of ζα at various
values of α.

The proposed measures can be used to distinguish between copulas with various
strengths of dependence in the joint tail, and are useful as diagnostic measures for
modelling where inference of the tail is of interest. There are two advantages over the
tail-weighted dependence measure % in Krupskii and Joe (2015):

• The probabilistic version of ζα involves a one-dimensional integral and is simpler than
that of %, which involves a conditional correlation and a two-dimensional integral. It
is thus easier to analyze the distributional properties of the empirical estimator of ζα.

• Because the upper tail dependence coefficient λU can be obtained as a limit of ζα as
α → ∞, we can extrapolate estimates of ζα for several α to get an estimate of λU .
There is no such relationship for the measure %.

Through a simulation study, we observe that the estimation of λU using ζ̂α may have
better performance than the one based on the empirical copula when there is tail de-
pendence. The data example illustrates the potential uses of the proposed tail-weighted
dependence measure; they are especially relevant when tail inference is of interest, such
as estimating the value-at-risk or joint exceedance probabilities.
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Capéraà, P., Fougères, A.L., and Genest, C. (1997), ‘A nonparametric estimation procedure for
bivariate extreme value copulas’, Biometrika, 84, 567–577.

Cooley, D., Naveau, P., and Poncet, P. (2006), ‘Variograms for spatial max-stable random fields’,
in Dependence in Probability and Statistics, Springer, New York, pp. 373–390.

Deheuvels, P. (1991), ‘On the limiting behavior of the Pickands estimator for bivariate extreme-
value distributions’, Statistics & Probability Letters, 12, 429–439.
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Genest, C., Nešlehová, J., and Ben Ghorbal, N. (2010), ‘Spearman’s footrule and Gini’s gamma:
a review with complements’, Journal of Nonparametric Statistics, 22, 937–954.

Hall, P., and Tajvidi, N. (2000), ‘Distribution and dependence-function estimation for bivariate
extreme-value distributions’, Bernoulli, 6, 835–844.

Heffernan, J.E. (2000), ‘A directory of coefficients of tail dependence’, Extremes, 3, 279–290.
Hua, L., and Joe, H. (2011), ‘Tail order and intermediate tail dependence of multivariate copulas’,

Journal of Multivariate Analysis, 102, 1454–1471.
Joe, H. (2014), Dependence Modeling with Copulas, Boca Raton: Chapman & Hall/CRC.
Krupskii, P., and Joe, H. (2015), ‘Tail-weighted measures of dependence’, Journal of Applied

Statistics, 42, 614–629.
Ledford, A.W., and Tawn, J.A. (1996), ‘Statistics for near independence in multivariate extreme

values’, Biometrika, 83, 169–187.
Naveau, P., Guillou, A., Cooley, D., and Diebolt, J. (2009), ‘Modelling pairwise dependence of

maxima in space’, Biometrika, 96, 1–17.
Nelsen, R.B. (2006), An Introduction to Copulas, 2nd ed., New York: Springer.
Nikoloulopoulos, A.K., Joe, H., and Li, H. (2009), ‘Extreme value properties of multivariate t

copulas’, Extremes, 12, 129–148.
Pickands, J. (1981), ‘Multivariate extreme value distributions’, in Proceedings 43rd Session In-

ternational Statistical Institute, Vol. 2, pp. 859–878.
Scarsini, M. (1984), ‘On measures of concordance’, Stochastica, 8, 201–218.
Schmid, F., and Schmidt, R. (2007), ‘Multivariate conditional versions of Spearman’s rho and

related measures of tail dependence’, Journal of Multivariate Analysis, 98, 1123–1140.
Segers, J. (2012), ‘Asymptotics of empirical copula processes under non-restrictive smoothness

assumptions’, Bernoulli, 18, 764–782.
Shao, J., and Wu, C.F.J. (1989), ‘A general theory for jackknife variance estimation’, Annals of

Statistics, 17, 1176–1197.
Smith, R.L. (1990), ‘Max-stable processes and spatial extremes’, Unpublished manuscript.
Spearman, C. (1904), ‘The proof and measurement of association between two things’, The Amer-

ican Journal of Psychology, 15, 72–101.
Spearman, C. (1906), “Footrule’ for measuring correlation’, British Journal of Psychology, 2,

89–108.
Tsukahara, H. (2005), ‘Semiparametric estimation in copula models’, Canadian Journal of Statis-

tics, 33, 357–375.
van der Vaart, A., and Wellner, J.A. (1996), Weak Convergence and Empirical Processes: With

Applications to Statistics, New York: Springer.

Appendix A. Asymptotic variance of ζ̂α

The asymptotic variance in (13) is usually a 2-dimensional integral that can be evaluated
numerically. Note that

Var(X) = E(X2)
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(A1)

Using (15), we have

E [GC (u1, u2)GC (u3, u4)]

=E [BC(u1, u2)BC(u3, u4)]− C2|1(u2|u1)E [BC(u1, 1)BC(u3, u4)]− C1|2(u1|u2)E [BC(1, u2)BC(u3, u4)]

− C2|1(u4|u3)E [BC(u1, u2)BC(u3, 1)] + C2|1(u2|u1)C2|1(u4|u3)E [BC(u1, 1)BC(u3, 1)]

+ C1|2(u1|u2)C2|1(u4|u3)E [BC(1, u2)BC(u3, 1)]− C1|2(u3|u4)E [BC(u1, u2)BC(1, u4)]

+ C2|1(u2|u1)C1|2(u3|u4)E [BC(u1, 1)BC(1, u4)] + C1|2(u1|u2)C1|2(u3|u4)E [BC(1, u2)BC(1, u4)] .
(A2)

Together with (16), the integrals can be evaluated once the expressions of C, C1|2 and C2|1 are
given.
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